xref: /openbmc/linux/fs/ubifs/super.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 /*
30  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31  * allocating too much.
32  */
33 #define UBIFS_KMALLOC_OK (128*1024)
34 
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
37 
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 	.scan_objects = ubifs_shrink_scan,
41 	.count_objects = ubifs_shrink_count,
42 	.seeks = DEFAULT_SEEKS,
43 };
44 
45 /**
46  * validate_inode - validate inode.
47  * @c: UBIFS file-system description object
48  * @inode: the inode to validate
49  *
50  * This is a helper function for 'ubifs_iget()' which validates various fields
51  * of a newly built inode to make sure they contain sane values and prevent
52  * possible vulnerabilities. Returns zero if the inode is all right and
53  * a non-zero error code if not.
54  */
55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56 {
57 	int err;
58 	const struct ubifs_inode *ui = ubifs_inode(inode);
59 
60 	if (inode->i_size > c->max_inode_sz) {
61 		ubifs_err(c, "inode is too large (%lld)",
62 			  (long long)inode->i_size);
63 		return 1;
64 	}
65 
66 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 		return 2;
69 	}
70 
71 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 		return 3;
73 
74 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 		return 4;
76 
77 	if (ui->xattr && !S_ISREG(inode->i_mode))
78 		return 5;
79 
80 	if (!ubifs_compr_present(c, ui->compr_type)) {
81 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 	}
84 
85 	err = dbg_check_dir(c, inode);
86 	return err;
87 }
88 
89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90 {
91 	int err;
92 	union ubifs_key key;
93 	struct ubifs_ino_node *ino;
94 	struct ubifs_info *c = sb->s_fs_info;
95 	struct inode *inode;
96 	struct ubifs_inode *ui;
97 
98 	dbg_gen("inode %lu", inum);
99 
100 	inode = iget_locked(sb, inum);
101 	if (!inode)
102 		return ERR_PTR(-ENOMEM);
103 	if (!(inode->i_state & I_NEW))
104 		return inode;
105 	ui = ubifs_inode(inode);
106 
107 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 	if (!ino) {
109 		err = -ENOMEM;
110 		goto out;
111 	}
112 
113 	ino_key_init(c, &key, inode->i_ino);
114 
115 	err = ubifs_tnc_lookup(c, &key, ino);
116 	if (err)
117 		goto out_ino;
118 
119 	inode->i_flags |= S_NOCMTIME;
120 
121 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 		inode->i_flags |= S_NOATIME;
123 
124 	set_nlink(inode, le32_to_cpu(ino->nlink));
125 	i_uid_write(inode, le32_to_cpu(ino->uid));
126 	i_gid_write(inode, le32_to_cpu(ino->gid));
127 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 	inode->i_mode = le32_to_cpu(ino->mode);
134 	inode->i_size = le64_to_cpu(ino->size);
135 
136 	ui->data_len    = le32_to_cpu(ino->data_len);
137 	ui->flags       = le32_to_cpu(ino->flags);
138 	ui->compr_type  = le16_to_cpu(ino->compr_type);
139 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 	ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147 	err = validate_inode(c, inode);
148 	if (err)
149 		goto out_invalid;
150 
151 	switch (inode->i_mode & S_IFMT) {
152 	case S_IFREG:
153 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 		inode->i_op = &ubifs_file_inode_operations;
155 		inode->i_fop = &ubifs_file_operations;
156 		if (ui->xattr) {
157 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 			if (!ui->data) {
159 				err = -ENOMEM;
160 				goto out_ino;
161 			}
162 			memcpy(ui->data, ino->data, ui->data_len);
163 			((char *)ui->data)[ui->data_len] = '\0';
164 		} else if (ui->data_len != 0) {
165 			err = 10;
166 			goto out_invalid;
167 		}
168 		break;
169 	case S_IFDIR:
170 		inode->i_op  = &ubifs_dir_inode_operations;
171 		inode->i_fop = &ubifs_dir_operations;
172 		if (ui->data_len != 0) {
173 			err = 11;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFLNK:
178 		inode->i_op = &ubifs_symlink_inode_operations;
179 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 			err = 12;
181 			goto out_invalid;
182 		}
183 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 		if (!ui->data) {
185 			err = -ENOMEM;
186 			goto out_ino;
187 		}
188 		memcpy(ui->data, ino->data, ui->data_len);
189 		((char *)ui->data)[ui->data_len] = '\0';
190 		break;
191 	case S_IFBLK:
192 	case S_IFCHR:
193 	{
194 		dev_t rdev;
195 		union ubifs_dev_desc *dev;
196 
197 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 		if (!ui->data) {
199 			err = -ENOMEM;
200 			goto out_ino;
201 		}
202 
203 		dev = (union ubifs_dev_desc *)ino->data;
204 		if (ui->data_len == sizeof(dev->new))
205 			rdev = new_decode_dev(le32_to_cpu(dev->new));
206 		else if (ui->data_len == sizeof(dev->huge))
207 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 		else {
209 			err = 13;
210 			goto out_invalid;
211 		}
212 		memcpy(ui->data, ino->data, ui->data_len);
213 		inode->i_op = &ubifs_file_inode_operations;
214 		init_special_inode(inode, inode->i_mode, rdev);
215 		break;
216 	}
217 	case S_IFSOCK:
218 	case S_IFIFO:
219 		inode->i_op = &ubifs_file_inode_operations;
220 		init_special_inode(inode, inode->i_mode, 0);
221 		if (ui->data_len != 0) {
222 			err = 14;
223 			goto out_invalid;
224 		}
225 		break;
226 	default:
227 		err = 15;
228 		goto out_invalid;
229 	}
230 
231 	kfree(ino);
232 	ubifs_set_inode_flags(inode);
233 	unlock_new_inode(inode);
234 	return inode;
235 
236 out_invalid:
237 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 	ubifs_dump_node(c, ino);
239 	ubifs_dump_inode(c, inode);
240 	err = -EINVAL;
241 out_ino:
242 	kfree(ino);
243 out:
244 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 	iget_failed(inode);
246 	return ERR_PTR(err);
247 }
248 
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251 	struct ubifs_inode *ui;
252 
253 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 	if (!ui)
255 		return NULL;
256 
257 	memset((void *)ui + sizeof(struct inode), 0,
258 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
259 	mutex_init(&ui->ui_mutex);
260 	spin_lock_init(&ui->ui_lock);
261 	return &ui->vfs_inode;
262 };
263 
264 static void ubifs_free_inode(struct inode *inode)
265 {
266 	struct ubifs_inode *ui = ubifs_inode(inode);
267 
268 	kfree(ui->data);
269 	fscrypt_free_inode(inode);
270 
271 	kmem_cache_free(ubifs_inode_slab, ui);
272 }
273 
274 /*
275  * Note, Linux write-back code calls this without 'i_mutex'.
276  */
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
278 {
279 	int err = 0;
280 	struct ubifs_info *c = inode->i_sb->s_fs_info;
281 	struct ubifs_inode *ui = ubifs_inode(inode);
282 
283 	ubifs_assert(c, !ui->xattr);
284 	if (is_bad_inode(inode))
285 		return 0;
286 
287 	mutex_lock(&ui->ui_mutex);
288 	/*
289 	 * Due to races between write-back forced by budgeting
290 	 * (see 'sync_some_inodes()') and background write-back, the inode may
291 	 * have already been synchronized, do not do this again. This might
292 	 * also happen if it was synchronized in an VFS operation, e.g.
293 	 * 'ubifs_link()'.
294 	 */
295 	if (!ui->dirty) {
296 		mutex_unlock(&ui->ui_mutex);
297 		return 0;
298 	}
299 
300 	/*
301 	 * As an optimization, do not write orphan inodes to the media just
302 	 * because this is not needed.
303 	 */
304 	dbg_gen("inode %lu, mode %#x, nlink %u",
305 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 	if (inode->i_nlink) {
307 		err = ubifs_jnl_write_inode(c, inode);
308 		if (err)
309 			ubifs_err(c, "can't write inode %lu, error %d",
310 				  inode->i_ino, err);
311 		else
312 			err = dbg_check_inode_size(c, inode, ui->ui_size);
313 	}
314 
315 	ui->dirty = 0;
316 	mutex_unlock(&ui->ui_mutex);
317 	ubifs_release_dirty_inode_budget(c, ui);
318 	return err;
319 }
320 
321 static void ubifs_evict_inode(struct inode *inode)
322 {
323 	int err;
324 	struct ubifs_info *c = inode->i_sb->s_fs_info;
325 	struct ubifs_inode *ui = ubifs_inode(inode);
326 
327 	if (ui->xattr)
328 		/*
329 		 * Extended attribute inode deletions are fully handled in
330 		 * 'ubifs_removexattr()'. These inodes are special and have
331 		 * limited usage, so there is nothing to do here.
332 		 */
333 		goto out;
334 
335 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
336 	ubifs_assert(c, !atomic_read(&inode->i_count));
337 
338 	truncate_inode_pages_final(&inode->i_data);
339 
340 	if (inode->i_nlink)
341 		goto done;
342 
343 	if (is_bad_inode(inode))
344 		goto out;
345 
346 	ui->ui_size = inode->i_size = 0;
347 	err = ubifs_jnl_delete_inode(c, inode);
348 	if (err)
349 		/*
350 		 * Worst case we have a lost orphan inode wasting space, so a
351 		 * simple error message is OK here.
352 		 */
353 		ubifs_err(c, "can't delete inode %lu, error %d",
354 			  inode->i_ino, err);
355 
356 out:
357 	if (ui->dirty)
358 		ubifs_release_dirty_inode_budget(c, ui);
359 	else {
360 		/* We've deleted something - clean the "no space" flags */
361 		c->bi.nospace = c->bi.nospace_rp = 0;
362 		smp_wmb();
363 	}
364 done:
365 	clear_inode(inode);
366 	fscrypt_put_encryption_info(inode);
367 }
368 
369 static void ubifs_dirty_inode(struct inode *inode, int flags)
370 {
371 	struct ubifs_info *c = inode->i_sb->s_fs_info;
372 	struct ubifs_inode *ui = ubifs_inode(inode);
373 
374 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
375 	if (!ui->dirty) {
376 		ui->dirty = 1;
377 		dbg_gen("inode %lu",  inode->i_ino);
378 	}
379 }
380 
381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
382 {
383 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
384 	unsigned long long free;
385 	__le32 *uuid = (__le32 *)c->uuid;
386 
387 	free = ubifs_get_free_space(c);
388 	dbg_gen("free space %lld bytes (%lld blocks)",
389 		free, free >> UBIFS_BLOCK_SHIFT);
390 
391 	buf->f_type = UBIFS_SUPER_MAGIC;
392 	buf->f_bsize = UBIFS_BLOCK_SIZE;
393 	buf->f_blocks = c->block_cnt;
394 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
395 	if (free > c->report_rp_size)
396 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
397 	else
398 		buf->f_bavail = 0;
399 	buf->f_files = 0;
400 	buf->f_ffree = 0;
401 	buf->f_namelen = UBIFS_MAX_NLEN;
402 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
403 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
404 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
405 	return 0;
406 }
407 
408 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
409 {
410 	struct ubifs_info *c = root->d_sb->s_fs_info;
411 
412 	if (c->mount_opts.unmount_mode == 2)
413 		seq_puts(s, ",fast_unmount");
414 	else if (c->mount_opts.unmount_mode == 1)
415 		seq_puts(s, ",norm_unmount");
416 
417 	if (c->mount_opts.bulk_read == 2)
418 		seq_puts(s, ",bulk_read");
419 	else if (c->mount_opts.bulk_read == 1)
420 		seq_puts(s, ",no_bulk_read");
421 
422 	if (c->mount_opts.chk_data_crc == 2)
423 		seq_puts(s, ",chk_data_crc");
424 	else if (c->mount_opts.chk_data_crc == 1)
425 		seq_puts(s, ",no_chk_data_crc");
426 
427 	if (c->mount_opts.override_compr) {
428 		seq_printf(s, ",compr=%s",
429 			   ubifs_compr_name(c, c->mount_opts.compr_type));
430 	}
431 
432 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
433 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
434 
435 	return 0;
436 }
437 
438 static int ubifs_sync_fs(struct super_block *sb, int wait)
439 {
440 	int i, err;
441 	struct ubifs_info *c = sb->s_fs_info;
442 
443 	/*
444 	 * Zero @wait is just an advisory thing to help the file system shove
445 	 * lots of data into the queues, and there will be the second
446 	 * '->sync_fs()' call, with non-zero @wait.
447 	 */
448 	if (!wait)
449 		return 0;
450 
451 	/*
452 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
453 	 * do this if it waits for an already running commit.
454 	 */
455 	for (i = 0; i < c->jhead_cnt; i++) {
456 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
457 		if (err)
458 			return err;
459 	}
460 
461 	/*
462 	 * Strictly speaking, it is not necessary to commit the journal here,
463 	 * synchronizing write-buffers would be enough. But committing makes
464 	 * UBIFS free space predictions much more accurate, so we want to let
465 	 * the user be able to get more accurate results of 'statfs()' after
466 	 * they synchronize the file system.
467 	 */
468 	err = ubifs_run_commit(c);
469 	if (err)
470 		return err;
471 
472 	return ubi_sync(c->vi.ubi_num);
473 }
474 
475 /**
476  * init_constants_early - initialize UBIFS constants.
477  * @c: UBIFS file-system description object
478  *
479  * This function initialize UBIFS constants which do not need the superblock to
480  * be read. It also checks that the UBI volume satisfies basic UBIFS
481  * requirements. Returns zero in case of success and a negative error code in
482  * case of failure.
483  */
484 static int init_constants_early(struct ubifs_info *c)
485 {
486 	if (c->vi.corrupted) {
487 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
488 		c->ro_media = 1;
489 	}
490 
491 	if (c->di.ro_mode) {
492 		ubifs_msg(c, "read-only UBI device");
493 		c->ro_media = 1;
494 	}
495 
496 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
497 		ubifs_msg(c, "static UBI volume - read-only mode");
498 		c->ro_media = 1;
499 	}
500 
501 	c->leb_cnt = c->vi.size;
502 	c->leb_size = c->vi.usable_leb_size;
503 	c->leb_start = c->di.leb_start;
504 	c->half_leb_size = c->leb_size / 2;
505 	c->min_io_size = c->di.min_io_size;
506 	c->min_io_shift = fls(c->min_io_size) - 1;
507 	c->max_write_size = c->di.max_write_size;
508 	c->max_write_shift = fls(c->max_write_size) - 1;
509 
510 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
511 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
512 			   c->leb_size, UBIFS_MIN_LEB_SZ);
513 		return -EINVAL;
514 	}
515 
516 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
517 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
518 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
519 		return -EINVAL;
520 	}
521 
522 	if (!is_power_of_2(c->min_io_size)) {
523 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
524 		return -EINVAL;
525 	}
526 
527 	/*
528 	 * Maximum write size has to be greater or equivalent to min. I/O
529 	 * size, and be multiple of min. I/O size.
530 	 */
531 	if (c->max_write_size < c->min_io_size ||
532 	    c->max_write_size % c->min_io_size ||
533 	    !is_power_of_2(c->max_write_size)) {
534 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
535 			   c->max_write_size, c->min_io_size);
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
541 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
542 	 * less than 8.
543 	 */
544 	if (c->min_io_size < 8) {
545 		c->min_io_size = 8;
546 		c->min_io_shift = 3;
547 		if (c->max_write_size < c->min_io_size) {
548 			c->max_write_size = c->min_io_size;
549 			c->max_write_shift = c->min_io_shift;
550 		}
551 	}
552 
553 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
554 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
555 
556 	/*
557 	 * Initialize node length ranges which are mostly needed for node
558 	 * length validation.
559 	 */
560 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
561 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
562 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
563 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
564 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
565 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
566 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
567 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
568 				UBIFS_MAX_HMAC_LEN;
569 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
570 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
571 
572 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
573 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
574 	c->ranges[UBIFS_ORPH_NODE].min_len =
575 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
576 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
577 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
578 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
579 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
580 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
581 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
582 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
583 	/*
584 	 * Minimum indexing node size is amended later when superblock is
585 	 * read and the key length is known.
586 	 */
587 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
588 	/*
589 	 * Maximum indexing node size is amended later when superblock is
590 	 * read and the fanout is known.
591 	 */
592 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
593 
594 	/*
595 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
596 	 * about these values.
597 	 */
598 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
599 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
600 
601 	/*
602 	 * Calculate how many bytes would be wasted at the end of LEB if it was
603 	 * fully filled with data nodes of maximum size. This is used in
604 	 * calculations when reporting free space.
605 	 */
606 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
607 
608 	/* Buffer size for bulk-reads */
609 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
610 	if (c->max_bu_buf_len > c->leb_size)
611 		c->max_bu_buf_len = c->leb_size;
612 
613 	/* Log is ready, preserve one LEB for commits. */
614 	c->min_log_bytes = c->leb_size;
615 
616 	return 0;
617 }
618 
619 /**
620  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
621  * @c: UBIFS file-system description object
622  * @lnum: LEB the write-buffer was synchronized to
623  * @free: how many free bytes left in this LEB
624  * @pad: how many bytes were padded
625  *
626  * This is a callback function which is called by the I/O unit when the
627  * write-buffer is synchronized. We need this to correctly maintain space
628  * accounting in bud logical eraseblocks. This function returns zero in case of
629  * success and a negative error code in case of failure.
630  *
631  * This function actually belongs to the journal, but we keep it here because
632  * we want to keep it static.
633  */
634 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
635 {
636 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
637 }
638 
639 /*
640  * init_constants_sb - initialize UBIFS constants.
641  * @c: UBIFS file-system description object
642  *
643  * This is a helper function which initializes various UBIFS constants after
644  * the superblock has been read. It also checks various UBIFS parameters and
645  * makes sure they are all right. Returns zero in case of success and a
646  * negative error code in case of failure.
647  */
648 static int init_constants_sb(struct ubifs_info *c)
649 {
650 	int tmp, err;
651 	long long tmp64;
652 
653 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
654 	c->max_znode_sz = sizeof(struct ubifs_znode) +
655 				c->fanout * sizeof(struct ubifs_zbranch);
656 
657 	tmp = ubifs_idx_node_sz(c, 1);
658 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
659 	c->min_idx_node_sz = ALIGN(tmp, 8);
660 
661 	tmp = ubifs_idx_node_sz(c, c->fanout);
662 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
663 	c->max_idx_node_sz = ALIGN(tmp, 8);
664 
665 	/* Make sure LEB size is large enough to fit full commit */
666 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
667 	tmp = ALIGN(tmp, c->min_io_size);
668 	if (tmp > c->leb_size) {
669 		ubifs_err(c, "too small LEB size %d, at least %d needed",
670 			  c->leb_size, tmp);
671 		return -EINVAL;
672 	}
673 
674 	/*
675 	 * Make sure that the log is large enough to fit reference nodes for
676 	 * all buds plus one reserved LEB.
677 	 */
678 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
679 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
680 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
681 	tmp /= c->leb_size;
682 	tmp += 1;
683 	if (c->log_lebs < tmp) {
684 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
685 			  c->log_lebs, tmp);
686 		return -EINVAL;
687 	}
688 
689 	/*
690 	 * When budgeting we assume worst-case scenarios when the pages are not
691 	 * be compressed and direntries are of the maximum size.
692 	 *
693 	 * Note, data, which may be stored in inodes is budgeted separately, so
694 	 * it is not included into 'c->bi.inode_budget'.
695 	 */
696 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
697 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
698 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
699 
700 	/*
701 	 * When the amount of flash space used by buds becomes
702 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
703 	 * The writers are unblocked when the commit is finished. To avoid
704 	 * writers to be blocked UBIFS initiates background commit in advance,
705 	 * when number of bud bytes becomes above the limit defined below.
706 	 */
707 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
708 
709 	/*
710 	 * Ensure minimum journal size. All the bytes in the journal heads are
711 	 * considered to be used, when calculating the current journal usage.
712 	 * Consequently, if the journal is too small, UBIFS will treat it as
713 	 * always full.
714 	 */
715 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
716 	if (c->bg_bud_bytes < tmp64)
717 		c->bg_bud_bytes = tmp64;
718 	if (c->max_bud_bytes < tmp64 + c->leb_size)
719 		c->max_bud_bytes = tmp64 + c->leb_size;
720 
721 	err = ubifs_calc_lpt_geom(c);
722 	if (err)
723 		return err;
724 
725 	/* Initialize effective LEB size used in budgeting calculations */
726 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
727 	return 0;
728 }
729 
730 /*
731  * init_constants_master - initialize UBIFS constants.
732  * @c: UBIFS file-system description object
733  *
734  * This is a helper function which initializes various UBIFS constants after
735  * the master node has been read. It also checks various UBIFS parameters and
736  * makes sure they are all right.
737  */
738 static void init_constants_master(struct ubifs_info *c)
739 {
740 	long long tmp64;
741 
742 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
743 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
744 
745 	/*
746 	 * Calculate total amount of FS blocks. This number is not used
747 	 * internally because it does not make much sense for UBIFS, but it is
748 	 * necessary to report something for the 'statfs()' call.
749 	 *
750 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
751 	 * deletions, minimum LEBs for the index, and assume only one journal
752 	 * head is available.
753 	 */
754 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
755 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
756 	tmp64 = ubifs_reported_space(c, tmp64);
757 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
758 }
759 
760 /**
761  * take_gc_lnum - reserve GC LEB.
762  * @c: UBIFS file-system description object
763  *
764  * This function ensures that the LEB reserved for garbage collection is marked
765  * as "taken" in lprops. We also have to set free space to LEB size and dirty
766  * space to zero, because lprops may contain out-of-date information if the
767  * file-system was un-mounted before it has been committed. This function
768  * returns zero in case of success and a negative error code in case of
769  * failure.
770  */
771 static int take_gc_lnum(struct ubifs_info *c)
772 {
773 	int err;
774 
775 	if (c->gc_lnum == -1) {
776 		ubifs_err(c, "no LEB for GC");
777 		return -EINVAL;
778 	}
779 
780 	/* And we have to tell lprops that this LEB is taken */
781 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
782 				  LPROPS_TAKEN, 0, 0);
783 	return err;
784 }
785 
786 /**
787  * alloc_wbufs - allocate write-buffers.
788  * @c: UBIFS file-system description object
789  *
790  * This helper function allocates and initializes UBIFS write-buffers. Returns
791  * zero in case of success and %-ENOMEM in case of failure.
792  */
793 static int alloc_wbufs(struct ubifs_info *c)
794 {
795 	int i, err;
796 
797 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
798 			    GFP_KERNEL);
799 	if (!c->jheads)
800 		return -ENOMEM;
801 
802 	/* Initialize journal heads */
803 	for (i = 0; i < c->jhead_cnt; i++) {
804 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
805 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
806 		if (err)
807 			return err;
808 
809 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
810 		c->jheads[i].wbuf.jhead = i;
811 		c->jheads[i].grouped = 1;
812 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
813 		if (IS_ERR(c->jheads[i].log_hash))
814 			goto out;
815 	}
816 
817 	/*
818 	 * Garbage Collector head does not need to be synchronized by timer.
819 	 * Also GC head nodes are not grouped.
820 	 */
821 	c->jheads[GCHD].wbuf.no_timer = 1;
822 	c->jheads[GCHD].grouped = 0;
823 
824 	return 0;
825 
826 out:
827 	while (i--)
828 		kfree(c->jheads[i].log_hash);
829 
830 	return err;
831 }
832 
833 /**
834  * free_wbufs - free write-buffers.
835  * @c: UBIFS file-system description object
836  */
837 static void free_wbufs(struct ubifs_info *c)
838 {
839 	int i;
840 
841 	if (c->jheads) {
842 		for (i = 0; i < c->jhead_cnt; i++) {
843 			kfree(c->jheads[i].wbuf.buf);
844 			kfree(c->jheads[i].wbuf.inodes);
845 			kfree(c->jheads[i].log_hash);
846 		}
847 		kfree(c->jheads);
848 		c->jheads = NULL;
849 	}
850 }
851 
852 /**
853  * free_orphans - free orphans.
854  * @c: UBIFS file-system description object
855  */
856 static void free_orphans(struct ubifs_info *c)
857 {
858 	struct ubifs_orphan *orph;
859 
860 	while (c->orph_dnext) {
861 		orph = c->orph_dnext;
862 		c->orph_dnext = orph->dnext;
863 		list_del(&orph->list);
864 		kfree(orph);
865 	}
866 
867 	while (!list_empty(&c->orph_list)) {
868 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
869 		list_del(&orph->list);
870 		kfree(orph);
871 		ubifs_err(c, "orphan list not empty at unmount");
872 	}
873 
874 	vfree(c->orph_buf);
875 	c->orph_buf = NULL;
876 }
877 
878 /**
879  * free_buds - free per-bud objects.
880  * @c: UBIFS file-system description object
881  */
882 static void free_buds(struct ubifs_info *c)
883 {
884 	struct ubifs_bud *bud, *n;
885 
886 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
887 		kfree(bud);
888 }
889 
890 /**
891  * check_volume_empty - check if the UBI volume is empty.
892  * @c: UBIFS file-system description object
893  *
894  * This function checks if the UBIFS volume is empty by looking if its LEBs are
895  * mapped or not. The result of checking is stored in the @c->empty variable.
896  * Returns zero in case of success and a negative error code in case of
897  * failure.
898  */
899 static int check_volume_empty(struct ubifs_info *c)
900 {
901 	int lnum, err;
902 
903 	c->empty = 1;
904 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
905 		err = ubifs_is_mapped(c, lnum);
906 		if (unlikely(err < 0))
907 			return err;
908 		if (err == 1) {
909 			c->empty = 0;
910 			break;
911 		}
912 
913 		cond_resched();
914 	}
915 
916 	return 0;
917 }
918 
919 /*
920  * UBIFS mount options.
921  *
922  * Opt_fast_unmount: do not run a journal commit before un-mounting
923  * Opt_norm_unmount: run a journal commit before un-mounting
924  * Opt_bulk_read: enable bulk-reads
925  * Opt_no_bulk_read: disable bulk-reads
926  * Opt_chk_data_crc: check CRCs when reading data nodes
927  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
928  * Opt_override_compr: override default compressor
929  * Opt_assert: set ubifs_assert() action
930  * Opt_auth_key: The key name used for authentication
931  * Opt_auth_hash_name: The hash type used for authentication
932  * Opt_err: just end of array marker
933  */
934 enum {
935 	Opt_fast_unmount,
936 	Opt_norm_unmount,
937 	Opt_bulk_read,
938 	Opt_no_bulk_read,
939 	Opt_chk_data_crc,
940 	Opt_no_chk_data_crc,
941 	Opt_override_compr,
942 	Opt_assert,
943 	Opt_auth_key,
944 	Opt_auth_hash_name,
945 	Opt_ignore,
946 	Opt_err,
947 };
948 
949 static const match_table_t tokens = {
950 	{Opt_fast_unmount, "fast_unmount"},
951 	{Opt_norm_unmount, "norm_unmount"},
952 	{Opt_bulk_read, "bulk_read"},
953 	{Opt_no_bulk_read, "no_bulk_read"},
954 	{Opt_chk_data_crc, "chk_data_crc"},
955 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
956 	{Opt_override_compr, "compr=%s"},
957 	{Opt_auth_key, "auth_key=%s"},
958 	{Opt_auth_hash_name, "auth_hash_name=%s"},
959 	{Opt_ignore, "ubi=%s"},
960 	{Opt_ignore, "vol=%s"},
961 	{Opt_assert, "assert=%s"},
962 	{Opt_err, NULL},
963 };
964 
965 /**
966  * parse_standard_option - parse a standard mount option.
967  * @option: the option to parse
968  *
969  * Normally, standard mount options like "sync" are passed to file-systems as
970  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
971  * be present in the options string. This function tries to deal with this
972  * situation and parse standard options. Returns 0 if the option was not
973  * recognized, and the corresponding integer flag if it was.
974  *
975  * UBIFS is only interested in the "sync" option, so do not check for anything
976  * else.
977  */
978 static int parse_standard_option(const char *option)
979 {
980 
981 	pr_notice("UBIFS: parse %s\n", option);
982 	if (!strcmp(option, "sync"))
983 		return SB_SYNCHRONOUS;
984 	return 0;
985 }
986 
987 /**
988  * ubifs_parse_options - parse mount parameters.
989  * @c: UBIFS file-system description object
990  * @options: parameters to parse
991  * @is_remount: non-zero if this is FS re-mount
992  *
993  * This function parses UBIFS mount options and returns zero in case success
994  * and a negative error code in case of failure.
995  */
996 static int ubifs_parse_options(struct ubifs_info *c, char *options,
997 			       int is_remount)
998 {
999 	char *p;
1000 	substring_t args[MAX_OPT_ARGS];
1001 
1002 	if (!options)
1003 		return 0;
1004 
1005 	while ((p = strsep(&options, ","))) {
1006 		int token;
1007 
1008 		if (!*p)
1009 			continue;
1010 
1011 		token = match_token(p, tokens, args);
1012 		switch (token) {
1013 		/*
1014 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1015 		 * We accept them in order to be backward-compatible. But this
1016 		 * should be removed at some point.
1017 		 */
1018 		case Opt_fast_unmount:
1019 			c->mount_opts.unmount_mode = 2;
1020 			break;
1021 		case Opt_norm_unmount:
1022 			c->mount_opts.unmount_mode = 1;
1023 			break;
1024 		case Opt_bulk_read:
1025 			c->mount_opts.bulk_read = 2;
1026 			c->bulk_read = 1;
1027 			break;
1028 		case Opt_no_bulk_read:
1029 			c->mount_opts.bulk_read = 1;
1030 			c->bulk_read = 0;
1031 			break;
1032 		case Opt_chk_data_crc:
1033 			c->mount_opts.chk_data_crc = 2;
1034 			c->no_chk_data_crc = 0;
1035 			break;
1036 		case Opt_no_chk_data_crc:
1037 			c->mount_opts.chk_data_crc = 1;
1038 			c->no_chk_data_crc = 1;
1039 			break;
1040 		case Opt_override_compr:
1041 		{
1042 			char *name = match_strdup(&args[0]);
1043 
1044 			if (!name)
1045 				return -ENOMEM;
1046 			if (!strcmp(name, "none"))
1047 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1048 			else if (!strcmp(name, "lzo"))
1049 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1050 			else if (!strcmp(name, "zlib"))
1051 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1052 			else if (!strcmp(name, "zstd"))
1053 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1054 			else {
1055 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1056 				kfree(name);
1057 				return -EINVAL;
1058 			}
1059 			kfree(name);
1060 			c->mount_opts.override_compr = 1;
1061 			c->default_compr = c->mount_opts.compr_type;
1062 			break;
1063 		}
1064 		case Opt_assert:
1065 		{
1066 			char *act = match_strdup(&args[0]);
1067 
1068 			if (!act)
1069 				return -ENOMEM;
1070 			if (!strcmp(act, "report"))
1071 				c->assert_action = ASSACT_REPORT;
1072 			else if (!strcmp(act, "read-only"))
1073 				c->assert_action = ASSACT_RO;
1074 			else if (!strcmp(act, "panic"))
1075 				c->assert_action = ASSACT_PANIC;
1076 			else {
1077 				ubifs_err(c, "unknown assert action \"%s\"", act);
1078 				kfree(act);
1079 				return -EINVAL;
1080 			}
1081 			kfree(act);
1082 			break;
1083 		}
1084 		case Opt_auth_key:
1085 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1086 			if (!c->auth_key_name)
1087 				return -ENOMEM;
1088 			break;
1089 		case Opt_auth_hash_name:
1090 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1091 			if (!c->auth_hash_name)
1092 				return -ENOMEM;
1093 			break;
1094 		case Opt_ignore:
1095 			break;
1096 		default:
1097 		{
1098 			unsigned long flag;
1099 			struct super_block *sb = c->vfs_sb;
1100 
1101 			flag = parse_standard_option(p);
1102 			if (!flag) {
1103 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1104 					  p);
1105 				return -EINVAL;
1106 			}
1107 			sb->s_flags |= flag;
1108 			break;
1109 		}
1110 		}
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 /**
1117  * destroy_journal - destroy journal data structures.
1118  * @c: UBIFS file-system description object
1119  *
1120  * This function destroys journal data structures including those that may have
1121  * been created by recovery functions.
1122  */
1123 static void destroy_journal(struct ubifs_info *c)
1124 {
1125 	while (!list_empty(&c->unclean_leb_list)) {
1126 		struct ubifs_unclean_leb *ucleb;
1127 
1128 		ucleb = list_entry(c->unclean_leb_list.next,
1129 				   struct ubifs_unclean_leb, list);
1130 		list_del(&ucleb->list);
1131 		kfree(ucleb);
1132 	}
1133 	while (!list_empty(&c->old_buds)) {
1134 		struct ubifs_bud *bud;
1135 
1136 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1137 		list_del(&bud->list);
1138 		kfree(bud);
1139 	}
1140 	ubifs_destroy_idx_gc(c);
1141 	ubifs_destroy_size_tree(c);
1142 	ubifs_tnc_close(c);
1143 	free_buds(c);
1144 }
1145 
1146 /**
1147  * bu_init - initialize bulk-read information.
1148  * @c: UBIFS file-system description object
1149  */
1150 static void bu_init(struct ubifs_info *c)
1151 {
1152 	ubifs_assert(c, c->bulk_read == 1);
1153 
1154 	if (c->bu.buf)
1155 		return; /* Already initialized */
1156 
1157 again:
1158 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1159 	if (!c->bu.buf) {
1160 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1161 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1162 			goto again;
1163 		}
1164 
1165 		/* Just disable bulk-read */
1166 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1167 			   c->max_bu_buf_len);
1168 		c->mount_opts.bulk_read = 1;
1169 		c->bulk_read = 0;
1170 		return;
1171 	}
1172 }
1173 
1174 /**
1175  * check_free_space - check if there is enough free space to mount.
1176  * @c: UBIFS file-system description object
1177  *
1178  * This function makes sure UBIFS has enough free space to be mounted in
1179  * read/write mode. UBIFS must always have some free space to allow deletions.
1180  */
1181 static int check_free_space(struct ubifs_info *c)
1182 {
1183 	ubifs_assert(c, c->dark_wm > 0);
1184 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1185 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1186 		ubifs_dump_budg(c, &c->bi);
1187 		ubifs_dump_lprops(c);
1188 		return -ENOSPC;
1189 	}
1190 	return 0;
1191 }
1192 
1193 /**
1194  * mount_ubifs - mount UBIFS file-system.
1195  * @c: UBIFS file-system description object
1196  *
1197  * This function mounts UBIFS file system. Returns zero in case of success and
1198  * a negative error code in case of failure.
1199  */
1200 static int mount_ubifs(struct ubifs_info *c)
1201 {
1202 	int err;
1203 	long long x, y;
1204 	size_t sz;
1205 
1206 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1207 	/* Suppress error messages while probing if SB_SILENT is set */
1208 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1209 
1210 	err = init_constants_early(c);
1211 	if (err)
1212 		return err;
1213 
1214 	err = ubifs_debugging_init(c);
1215 	if (err)
1216 		return err;
1217 
1218 	err = check_volume_empty(c);
1219 	if (err)
1220 		goto out_free;
1221 
1222 	if (c->empty && (c->ro_mount || c->ro_media)) {
1223 		/*
1224 		 * This UBI volume is empty, and read-only, or the file system
1225 		 * is mounted read-only - we cannot format it.
1226 		 */
1227 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1228 			  c->ro_media ? "UBI volume" : "mount");
1229 		err = -EROFS;
1230 		goto out_free;
1231 	}
1232 
1233 	if (c->ro_media && !c->ro_mount) {
1234 		ubifs_err(c, "cannot mount read-write - read-only media");
1235 		err = -EROFS;
1236 		goto out_free;
1237 	}
1238 
1239 	/*
1240 	 * The requirement for the buffer is that it should fit indexing B-tree
1241 	 * height amount of integers. We assume the height if the TNC tree will
1242 	 * never exceed 64.
1243 	 */
1244 	err = -ENOMEM;
1245 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1246 					 GFP_KERNEL);
1247 	if (!c->bottom_up_buf)
1248 		goto out_free;
1249 
1250 	c->sbuf = vmalloc(c->leb_size);
1251 	if (!c->sbuf)
1252 		goto out_free;
1253 
1254 	if (!c->ro_mount) {
1255 		c->ileb_buf = vmalloc(c->leb_size);
1256 		if (!c->ileb_buf)
1257 			goto out_free;
1258 	}
1259 
1260 	if (c->bulk_read == 1)
1261 		bu_init(c);
1262 
1263 	if (!c->ro_mount) {
1264 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1265 					       UBIFS_CIPHER_BLOCK_SIZE,
1266 					       GFP_KERNEL);
1267 		if (!c->write_reserve_buf)
1268 			goto out_free;
1269 	}
1270 
1271 	c->mounting = 1;
1272 
1273 	if (c->auth_key_name) {
1274 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1275 			err = ubifs_init_authentication(c);
1276 			if (err)
1277 				goto out_free;
1278 		} else {
1279 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1280 				  " authentication support");
1281 			err = -EINVAL;
1282 			goto out_free;
1283 		}
1284 	}
1285 
1286 	err = ubifs_read_superblock(c);
1287 	if (err)
1288 		goto out_free;
1289 
1290 	c->probing = 0;
1291 
1292 	/*
1293 	 * Make sure the compressor which is set as default in the superblock
1294 	 * or overridden by mount options is actually compiled in.
1295 	 */
1296 	if (!ubifs_compr_present(c, c->default_compr)) {
1297 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1298 			  ubifs_compr_name(c, c->default_compr));
1299 		err = -ENOTSUPP;
1300 		goto out_free;
1301 	}
1302 
1303 	err = init_constants_sb(c);
1304 	if (err)
1305 		goto out_free;
1306 
1307 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1308 	c->cbuf = kmalloc(sz, GFP_NOFS);
1309 	if (!c->cbuf) {
1310 		err = -ENOMEM;
1311 		goto out_free;
1312 	}
1313 
1314 	err = alloc_wbufs(c);
1315 	if (err)
1316 		goto out_cbuf;
1317 
1318 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1319 	if (!c->ro_mount) {
1320 		/* Create background thread */
1321 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1322 		if (IS_ERR(c->bgt)) {
1323 			err = PTR_ERR(c->bgt);
1324 			c->bgt = NULL;
1325 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1326 				  c->bgt_name, err);
1327 			goto out_wbufs;
1328 		}
1329 		wake_up_process(c->bgt);
1330 	}
1331 
1332 	err = ubifs_read_master(c);
1333 	if (err)
1334 		goto out_master;
1335 
1336 	init_constants_master(c);
1337 
1338 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1339 		ubifs_msg(c, "recovery needed");
1340 		c->need_recovery = 1;
1341 	}
1342 
1343 	if (c->need_recovery && !c->ro_mount) {
1344 		err = ubifs_recover_inl_heads(c, c->sbuf);
1345 		if (err)
1346 			goto out_master;
1347 	}
1348 
1349 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1350 	if (err)
1351 		goto out_master;
1352 
1353 	if (!c->ro_mount && c->space_fixup) {
1354 		err = ubifs_fixup_free_space(c);
1355 		if (err)
1356 			goto out_lpt;
1357 	}
1358 
1359 	if (!c->ro_mount && !c->need_recovery) {
1360 		/*
1361 		 * Set the "dirty" flag so that if we reboot uncleanly we
1362 		 * will notice this immediately on the next mount.
1363 		 */
1364 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1365 		err = ubifs_write_master(c);
1366 		if (err)
1367 			goto out_lpt;
1368 	}
1369 
1370 	/*
1371 	 * Handle offline signed images: Now that the master node is
1372 	 * written and its validation no longer depends on the hash
1373 	 * in the superblock, we can update the offline signed
1374 	 * superblock with a HMAC version,
1375 	 */
1376 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1377 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1378 		if (err)
1379 			goto out_lpt;
1380 		c->superblock_need_write = 1;
1381 	}
1382 
1383 	if (!c->ro_mount && c->superblock_need_write) {
1384 		err = ubifs_write_sb_node(c, c->sup_node);
1385 		if (err)
1386 			goto out_lpt;
1387 		c->superblock_need_write = 0;
1388 	}
1389 
1390 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1391 	if (err)
1392 		goto out_lpt;
1393 
1394 	err = ubifs_replay_journal(c);
1395 	if (err)
1396 		goto out_journal;
1397 
1398 	/* Calculate 'min_idx_lebs' after journal replay */
1399 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1400 
1401 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1402 	if (err)
1403 		goto out_orphans;
1404 
1405 	if (!c->ro_mount) {
1406 		int lnum;
1407 
1408 		err = check_free_space(c);
1409 		if (err)
1410 			goto out_orphans;
1411 
1412 		/* Check for enough log space */
1413 		lnum = c->lhead_lnum + 1;
1414 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1415 			lnum = UBIFS_LOG_LNUM;
1416 		if (lnum == c->ltail_lnum) {
1417 			err = ubifs_consolidate_log(c);
1418 			if (err)
1419 				goto out_orphans;
1420 		}
1421 
1422 		if (c->need_recovery) {
1423 			if (!ubifs_authenticated(c)) {
1424 				err = ubifs_recover_size(c, true);
1425 				if (err)
1426 					goto out_orphans;
1427 			}
1428 
1429 			err = ubifs_rcvry_gc_commit(c);
1430 			if (err)
1431 				goto out_orphans;
1432 
1433 			if (ubifs_authenticated(c)) {
1434 				err = ubifs_recover_size(c, false);
1435 				if (err)
1436 					goto out_orphans;
1437 			}
1438 		} else {
1439 			err = take_gc_lnum(c);
1440 			if (err)
1441 				goto out_orphans;
1442 
1443 			/*
1444 			 * GC LEB may contain garbage if there was an unclean
1445 			 * reboot, and it should be un-mapped.
1446 			 */
1447 			err = ubifs_leb_unmap(c, c->gc_lnum);
1448 			if (err)
1449 				goto out_orphans;
1450 		}
1451 
1452 		err = dbg_check_lprops(c);
1453 		if (err)
1454 			goto out_orphans;
1455 	} else if (c->need_recovery) {
1456 		err = ubifs_recover_size(c, false);
1457 		if (err)
1458 			goto out_orphans;
1459 	} else {
1460 		/*
1461 		 * Even if we mount read-only, we have to set space in GC LEB
1462 		 * to proper value because this affects UBIFS free space
1463 		 * reporting. We do not want to have a situation when
1464 		 * re-mounting from R/O to R/W changes amount of free space.
1465 		 */
1466 		err = take_gc_lnum(c);
1467 		if (err)
1468 			goto out_orphans;
1469 	}
1470 
1471 	spin_lock(&ubifs_infos_lock);
1472 	list_add_tail(&c->infos_list, &ubifs_infos);
1473 	spin_unlock(&ubifs_infos_lock);
1474 
1475 	if (c->need_recovery) {
1476 		if (c->ro_mount)
1477 			ubifs_msg(c, "recovery deferred");
1478 		else {
1479 			c->need_recovery = 0;
1480 			ubifs_msg(c, "recovery completed");
1481 			/*
1482 			 * GC LEB has to be empty and taken at this point. But
1483 			 * the journal head LEBs may also be accounted as
1484 			 * "empty taken" if they are empty.
1485 			 */
1486 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1487 		}
1488 	} else
1489 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1490 
1491 	err = dbg_check_filesystem(c);
1492 	if (err)
1493 		goto out_infos;
1494 
1495 	dbg_debugfs_init_fs(c);
1496 
1497 	c->mounting = 0;
1498 
1499 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1500 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1501 		  c->ro_mount ? ", R/O mode" : "");
1502 	x = (long long)c->main_lebs * c->leb_size;
1503 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1504 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1505 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1506 		  c->max_write_size);
1507 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1508 		  x, x >> 20, c->main_lebs,
1509 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1510 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1511 		  c->report_rp_size, c->report_rp_size >> 10);
1512 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1513 		  c->fmt_version, c->ro_compat_version,
1514 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1515 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1516 
1517 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1518 	dbg_gen("data journal heads:  %d",
1519 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1520 	dbg_gen("log LEBs:            %d (%d - %d)",
1521 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1522 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1523 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1524 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1525 		c->orph_lebs, c->orph_first, c->orph_last);
1526 	dbg_gen("main area LEBs:      %d (%d - %d)",
1527 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1528 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1529 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1530 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1531 		c->bi.old_idx_sz >> 20);
1532 	dbg_gen("key hash type:       %d", c->key_hash_type);
1533 	dbg_gen("tree fanout:         %d", c->fanout);
1534 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1535 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1536 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1537 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1538 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1539 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1540 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1541 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1542 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1543 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1544 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1545 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1546 	dbg_gen("dead watermark:      %d", c->dead_wm);
1547 	dbg_gen("dark watermark:      %d", c->dark_wm);
1548 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1549 	x = (long long)c->main_lebs * c->dark_wm;
1550 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1551 		x, x >> 10, x >> 20);
1552 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1553 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1554 		c->max_bud_bytes >> 20);
1555 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1556 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1557 		c->bg_bud_bytes >> 20);
1558 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1559 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1560 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1561 	dbg_gen("commit number:       %llu", c->cmt_no);
1562 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1563 	dbg_gen("max orphans:           %d", c->max_orphans);
1564 
1565 	return 0;
1566 
1567 out_infos:
1568 	spin_lock(&ubifs_infos_lock);
1569 	list_del(&c->infos_list);
1570 	spin_unlock(&ubifs_infos_lock);
1571 out_orphans:
1572 	free_orphans(c);
1573 out_journal:
1574 	destroy_journal(c);
1575 out_lpt:
1576 	ubifs_lpt_free(c, 0);
1577 out_master:
1578 	kfree(c->mst_node);
1579 	kfree(c->rcvrd_mst_node);
1580 	if (c->bgt)
1581 		kthread_stop(c->bgt);
1582 out_wbufs:
1583 	free_wbufs(c);
1584 out_cbuf:
1585 	kfree(c->cbuf);
1586 out_free:
1587 	kfree(c->write_reserve_buf);
1588 	kfree(c->bu.buf);
1589 	vfree(c->ileb_buf);
1590 	vfree(c->sbuf);
1591 	kfree(c->bottom_up_buf);
1592 	ubifs_debugging_exit(c);
1593 	return err;
1594 }
1595 
1596 /**
1597  * ubifs_umount - un-mount UBIFS file-system.
1598  * @c: UBIFS file-system description object
1599  *
1600  * Note, this function is called to free allocated resourced when un-mounting,
1601  * as well as free resources when an error occurred while we were half way
1602  * through mounting (error path cleanup function). So it has to make sure the
1603  * resource was actually allocated before freeing it.
1604  */
1605 static void ubifs_umount(struct ubifs_info *c)
1606 {
1607 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1608 		c->vi.vol_id);
1609 
1610 	dbg_debugfs_exit_fs(c);
1611 	spin_lock(&ubifs_infos_lock);
1612 	list_del(&c->infos_list);
1613 	spin_unlock(&ubifs_infos_lock);
1614 
1615 	if (c->bgt)
1616 		kthread_stop(c->bgt);
1617 
1618 	destroy_journal(c);
1619 	free_wbufs(c);
1620 	free_orphans(c);
1621 	ubifs_lpt_free(c, 0);
1622 	ubifs_exit_authentication(c);
1623 
1624 	kfree(c->auth_key_name);
1625 	kfree(c->auth_hash_name);
1626 	kfree(c->cbuf);
1627 	kfree(c->rcvrd_mst_node);
1628 	kfree(c->mst_node);
1629 	kfree(c->write_reserve_buf);
1630 	kfree(c->bu.buf);
1631 	vfree(c->ileb_buf);
1632 	vfree(c->sbuf);
1633 	kfree(c->bottom_up_buf);
1634 	ubifs_debugging_exit(c);
1635 }
1636 
1637 /**
1638  * ubifs_remount_rw - re-mount in read-write mode.
1639  * @c: UBIFS file-system description object
1640  *
1641  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1642  * mode. This function allocates the needed resources and re-mounts UBIFS in
1643  * read-write mode.
1644  */
1645 static int ubifs_remount_rw(struct ubifs_info *c)
1646 {
1647 	int err, lnum;
1648 
1649 	if (c->rw_incompat) {
1650 		ubifs_err(c, "the file-system is not R/W-compatible");
1651 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1652 			  c->fmt_version, c->ro_compat_version,
1653 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1654 		return -EROFS;
1655 	}
1656 
1657 	mutex_lock(&c->umount_mutex);
1658 	dbg_save_space_info(c);
1659 	c->remounting_rw = 1;
1660 	c->ro_mount = 0;
1661 
1662 	if (c->space_fixup) {
1663 		err = ubifs_fixup_free_space(c);
1664 		if (err)
1665 			goto out;
1666 	}
1667 
1668 	err = check_free_space(c);
1669 	if (err)
1670 		goto out;
1671 
1672 	if (c->need_recovery) {
1673 		ubifs_msg(c, "completing deferred recovery");
1674 		err = ubifs_write_rcvrd_mst_node(c);
1675 		if (err)
1676 			goto out;
1677 		if (!ubifs_authenticated(c)) {
1678 			err = ubifs_recover_size(c, true);
1679 			if (err)
1680 				goto out;
1681 		}
1682 		err = ubifs_clean_lebs(c, c->sbuf);
1683 		if (err)
1684 			goto out;
1685 		err = ubifs_recover_inl_heads(c, c->sbuf);
1686 		if (err)
1687 			goto out;
1688 	} else {
1689 		/* A readonly mount is not allowed to have orphans */
1690 		ubifs_assert(c, c->tot_orphans == 0);
1691 		err = ubifs_clear_orphans(c);
1692 		if (err)
1693 			goto out;
1694 	}
1695 
1696 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1697 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1698 		err = ubifs_write_master(c);
1699 		if (err)
1700 			goto out;
1701 	}
1702 
1703 	if (c->superblock_need_write) {
1704 		struct ubifs_sb_node *sup = c->sup_node;
1705 
1706 		err = ubifs_write_sb_node(c, sup);
1707 		if (err)
1708 			goto out;
1709 
1710 		c->superblock_need_write = 0;
1711 	}
1712 
1713 	c->ileb_buf = vmalloc(c->leb_size);
1714 	if (!c->ileb_buf) {
1715 		err = -ENOMEM;
1716 		goto out;
1717 	}
1718 
1719 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1720 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1721 	if (!c->write_reserve_buf) {
1722 		err = -ENOMEM;
1723 		goto out;
1724 	}
1725 
1726 	err = ubifs_lpt_init(c, 0, 1);
1727 	if (err)
1728 		goto out;
1729 
1730 	/* Create background thread */
1731 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1732 	if (IS_ERR(c->bgt)) {
1733 		err = PTR_ERR(c->bgt);
1734 		c->bgt = NULL;
1735 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1736 			  c->bgt_name, err);
1737 		goto out;
1738 	}
1739 	wake_up_process(c->bgt);
1740 
1741 	c->orph_buf = vmalloc(c->leb_size);
1742 	if (!c->orph_buf) {
1743 		err = -ENOMEM;
1744 		goto out;
1745 	}
1746 
1747 	/* Check for enough log space */
1748 	lnum = c->lhead_lnum + 1;
1749 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1750 		lnum = UBIFS_LOG_LNUM;
1751 	if (lnum == c->ltail_lnum) {
1752 		err = ubifs_consolidate_log(c);
1753 		if (err)
1754 			goto out;
1755 	}
1756 
1757 	if (c->need_recovery) {
1758 		err = ubifs_rcvry_gc_commit(c);
1759 		if (err)
1760 			goto out;
1761 
1762 		if (ubifs_authenticated(c)) {
1763 			err = ubifs_recover_size(c, false);
1764 			if (err)
1765 				goto out;
1766 		}
1767 	} else {
1768 		err = ubifs_leb_unmap(c, c->gc_lnum);
1769 	}
1770 	if (err)
1771 		goto out;
1772 
1773 	dbg_gen("re-mounted read-write");
1774 	c->remounting_rw = 0;
1775 
1776 	if (c->need_recovery) {
1777 		c->need_recovery = 0;
1778 		ubifs_msg(c, "deferred recovery completed");
1779 	} else {
1780 		/*
1781 		 * Do not run the debugging space check if the were doing
1782 		 * recovery, because when we saved the information we had the
1783 		 * file-system in a state where the TNC and lprops has been
1784 		 * modified in memory, but all the I/O operations (including a
1785 		 * commit) were deferred. So the file-system was in
1786 		 * "non-committed" state. Now the file-system is in committed
1787 		 * state, and of course the amount of free space will change
1788 		 * because, for example, the old index size was imprecise.
1789 		 */
1790 		err = dbg_check_space_info(c);
1791 	}
1792 
1793 	mutex_unlock(&c->umount_mutex);
1794 	return err;
1795 
1796 out:
1797 	c->ro_mount = 1;
1798 	vfree(c->orph_buf);
1799 	c->orph_buf = NULL;
1800 	if (c->bgt) {
1801 		kthread_stop(c->bgt);
1802 		c->bgt = NULL;
1803 	}
1804 	free_wbufs(c);
1805 	kfree(c->write_reserve_buf);
1806 	c->write_reserve_buf = NULL;
1807 	vfree(c->ileb_buf);
1808 	c->ileb_buf = NULL;
1809 	ubifs_lpt_free(c, 1);
1810 	c->remounting_rw = 0;
1811 	mutex_unlock(&c->umount_mutex);
1812 	return err;
1813 }
1814 
1815 /**
1816  * ubifs_remount_ro - re-mount in read-only mode.
1817  * @c: UBIFS file-system description object
1818  *
1819  * We assume VFS has stopped writing. Possibly the background thread could be
1820  * running a commit, however kthread_stop will wait in that case.
1821  */
1822 static void ubifs_remount_ro(struct ubifs_info *c)
1823 {
1824 	int i, err;
1825 
1826 	ubifs_assert(c, !c->need_recovery);
1827 	ubifs_assert(c, !c->ro_mount);
1828 
1829 	mutex_lock(&c->umount_mutex);
1830 	if (c->bgt) {
1831 		kthread_stop(c->bgt);
1832 		c->bgt = NULL;
1833 	}
1834 
1835 	dbg_save_space_info(c);
1836 
1837 	for (i = 0; i < c->jhead_cnt; i++) {
1838 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1839 		if (err)
1840 			ubifs_ro_mode(c, err);
1841 	}
1842 
1843 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1844 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1845 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1846 	err = ubifs_write_master(c);
1847 	if (err)
1848 		ubifs_ro_mode(c, err);
1849 
1850 	vfree(c->orph_buf);
1851 	c->orph_buf = NULL;
1852 	kfree(c->write_reserve_buf);
1853 	c->write_reserve_buf = NULL;
1854 	vfree(c->ileb_buf);
1855 	c->ileb_buf = NULL;
1856 	ubifs_lpt_free(c, 1);
1857 	c->ro_mount = 1;
1858 	err = dbg_check_space_info(c);
1859 	if (err)
1860 		ubifs_ro_mode(c, err);
1861 	mutex_unlock(&c->umount_mutex);
1862 }
1863 
1864 static void ubifs_put_super(struct super_block *sb)
1865 {
1866 	int i;
1867 	struct ubifs_info *c = sb->s_fs_info;
1868 
1869 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1870 
1871 	/*
1872 	 * The following asserts are only valid if there has not been a failure
1873 	 * of the media. For example, there will be dirty inodes if we failed
1874 	 * to write them back because of I/O errors.
1875 	 */
1876 	if (!c->ro_error) {
1877 		ubifs_assert(c, c->bi.idx_growth == 0);
1878 		ubifs_assert(c, c->bi.dd_growth == 0);
1879 		ubifs_assert(c, c->bi.data_growth == 0);
1880 	}
1881 
1882 	/*
1883 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1884 	 * and file system un-mount. Namely, it prevents the shrinker from
1885 	 * picking this superblock for shrinking - it will be just skipped if
1886 	 * the mutex is locked.
1887 	 */
1888 	mutex_lock(&c->umount_mutex);
1889 	if (!c->ro_mount) {
1890 		/*
1891 		 * First of all kill the background thread to make sure it does
1892 		 * not interfere with un-mounting and freeing resources.
1893 		 */
1894 		if (c->bgt) {
1895 			kthread_stop(c->bgt);
1896 			c->bgt = NULL;
1897 		}
1898 
1899 		/*
1900 		 * On fatal errors c->ro_error is set to 1, in which case we do
1901 		 * not write the master node.
1902 		 */
1903 		if (!c->ro_error) {
1904 			int err;
1905 
1906 			/* Synchronize write-buffers */
1907 			for (i = 0; i < c->jhead_cnt; i++) {
1908 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1909 				if (err)
1910 					ubifs_ro_mode(c, err);
1911 			}
1912 
1913 			/*
1914 			 * We are being cleanly unmounted which means the
1915 			 * orphans were killed - indicate this in the master
1916 			 * node. Also save the reserved GC LEB number.
1917 			 */
1918 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1919 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1920 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1921 			err = ubifs_write_master(c);
1922 			if (err)
1923 				/*
1924 				 * Recovery will attempt to fix the master area
1925 				 * next mount, so we just print a message and
1926 				 * continue to unmount normally.
1927 				 */
1928 				ubifs_err(c, "failed to write master node, error %d",
1929 					  err);
1930 		} else {
1931 			for (i = 0; i < c->jhead_cnt; i++)
1932 				/* Make sure write-buffer timers are canceled */
1933 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1934 		}
1935 	}
1936 
1937 	ubifs_umount(c);
1938 	ubi_close_volume(c->ubi);
1939 	mutex_unlock(&c->umount_mutex);
1940 }
1941 
1942 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1943 {
1944 	int err;
1945 	struct ubifs_info *c = sb->s_fs_info;
1946 
1947 	sync_filesystem(sb);
1948 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1949 
1950 	err = ubifs_parse_options(c, data, 1);
1951 	if (err) {
1952 		ubifs_err(c, "invalid or unknown remount parameter");
1953 		return err;
1954 	}
1955 
1956 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1957 		if (c->ro_error) {
1958 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1959 			return -EROFS;
1960 		}
1961 		if (c->ro_media) {
1962 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1963 			return -EROFS;
1964 		}
1965 		err = ubifs_remount_rw(c);
1966 		if (err)
1967 			return err;
1968 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1969 		if (c->ro_error) {
1970 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1971 			return -EROFS;
1972 		}
1973 		ubifs_remount_ro(c);
1974 	}
1975 
1976 	if (c->bulk_read == 1)
1977 		bu_init(c);
1978 	else {
1979 		dbg_gen("disable bulk-read");
1980 		mutex_lock(&c->bu_mutex);
1981 		kfree(c->bu.buf);
1982 		c->bu.buf = NULL;
1983 		mutex_unlock(&c->bu_mutex);
1984 	}
1985 
1986 	if (!c->need_recovery)
1987 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1988 
1989 	return 0;
1990 }
1991 
1992 const struct super_operations ubifs_super_operations = {
1993 	.alloc_inode   = ubifs_alloc_inode,
1994 	.free_inode    = ubifs_free_inode,
1995 	.put_super     = ubifs_put_super,
1996 	.write_inode   = ubifs_write_inode,
1997 	.evict_inode   = ubifs_evict_inode,
1998 	.statfs        = ubifs_statfs,
1999 	.dirty_inode   = ubifs_dirty_inode,
2000 	.remount_fs    = ubifs_remount_fs,
2001 	.show_options  = ubifs_show_options,
2002 	.sync_fs       = ubifs_sync_fs,
2003 };
2004 
2005 /**
2006  * open_ubi - parse UBI device name string and open the UBI device.
2007  * @name: UBI volume name
2008  * @mode: UBI volume open mode
2009  *
2010  * The primary method of mounting UBIFS is by specifying the UBI volume
2011  * character device node path. However, UBIFS may also be mounted withoug any
2012  * character device node using one of the following methods:
2013  *
2014  * o ubiX_Y    - mount UBI device number X, volume Y;
2015  * o ubiY      - mount UBI device number 0, volume Y;
2016  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2017  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2018  *
2019  * Alternative '!' separator may be used instead of ':' (because some shells
2020  * like busybox may interpret ':' as an NFS host name separator). This function
2021  * returns UBI volume description object in case of success and a negative
2022  * error code in case of failure.
2023  */
2024 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2025 {
2026 	struct ubi_volume_desc *ubi;
2027 	int dev, vol;
2028 	char *endptr;
2029 
2030 	if (!name || !*name)
2031 		return ERR_PTR(-EINVAL);
2032 
2033 	/* First, try to open using the device node path method */
2034 	ubi = ubi_open_volume_path(name, mode);
2035 	if (!IS_ERR(ubi))
2036 		return ubi;
2037 
2038 	/* Try the "nodev" method */
2039 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2040 		return ERR_PTR(-EINVAL);
2041 
2042 	/* ubi:NAME method */
2043 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2044 		return ubi_open_volume_nm(0, name + 4, mode);
2045 
2046 	if (!isdigit(name[3]))
2047 		return ERR_PTR(-EINVAL);
2048 
2049 	dev = simple_strtoul(name + 3, &endptr, 0);
2050 
2051 	/* ubiY method */
2052 	if (*endptr == '\0')
2053 		return ubi_open_volume(0, dev, mode);
2054 
2055 	/* ubiX_Y method */
2056 	if (*endptr == '_' && isdigit(endptr[1])) {
2057 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2058 		if (*endptr != '\0')
2059 			return ERR_PTR(-EINVAL);
2060 		return ubi_open_volume(dev, vol, mode);
2061 	}
2062 
2063 	/* ubiX:NAME method */
2064 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2065 		return ubi_open_volume_nm(dev, ++endptr, mode);
2066 
2067 	return ERR_PTR(-EINVAL);
2068 }
2069 
2070 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2071 {
2072 	struct ubifs_info *c;
2073 
2074 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2075 	if (c) {
2076 		spin_lock_init(&c->cnt_lock);
2077 		spin_lock_init(&c->cs_lock);
2078 		spin_lock_init(&c->buds_lock);
2079 		spin_lock_init(&c->space_lock);
2080 		spin_lock_init(&c->orphan_lock);
2081 		init_rwsem(&c->commit_sem);
2082 		mutex_init(&c->lp_mutex);
2083 		mutex_init(&c->tnc_mutex);
2084 		mutex_init(&c->log_mutex);
2085 		mutex_init(&c->umount_mutex);
2086 		mutex_init(&c->bu_mutex);
2087 		mutex_init(&c->write_reserve_mutex);
2088 		init_waitqueue_head(&c->cmt_wq);
2089 		c->buds = RB_ROOT;
2090 		c->old_idx = RB_ROOT;
2091 		c->size_tree = RB_ROOT;
2092 		c->orph_tree = RB_ROOT;
2093 		INIT_LIST_HEAD(&c->infos_list);
2094 		INIT_LIST_HEAD(&c->idx_gc);
2095 		INIT_LIST_HEAD(&c->replay_list);
2096 		INIT_LIST_HEAD(&c->replay_buds);
2097 		INIT_LIST_HEAD(&c->uncat_list);
2098 		INIT_LIST_HEAD(&c->empty_list);
2099 		INIT_LIST_HEAD(&c->freeable_list);
2100 		INIT_LIST_HEAD(&c->frdi_idx_list);
2101 		INIT_LIST_HEAD(&c->unclean_leb_list);
2102 		INIT_LIST_HEAD(&c->old_buds);
2103 		INIT_LIST_HEAD(&c->orph_list);
2104 		INIT_LIST_HEAD(&c->orph_new);
2105 		c->no_chk_data_crc = 1;
2106 		c->assert_action = ASSACT_RO;
2107 
2108 		c->highest_inum = UBIFS_FIRST_INO;
2109 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2110 
2111 		ubi_get_volume_info(ubi, &c->vi);
2112 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2113 	}
2114 	return c;
2115 }
2116 
2117 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2118 {
2119 	struct ubifs_info *c = sb->s_fs_info;
2120 	struct inode *root;
2121 	int err;
2122 
2123 	c->vfs_sb = sb;
2124 	/* Re-open the UBI device in read-write mode */
2125 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2126 	if (IS_ERR(c->ubi)) {
2127 		err = PTR_ERR(c->ubi);
2128 		goto out;
2129 	}
2130 
2131 	err = ubifs_parse_options(c, data, 0);
2132 	if (err)
2133 		goto out_close;
2134 
2135 	/*
2136 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2137 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2138 	 * which means the user would have to wait not just for their own I/O
2139 	 * but the read-ahead I/O as well i.e. completely pointless.
2140 	 *
2141 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2142 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2143 	 * writeback happening.
2144 	 */
2145 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2146 				   c->vi.vol_id);
2147 	if (err)
2148 		goto out_close;
2149 
2150 	sb->s_fs_info = c;
2151 	sb->s_magic = UBIFS_SUPER_MAGIC;
2152 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2153 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2154 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2155 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2156 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2157 	sb->s_op = &ubifs_super_operations;
2158 #ifdef CONFIG_UBIFS_FS_XATTR
2159 	sb->s_xattr = ubifs_xattr_handlers;
2160 #endif
2161 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2162 
2163 	mutex_lock(&c->umount_mutex);
2164 	err = mount_ubifs(c);
2165 	if (err) {
2166 		ubifs_assert(c, err < 0);
2167 		goto out_unlock;
2168 	}
2169 
2170 	/* Read the root inode */
2171 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2172 	if (IS_ERR(root)) {
2173 		err = PTR_ERR(root);
2174 		goto out_umount;
2175 	}
2176 
2177 	sb->s_root = d_make_root(root);
2178 	if (!sb->s_root) {
2179 		err = -ENOMEM;
2180 		goto out_umount;
2181 	}
2182 
2183 	mutex_unlock(&c->umount_mutex);
2184 	return 0;
2185 
2186 out_umount:
2187 	ubifs_umount(c);
2188 out_unlock:
2189 	mutex_unlock(&c->umount_mutex);
2190 out_close:
2191 	ubi_close_volume(c->ubi);
2192 out:
2193 	return err;
2194 }
2195 
2196 static int sb_test(struct super_block *sb, void *data)
2197 {
2198 	struct ubifs_info *c1 = data;
2199 	struct ubifs_info *c = sb->s_fs_info;
2200 
2201 	return c->vi.cdev == c1->vi.cdev;
2202 }
2203 
2204 static int sb_set(struct super_block *sb, void *data)
2205 {
2206 	sb->s_fs_info = data;
2207 	return set_anon_super(sb, NULL);
2208 }
2209 
2210 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2211 			const char *name, void *data)
2212 {
2213 	struct ubi_volume_desc *ubi;
2214 	struct ubifs_info *c;
2215 	struct super_block *sb;
2216 	int err;
2217 
2218 	dbg_gen("name %s, flags %#x", name, flags);
2219 
2220 	/*
2221 	 * Get UBI device number and volume ID. Mount it read-only so far
2222 	 * because this might be a new mount point, and UBI allows only one
2223 	 * read-write user at a time.
2224 	 */
2225 	ubi = open_ubi(name, UBI_READONLY);
2226 	if (IS_ERR(ubi)) {
2227 		if (!(flags & SB_SILENT))
2228 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2229 			       current->pid, name, (int)PTR_ERR(ubi));
2230 		return ERR_CAST(ubi);
2231 	}
2232 
2233 	c = alloc_ubifs_info(ubi);
2234 	if (!c) {
2235 		err = -ENOMEM;
2236 		goto out_close;
2237 	}
2238 
2239 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2240 
2241 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2242 	if (IS_ERR(sb)) {
2243 		err = PTR_ERR(sb);
2244 		kfree(c);
2245 		goto out_close;
2246 	}
2247 
2248 	if (sb->s_root) {
2249 		struct ubifs_info *c1 = sb->s_fs_info;
2250 		kfree(c);
2251 		/* A new mount point for already mounted UBIFS */
2252 		dbg_gen("this ubi volume is already mounted");
2253 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2254 			err = -EBUSY;
2255 			goto out_deact;
2256 		}
2257 	} else {
2258 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2259 		if (err)
2260 			goto out_deact;
2261 		/* We do not support atime */
2262 		sb->s_flags |= SB_ACTIVE;
2263 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2264 			ubifs_msg(c, "full atime support is enabled.");
2265 		else
2266 			sb->s_flags |= SB_NOATIME;
2267 	}
2268 
2269 	/* 'fill_super()' opens ubi again so we must close it here */
2270 	ubi_close_volume(ubi);
2271 
2272 	return dget(sb->s_root);
2273 
2274 out_deact:
2275 	deactivate_locked_super(sb);
2276 out_close:
2277 	ubi_close_volume(ubi);
2278 	return ERR_PTR(err);
2279 }
2280 
2281 static void kill_ubifs_super(struct super_block *s)
2282 {
2283 	struct ubifs_info *c = s->s_fs_info;
2284 	kill_anon_super(s);
2285 	kfree(c);
2286 }
2287 
2288 static struct file_system_type ubifs_fs_type = {
2289 	.name    = "ubifs",
2290 	.owner   = THIS_MODULE,
2291 	.mount   = ubifs_mount,
2292 	.kill_sb = kill_ubifs_super,
2293 };
2294 MODULE_ALIAS_FS("ubifs");
2295 
2296 /*
2297  * Inode slab cache constructor.
2298  */
2299 static void inode_slab_ctor(void *obj)
2300 {
2301 	struct ubifs_inode *ui = obj;
2302 	inode_init_once(&ui->vfs_inode);
2303 }
2304 
2305 static int __init ubifs_init(void)
2306 {
2307 	int err;
2308 
2309 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2310 
2311 	/* Make sure node sizes are 8-byte aligned */
2312 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2313 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2314 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2315 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2316 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2317 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2318 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2319 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2320 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2321 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2322 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2323 
2324 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2325 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2326 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2327 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2328 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2329 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2330 
2331 	/* Check min. node size */
2332 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2333 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2334 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2335 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2336 
2337 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2338 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2339 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2340 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2341 
2342 	/* Defined node sizes */
2343 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2344 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2345 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2346 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2347 
2348 	/*
2349 	 * We use 2 bit wide bit-fields to store compression type, which should
2350 	 * be amended if more compressors are added. The bit-fields are:
2351 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2352 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2353 	 */
2354 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2355 
2356 	/*
2357 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2358 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2359 	 */
2360 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2361 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2362 		       current->pid, (unsigned int)PAGE_SIZE);
2363 		return -EINVAL;
2364 	}
2365 
2366 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2367 				sizeof(struct ubifs_inode), 0,
2368 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2369 				SLAB_ACCOUNT, &inode_slab_ctor);
2370 	if (!ubifs_inode_slab)
2371 		return -ENOMEM;
2372 
2373 	err = register_shrinker(&ubifs_shrinker_info);
2374 	if (err)
2375 		goto out_slab;
2376 
2377 	err = ubifs_compressors_init();
2378 	if (err)
2379 		goto out_shrinker;
2380 
2381 	dbg_debugfs_init();
2382 
2383 	err = register_filesystem(&ubifs_fs_type);
2384 	if (err) {
2385 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2386 		       current->pid, err);
2387 		goto out_dbg;
2388 	}
2389 	return 0;
2390 
2391 out_dbg:
2392 	dbg_debugfs_exit();
2393 	ubifs_compressors_exit();
2394 out_shrinker:
2395 	unregister_shrinker(&ubifs_shrinker_info);
2396 out_slab:
2397 	kmem_cache_destroy(ubifs_inode_slab);
2398 	return err;
2399 }
2400 /* late_initcall to let compressors initialize first */
2401 late_initcall(ubifs_init);
2402 
2403 static void __exit ubifs_exit(void)
2404 {
2405 	WARN_ON(!list_empty(&ubifs_infos));
2406 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2407 
2408 	dbg_debugfs_exit();
2409 	ubifs_compressors_exit();
2410 	unregister_shrinker(&ubifs_shrinker_info);
2411 
2412 	/*
2413 	 * Make sure all delayed rcu free inodes are flushed before we
2414 	 * destroy cache.
2415 	 */
2416 	rcu_barrier();
2417 	kmem_cache_destroy(ubifs_inode_slab);
2418 	unregister_filesystem(&ubifs_fs_type);
2419 }
2420 module_exit(ubifs_exit);
2421 
2422 MODULE_LICENSE("GPL");
2423 MODULE_VERSION(__stringify(UBIFS_VERSION));
2424 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2425 MODULE_DESCRIPTION("UBIFS - UBI File System");
2426