xref: /openbmc/linux/fs/ubifs/super.c (revision caa80275)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 	int n = 0, ret;
32 
33 	ret = kstrtoint(val, 10, &n);
34 	if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 		return -EINVAL;
36 	return param_set_int(val, kp);
37 }
38 
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 	.set = ubifs_default_version_set,
41 	.get = param_get_int,
42 };
43 
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46 
47 /*
48  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49  * allocating too much.
50  */
51 #define UBIFS_KMALLOC_OK (128*1024)
52 
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55 
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 	.scan_objects = ubifs_shrink_scan,
59 	.count_objects = ubifs_shrink_count,
60 	.seeks = DEFAULT_SEEKS,
61 };
62 
63 /**
64  * validate_inode - validate inode.
65  * @c: UBIFS file-system description object
66  * @inode: the inode to validate
67  *
68  * This is a helper function for 'ubifs_iget()' which validates various fields
69  * of a newly built inode to make sure they contain sane values and prevent
70  * possible vulnerabilities. Returns zero if the inode is all right and
71  * a non-zero error code if not.
72  */
73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74 {
75 	int err;
76 	const struct ubifs_inode *ui = ubifs_inode(inode);
77 
78 	if (inode->i_size > c->max_inode_sz) {
79 		ubifs_err(c, "inode is too large (%lld)",
80 			  (long long)inode->i_size);
81 		return 1;
82 	}
83 
84 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 		return 2;
87 	}
88 
89 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 		return 3;
91 
92 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 		return 4;
94 
95 	if (ui->xattr && !S_ISREG(inode->i_mode))
96 		return 5;
97 
98 	if (!ubifs_compr_present(c, ui->compr_type)) {
99 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 	}
102 
103 	err = dbg_check_dir(c, inode);
104 	return err;
105 }
106 
107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108 {
109 	int err;
110 	union ubifs_key key;
111 	struct ubifs_ino_node *ino;
112 	struct ubifs_info *c = sb->s_fs_info;
113 	struct inode *inode;
114 	struct ubifs_inode *ui;
115 
116 	dbg_gen("inode %lu", inum);
117 
118 	inode = iget_locked(sb, inum);
119 	if (!inode)
120 		return ERR_PTR(-ENOMEM);
121 	if (!(inode->i_state & I_NEW))
122 		return inode;
123 	ui = ubifs_inode(inode);
124 
125 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 	if (!ino) {
127 		err = -ENOMEM;
128 		goto out;
129 	}
130 
131 	ino_key_init(c, &key, inode->i_ino);
132 
133 	err = ubifs_tnc_lookup(c, &key, ino);
134 	if (err)
135 		goto out_ino;
136 
137 	inode->i_flags |= S_NOCMTIME;
138 
139 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 		inode->i_flags |= S_NOATIME;
141 
142 	set_nlink(inode, le32_to_cpu(ino->nlink));
143 	i_uid_write(inode, le32_to_cpu(ino->uid));
144 	i_gid_write(inode, le32_to_cpu(ino->gid));
145 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
146 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
148 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
150 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
151 	inode->i_mode = le32_to_cpu(ino->mode);
152 	inode->i_size = le64_to_cpu(ino->size);
153 
154 	ui->data_len    = le32_to_cpu(ino->data_len);
155 	ui->flags       = le32_to_cpu(ino->flags);
156 	ui->compr_type  = le16_to_cpu(ino->compr_type);
157 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
159 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
160 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 	ui->synced_i_size = ui->ui_size = inode->i_size;
162 
163 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164 
165 	err = validate_inode(c, inode);
166 	if (err)
167 		goto out_invalid;
168 
169 	switch (inode->i_mode & S_IFMT) {
170 	case S_IFREG:
171 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 		inode->i_op = &ubifs_file_inode_operations;
173 		inode->i_fop = &ubifs_file_operations;
174 		if (ui->xattr) {
175 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 			if (!ui->data) {
177 				err = -ENOMEM;
178 				goto out_ino;
179 			}
180 			memcpy(ui->data, ino->data, ui->data_len);
181 			((char *)ui->data)[ui->data_len] = '\0';
182 		} else if (ui->data_len != 0) {
183 			err = 10;
184 			goto out_invalid;
185 		}
186 		break;
187 	case S_IFDIR:
188 		inode->i_op  = &ubifs_dir_inode_operations;
189 		inode->i_fop = &ubifs_dir_operations;
190 		if (ui->data_len != 0) {
191 			err = 11;
192 			goto out_invalid;
193 		}
194 		break;
195 	case S_IFLNK:
196 		inode->i_op = &ubifs_symlink_inode_operations;
197 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 			err = 12;
199 			goto out_invalid;
200 		}
201 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 		if (!ui->data) {
203 			err = -ENOMEM;
204 			goto out_ino;
205 		}
206 		memcpy(ui->data, ino->data, ui->data_len);
207 		((char *)ui->data)[ui->data_len] = '\0';
208 		break;
209 	case S_IFBLK:
210 	case S_IFCHR:
211 	{
212 		dev_t rdev;
213 		union ubifs_dev_desc *dev;
214 
215 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 		if (!ui->data) {
217 			err = -ENOMEM;
218 			goto out_ino;
219 		}
220 
221 		dev = (union ubifs_dev_desc *)ino->data;
222 		if (ui->data_len == sizeof(dev->new))
223 			rdev = new_decode_dev(le32_to_cpu(dev->new));
224 		else if (ui->data_len == sizeof(dev->huge))
225 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 		else {
227 			err = 13;
228 			goto out_invalid;
229 		}
230 		memcpy(ui->data, ino->data, ui->data_len);
231 		inode->i_op = &ubifs_file_inode_operations;
232 		init_special_inode(inode, inode->i_mode, rdev);
233 		break;
234 	}
235 	case S_IFSOCK:
236 	case S_IFIFO:
237 		inode->i_op = &ubifs_file_inode_operations;
238 		init_special_inode(inode, inode->i_mode, 0);
239 		if (ui->data_len != 0) {
240 			err = 14;
241 			goto out_invalid;
242 		}
243 		break;
244 	default:
245 		err = 15;
246 		goto out_invalid;
247 	}
248 
249 	kfree(ino);
250 	ubifs_set_inode_flags(inode);
251 	unlock_new_inode(inode);
252 	return inode;
253 
254 out_invalid:
255 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 	ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
257 	ubifs_dump_inode(c, inode);
258 	err = -EINVAL;
259 out_ino:
260 	kfree(ino);
261 out:
262 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 	iget_failed(inode);
264 	return ERR_PTR(err);
265 }
266 
267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
268 {
269 	struct ubifs_inode *ui;
270 
271 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
272 	if (!ui)
273 		return NULL;
274 
275 	memset((void *)ui + sizeof(struct inode), 0,
276 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
277 	mutex_init(&ui->ui_mutex);
278 	init_rwsem(&ui->xattr_sem);
279 	spin_lock_init(&ui->ui_lock);
280 	return &ui->vfs_inode;
281 };
282 
283 static void ubifs_free_inode(struct inode *inode)
284 {
285 	struct ubifs_inode *ui = ubifs_inode(inode);
286 
287 	kfree(ui->data);
288 	fscrypt_free_inode(inode);
289 
290 	kmem_cache_free(ubifs_inode_slab, ui);
291 }
292 
293 /*
294  * Note, Linux write-back code calls this without 'i_mutex'.
295  */
296 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 	int err = 0;
299 	struct ubifs_info *c = inode->i_sb->s_fs_info;
300 	struct ubifs_inode *ui = ubifs_inode(inode);
301 
302 	ubifs_assert(c, !ui->xattr);
303 	if (is_bad_inode(inode))
304 		return 0;
305 
306 	mutex_lock(&ui->ui_mutex);
307 	/*
308 	 * Due to races between write-back forced by budgeting
309 	 * (see 'sync_some_inodes()') and background write-back, the inode may
310 	 * have already been synchronized, do not do this again. This might
311 	 * also happen if it was synchronized in an VFS operation, e.g.
312 	 * 'ubifs_link()'.
313 	 */
314 	if (!ui->dirty) {
315 		mutex_unlock(&ui->ui_mutex);
316 		return 0;
317 	}
318 
319 	/*
320 	 * As an optimization, do not write orphan inodes to the media just
321 	 * because this is not needed.
322 	 */
323 	dbg_gen("inode %lu, mode %#x, nlink %u",
324 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
325 	if (inode->i_nlink) {
326 		err = ubifs_jnl_write_inode(c, inode);
327 		if (err)
328 			ubifs_err(c, "can't write inode %lu, error %d",
329 				  inode->i_ino, err);
330 		else
331 			err = dbg_check_inode_size(c, inode, ui->ui_size);
332 	}
333 
334 	ui->dirty = 0;
335 	mutex_unlock(&ui->ui_mutex);
336 	ubifs_release_dirty_inode_budget(c, ui);
337 	return err;
338 }
339 
340 static int ubifs_drop_inode(struct inode *inode)
341 {
342 	int drop = generic_drop_inode(inode);
343 
344 	if (!drop)
345 		drop = fscrypt_drop_inode(inode);
346 
347 	return drop;
348 }
349 
350 static void ubifs_evict_inode(struct inode *inode)
351 {
352 	int err;
353 	struct ubifs_info *c = inode->i_sb->s_fs_info;
354 	struct ubifs_inode *ui = ubifs_inode(inode);
355 
356 	if (ui->xattr)
357 		/*
358 		 * Extended attribute inode deletions are fully handled in
359 		 * 'ubifs_removexattr()'. These inodes are special and have
360 		 * limited usage, so there is nothing to do here.
361 		 */
362 		goto out;
363 
364 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
365 	ubifs_assert(c, !atomic_read(&inode->i_count));
366 
367 	truncate_inode_pages_final(&inode->i_data);
368 
369 	if (inode->i_nlink)
370 		goto done;
371 
372 	if (is_bad_inode(inode))
373 		goto out;
374 
375 	ui->ui_size = inode->i_size = 0;
376 	err = ubifs_jnl_delete_inode(c, inode);
377 	if (err)
378 		/*
379 		 * Worst case we have a lost orphan inode wasting space, so a
380 		 * simple error message is OK here.
381 		 */
382 		ubifs_err(c, "can't delete inode %lu, error %d",
383 			  inode->i_ino, err);
384 
385 out:
386 	if (ui->dirty)
387 		ubifs_release_dirty_inode_budget(c, ui);
388 	else {
389 		/* We've deleted something - clean the "no space" flags */
390 		c->bi.nospace = c->bi.nospace_rp = 0;
391 		smp_wmb();
392 	}
393 done:
394 	clear_inode(inode);
395 	fscrypt_put_encryption_info(inode);
396 }
397 
398 static void ubifs_dirty_inode(struct inode *inode, int flags)
399 {
400 	struct ubifs_info *c = inode->i_sb->s_fs_info;
401 	struct ubifs_inode *ui = ubifs_inode(inode);
402 
403 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
404 	if (!ui->dirty) {
405 		ui->dirty = 1;
406 		dbg_gen("inode %lu",  inode->i_ino);
407 	}
408 }
409 
410 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411 {
412 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
413 	unsigned long long free;
414 	__le32 *uuid = (__le32 *)c->uuid;
415 
416 	free = ubifs_get_free_space(c);
417 	dbg_gen("free space %lld bytes (%lld blocks)",
418 		free, free >> UBIFS_BLOCK_SHIFT);
419 
420 	buf->f_type = UBIFS_SUPER_MAGIC;
421 	buf->f_bsize = UBIFS_BLOCK_SIZE;
422 	buf->f_blocks = c->block_cnt;
423 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
424 	if (free > c->report_rp_size)
425 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
426 	else
427 		buf->f_bavail = 0;
428 	buf->f_files = 0;
429 	buf->f_ffree = 0;
430 	buf->f_namelen = UBIFS_MAX_NLEN;
431 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
432 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
433 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
434 	return 0;
435 }
436 
437 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438 {
439 	struct ubifs_info *c = root->d_sb->s_fs_info;
440 
441 	if (c->mount_opts.unmount_mode == 2)
442 		seq_puts(s, ",fast_unmount");
443 	else if (c->mount_opts.unmount_mode == 1)
444 		seq_puts(s, ",norm_unmount");
445 
446 	if (c->mount_opts.bulk_read == 2)
447 		seq_puts(s, ",bulk_read");
448 	else if (c->mount_opts.bulk_read == 1)
449 		seq_puts(s, ",no_bulk_read");
450 
451 	if (c->mount_opts.chk_data_crc == 2)
452 		seq_puts(s, ",chk_data_crc");
453 	else if (c->mount_opts.chk_data_crc == 1)
454 		seq_puts(s, ",no_chk_data_crc");
455 
456 	if (c->mount_opts.override_compr) {
457 		seq_printf(s, ",compr=%s",
458 			   ubifs_compr_name(c, c->mount_opts.compr_type));
459 	}
460 
461 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
462 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463 
464 	return 0;
465 }
466 
467 static int ubifs_sync_fs(struct super_block *sb, int wait)
468 {
469 	int i, err;
470 	struct ubifs_info *c = sb->s_fs_info;
471 
472 	/*
473 	 * Zero @wait is just an advisory thing to help the file system shove
474 	 * lots of data into the queues, and there will be the second
475 	 * '->sync_fs()' call, with non-zero @wait.
476 	 */
477 	if (!wait)
478 		return 0;
479 
480 	/*
481 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
482 	 * do this if it waits for an already running commit.
483 	 */
484 	for (i = 0; i < c->jhead_cnt; i++) {
485 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
486 		if (err)
487 			return err;
488 	}
489 
490 	/*
491 	 * Strictly speaking, it is not necessary to commit the journal here,
492 	 * synchronizing write-buffers would be enough. But committing makes
493 	 * UBIFS free space predictions much more accurate, so we want to let
494 	 * the user be able to get more accurate results of 'statfs()' after
495 	 * they synchronize the file system.
496 	 */
497 	err = ubifs_run_commit(c);
498 	if (err)
499 		return err;
500 
501 	return ubi_sync(c->vi.ubi_num);
502 }
503 
504 /**
505  * init_constants_early - initialize UBIFS constants.
506  * @c: UBIFS file-system description object
507  *
508  * This function initialize UBIFS constants which do not need the superblock to
509  * be read. It also checks that the UBI volume satisfies basic UBIFS
510  * requirements. Returns zero in case of success and a negative error code in
511  * case of failure.
512  */
513 static int init_constants_early(struct ubifs_info *c)
514 {
515 	if (c->vi.corrupted) {
516 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
517 		c->ro_media = 1;
518 	}
519 
520 	if (c->di.ro_mode) {
521 		ubifs_msg(c, "read-only UBI device");
522 		c->ro_media = 1;
523 	}
524 
525 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
526 		ubifs_msg(c, "static UBI volume - read-only mode");
527 		c->ro_media = 1;
528 	}
529 
530 	c->leb_cnt = c->vi.size;
531 	c->leb_size = c->vi.usable_leb_size;
532 	c->leb_start = c->di.leb_start;
533 	c->half_leb_size = c->leb_size / 2;
534 	c->min_io_size = c->di.min_io_size;
535 	c->min_io_shift = fls(c->min_io_size) - 1;
536 	c->max_write_size = c->di.max_write_size;
537 	c->max_write_shift = fls(c->max_write_size) - 1;
538 
539 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
540 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
541 			   c->leb_size, UBIFS_MIN_LEB_SZ);
542 		return -EINVAL;
543 	}
544 
545 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
546 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
547 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
548 		return -EINVAL;
549 	}
550 
551 	if (!is_power_of_2(c->min_io_size)) {
552 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
553 		return -EINVAL;
554 	}
555 
556 	/*
557 	 * Maximum write size has to be greater or equivalent to min. I/O
558 	 * size, and be multiple of min. I/O size.
559 	 */
560 	if (c->max_write_size < c->min_io_size ||
561 	    c->max_write_size % c->min_io_size ||
562 	    !is_power_of_2(c->max_write_size)) {
563 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
564 			   c->max_write_size, c->min_io_size);
565 		return -EINVAL;
566 	}
567 
568 	/*
569 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
570 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
571 	 * less than 8.
572 	 */
573 	if (c->min_io_size < 8) {
574 		c->min_io_size = 8;
575 		c->min_io_shift = 3;
576 		if (c->max_write_size < c->min_io_size) {
577 			c->max_write_size = c->min_io_size;
578 			c->max_write_shift = c->min_io_shift;
579 		}
580 	}
581 
582 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
583 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
584 
585 	/*
586 	 * Initialize node length ranges which are mostly needed for node
587 	 * length validation.
588 	 */
589 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
590 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
591 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
592 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
593 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
594 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
595 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
596 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
597 				UBIFS_MAX_HMAC_LEN;
598 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
599 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600 
601 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
602 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
603 	c->ranges[UBIFS_ORPH_NODE].min_len =
604 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
605 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
606 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
607 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
608 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
609 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
610 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
611 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 	/*
613 	 * Minimum indexing node size is amended later when superblock is
614 	 * read and the key length is known.
615 	 */
616 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 	/*
618 	 * Maximum indexing node size is amended later when superblock is
619 	 * read and the fanout is known.
620 	 */
621 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
622 
623 	/*
624 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
625 	 * about these values.
626 	 */
627 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
628 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
629 
630 	/*
631 	 * Calculate how many bytes would be wasted at the end of LEB if it was
632 	 * fully filled with data nodes of maximum size. This is used in
633 	 * calculations when reporting free space.
634 	 */
635 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636 
637 	/* Buffer size for bulk-reads */
638 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
639 	if (c->max_bu_buf_len > c->leb_size)
640 		c->max_bu_buf_len = c->leb_size;
641 
642 	/* Log is ready, preserve one LEB for commits. */
643 	c->min_log_bytes = c->leb_size;
644 
645 	return 0;
646 }
647 
648 /**
649  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
650  * @c: UBIFS file-system description object
651  * @lnum: LEB the write-buffer was synchronized to
652  * @free: how many free bytes left in this LEB
653  * @pad: how many bytes were padded
654  *
655  * This is a callback function which is called by the I/O unit when the
656  * write-buffer is synchronized. We need this to correctly maintain space
657  * accounting in bud logical eraseblocks. This function returns zero in case of
658  * success and a negative error code in case of failure.
659  *
660  * This function actually belongs to the journal, but we keep it here because
661  * we want to keep it static.
662  */
663 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664 {
665 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
666 }
667 
668 /*
669  * init_constants_sb - initialize UBIFS constants.
670  * @c: UBIFS file-system description object
671  *
672  * This is a helper function which initializes various UBIFS constants after
673  * the superblock has been read. It also checks various UBIFS parameters and
674  * makes sure they are all right. Returns zero in case of success and a
675  * negative error code in case of failure.
676  */
677 static int init_constants_sb(struct ubifs_info *c)
678 {
679 	int tmp, err;
680 	long long tmp64;
681 
682 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
683 	c->max_znode_sz = sizeof(struct ubifs_znode) +
684 				c->fanout * sizeof(struct ubifs_zbranch);
685 
686 	tmp = ubifs_idx_node_sz(c, 1);
687 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
688 	c->min_idx_node_sz = ALIGN(tmp, 8);
689 
690 	tmp = ubifs_idx_node_sz(c, c->fanout);
691 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
692 	c->max_idx_node_sz = ALIGN(tmp, 8);
693 
694 	/* Make sure LEB size is large enough to fit full commit */
695 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
696 	tmp = ALIGN(tmp, c->min_io_size);
697 	if (tmp > c->leb_size) {
698 		ubifs_err(c, "too small LEB size %d, at least %d needed",
699 			  c->leb_size, tmp);
700 		return -EINVAL;
701 	}
702 
703 	/*
704 	 * Make sure that the log is large enough to fit reference nodes for
705 	 * all buds plus one reserved LEB.
706 	 */
707 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
708 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
709 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
710 	tmp /= c->leb_size;
711 	tmp += 1;
712 	if (c->log_lebs < tmp) {
713 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
714 			  c->log_lebs, tmp);
715 		return -EINVAL;
716 	}
717 
718 	/*
719 	 * When budgeting we assume worst-case scenarios when the pages are not
720 	 * be compressed and direntries are of the maximum size.
721 	 *
722 	 * Note, data, which may be stored in inodes is budgeted separately, so
723 	 * it is not included into 'c->bi.inode_budget'.
724 	 */
725 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
726 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
727 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
728 
729 	/*
730 	 * When the amount of flash space used by buds becomes
731 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
732 	 * The writers are unblocked when the commit is finished. To avoid
733 	 * writers to be blocked UBIFS initiates background commit in advance,
734 	 * when number of bud bytes becomes above the limit defined below.
735 	 */
736 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
737 
738 	/*
739 	 * Ensure minimum journal size. All the bytes in the journal heads are
740 	 * considered to be used, when calculating the current journal usage.
741 	 * Consequently, if the journal is too small, UBIFS will treat it as
742 	 * always full.
743 	 */
744 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
745 	if (c->bg_bud_bytes < tmp64)
746 		c->bg_bud_bytes = tmp64;
747 	if (c->max_bud_bytes < tmp64 + c->leb_size)
748 		c->max_bud_bytes = tmp64 + c->leb_size;
749 
750 	err = ubifs_calc_lpt_geom(c);
751 	if (err)
752 		return err;
753 
754 	/* Initialize effective LEB size used in budgeting calculations */
755 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
756 	return 0;
757 }
758 
759 /*
760  * init_constants_master - initialize UBIFS constants.
761  * @c: UBIFS file-system description object
762  *
763  * This is a helper function which initializes various UBIFS constants after
764  * the master node has been read. It also checks various UBIFS parameters and
765  * makes sure they are all right.
766  */
767 static void init_constants_master(struct ubifs_info *c)
768 {
769 	long long tmp64;
770 
771 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
772 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
773 
774 	/*
775 	 * Calculate total amount of FS blocks. This number is not used
776 	 * internally because it does not make much sense for UBIFS, but it is
777 	 * necessary to report something for the 'statfs()' call.
778 	 *
779 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
780 	 * deletions, minimum LEBs for the index, and assume only one journal
781 	 * head is available.
782 	 */
783 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
784 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
785 	tmp64 = ubifs_reported_space(c, tmp64);
786 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
787 }
788 
789 /**
790  * take_gc_lnum - reserve GC LEB.
791  * @c: UBIFS file-system description object
792  *
793  * This function ensures that the LEB reserved for garbage collection is marked
794  * as "taken" in lprops. We also have to set free space to LEB size and dirty
795  * space to zero, because lprops may contain out-of-date information if the
796  * file-system was un-mounted before it has been committed. This function
797  * returns zero in case of success and a negative error code in case of
798  * failure.
799  */
800 static int take_gc_lnum(struct ubifs_info *c)
801 {
802 	int err;
803 
804 	if (c->gc_lnum == -1) {
805 		ubifs_err(c, "no LEB for GC");
806 		return -EINVAL;
807 	}
808 
809 	/* And we have to tell lprops that this LEB is taken */
810 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
811 				  LPROPS_TAKEN, 0, 0);
812 	return err;
813 }
814 
815 /**
816  * alloc_wbufs - allocate write-buffers.
817  * @c: UBIFS file-system description object
818  *
819  * This helper function allocates and initializes UBIFS write-buffers. Returns
820  * zero in case of success and %-ENOMEM in case of failure.
821  */
822 static int alloc_wbufs(struct ubifs_info *c)
823 {
824 	int i, err;
825 
826 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
827 			    GFP_KERNEL);
828 	if (!c->jheads)
829 		return -ENOMEM;
830 
831 	/* Initialize journal heads */
832 	for (i = 0; i < c->jhead_cnt; i++) {
833 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
834 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
835 		if (err)
836 			return err;
837 
838 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
839 		c->jheads[i].wbuf.jhead = i;
840 		c->jheads[i].grouped = 1;
841 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
842 		if (IS_ERR(c->jheads[i].log_hash)) {
843 			err = PTR_ERR(c->jheads[i].log_hash);
844 			goto out;
845 		}
846 	}
847 
848 	/*
849 	 * Garbage Collector head does not need to be synchronized by timer.
850 	 * Also GC head nodes are not grouped.
851 	 */
852 	c->jheads[GCHD].wbuf.no_timer = 1;
853 	c->jheads[GCHD].grouped = 0;
854 
855 	return 0;
856 
857 out:
858 	while (i--)
859 		kfree(c->jheads[i].log_hash);
860 
861 	return err;
862 }
863 
864 /**
865  * free_wbufs - free write-buffers.
866  * @c: UBIFS file-system description object
867  */
868 static void free_wbufs(struct ubifs_info *c)
869 {
870 	int i;
871 
872 	if (c->jheads) {
873 		for (i = 0; i < c->jhead_cnt; i++) {
874 			kfree(c->jheads[i].wbuf.buf);
875 			kfree(c->jheads[i].wbuf.inodes);
876 			kfree(c->jheads[i].log_hash);
877 		}
878 		kfree(c->jheads);
879 		c->jheads = NULL;
880 	}
881 }
882 
883 /**
884  * free_orphans - free orphans.
885  * @c: UBIFS file-system description object
886  */
887 static void free_orphans(struct ubifs_info *c)
888 {
889 	struct ubifs_orphan *orph;
890 
891 	while (c->orph_dnext) {
892 		orph = c->orph_dnext;
893 		c->orph_dnext = orph->dnext;
894 		list_del(&orph->list);
895 		kfree(orph);
896 	}
897 
898 	while (!list_empty(&c->orph_list)) {
899 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
900 		list_del(&orph->list);
901 		kfree(orph);
902 		ubifs_err(c, "orphan list not empty at unmount");
903 	}
904 
905 	vfree(c->orph_buf);
906 	c->orph_buf = NULL;
907 }
908 
909 /**
910  * free_buds - free per-bud objects.
911  * @c: UBIFS file-system description object
912  */
913 static void free_buds(struct ubifs_info *c)
914 {
915 	struct ubifs_bud *bud, *n;
916 
917 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
918 		kfree(bud);
919 }
920 
921 /**
922  * check_volume_empty - check if the UBI volume is empty.
923  * @c: UBIFS file-system description object
924  *
925  * This function checks if the UBIFS volume is empty by looking if its LEBs are
926  * mapped or not. The result of checking is stored in the @c->empty variable.
927  * Returns zero in case of success and a negative error code in case of
928  * failure.
929  */
930 static int check_volume_empty(struct ubifs_info *c)
931 {
932 	int lnum, err;
933 
934 	c->empty = 1;
935 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
936 		err = ubifs_is_mapped(c, lnum);
937 		if (unlikely(err < 0))
938 			return err;
939 		if (err == 1) {
940 			c->empty = 0;
941 			break;
942 		}
943 
944 		cond_resched();
945 	}
946 
947 	return 0;
948 }
949 
950 /*
951  * UBIFS mount options.
952  *
953  * Opt_fast_unmount: do not run a journal commit before un-mounting
954  * Opt_norm_unmount: run a journal commit before un-mounting
955  * Opt_bulk_read: enable bulk-reads
956  * Opt_no_bulk_read: disable bulk-reads
957  * Opt_chk_data_crc: check CRCs when reading data nodes
958  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
959  * Opt_override_compr: override default compressor
960  * Opt_assert: set ubifs_assert() action
961  * Opt_auth_key: The key name used for authentication
962  * Opt_auth_hash_name: The hash type used for authentication
963  * Opt_err: just end of array marker
964  */
965 enum {
966 	Opt_fast_unmount,
967 	Opt_norm_unmount,
968 	Opt_bulk_read,
969 	Opt_no_bulk_read,
970 	Opt_chk_data_crc,
971 	Opt_no_chk_data_crc,
972 	Opt_override_compr,
973 	Opt_assert,
974 	Opt_auth_key,
975 	Opt_auth_hash_name,
976 	Opt_ignore,
977 	Opt_err,
978 };
979 
980 static const match_table_t tokens = {
981 	{Opt_fast_unmount, "fast_unmount"},
982 	{Opt_norm_unmount, "norm_unmount"},
983 	{Opt_bulk_read, "bulk_read"},
984 	{Opt_no_bulk_read, "no_bulk_read"},
985 	{Opt_chk_data_crc, "chk_data_crc"},
986 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
987 	{Opt_override_compr, "compr=%s"},
988 	{Opt_auth_key, "auth_key=%s"},
989 	{Opt_auth_hash_name, "auth_hash_name=%s"},
990 	{Opt_ignore, "ubi=%s"},
991 	{Opt_ignore, "vol=%s"},
992 	{Opt_assert, "assert=%s"},
993 	{Opt_err, NULL},
994 };
995 
996 /**
997  * parse_standard_option - parse a standard mount option.
998  * @option: the option to parse
999  *
1000  * Normally, standard mount options like "sync" are passed to file-systems as
1001  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1002  * be present in the options string. This function tries to deal with this
1003  * situation and parse standard options. Returns 0 if the option was not
1004  * recognized, and the corresponding integer flag if it was.
1005  *
1006  * UBIFS is only interested in the "sync" option, so do not check for anything
1007  * else.
1008  */
1009 static int parse_standard_option(const char *option)
1010 {
1011 
1012 	pr_notice("UBIFS: parse %s\n", option);
1013 	if (!strcmp(option, "sync"))
1014 		return SB_SYNCHRONOUS;
1015 	return 0;
1016 }
1017 
1018 /**
1019  * ubifs_parse_options - parse mount parameters.
1020  * @c: UBIFS file-system description object
1021  * @options: parameters to parse
1022  * @is_remount: non-zero if this is FS re-mount
1023  *
1024  * This function parses UBIFS mount options and returns zero in case success
1025  * and a negative error code in case of failure.
1026  */
1027 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1028 			       int is_remount)
1029 {
1030 	char *p;
1031 	substring_t args[MAX_OPT_ARGS];
1032 
1033 	if (!options)
1034 		return 0;
1035 
1036 	while ((p = strsep(&options, ","))) {
1037 		int token;
1038 
1039 		if (!*p)
1040 			continue;
1041 
1042 		token = match_token(p, tokens, args);
1043 		switch (token) {
1044 		/*
1045 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1046 		 * We accept them in order to be backward-compatible. But this
1047 		 * should be removed at some point.
1048 		 */
1049 		case Opt_fast_unmount:
1050 			c->mount_opts.unmount_mode = 2;
1051 			break;
1052 		case Opt_norm_unmount:
1053 			c->mount_opts.unmount_mode = 1;
1054 			break;
1055 		case Opt_bulk_read:
1056 			c->mount_opts.bulk_read = 2;
1057 			c->bulk_read = 1;
1058 			break;
1059 		case Opt_no_bulk_read:
1060 			c->mount_opts.bulk_read = 1;
1061 			c->bulk_read = 0;
1062 			break;
1063 		case Opt_chk_data_crc:
1064 			c->mount_opts.chk_data_crc = 2;
1065 			c->no_chk_data_crc = 0;
1066 			break;
1067 		case Opt_no_chk_data_crc:
1068 			c->mount_opts.chk_data_crc = 1;
1069 			c->no_chk_data_crc = 1;
1070 			break;
1071 		case Opt_override_compr:
1072 		{
1073 			char *name = match_strdup(&args[0]);
1074 
1075 			if (!name)
1076 				return -ENOMEM;
1077 			if (!strcmp(name, "none"))
1078 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1079 			else if (!strcmp(name, "lzo"))
1080 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1081 			else if (!strcmp(name, "zlib"))
1082 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1083 			else if (!strcmp(name, "zstd"))
1084 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1085 			else {
1086 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1087 				kfree(name);
1088 				return -EINVAL;
1089 			}
1090 			kfree(name);
1091 			c->mount_opts.override_compr = 1;
1092 			c->default_compr = c->mount_opts.compr_type;
1093 			break;
1094 		}
1095 		case Opt_assert:
1096 		{
1097 			char *act = match_strdup(&args[0]);
1098 
1099 			if (!act)
1100 				return -ENOMEM;
1101 			if (!strcmp(act, "report"))
1102 				c->assert_action = ASSACT_REPORT;
1103 			else if (!strcmp(act, "read-only"))
1104 				c->assert_action = ASSACT_RO;
1105 			else if (!strcmp(act, "panic"))
1106 				c->assert_action = ASSACT_PANIC;
1107 			else {
1108 				ubifs_err(c, "unknown assert action \"%s\"", act);
1109 				kfree(act);
1110 				return -EINVAL;
1111 			}
1112 			kfree(act);
1113 			break;
1114 		}
1115 		case Opt_auth_key:
1116 			if (!is_remount) {
1117 				c->auth_key_name = kstrdup(args[0].from,
1118 								GFP_KERNEL);
1119 				if (!c->auth_key_name)
1120 					return -ENOMEM;
1121 			}
1122 			break;
1123 		case Opt_auth_hash_name:
1124 			if (!is_remount) {
1125 				c->auth_hash_name = kstrdup(args[0].from,
1126 								GFP_KERNEL);
1127 				if (!c->auth_hash_name)
1128 					return -ENOMEM;
1129 			}
1130 			break;
1131 		case Opt_ignore:
1132 			break;
1133 		default:
1134 		{
1135 			unsigned long flag;
1136 			struct super_block *sb = c->vfs_sb;
1137 
1138 			flag = parse_standard_option(p);
1139 			if (!flag) {
1140 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1141 					  p);
1142 				return -EINVAL;
1143 			}
1144 			sb->s_flags |= flag;
1145 			break;
1146 		}
1147 		}
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  * ubifs_release_options - release mount parameters which have been dumped.
1155  * @c: UBIFS file-system description object
1156  */
1157 static void ubifs_release_options(struct ubifs_info *c)
1158 {
1159 	kfree(c->auth_key_name);
1160 	c->auth_key_name = NULL;
1161 	kfree(c->auth_hash_name);
1162 	c->auth_hash_name = NULL;
1163 }
1164 
1165 /**
1166  * destroy_journal - destroy journal data structures.
1167  * @c: UBIFS file-system description object
1168  *
1169  * This function destroys journal data structures including those that may have
1170  * been created by recovery functions.
1171  */
1172 static void destroy_journal(struct ubifs_info *c)
1173 {
1174 	while (!list_empty(&c->unclean_leb_list)) {
1175 		struct ubifs_unclean_leb *ucleb;
1176 
1177 		ucleb = list_entry(c->unclean_leb_list.next,
1178 				   struct ubifs_unclean_leb, list);
1179 		list_del(&ucleb->list);
1180 		kfree(ucleb);
1181 	}
1182 	while (!list_empty(&c->old_buds)) {
1183 		struct ubifs_bud *bud;
1184 
1185 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1186 		list_del(&bud->list);
1187 		kfree(bud);
1188 	}
1189 	ubifs_destroy_idx_gc(c);
1190 	ubifs_destroy_size_tree(c);
1191 	ubifs_tnc_close(c);
1192 	free_buds(c);
1193 }
1194 
1195 /**
1196  * bu_init - initialize bulk-read information.
1197  * @c: UBIFS file-system description object
1198  */
1199 static void bu_init(struct ubifs_info *c)
1200 {
1201 	ubifs_assert(c, c->bulk_read == 1);
1202 
1203 	if (c->bu.buf)
1204 		return; /* Already initialized */
1205 
1206 again:
1207 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1208 	if (!c->bu.buf) {
1209 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1210 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1211 			goto again;
1212 		}
1213 
1214 		/* Just disable bulk-read */
1215 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1216 			   c->max_bu_buf_len);
1217 		c->mount_opts.bulk_read = 1;
1218 		c->bulk_read = 0;
1219 		return;
1220 	}
1221 }
1222 
1223 /**
1224  * check_free_space - check if there is enough free space to mount.
1225  * @c: UBIFS file-system description object
1226  *
1227  * This function makes sure UBIFS has enough free space to be mounted in
1228  * read/write mode. UBIFS must always have some free space to allow deletions.
1229  */
1230 static int check_free_space(struct ubifs_info *c)
1231 {
1232 	ubifs_assert(c, c->dark_wm > 0);
1233 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1234 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1235 		ubifs_dump_budg(c, &c->bi);
1236 		ubifs_dump_lprops(c);
1237 		return -ENOSPC;
1238 	}
1239 	return 0;
1240 }
1241 
1242 /**
1243  * mount_ubifs - mount UBIFS file-system.
1244  * @c: UBIFS file-system description object
1245  *
1246  * This function mounts UBIFS file system. Returns zero in case of success and
1247  * a negative error code in case of failure.
1248  */
1249 static int mount_ubifs(struct ubifs_info *c)
1250 {
1251 	int err;
1252 	long long x, y;
1253 	size_t sz;
1254 
1255 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1256 	/* Suppress error messages while probing if SB_SILENT is set */
1257 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1258 
1259 	err = init_constants_early(c);
1260 	if (err)
1261 		return err;
1262 
1263 	err = ubifs_debugging_init(c);
1264 	if (err)
1265 		return err;
1266 
1267 	err = check_volume_empty(c);
1268 	if (err)
1269 		goto out_free;
1270 
1271 	if (c->empty && (c->ro_mount || c->ro_media)) {
1272 		/*
1273 		 * This UBI volume is empty, and read-only, or the file system
1274 		 * is mounted read-only - we cannot format it.
1275 		 */
1276 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1277 			  c->ro_media ? "UBI volume" : "mount");
1278 		err = -EROFS;
1279 		goto out_free;
1280 	}
1281 
1282 	if (c->ro_media && !c->ro_mount) {
1283 		ubifs_err(c, "cannot mount read-write - read-only media");
1284 		err = -EROFS;
1285 		goto out_free;
1286 	}
1287 
1288 	/*
1289 	 * The requirement for the buffer is that it should fit indexing B-tree
1290 	 * height amount of integers. We assume the height if the TNC tree will
1291 	 * never exceed 64.
1292 	 */
1293 	err = -ENOMEM;
1294 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1295 					 GFP_KERNEL);
1296 	if (!c->bottom_up_buf)
1297 		goto out_free;
1298 
1299 	c->sbuf = vmalloc(c->leb_size);
1300 	if (!c->sbuf)
1301 		goto out_free;
1302 
1303 	if (!c->ro_mount) {
1304 		c->ileb_buf = vmalloc(c->leb_size);
1305 		if (!c->ileb_buf)
1306 			goto out_free;
1307 	}
1308 
1309 	if (c->bulk_read == 1)
1310 		bu_init(c);
1311 
1312 	if (!c->ro_mount) {
1313 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1314 					       UBIFS_CIPHER_BLOCK_SIZE,
1315 					       GFP_KERNEL);
1316 		if (!c->write_reserve_buf)
1317 			goto out_free;
1318 	}
1319 
1320 	c->mounting = 1;
1321 
1322 	if (c->auth_key_name) {
1323 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1324 			err = ubifs_init_authentication(c);
1325 			if (err)
1326 				goto out_free;
1327 		} else {
1328 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1329 				  " authentication support");
1330 			err = -EINVAL;
1331 			goto out_free;
1332 		}
1333 	}
1334 
1335 	err = ubifs_read_superblock(c);
1336 	if (err)
1337 		goto out_auth;
1338 
1339 	c->probing = 0;
1340 
1341 	/*
1342 	 * Make sure the compressor which is set as default in the superblock
1343 	 * or overridden by mount options is actually compiled in.
1344 	 */
1345 	if (!ubifs_compr_present(c, c->default_compr)) {
1346 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1347 			  ubifs_compr_name(c, c->default_compr));
1348 		err = -ENOTSUPP;
1349 		goto out_auth;
1350 	}
1351 
1352 	err = init_constants_sb(c);
1353 	if (err)
1354 		goto out_auth;
1355 
1356 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1357 	c->cbuf = kmalloc(sz, GFP_NOFS);
1358 	if (!c->cbuf) {
1359 		err = -ENOMEM;
1360 		goto out_auth;
1361 	}
1362 
1363 	err = alloc_wbufs(c);
1364 	if (err)
1365 		goto out_cbuf;
1366 
1367 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1368 	if (!c->ro_mount) {
1369 		/* Create background thread */
1370 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1371 		if (IS_ERR(c->bgt)) {
1372 			err = PTR_ERR(c->bgt);
1373 			c->bgt = NULL;
1374 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1375 				  c->bgt_name, err);
1376 			goto out_wbufs;
1377 		}
1378 		wake_up_process(c->bgt);
1379 	}
1380 
1381 	err = ubifs_read_master(c);
1382 	if (err)
1383 		goto out_master;
1384 
1385 	init_constants_master(c);
1386 
1387 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1388 		ubifs_msg(c, "recovery needed");
1389 		c->need_recovery = 1;
1390 	}
1391 
1392 	if (c->need_recovery && !c->ro_mount) {
1393 		err = ubifs_recover_inl_heads(c, c->sbuf);
1394 		if (err)
1395 			goto out_master;
1396 	}
1397 
1398 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1399 	if (err)
1400 		goto out_master;
1401 
1402 	if (!c->ro_mount && c->space_fixup) {
1403 		err = ubifs_fixup_free_space(c);
1404 		if (err)
1405 			goto out_lpt;
1406 	}
1407 
1408 	if (!c->ro_mount && !c->need_recovery) {
1409 		/*
1410 		 * Set the "dirty" flag so that if we reboot uncleanly we
1411 		 * will notice this immediately on the next mount.
1412 		 */
1413 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1414 		err = ubifs_write_master(c);
1415 		if (err)
1416 			goto out_lpt;
1417 	}
1418 
1419 	/*
1420 	 * Handle offline signed images: Now that the master node is
1421 	 * written and its validation no longer depends on the hash
1422 	 * in the superblock, we can update the offline signed
1423 	 * superblock with a HMAC version,
1424 	 */
1425 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1426 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1427 		if (err)
1428 			goto out_lpt;
1429 		c->superblock_need_write = 1;
1430 	}
1431 
1432 	if (!c->ro_mount && c->superblock_need_write) {
1433 		err = ubifs_write_sb_node(c, c->sup_node);
1434 		if (err)
1435 			goto out_lpt;
1436 		c->superblock_need_write = 0;
1437 	}
1438 
1439 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1440 	if (err)
1441 		goto out_lpt;
1442 
1443 	err = ubifs_replay_journal(c);
1444 	if (err)
1445 		goto out_journal;
1446 
1447 	/* Calculate 'min_idx_lebs' after journal replay */
1448 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1449 
1450 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1451 	if (err)
1452 		goto out_orphans;
1453 
1454 	if (!c->ro_mount) {
1455 		int lnum;
1456 
1457 		err = check_free_space(c);
1458 		if (err)
1459 			goto out_orphans;
1460 
1461 		/* Check for enough log space */
1462 		lnum = c->lhead_lnum + 1;
1463 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1464 			lnum = UBIFS_LOG_LNUM;
1465 		if (lnum == c->ltail_lnum) {
1466 			err = ubifs_consolidate_log(c);
1467 			if (err)
1468 				goto out_orphans;
1469 		}
1470 
1471 		if (c->need_recovery) {
1472 			if (!ubifs_authenticated(c)) {
1473 				err = ubifs_recover_size(c, true);
1474 				if (err)
1475 					goto out_orphans;
1476 			}
1477 
1478 			err = ubifs_rcvry_gc_commit(c);
1479 			if (err)
1480 				goto out_orphans;
1481 
1482 			if (ubifs_authenticated(c)) {
1483 				err = ubifs_recover_size(c, false);
1484 				if (err)
1485 					goto out_orphans;
1486 			}
1487 		} else {
1488 			err = take_gc_lnum(c);
1489 			if (err)
1490 				goto out_orphans;
1491 
1492 			/*
1493 			 * GC LEB may contain garbage if there was an unclean
1494 			 * reboot, and it should be un-mapped.
1495 			 */
1496 			err = ubifs_leb_unmap(c, c->gc_lnum);
1497 			if (err)
1498 				goto out_orphans;
1499 		}
1500 
1501 		err = dbg_check_lprops(c);
1502 		if (err)
1503 			goto out_orphans;
1504 	} else if (c->need_recovery) {
1505 		err = ubifs_recover_size(c, false);
1506 		if (err)
1507 			goto out_orphans;
1508 	} else {
1509 		/*
1510 		 * Even if we mount read-only, we have to set space in GC LEB
1511 		 * to proper value because this affects UBIFS free space
1512 		 * reporting. We do not want to have a situation when
1513 		 * re-mounting from R/O to R/W changes amount of free space.
1514 		 */
1515 		err = take_gc_lnum(c);
1516 		if (err)
1517 			goto out_orphans;
1518 	}
1519 
1520 	spin_lock(&ubifs_infos_lock);
1521 	list_add_tail(&c->infos_list, &ubifs_infos);
1522 	spin_unlock(&ubifs_infos_lock);
1523 
1524 	if (c->need_recovery) {
1525 		if (c->ro_mount)
1526 			ubifs_msg(c, "recovery deferred");
1527 		else {
1528 			c->need_recovery = 0;
1529 			ubifs_msg(c, "recovery completed");
1530 			/*
1531 			 * GC LEB has to be empty and taken at this point. But
1532 			 * the journal head LEBs may also be accounted as
1533 			 * "empty taken" if they are empty.
1534 			 */
1535 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1536 		}
1537 	} else
1538 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1539 
1540 	err = dbg_check_filesystem(c);
1541 	if (err)
1542 		goto out_infos;
1543 
1544 	dbg_debugfs_init_fs(c);
1545 
1546 	c->mounting = 0;
1547 
1548 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1549 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1550 		  c->ro_mount ? ", R/O mode" : "");
1551 	x = (long long)c->main_lebs * c->leb_size;
1552 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1553 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1554 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1555 		  c->max_write_size);
1556 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1557 		  x, x >> 20, c->main_lebs, c->max_leb_cnt,
1558 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1559 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1560 		  c->report_rp_size, c->report_rp_size >> 10);
1561 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1562 		  c->fmt_version, c->ro_compat_version,
1563 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1564 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1565 
1566 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1567 	dbg_gen("data journal heads:  %d",
1568 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1569 	dbg_gen("log LEBs:            %d (%d - %d)",
1570 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1571 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1572 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1573 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1574 		c->orph_lebs, c->orph_first, c->orph_last);
1575 	dbg_gen("main area LEBs:      %d (%d - %d)",
1576 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1577 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1578 	dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
1579 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1580 		c->bi.old_idx_sz >> 20);
1581 	dbg_gen("key hash type:       %d", c->key_hash_type);
1582 	dbg_gen("tree fanout:         %d", c->fanout);
1583 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1584 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1585 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1586 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1587 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1588 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1589 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1590 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1591 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1592 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1593 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1594 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1595 	dbg_gen("dead watermark:      %d", c->dead_wm);
1596 	dbg_gen("dark watermark:      %d", c->dark_wm);
1597 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1598 	x = (long long)c->main_lebs * c->dark_wm;
1599 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1600 		x, x >> 10, x >> 20);
1601 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1602 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1603 		c->max_bud_bytes >> 20);
1604 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1605 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1606 		c->bg_bud_bytes >> 20);
1607 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1608 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1609 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1610 	dbg_gen("commit number:       %llu", c->cmt_no);
1611 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1612 	dbg_gen("max orphans:           %d", c->max_orphans);
1613 
1614 	return 0;
1615 
1616 out_infos:
1617 	spin_lock(&ubifs_infos_lock);
1618 	list_del(&c->infos_list);
1619 	spin_unlock(&ubifs_infos_lock);
1620 out_orphans:
1621 	free_orphans(c);
1622 out_journal:
1623 	destroy_journal(c);
1624 out_lpt:
1625 	ubifs_lpt_free(c, 0);
1626 out_master:
1627 	kfree(c->mst_node);
1628 	kfree(c->rcvrd_mst_node);
1629 	if (c->bgt)
1630 		kthread_stop(c->bgt);
1631 out_wbufs:
1632 	free_wbufs(c);
1633 out_cbuf:
1634 	kfree(c->cbuf);
1635 out_auth:
1636 	ubifs_exit_authentication(c);
1637 out_free:
1638 	kfree(c->write_reserve_buf);
1639 	kfree(c->bu.buf);
1640 	vfree(c->ileb_buf);
1641 	vfree(c->sbuf);
1642 	kfree(c->bottom_up_buf);
1643 	kfree(c->sup_node);
1644 	ubifs_debugging_exit(c);
1645 	return err;
1646 }
1647 
1648 /**
1649  * ubifs_umount - un-mount UBIFS file-system.
1650  * @c: UBIFS file-system description object
1651  *
1652  * Note, this function is called to free allocated resourced when un-mounting,
1653  * as well as free resources when an error occurred while we were half way
1654  * through mounting (error path cleanup function). So it has to make sure the
1655  * resource was actually allocated before freeing it.
1656  */
1657 static void ubifs_umount(struct ubifs_info *c)
1658 {
1659 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1660 		c->vi.vol_id);
1661 
1662 	dbg_debugfs_exit_fs(c);
1663 	spin_lock(&ubifs_infos_lock);
1664 	list_del(&c->infos_list);
1665 	spin_unlock(&ubifs_infos_lock);
1666 
1667 	if (c->bgt)
1668 		kthread_stop(c->bgt);
1669 
1670 	destroy_journal(c);
1671 	free_wbufs(c);
1672 	free_orphans(c);
1673 	ubifs_lpt_free(c, 0);
1674 	ubifs_exit_authentication(c);
1675 
1676 	ubifs_release_options(c);
1677 	kfree(c->cbuf);
1678 	kfree(c->rcvrd_mst_node);
1679 	kfree(c->mst_node);
1680 	kfree(c->write_reserve_buf);
1681 	kfree(c->bu.buf);
1682 	vfree(c->ileb_buf);
1683 	vfree(c->sbuf);
1684 	kfree(c->bottom_up_buf);
1685 	kfree(c->sup_node);
1686 	ubifs_debugging_exit(c);
1687 }
1688 
1689 /**
1690  * ubifs_remount_rw - re-mount in read-write mode.
1691  * @c: UBIFS file-system description object
1692  *
1693  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1694  * mode. This function allocates the needed resources and re-mounts UBIFS in
1695  * read-write mode.
1696  */
1697 static int ubifs_remount_rw(struct ubifs_info *c)
1698 {
1699 	int err, lnum;
1700 
1701 	if (c->rw_incompat) {
1702 		ubifs_err(c, "the file-system is not R/W-compatible");
1703 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1704 			  c->fmt_version, c->ro_compat_version,
1705 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1706 		return -EROFS;
1707 	}
1708 
1709 	mutex_lock(&c->umount_mutex);
1710 	dbg_save_space_info(c);
1711 	c->remounting_rw = 1;
1712 	c->ro_mount = 0;
1713 
1714 	if (c->space_fixup) {
1715 		err = ubifs_fixup_free_space(c);
1716 		if (err)
1717 			goto out;
1718 	}
1719 
1720 	err = check_free_space(c);
1721 	if (err)
1722 		goto out;
1723 
1724 	if (c->need_recovery) {
1725 		ubifs_msg(c, "completing deferred recovery");
1726 		err = ubifs_write_rcvrd_mst_node(c);
1727 		if (err)
1728 			goto out;
1729 		if (!ubifs_authenticated(c)) {
1730 			err = ubifs_recover_size(c, true);
1731 			if (err)
1732 				goto out;
1733 		}
1734 		err = ubifs_clean_lebs(c, c->sbuf);
1735 		if (err)
1736 			goto out;
1737 		err = ubifs_recover_inl_heads(c, c->sbuf);
1738 		if (err)
1739 			goto out;
1740 	} else {
1741 		/* A readonly mount is not allowed to have orphans */
1742 		ubifs_assert(c, c->tot_orphans == 0);
1743 		err = ubifs_clear_orphans(c);
1744 		if (err)
1745 			goto out;
1746 	}
1747 
1748 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1749 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1750 		err = ubifs_write_master(c);
1751 		if (err)
1752 			goto out;
1753 	}
1754 
1755 	if (c->superblock_need_write) {
1756 		struct ubifs_sb_node *sup = c->sup_node;
1757 
1758 		err = ubifs_write_sb_node(c, sup);
1759 		if (err)
1760 			goto out;
1761 
1762 		c->superblock_need_write = 0;
1763 	}
1764 
1765 	c->ileb_buf = vmalloc(c->leb_size);
1766 	if (!c->ileb_buf) {
1767 		err = -ENOMEM;
1768 		goto out;
1769 	}
1770 
1771 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1772 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1773 	if (!c->write_reserve_buf) {
1774 		err = -ENOMEM;
1775 		goto out;
1776 	}
1777 
1778 	err = ubifs_lpt_init(c, 0, 1);
1779 	if (err)
1780 		goto out;
1781 
1782 	/* Create background thread */
1783 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1784 	if (IS_ERR(c->bgt)) {
1785 		err = PTR_ERR(c->bgt);
1786 		c->bgt = NULL;
1787 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1788 			  c->bgt_name, err);
1789 		goto out;
1790 	}
1791 	wake_up_process(c->bgt);
1792 
1793 	c->orph_buf = vmalloc(c->leb_size);
1794 	if (!c->orph_buf) {
1795 		err = -ENOMEM;
1796 		goto out;
1797 	}
1798 
1799 	/* Check for enough log space */
1800 	lnum = c->lhead_lnum + 1;
1801 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1802 		lnum = UBIFS_LOG_LNUM;
1803 	if (lnum == c->ltail_lnum) {
1804 		err = ubifs_consolidate_log(c);
1805 		if (err)
1806 			goto out;
1807 	}
1808 
1809 	if (c->need_recovery) {
1810 		err = ubifs_rcvry_gc_commit(c);
1811 		if (err)
1812 			goto out;
1813 
1814 		if (ubifs_authenticated(c)) {
1815 			err = ubifs_recover_size(c, false);
1816 			if (err)
1817 				goto out;
1818 		}
1819 	} else {
1820 		err = ubifs_leb_unmap(c, c->gc_lnum);
1821 	}
1822 	if (err)
1823 		goto out;
1824 
1825 	dbg_gen("re-mounted read-write");
1826 	c->remounting_rw = 0;
1827 
1828 	if (c->need_recovery) {
1829 		c->need_recovery = 0;
1830 		ubifs_msg(c, "deferred recovery completed");
1831 	} else {
1832 		/*
1833 		 * Do not run the debugging space check if the were doing
1834 		 * recovery, because when we saved the information we had the
1835 		 * file-system in a state where the TNC and lprops has been
1836 		 * modified in memory, but all the I/O operations (including a
1837 		 * commit) were deferred. So the file-system was in
1838 		 * "non-committed" state. Now the file-system is in committed
1839 		 * state, and of course the amount of free space will change
1840 		 * because, for example, the old index size was imprecise.
1841 		 */
1842 		err = dbg_check_space_info(c);
1843 	}
1844 
1845 	mutex_unlock(&c->umount_mutex);
1846 	return err;
1847 
1848 out:
1849 	c->ro_mount = 1;
1850 	vfree(c->orph_buf);
1851 	c->orph_buf = NULL;
1852 	if (c->bgt) {
1853 		kthread_stop(c->bgt);
1854 		c->bgt = NULL;
1855 	}
1856 	free_wbufs(c);
1857 	kfree(c->write_reserve_buf);
1858 	c->write_reserve_buf = NULL;
1859 	vfree(c->ileb_buf);
1860 	c->ileb_buf = NULL;
1861 	ubifs_lpt_free(c, 1);
1862 	c->remounting_rw = 0;
1863 	mutex_unlock(&c->umount_mutex);
1864 	return err;
1865 }
1866 
1867 /**
1868  * ubifs_remount_ro - re-mount in read-only mode.
1869  * @c: UBIFS file-system description object
1870  *
1871  * We assume VFS has stopped writing. Possibly the background thread could be
1872  * running a commit, however kthread_stop will wait in that case.
1873  */
1874 static void ubifs_remount_ro(struct ubifs_info *c)
1875 {
1876 	int i, err;
1877 
1878 	ubifs_assert(c, !c->need_recovery);
1879 	ubifs_assert(c, !c->ro_mount);
1880 
1881 	mutex_lock(&c->umount_mutex);
1882 	if (c->bgt) {
1883 		kthread_stop(c->bgt);
1884 		c->bgt = NULL;
1885 	}
1886 
1887 	dbg_save_space_info(c);
1888 
1889 	for (i = 0; i < c->jhead_cnt; i++) {
1890 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1891 		if (err)
1892 			ubifs_ro_mode(c, err);
1893 	}
1894 
1895 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1896 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1897 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1898 	err = ubifs_write_master(c);
1899 	if (err)
1900 		ubifs_ro_mode(c, err);
1901 
1902 	vfree(c->orph_buf);
1903 	c->orph_buf = NULL;
1904 	kfree(c->write_reserve_buf);
1905 	c->write_reserve_buf = NULL;
1906 	vfree(c->ileb_buf);
1907 	c->ileb_buf = NULL;
1908 	ubifs_lpt_free(c, 1);
1909 	c->ro_mount = 1;
1910 	err = dbg_check_space_info(c);
1911 	if (err)
1912 		ubifs_ro_mode(c, err);
1913 	mutex_unlock(&c->umount_mutex);
1914 }
1915 
1916 static void ubifs_put_super(struct super_block *sb)
1917 {
1918 	int i;
1919 	struct ubifs_info *c = sb->s_fs_info;
1920 
1921 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1922 
1923 	/*
1924 	 * The following asserts are only valid if there has not been a failure
1925 	 * of the media. For example, there will be dirty inodes if we failed
1926 	 * to write them back because of I/O errors.
1927 	 */
1928 	if (!c->ro_error) {
1929 		ubifs_assert(c, c->bi.idx_growth == 0);
1930 		ubifs_assert(c, c->bi.dd_growth == 0);
1931 		ubifs_assert(c, c->bi.data_growth == 0);
1932 	}
1933 
1934 	/*
1935 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1936 	 * and file system un-mount. Namely, it prevents the shrinker from
1937 	 * picking this superblock for shrinking - it will be just skipped if
1938 	 * the mutex is locked.
1939 	 */
1940 	mutex_lock(&c->umount_mutex);
1941 	if (!c->ro_mount) {
1942 		/*
1943 		 * First of all kill the background thread to make sure it does
1944 		 * not interfere with un-mounting and freeing resources.
1945 		 */
1946 		if (c->bgt) {
1947 			kthread_stop(c->bgt);
1948 			c->bgt = NULL;
1949 		}
1950 
1951 		/*
1952 		 * On fatal errors c->ro_error is set to 1, in which case we do
1953 		 * not write the master node.
1954 		 */
1955 		if (!c->ro_error) {
1956 			int err;
1957 
1958 			/* Synchronize write-buffers */
1959 			for (i = 0; i < c->jhead_cnt; i++) {
1960 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1961 				if (err)
1962 					ubifs_ro_mode(c, err);
1963 			}
1964 
1965 			/*
1966 			 * We are being cleanly unmounted which means the
1967 			 * orphans were killed - indicate this in the master
1968 			 * node. Also save the reserved GC LEB number.
1969 			 */
1970 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1971 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1972 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1973 			err = ubifs_write_master(c);
1974 			if (err)
1975 				/*
1976 				 * Recovery will attempt to fix the master area
1977 				 * next mount, so we just print a message and
1978 				 * continue to unmount normally.
1979 				 */
1980 				ubifs_err(c, "failed to write master node, error %d",
1981 					  err);
1982 		} else {
1983 			for (i = 0; i < c->jhead_cnt; i++)
1984 				/* Make sure write-buffer timers are canceled */
1985 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1986 		}
1987 	}
1988 
1989 	ubifs_umount(c);
1990 	ubi_close_volume(c->ubi);
1991 	mutex_unlock(&c->umount_mutex);
1992 }
1993 
1994 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1995 {
1996 	int err;
1997 	struct ubifs_info *c = sb->s_fs_info;
1998 
1999 	sync_filesystem(sb);
2000 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2001 
2002 	err = ubifs_parse_options(c, data, 1);
2003 	if (err) {
2004 		ubifs_err(c, "invalid or unknown remount parameter");
2005 		return err;
2006 	}
2007 
2008 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
2009 		if (c->ro_error) {
2010 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2011 			return -EROFS;
2012 		}
2013 		if (c->ro_media) {
2014 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2015 			return -EROFS;
2016 		}
2017 		err = ubifs_remount_rw(c);
2018 		if (err)
2019 			return err;
2020 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2021 		if (c->ro_error) {
2022 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2023 			return -EROFS;
2024 		}
2025 		ubifs_remount_ro(c);
2026 	}
2027 
2028 	if (c->bulk_read == 1)
2029 		bu_init(c);
2030 	else {
2031 		dbg_gen("disable bulk-read");
2032 		mutex_lock(&c->bu_mutex);
2033 		kfree(c->bu.buf);
2034 		c->bu.buf = NULL;
2035 		mutex_unlock(&c->bu_mutex);
2036 	}
2037 
2038 	if (!c->need_recovery)
2039 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2040 
2041 	return 0;
2042 }
2043 
2044 const struct super_operations ubifs_super_operations = {
2045 	.alloc_inode   = ubifs_alloc_inode,
2046 	.free_inode    = ubifs_free_inode,
2047 	.put_super     = ubifs_put_super,
2048 	.write_inode   = ubifs_write_inode,
2049 	.drop_inode    = ubifs_drop_inode,
2050 	.evict_inode   = ubifs_evict_inode,
2051 	.statfs        = ubifs_statfs,
2052 	.dirty_inode   = ubifs_dirty_inode,
2053 	.remount_fs    = ubifs_remount_fs,
2054 	.show_options  = ubifs_show_options,
2055 	.sync_fs       = ubifs_sync_fs,
2056 };
2057 
2058 /**
2059  * open_ubi - parse UBI device name string and open the UBI device.
2060  * @name: UBI volume name
2061  * @mode: UBI volume open mode
2062  *
2063  * The primary method of mounting UBIFS is by specifying the UBI volume
2064  * character device node path. However, UBIFS may also be mounted without any
2065  * character device node using one of the following methods:
2066  *
2067  * o ubiX_Y    - mount UBI device number X, volume Y;
2068  * o ubiY      - mount UBI device number 0, volume Y;
2069  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2070  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2071  *
2072  * Alternative '!' separator may be used instead of ':' (because some shells
2073  * like busybox may interpret ':' as an NFS host name separator). This function
2074  * returns UBI volume description object in case of success and a negative
2075  * error code in case of failure.
2076  */
2077 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2078 {
2079 	struct ubi_volume_desc *ubi;
2080 	int dev, vol;
2081 	char *endptr;
2082 
2083 	if (!name || !*name)
2084 		return ERR_PTR(-EINVAL);
2085 
2086 	/* First, try to open using the device node path method */
2087 	ubi = ubi_open_volume_path(name, mode);
2088 	if (!IS_ERR(ubi))
2089 		return ubi;
2090 
2091 	/* Try the "nodev" method */
2092 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2093 		return ERR_PTR(-EINVAL);
2094 
2095 	/* ubi:NAME method */
2096 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2097 		return ubi_open_volume_nm(0, name + 4, mode);
2098 
2099 	if (!isdigit(name[3]))
2100 		return ERR_PTR(-EINVAL);
2101 
2102 	dev = simple_strtoul(name + 3, &endptr, 0);
2103 
2104 	/* ubiY method */
2105 	if (*endptr == '\0')
2106 		return ubi_open_volume(0, dev, mode);
2107 
2108 	/* ubiX_Y method */
2109 	if (*endptr == '_' && isdigit(endptr[1])) {
2110 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2111 		if (*endptr != '\0')
2112 			return ERR_PTR(-EINVAL);
2113 		return ubi_open_volume(dev, vol, mode);
2114 	}
2115 
2116 	/* ubiX:NAME method */
2117 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2118 		return ubi_open_volume_nm(dev, ++endptr, mode);
2119 
2120 	return ERR_PTR(-EINVAL);
2121 }
2122 
2123 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2124 {
2125 	struct ubifs_info *c;
2126 
2127 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2128 	if (c) {
2129 		spin_lock_init(&c->cnt_lock);
2130 		spin_lock_init(&c->cs_lock);
2131 		spin_lock_init(&c->buds_lock);
2132 		spin_lock_init(&c->space_lock);
2133 		spin_lock_init(&c->orphan_lock);
2134 		init_rwsem(&c->commit_sem);
2135 		mutex_init(&c->lp_mutex);
2136 		mutex_init(&c->tnc_mutex);
2137 		mutex_init(&c->log_mutex);
2138 		mutex_init(&c->umount_mutex);
2139 		mutex_init(&c->bu_mutex);
2140 		mutex_init(&c->write_reserve_mutex);
2141 		init_waitqueue_head(&c->cmt_wq);
2142 		c->buds = RB_ROOT;
2143 		c->old_idx = RB_ROOT;
2144 		c->size_tree = RB_ROOT;
2145 		c->orph_tree = RB_ROOT;
2146 		INIT_LIST_HEAD(&c->infos_list);
2147 		INIT_LIST_HEAD(&c->idx_gc);
2148 		INIT_LIST_HEAD(&c->replay_list);
2149 		INIT_LIST_HEAD(&c->replay_buds);
2150 		INIT_LIST_HEAD(&c->uncat_list);
2151 		INIT_LIST_HEAD(&c->empty_list);
2152 		INIT_LIST_HEAD(&c->freeable_list);
2153 		INIT_LIST_HEAD(&c->frdi_idx_list);
2154 		INIT_LIST_HEAD(&c->unclean_leb_list);
2155 		INIT_LIST_HEAD(&c->old_buds);
2156 		INIT_LIST_HEAD(&c->orph_list);
2157 		INIT_LIST_HEAD(&c->orph_new);
2158 		c->no_chk_data_crc = 1;
2159 		c->assert_action = ASSACT_RO;
2160 
2161 		c->highest_inum = UBIFS_FIRST_INO;
2162 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2163 
2164 		ubi_get_volume_info(ubi, &c->vi);
2165 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2166 	}
2167 	return c;
2168 }
2169 
2170 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2171 {
2172 	struct ubifs_info *c = sb->s_fs_info;
2173 	struct inode *root;
2174 	int err;
2175 
2176 	c->vfs_sb = sb;
2177 	/* Re-open the UBI device in read-write mode */
2178 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2179 	if (IS_ERR(c->ubi)) {
2180 		err = PTR_ERR(c->ubi);
2181 		goto out;
2182 	}
2183 
2184 	err = ubifs_parse_options(c, data, 0);
2185 	if (err)
2186 		goto out_close;
2187 
2188 	/*
2189 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2190 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2191 	 * which means the user would have to wait not just for their own I/O
2192 	 * but the read-ahead I/O as well i.e. completely pointless.
2193 	 *
2194 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2195 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2196 	 * writeback happening.
2197 	 */
2198 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2199 				   c->vi.vol_id);
2200 	if (err)
2201 		goto out_close;
2202 	sb->s_bdi->ra_pages = 0;
2203 	sb->s_bdi->io_pages = 0;
2204 
2205 	sb->s_fs_info = c;
2206 	sb->s_magic = UBIFS_SUPER_MAGIC;
2207 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2208 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2209 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2210 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2211 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2212 	sb->s_op = &ubifs_super_operations;
2213 	sb->s_xattr = ubifs_xattr_handlers;
2214 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2215 
2216 	mutex_lock(&c->umount_mutex);
2217 	err = mount_ubifs(c);
2218 	if (err) {
2219 		ubifs_assert(c, err < 0);
2220 		goto out_unlock;
2221 	}
2222 
2223 	/* Read the root inode */
2224 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2225 	if (IS_ERR(root)) {
2226 		err = PTR_ERR(root);
2227 		goto out_umount;
2228 	}
2229 
2230 	sb->s_root = d_make_root(root);
2231 	if (!sb->s_root) {
2232 		err = -ENOMEM;
2233 		goto out_umount;
2234 	}
2235 
2236 	import_uuid(&sb->s_uuid, c->uuid);
2237 
2238 	mutex_unlock(&c->umount_mutex);
2239 	return 0;
2240 
2241 out_umount:
2242 	ubifs_umount(c);
2243 out_unlock:
2244 	mutex_unlock(&c->umount_mutex);
2245 out_close:
2246 	ubifs_release_options(c);
2247 	ubi_close_volume(c->ubi);
2248 out:
2249 	return err;
2250 }
2251 
2252 static int sb_test(struct super_block *sb, void *data)
2253 {
2254 	struct ubifs_info *c1 = data;
2255 	struct ubifs_info *c = sb->s_fs_info;
2256 
2257 	return c->vi.cdev == c1->vi.cdev;
2258 }
2259 
2260 static int sb_set(struct super_block *sb, void *data)
2261 {
2262 	sb->s_fs_info = data;
2263 	return set_anon_super(sb, NULL);
2264 }
2265 
2266 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2267 			const char *name, void *data)
2268 {
2269 	struct ubi_volume_desc *ubi;
2270 	struct ubifs_info *c;
2271 	struct super_block *sb;
2272 	int err;
2273 
2274 	dbg_gen("name %s, flags %#x", name, flags);
2275 
2276 	/*
2277 	 * Get UBI device number and volume ID. Mount it read-only so far
2278 	 * because this might be a new mount point, and UBI allows only one
2279 	 * read-write user at a time.
2280 	 */
2281 	ubi = open_ubi(name, UBI_READONLY);
2282 	if (IS_ERR(ubi)) {
2283 		if (!(flags & SB_SILENT))
2284 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2285 			       current->pid, name, (int)PTR_ERR(ubi));
2286 		return ERR_CAST(ubi);
2287 	}
2288 
2289 	c = alloc_ubifs_info(ubi);
2290 	if (!c) {
2291 		err = -ENOMEM;
2292 		goto out_close;
2293 	}
2294 
2295 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2296 
2297 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2298 	if (IS_ERR(sb)) {
2299 		err = PTR_ERR(sb);
2300 		kfree(c);
2301 		goto out_close;
2302 	}
2303 
2304 	if (sb->s_root) {
2305 		struct ubifs_info *c1 = sb->s_fs_info;
2306 		kfree(c);
2307 		/* A new mount point for already mounted UBIFS */
2308 		dbg_gen("this ubi volume is already mounted");
2309 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2310 			err = -EBUSY;
2311 			goto out_deact;
2312 		}
2313 	} else {
2314 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2315 		if (err)
2316 			goto out_deact;
2317 		/* We do not support atime */
2318 		sb->s_flags |= SB_ACTIVE;
2319 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2320 			ubifs_msg(c, "full atime support is enabled.");
2321 		else
2322 			sb->s_flags |= SB_NOATIME;
2323 	}
2324 
2325 	/* 'fill_super()' opens ubi again so we must close it here */
2326 	ubi_close_volume(ubi);
2327 
2328 	return dget(sb->s_root);
2329 
2330 out_deact:
2331 	deactivate_locked_super(sb);
2332 out_close:
2333 	ubi_close_volume(ubi);
2334 	return ERR_PTR(err);
2335 }
2336 
2337 static void kill_ubifs_super(struct super_block *s)
2338 {
2339 	struct ubifs_info *c = s->s_fs_info;
2340 	kill_anon_super(s);
2341 	kfree(c);
2342 }
2343 
2344 static struct file_system_type ubifs_fs_type = {
2345 	.name    = "ubifs",
2346 	.owner   = THIS_MODULE,
2347 	.mount   = ubifs_mount,
2348 	.kill_sb = kill_ubifs_super,
2349 };
2350 MODULE_ALIAS_FS("ubifs");
2351 
2352 /*
2353  * Inode slab cache constructor.
2354  */
2355 static void inode_slab_ctor(void *obj)
2356 {
2357 	struct ubifs_inode *ui = obj;
2358 	inode_init_once(&ui->vfs_inode);
2359 }
2360 
2361 static int __init ubifs_init(void)
2362 {
2363 	int err;
2364 
2365 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2366 
2367 	/* Make sure node sizes are 8-byte aligned */
2368 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2369 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2370 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2371 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2372 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2373 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2374 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2375 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2376 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2377 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2378 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2379 
2380 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2381 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2382 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2383 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2384 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2385 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2386 
2387 	/* Check min. node size */
2388 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2389 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2390 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2391 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2392 
2393 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2394 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2395 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2396 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2397 
2398 	/* Defined node sizes */
2399 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2400 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2401 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2402 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2403 
2404 	/*
2405 	 * We use 2 bit wide bit-fields to store compression type, which should
2406 	 * be amended if more compressors are added. The bit-fields are:
2407 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2408 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2409 	 */
2410 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2411 
2412 	/*
2413 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2414 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2415 	 */
2416 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2417 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2418 		       current->pid, (unsigned int)PAGE_SIZE);
2419 		return -EINVAL;
2420 	}
2421 
2422 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2423 				sizeof(struct ubifs_inode), 0,
2424 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2425 				SLAB_ACCOUNT, &inode_slab_ctor);
2426 	if (!ubifs_inode_slab)
2427 		return -ENOMEM;
2428 
2429 	err = register_shrinker(&ubifs_shrinker_info);
2430 	if (err)
2431 		goto out_slab;
2432 
2433 	err = ubifs_compressors_init();
2434 	if (err)
2435 		goto out_shrinker;
2436 
2437 	dbg_debugfs_init();
2438 
2439 	err = register_filesystem(&ubifs_fs_type);
2440 	if (err) {
2441 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2442 		       current->pid, err);
2443 		goto out_dbg;
2444 	}
2445 	return 0;
2446 
2447 out_dbg:
2448 	dbg_debugfs_exit();
2449 	ubifs_compressors_exit();
2450 out_shrinker:
2451 	unregister_shrinker(&ubifs_shrinker_info);
2452 out_slab:
2453 	kmem_cache_destroy(ubifs_inode_slab);
2454 	return err;
2455 }
2456 /* late_initcall to let compressors initialize first */
2457 late_initcall(ubifs_init);
2458 
2459 static void __exit ubifs_exit(void)
2460 {
2461 	WARN_ON(!list_empty(&ubifs_infos));
2462 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2463 
2464 	dbg_debugfs_exit();
2465 	ubifs_compressors_exit();
2466 	unregister_shrinker(&ubifs_shrinker_info);
2467 
2468 	/*
2469 	 * Make sure all delayed rcu free inodes are flushed before we
2470 	 * destroy cache.
2471 	 */
2472 	rcu_barrier();
2473 	kmem_cache_destroy(ubifs_inode_slab);
2474 	unregister_filesystem(&ubifs_fs_type);
2475 }
2476 module_exit(ubifs_exit);
2477 
2478 MODULE_LICENSE("GPL");
2479 MODULE_VERSION(__stringify(UBIFS_VERSION));
2480 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2481 MODULE_DESCRIPTION("UBIFS - UBI File System");
2482