1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 set_nlink(inode, le32_to_cpu(ino->nlink)); 133 i_uid_write(inode, le32_to_cpu(ino->uid)); 134 i_gid_write(inode, le32_to_cpu(ino->gid)); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 switch (inode->i_mode & S_IFMT) { 160 case S_IFREG: 161 inode->i_mapping->a_ops = &ubifs_file_address_operations; 162 inode->i_op = &ubifs_file_inode_operations; 163 inode->i_fop = &ubifs_file_operations; 164 if (ui->xattr) { 165 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 166 if (!ui->data) { 167 err = -ENOMEM; 168 goto out_ino; 169 } 170 memcpy(ui->data, ino->data, ui->data_len); 171 ((char *)ui->data)[ui->data_len] = '\0'; 172 } else if (ui->data_len != 0) { 173 err = 10; 174 goto out_invalid; 175 } 176 break; 177 case S_IFDIR: 178 inode->i_op = &ubifs_dir_inode_operations; 179 inode->i_fop = &ubifs_dir_operations; 180 if (ui->data_len != 0) { 181 err = 11; 182 goto out_invalid; 183 } 184 break; 185 case S_IFLNK: 186 inode->i_op = &ubifs_symlink_inode_operations; 187 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 188 err = 12; 189 goto out_invalid; 190 } 191 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 192 if (!ui->data) { 193 err = -ENOMEM; 194 goto out_ino; 195 } 196 memcpy(ui->data, ino->data, ui->data_len); 197 ((char *)ui->data)[ui->data_len] = '\0'; 198 inode->i_link = ui->data; 199 break; 200 case S_IFBLK: 201 case S_IFCHR: 202 { 203 dev_t rdev; 204 union ubifs_dev_desc *dev; 205 206 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 207 if (!ui->data) { 208 err = -ENOMEM; 209 goto out_ino; 210 } 211 212 dev = (union ubifs_dev_desc *)ino->data; 213 if (ui->data_len == sizeof(dev->new)) 214 rdev = new_decode_dev(le32_to_cpu(dev->new)); 215 else if (ui->data_len == sizeof(dev->huge)) 216 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 217 else { 218 err = 13; 219 goto out_invalid; 220 } 221 memcpy(ui->data, ino->data, ui->data_len); 222 inode->i_op = &ubifs_file_inode_operations; 223 init_special_inode(inode, inode->i_mode, rdev); 224 break; 225 } 226 case S_IFSOCK: 227 case S_IFIFO: 228 inode->i_op = &ubifs_file_inode_operations; 229 init_special_inode(inode, inode->i_mode, 0); 230 if (ui->data_len != 0) { 231 err = 14; 232 goto out_invalid; 233 } 234 break; 235 default: 236 err = 15; 237 goto out_invalid; 238 } 239 240 kfree(ino); 241 ubifs_set_inode_flags(inode); 242 unlock_new_inode(inode); 243 return inode; 244 245 out_invalid: 246 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 247 ubifs_dump_node(c, ino); 248 ubifs_dump_inode(c, inode); 249 err = -EINVAL; 250 out_ino: 251 kfree(ino); 252 out: 253 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 254 iget_failed(inode); 255 return ERR_PTR(err); 256 } 257 258 static struct inode *ubifs_alloc_inode(struct super_block *sb) 259 { 260 struct ubifs_inode *ui; 261 262 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 263 if (!ui) 264 return NULL; 265 266 memset((void *)ui + sizeof(struct inode), 0, 267 sizeof(struct ubifs_inode) - sizeof(struct inode)); 268 mutex_init(&ui->ui_mutex); 269 spin_lock_init(&ui->ui_lock); 270 return &ui->vfs_inode; 271 }; 272 273 static void ubifs_i_callback(struct rcu_head *head) 274 { 275 struct inode *inode = container_of(head, struct inode, i_rcu); 276 struct ubifs_inode *ui = ubifs_inode(inode); 277 kmem_cache_free(ubifs_inode_slab, ui); 278 } 279 280 static void ubifs_destroy_inode(struct inode *inode) 281 { 282 struct ubifs_inode *ui = ubifs_inode(inode); 283 284 kfree(ui->data); 285 call_rcu(&inode->i_rcu, ubifs_i_callback); 286 } 287 288 /* 289 * Note, Linux write-back code calls this without 'i_mutex'. 290 */ 291 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 292 { 293 int err = 0; 294 struct ubifs_info *c = inode->i_sb->s_fs_info; 295 struct ubifs_inode *ui = ubifs_inode(inode); 296 297 ubifs_assert(!ui->xattr); 298 if (is_bad_inode(inode)) 299 return 0; 300 301 mutex_lock(&ui->ui_mutex); 302 /* 303 * Due to races between write-back forced by budgeting 304 * (see 'sync_some_inodes()') and background write-back, the inode may 305 * have already been synchronized, do not do this again. This might 306 * also happen if it was synchronized in an VFS operation, e.g. 307 * 'ubifs_link()'. 308 */ 309 if (!ui->dirty) { 310 mutex_unlock(&ui->ui_mutex); 311 return 0; 312 } 313 314 /* 315 * As an optimization, do not write orphan inodes to the media just 316 * because this is not needed. 317 */ 318 dbg_gen("inode %lu, mode %#x, nlink %u", 319 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 320 if (inode->i_nlink) { 321 err = ubifs_jnl_write_inode(c, inode); 322 if (err) 323 ubifs_err(c, "can't write inode %lu, error %d", 324 inode->i_ino, err); 325 else 326 err = dbg_check_inode_size(c, inode, ui->ui_size); 327 } 328 329 ui->dirty = 0; 330 mutex_unlock(&ui->ui_mutex); 331 ubifs_release_dirty_inode_budget(c, ui); 332 return err; 333 } 334 335 static void ubifs_evict_inode(struct inode *inode) 336 { 337 int err; 338 struct ubifs_info *c = inode->i_sb->s_fs_info; 339 struct ubifs_inode *ui = ubifs_inode(inode); 340 341 if (ui->xattr) 342 /* 343 * Extended attribute inode deletions are fully handled in 344 * 'ubifs_removexattr()'. These inodes are special and have 345 * limited usage, so there is nothing to do here. 346 */ 347 goto out; 348 349 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 350 ubifs_assert(!atomic_read(&inode->i_count)); 351 352 truncate_inode_pages_final(&inode->i_data); 353 354 if (inode->i_nlink) 355 goto done; 356 357 if (is_bad_inode(inode)) 358 goto out; 359 360 ui->ui_size = inode->i_size = 0; 361 err = ubifs_jnl_delete_inode(c, inode); 362 if (err) 363 /* 364 * Worst case we have a lost orphan inode wasting space, so a 365 * simple error message is OK here. 366 */ 367 ubifs_err(c, "can't delete inode %lu, error %d", 368 inode->i_ino, err); 369 370 out: 371 if (ui->dirty) 372 ubifs_release_dirty_inode_budget(c, ui); 373 else { 374 /* We've deleted something - clean the "no space" flags */ 375 c->bi.nospace = c->bi.nospace_rp = 0; 376 smp_wmb(); 377 } 378 done: 379 clear_inode(inode); 380 } 381 382 static void ubifs_dirty_inode(struct inode *inode, int flags) 383 { 384 struct ubifs_inode *ui = ubifs_inode(inode); 385 386 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 387 if (!ui->dirty) { 388 ui->dirty = 1; 389 dbg_gen("inode %lu", inode->i_ino); 390 } 391 } 392 393 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 394 { 395 struct ubifs_info *c = dentry->d_sb->s_fs_info; 396 unsigned long long free; 397 __le32 *uuid = (__le32 *)c->uuid; 398 399 free = ubifs_get_free_space(c); 400 dbg_gen("free space %lld bytes (%lld blocks)", 401 free, free >> UBIFS_BLOCK_SHIFT); 402 403 buf->f_type = UBIFS_SUPER_MAGIC; 404 buf->f_bsize = UBIFS_BLOCK_SIZE; 405 buf->f_blocks = c->block_cnt; 406 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 407 if (free > c->report_rp_size) 408 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 409 else 410 buf->f_bavail = 0; 411 buf->f_files = 0; 412 buf->f_ffree = 0; 413 buf->f_namelen = UBIFS_MAX_NLEN; 414 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 415 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 416 ubifs_assert(buf->f_bfree <= c->block_cnt); 417 return 0; 418 } 419 420 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 421 { 422 struct ubifs_info *c = root->d_sb->s_fs_info; 423 424 if (c->mount_opts.unmount_mode == 2) 425 seq_puts(s, ",fast_unmount"); 426 else if (c->mount_opts.unmount_mode == 1) 427 seq_puts(s, ",norm_unmount"); 428 429 if (c->mount_opts.bulk_read == 2) 430 seq_puts(s, ",bulk_read"); 431 else if (c->mount_opts.bulk_read == 1) 432 seq_puts(s, ",no_bulk_read"); 433 434 if (c->mount_opts.chk_data_crc == 2) 435 seq_puts(s, ",chk_data_crc"); 436 else if (c->mount_opts.chk_data_crc == 1) 437 seq_puts(s, ",no_chk_data_crc"); 438 439 if (c->mount_opts.override_compr) { 440 seq_printf(s, ",compr=%s", 441 ubifs_compr_name(c->mount_opts.compr_type)); 442 } 443 444 return 0; 445 } 446 447 static int ubifs_sync_fs(struct super_block *sb, int wait) 448 { 449 int i, err; 450 struct ubifs_info *c = sb->s_fs_info; 451 452 /* 453 * Zero @wait is just an advisory thing to help the file system shove 454 * lots of data into the queues, and there will be the second 455 * '->sync_fs()' call, with non-zero @wait. 456 */ 457 if (!wait) 458 return 0; 459 460 /* 461 * Synchronize write buffers, because 'ubifs_run_commit()' does not 462 * do this if it waits for an already running commit. 463 */ 464 for (i = 0; i < c->jhead_cnt; i++) { 465 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 466 if (err) 467 return err; 468 } 469 470 /* 471 * Strictly speaking, it is not necessary to commit the journal here, 472 * synchronizing write-buffers would be enough. But committing makes 473 * UBIFS free space predictions much more accurate, so we want to let 474 * the user be able to get more accurate results of 'statfs()' after 475 * they synchronize the file system. 476 */ 477 err = ubifs_run_commit(c); 478 if (err) 479 return err; 480 481 return ubi_sync(c->vi.ubi_num); 482 } 483 484 /** 485 * init_constants_early - initialize UBIFS constants. 486 * @c: UBIFS file-system description object 487 * 488 * This function initialize UBIFS constants which do not need the superblock to 489 * be read. It also checks that the UBI volume satisfies basic UBIFS 490 * requirements. Returns zero in case of success and a negative error code in 491 * case of failure. 492 */ 493 static int init_constants_early(struct ubifs_info *c) 494 { 495 if (c->vi.corrupted) { 496 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 497 c->ro_media = 1; 498 } 499 500 if (c->di.ro_mode) { 501 ubifs_msg(c, "read-only UBI device"); 502 c->ro_media = 1; 503 } 504 505 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 506 ubifs_msg(c, "static UBI volume - read-only mode"); 507 c->ro_media = 1; 508 } 509 510 c->leb_cnt = c->vi.size; 511 c->leb_size = c->vi.usable_leb_size; 512 c->leb_start = c->di.leb_start; 513 c->half_leb_size = c->leb_size / 2; 514 c->min_io_size = c->di.min_io_size; 515 c->min_io_shift = fls(c->min_io_size) - 1; 516 c->max_write_size = c->di.max_write_size; 517 c->max_write_shift = fls(c->max_write_size) - 1; 518 519 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 520 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", 521 c->leb_size, UBIFS_MIN_LEB_SZ); 522 return -EINVAL; 523 } 524 525 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 526 ubifs_err(c, "too few LEBs (%d), min. is %d", 527 c->leb_cnt, UBIFS_MIN_LEB_CNT); 528 return -EINVAL; 529 } 530 531 if (!is_power_of_2(c->min_io_size)) { 532 ubifs_err(c, "bad min. I/O size %d", c->min_io_size); 533 return -EINVAL; 534 } 535 536 /* 537 * Maximum write size has to be greater or equivalent to min. I/O 538 * size, and be multiple of min. I/O size. 539 */ 540 if (c->max_write_size < c->min_io_size || 541 c->max_write_size % c->min_io_size || 542 !is_power_of_2(c->max_write_size)) { 543 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", 544 c->max_write_size, c->min_io_size); 545 return -EINVAL; 546 } 547 548 /* 549 * UBIFS aligns all node to 8-byte boundary, so to make function in 550 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 551 * less than 8. 552 */ 553 if (c->min_io_size < 8) { 554 c->min_io_size = 8; 555 c->min_io_shift = 3; 556 if (c->max_write_size < c->min_io_size) { 557 c->max_write_size = c->min_io_size; 558 c->max_write_shift = c->min_io_shift; 559 } 560 } 561 562 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 563 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 564 565 /* 566 * Initialize node length ranges which are mostly needed for node 567 * length validation. 568 */ 569 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 570 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 571 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 572 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 573 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 574 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 575 576 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 577 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 578 c->ranges[UBIFS_ORPH_NODE].min_len = 579 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 580 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 581 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 582 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 583 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 584 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 585 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 586 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 587 /* 588 * Minimum indexing node size is amended later when superblock is 589 * read and the key length is known. 590 */ 591 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 592 /* 593 * Maximum indexing node size is amended later when superblock is 594 * read and the fanout is known. 595 */ 596 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 597 598 /* 599 * Initialize dead and dark LEB space watermarks. See gc.c for comments 600 * about these values. 601 */ 602 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 603 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 604 605 /* 606 * Calculate how many bytes would be wasted at the end of LEB if it was 607 * fully filled with data nodes of maximum size. This is used in 608 * calculations when reporting free space. 609 */ 610 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 611 612 /* Buffer size for bulk-reads */ 613 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 614 if (c->max_bu_buf_len > c->leb_size) 615 c->max_bu_buf_len = c->leb_size; 616 return 0; 617 } 618 619 /** 620 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 621 * @c: UBIFS file-system description object 622 * @lnum: LEB the write-buffer was synchronized to 623 * @free: how many free bytes left in this LEB 624 * @pad: how many bytes were padded 625 * 626 * This is a callback function which is called by the I/O unit when the 627 * write-buffer is synchronized. We need this to correctly maintain space 628 * accounting in bud logical eraseblocks. This function returns zero in case of 629 * success and a negative error code in case of failure. 630 * 631 * This function actually belongs to the journal, but we keep it here because 632 * we want to keep it static. 633 */ 634 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 635 { 636 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 637 } 638 639 /* 640 * init_constants_sb - initialize UBIFS constants. 641 * @c: UBIFS file-system description object 642 * 643 * This is a helper function which initializes various UBIFS constants after 644 * the superblock has been read. It also checks various UBIFS parameters and 645 * makes sure they are all right. Returns zero in case of success and a 646 * negative error code in case of failure. 647 */ 648 static int init_constants_sb(struct ubifs_info *c) 649 { 650 int tmp, err; 651 long long tmp64; 652 653 c->main_bytes = (long long)c->main_lebs * c->leb_size; 654 c->max_znode_sz = sizeof(struct ubifs_znode) + 655 c->fanout * sizeof(struct ubifs_zbranch); 656 657 tmp = ubifs_idx_node_sz(c, 1); 658 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 659 c->min_idx_node_sz = ALIGN(tmp, 8); 660 661 tmp = ubifs_idx_node_sz(c, c->fanout); 662 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 663 c->max_idx_node_sz = ALIGN(tmp, 8); 664 665 /* Make sure LEB size is large enough to fit full commit */ 666 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 667 tmp = ALIGN(tmp, c->min_io_size); 668 if (tmp > c->leb_size) { 669 ubifs_err(c, "too small LEB size %d, at least %d needed", 670 c->leb_size, tmp); 671 return -EINVAL; 672 } 673 674 /* 675 * Make sure that the log is large enough to fit reference nodes for 676 * all buds plus one reserved LEB. 677 */ 678 tmp64 = c->max_bud_bytes + c->leb_size - 1; 679 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 680 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 681 tmp /= c->leb_size; 682 tmp += 1; 683 if (c->log_lebs < tmp) { 684 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 685 c->log_lebs, tmp); 686 return -EINVAL; 687 } 688 689 /* 690 * When budgeting we assume worst-case scenarios when the pages are not 691 * be compressed and direntries are of the maximum size. 692 * 693 * Note, data, which may be stored in inodes is budgeted separately, so 694 * it is not included into 'c->bi.inode_budget'. 695 */ 696 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 697 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 698 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 699 700 /* 701 * When the amount of flash space used by buds becomes 702 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 703 * The writers are unblocked when the commit is finished. To avoid 704 * writers to be blocked UBIFS initiates background commit in advance, 705 * when number of bud bytes becomes above the limit defined below. 706 */ 707 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 708 709 /* 710 * Ensure minimum journal size. All the bytes in the journal heads are 711 * considered to be used, when calculating the current journal usage. 712 * Consequently, if the journal is too small, UBIFS will treat it as 713 * always full. 714 */ 715 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 716 if (c->bg_bud_bytes < tmp64) 717 c->bg_bud_bytes = tmp64; 718 if (c->max_bud_bytes < tmp64 + c->leb_size) 719 c->max_bud_bytes = tmp64 + c->leb_size; 720 721 err = ubifs_calc_lpt_geom(c); 722 if (err) 723 return err; 724 725 /* Initialize effective LEB size used in budgeting calculations */ 726 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 727 return 0; 728 } 729 730 /* 731 * init_constants_master - initialize UBIFS constants. 732 * @c: UBIFS file-system description object 733 * 734 * This is a helper function which initializes various UBIFS constants after 735 * the master node has been read. It also checks various UBIFS parameters and 736 * makes sure they are all right. 737 */ 738 static void init_constants_master(struct ubifs_info *c) 739 { 740 long long tmp64; 741 742 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 743 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 744 745 /* 746 * Calculate total amount of FS blocks. This number is not used 747 * internally because it does not make much sense for UBIFS, but it is 748 * necessary to report something for the 'statfs()' call. 749 * 750 * Subtract the LEB reserved for GC, the LEB which is reserved for 751 * deletions, minimum LEBs for the index, and assume only one journal 752 * head is available. 753 */ 754 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 755 tmp64 *= (long long)c->leb_size - c->leb_overhead; 756 tmp64 = ubifs_reported_space(c, tmp64); 757 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 758 } 759 760 /** 761 * take_gc_lnum - reserve GC LEB. 762 * @c: UBIFS file-system description object 763 * 764 * This function ensures that the LEB reserved for garbage collection is marked 765 * as "taken" in lprops. We also have to set free space to LEB size and dirty 766 * space to zero, because lprops may contain out-of-date information if the 767 * file-system was un-mounted before it has been committed. This function 768 * returns zero in case of success and a negative error code in case of 769 * failure. 770 */ 771 static int take_gc_lnum(struct ubifs_info *c) 772 { 773 int err; 774 775 if (c->gc_lnum == -1) { 776 ubifs_err(c, "no LEB for GC"); 777 return -EINVAL; 778 } 779 780 /* And we have to tell lprops that this LEB is taken */ 781 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 782 LPROPS_TAKEN, 0, 0); 783 return err; 784 } 785 786 /** 787 * alloc_wbufs - allocate write-buffers. 788 * @c: UBIFS file-system description object 789 * 790 * This helper function allocates and initializes UBIFS write-buffers. Returns 791 * zero in case of success and %-ENOMEM in case of failure. 792 */ 793 static int alloc_wbufs(struct ubifs_info *c) 794 { 795 int i, err; 796 797 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 798 GFP_KERNEL); 799 if (!c->jheads) 800 return -ENOMEM; 801 802 /* Initialize journal heads */ 803 for (i = 0; i < c->jhead_cnt; i++) { 804 INIT_LIST_HEAD(&c->jheads[i].buds_list); 805 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 806 if (err) 807 return err; 808 809 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 810 c->jheads[i].wbuf.jhead = i; 811 c->jheads[i].grouped = 1; 812 } 813 814 /* 815 * Garbage Collector head does not need to be synchronized by timer. 816 * Also GC head nodes are not grouped. 817 */ 818 c->jheads[GCHD].wbuf.no_timer = 1; 819 c->jheads[GCHD].grouped = 0; 820 821 return 0; 822 } 823 824 /** 825 * free_wbufs - free write-buffers. 826 * @c: UBIFS file-system description object 827 */ 828 static void free_wbufs(struct ubifs_info *c) 829 { 830 int i; 831 832 if (c->jheads) { 833 for (i = 0; i < c->jhead_cnt; i++) { 834 kfree(c->jheads[i].wbuf.buf); 835 kfree(c->jheads[i].wbuf.inodes); 836 } 837 kfree(c->jheads); 838 c->jheads = NULL; 839 } 840 } 841 842 /** 843 * free_orphans - free orphans. 844 * @c: UBIFS file-system description object 845 */ 846 static void free_orphans(struct ubifs_info *c) 847 { 848 struct ubifs_orphan *orph; 849 850 while (c->orph_dnext) { 851 orph = c->orph_dnext; 852 c->orph_dnext = orph->dnext; 853 list_del(&orph->list); 854 kfree(orph); 855 } 856 857 while (!list_empty(&c->orph_list)) { 858 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 859 list_del(&orph->list); 860 kfree(orph); 861 ubifs_err(c, "orphan list not empty at unmount"); 862 } 863 864 vfree(c->orph_buf); 865 c->orph_buf = NULL; 866 } 867 868 /** 869 * free_buds - free per-bud objects. 870 * @c: UBIFS file-system description object 871 */ 872 static void free_buds(struct ubifs_info *c) 873 { 874 struct ubifs_bud *bud, *n; 875 876 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 877 kfree(bud); 878 } 879 880 /** 881 * check_volume_empty - check if the UBI volume is empty. 882 * @c: UBIFS file-system description object 883 * 884 * This function checks if the UBIFS volume is empty by looking if its LEBs are 885 * mapped or not. The result of checking is stored in the @c->empty variable. 886 * Returns zero in case of success and a negative error code in case of 887 * failure. 888 */ 889 static int check_volume_empty(struct ubifs_info *c) 890 { 891 int lnum, err; 892 893 c->empty = 1; 894 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 895 err = ubifs_is_mapped(c, lnum); 896 if (unlikely(err < 0)) 897 return err; 898 if (err == 1) { 899 c->empty = 0; 900 break; 901 } 902 903 cond_resched(); 904 } 905 906 return 0; 907 } 908 909 /* 910 * UBIFS mount options. 911 * 912 * Opt_fast_unmount: do not run a journal commit before un-mounting 913 * Opt_norm_unmount: run a journal commit before un-mounting 914 * Opt_bulk_read: enable bulk-reads 915 * Opt_no_bulk_read: disable bulk-reads 916 * Opt_chk_data_crc: check CRCs when reading data nodes 917 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 918 * Opt_override_compr: override default compressor 919 * Opt_err: just end of array marker 920 */ 921 enum { 922 Opt_fast_unmount, 923 Opt_norm_unmount, 924 Opt_bulk_read, 925 Opt_no_bulk_read, 926 Opt_chk_data_crc, 927 Opt_no_chk_data_crc, 928 Opt_override_compr, 929 Opt_err, 930 }; 931 932 static const match_table_t tokens = { 933 {Opt_fast_unmount, "fast_unmount"}, 934 {Opt_norm_unmount, "norm_unmount"}, 935 {Opt_bulk_read, "bulk_read"}, 936 {Opt_no_bulk_read, "no_bulk_read"}, 937 {Opt_chk_data_crc, "chk_data_crc"}, 938 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 939 {Opt_override_compr, "compr=%s"}, 940 {Opt_err, NULL}, 941 }; 942 943 /** 944 * parse_standard_option - parse a standard mount option. 945 * @option: the option to parse 946 * 947 * Normally, standard mount options like "sync" are passed to file-systems as 948 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 949 * be present in the options string. This function tries to deal with this 950 * situation and parse standard options. Returns 0 if the option was not 951 * recognized, and the corresponding integer flag if it was. 952 * 953 * UBIFS is only interested in the "sync" option, so do not check for anything 954 * else. 955 */ 956 static int parse_standard_option(const char *option) 957 { 958 959 pr_notice("UBIFS: parse %s\n", option); 960 if (!strcmp(option, "sync")) 961 return MS_SYNCHRONOUS; 962 return 0; 963 } 964 965 /** 966 * ubifs_parse_options - parse mount parameters. 967 * @c: UBIFS file-system description object 968 * @options: parameters to parse 969 * @is_remount: non-zero if this is FS re-mount 970 * 971 * This function parses UBIFS mount options and returns zero in case success 972 * and a negative error code in case of failure. 973 */ 974 static int ubifs_parse_options(struct ubifs_info *c, char *options, 975 int is_remount) 976 { 977 char *p; 978 substring_t args[MAX_OPT_ARGS]; 979 980 if (!options) 981 return 0; 982 983 while ((p = strsep(&options, ","))) { 984 int token; 985 986 if (!*p) 987 continue; 988 989 token = match_token(p, tokens, args); 990 switch (token) { 991 /* 992 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 993 * We accept them in order to be backward-compatible. But this 994 * should be removed at some point. 995 */ 996 case Opt_fast_unmount: 997 c->mount_opts.unmount_mode = 2; 998 break; 999 case Opt_norm_unmount: 1000 c->mount_opts.unmount_mode = 1; 1001 break; 1002 case Opt_bulk_read: 1003 c->mount_opts.bulk_read = 2; 1004 c->bulk_read = 1; 1005 break; 1006 case Opt_no_bulk_read: 1007 c->mount_opts.bulk_read = 1; 1008 c->bulk_read = 0; 1009 break; 1010 case Opt_chk_data_crc: 1011 c->mount_opts.chk_data_crc = 2; 1012 c->no_chk_data_crc = 0; 1013 break; 1014 case Opt_no_chk_data_crc: 1015 c->mount_opts.chk_data_crc = 1; 1016 c->no_chk_data_crc = 1; 1017 break; 1018 case Opt_override_compr: 1019 { 1020 char *name = match_strdup(&args[0]); 1021 1022 if (!name) 1023 return -ENOMEM; 1024 if (!strcmp(name, "none")) 1025 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1026 else if (!strcmp(name, "lzo")) 1027 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1028 else if (!strcmp(name, "zlib")) 1029 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1030 else { 1031 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1032 kfree(name); 1033 return -EINVAL; 1034 } 1035 kfree(name); 1036 c->mount_opts.override_compr = 1; 1037 c->default_compr = c->mount_opts.compr_type; 1038 break; 1039 } 1040 default: 1041 { 1042 unsigned long flag; 1043 struct super_block *sb = c->vfs_sb; 1044 1045 flag = parse_standard_option(p); 1046 if (!flag) { 1047 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1048 p); 1049 return -EINVAL; 1050 } 1051 sb->s_flags |= flag; 1052 break; 1053 } 1054 } 1055 } 1056 1057 return 0; 1058 } 1059 1060 /** 1061 * destroy_journal - destroy journal data structures. 1062 * @c: UBIFS file-system description object 1063 * 1064 * This function destroys journal data structures including those that may have 1065 * been created by recovery functions. 1066 */ 1067 static void destroy_journal(struct ubifs_info *c) 1068 { 1069 while (!list_empty(&c->unclean_leb_list)) { 1070 struct ubifs_unclean_leb *ucleb; 1071 1072 ucleb = list_entry(c->unclean_leb_list.next, 1073 struct ubifs_unclean_leb, list); 1074 list_del(&ucleb->list); 1075 kfree(ucleb); 1076 } 1077 while (!list_empty(&c->old_buds)) { 1078 struct ubifs_bud *bud; 1079 1080 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1081 list_del(&bud->list); 1082 kfree(bud); 1083 } 1084 ubifs_destroy_idx_gc(c); 1085 ubifs_destroy_size_tree(c); 1086 ubifs_tnc_close(c); 1087 free_buds(c); 1088 } 1089 1090 /** 1091 * bu_init - initialize bulk-read information. 1092 * @c: UBIFS file-system description object 1093 */ 1094 static void bu_init(struct ubifs_info *c) 1095 { 1096 ubifs_assert(c->bulk_read == 1); 1097 1098 if (c->bu.buf) 1099 return; /* Already initialized */ 1100 1101 again: 1102 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1103 if (!c->bu.buf) { 1104 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1105 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1106 goto again; 1107 } 1108 1109 /* Just disable bulk-read */ 1110 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1111 c->max_bu_buf_len); 1112 c->mount_opts.bulk_read = 1; 1113 c->bulk_read = 0; 1114 return; 1115 } 1116 } 1117 1118 /** 1119 * check_free_space - check if there is enough free space to mount. 1120 * @c: UBIFS file-system description object 1121 * 1122 * This function makes sure UBIFS has enough free space to be mounted in 1123 * read/write mode. UBIFS must always have some free space to allow deletions. 1124 */ 1125 static int check_free_space(struct ubifs_info *c) 1126 { 1127 ubifs_assert(c->dark_wm > 0); 1128 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1129 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1130 ubifs_dump_budg(c, &c->bi); 1131 ubifs_dump_lprops(c); 1132 return -ENOSPC; 1133 } 1134 return 0; 1135 } 1136 1137 /** 1138 * mount_ubifs - mount UBIFS file-system. 1139 * @c: UBIFS file-system description object 1140 * 1141 * This function mounts UBIFS file system. Returns zero in case of success and 1142 * a negative error code in case of failure. 1143 */ 1144 static int mount_ubifs(struct ubifs_info *c) 1145 { 1146 int err; 1147 long long x, y; 1148 size_t sz; 1149 1150 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1151 /* Suppress error messages while probing if MS_SILENT is set */ 1152 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1153 1154 err = init_constants_early(c); 1155 if (err) 1156 return err; 1157 1158 err = ubifs_debugging_init(c); 1159 if (err) 1160 return err; 1161 1162 err = check_volume_empty(c); 1163 if (err) 1164 goto out_free; 1165 1166 if (c->empty && (c->ro_mount || c->ro_media)) { 1167 /* 1168 * This UBI volume is empty, and read-only, or the file system 1169 * is mounted read-only - we cannot format it. 1170 */ 1171 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1172 c->ro_media ? "UBI volume" : "mount"); 1173 err = -EROFS; 1174 goto out_free; 1175 } 1176 1177 if (c->ro_media && !c->ro_mount) { 1178 ubifs_err(c, "cannot mount read-write - read-only media"); 1179 err = -EROFS; 1180 goto out_free; 1181 } 1182 1183 /* 1184 * The requirement for the buffer is that it should fit indexing B-tree 1185 * height amount of integers. We assume the height if the TNC tree will 1186 * never exceed 64. 1187 */ 1188 err = -ENOMEM; 1189 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1190 if (!c->bottom_up_buf) 1191 goto out_free; 1192 1193 c->sbuf = vmalloc(c->leb_size); 1194 if (!c->sbuf) 1195 goto out_free; 1196 1197 if (!c->ro_mount) { 1198 c->ileb_buf = vmalloc(c->leb_size); 1199 if (!c->ileb_buf) 1200 goto out_free; 1201 } 1202 1203 if (c->bulk_read == 1) 1204 bu_init(c); 1205 1206 if (!c->ro_mount) { 1207 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1208 GFP_KERNEL); 1209 if (!c->write_reserve_buf) 1210 goto out_free; 1211 } 1212 1213 c->mounting = 1; 1214 1215 err = ubifs_read_superblock(c); 1216 if (err) 1217 goto out_free; 1218 1219 c->probing = 0; 1220 1221 /* 1222 * Make sure the compressor which is set as default in the superblock 1223 * or overridden by mount options is actually compiled in. 1224 */ 1225 if (!ubifs_compr_present(c->default_compr)) { 1226 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1227 ubifs_compr_name(c->default_compr)); 1228 err = -ENOTSUPP; 1229 goto out_free; 1230 } 1231 1232 err = init_constants_sb(c); 1233 if (err) 1234 goto out_free; 1235 1236 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1237 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1238 c->cbuf = kmalloc(sz, GFP_NOFS); 1239 if (!c->cbuf) { 1240 err = -ENOMEM; 1241 goto out_free; 1242 } 1243 1244 err = alloc_wbufs(c); 1245 if (err) 1246 goto out_cbuf; 1247 1248 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1249 if (!c->ro_mount) { 1250 /* Create background thread */ 1251 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1252 if (IS_ERR(c->bgt)) { 1253 err = PTR_ERR(c->bgt); 1254 c->bgt = NULL; 1255 ubifs_err(c, "cannot spawn \"%s\", error %d", 1256 c->bgt_name, err); 1257 goto out_wbufs; 1258 } 1259 wake_up_process(c->bgt); 1260 } 1261 1262 err = ubifs_read_master(c); 1263 if (err) 1264 goto out_master; 1265 1266 init_constants_master(c); 1267 1268 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1269 ubifs_msg(c, "recovery needed"); 1270 c->need_recovery = 1; 1271 } 1272 1273 if (c->need_recovery && !c->ro_mount) { 1274 err = ubifs_recover_inl_heads(c, c->sbuf); 1275 if (err) 1276 goto out_master; 1277 } 1278 1279 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1280 if (err) 1281 goto out_master; 1282 1283 if (!c->ro_mount && c->space_fixup) { 1284 err = ubifs_fixup_free_space(c); 1285 if (err) 1286 goto out_lpt; 1287 } 1288 1289 if (!c->ro_mount && !c->need_recovery) { 1290 /* 1291 * Set the "dirty" flag so that if we reboot uncleanly we 1292 * will notice this immediately on the next mount. 1293 */ 1294 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1295 err = ubifs_write_master(c); 1296 if (err) 1297 goto out_lpt; 1298 } 1299 1300 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1301 if (err) 1302 goto out_lpt; 1303 1304 err = ubifs_replay_journal(c); 1305 if (err) 1306 goto out_journal; 1307 1308 /* Calculate 'min_idx_lebs' after journal replay */ 1309 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1310 1311 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1312 if (err) 1313 goto out_orphans; 1314 1315 if (!c->ro_mount) { 1316 int lnum; 1317 1318 err = check_free_space(c); 1319 if (err) 1320 goto out_orphans; 1321 1322 /* Check for enough log space */ 1323 lnum = c->lhead_lnum + 1; 1324 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1325 lnum = UBIFS_LOG_LNUM; 1326 if (lnum == c->ltail_lnum) { 1327 err = ubifs_consolidate_log(c); 1328 if (err) 1329 goto out_orphans; 1330 } 1331 1332 if (c->need_recovery) { 1333 err = ubifs_recover_size(c); 1334 if (err) 1335 goto out_orphans; 1336 err = ubifs_rcvry_gc_commit(c); 1337 if (err) 1338 goto out_orphans; 1339 } else { 1340 err = take_gc_lnum(c); 1341 if (err) 1342 goto out_orphans; 1343 1344 /* 1345 * GC LEB may contain garbage if there was an unclean 1346 * reboot, and it should be un-mapped. 1347 */ 1348 err = ubifs_leb_unmap(c, c->gc_lnum); 1349 if (err) 1350 goto out_orphans; 1351 } 1352 1353 err = dbg_check_lprops(c); 1354 if (err) 1355 goto out_orphans; 1356 } else if (c->need_recovery) { 1357 err = ubifs_recover_size(c); 1358 if (err) 1359 goto out_orphans; 1360 } else { 1361 /* 1362 * Even if we mount read-only, we have to set space in GC LEB 1363 * to proper value because this affects UBIFS free space 1364 * reporting. We do not want to have a situation when 1365 * re-mounting from R/O to R/W changes amount of free space. 1366 */ 1367 err = take_gc_lnum(c); 1368 if (err) 1369 goto out_orphans; 1370 } 1371 1372 spin_lock(&ubifs_infos_lock); 1373 list_add_tail(&c->infos_list, &ubifs_infos); 1374 spin_unlock(&ubifs_infos_lock); 1375 1376 if (c->need_recovery) { 1377 if (c->ro_mount) 1378 ubifs_msg(c, "recovery deferred"); 1379 else { 1380 c->need_recovery = 0; 1381 ubifs_msg(c, "recovery completed"); 1382 /* 1383 * GC LEB has to be empty and taken at this point. But 1384 * the journal head LEBs may also be accounted as 1385 * "empty taken" if they are empty. 1386 */ 1387 ubifs_assert(c->lst.taken_empty_lebs > 0); 1388 } 1389 } else 1390 ubifs_assert(c->lst.taken_empty_lebs > 0); 1391 1392 err = dbg_check_filesystem(c); 1393 if (err) 1394 goto out_infos; 1395 1396 err = dbg_debugfs_init_fs(c); 1397 if (err) 1398 goto out_infos; 1399 1400 c->mounting = 0; 1401 1402 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1403 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1404 c->ro_mount ? ", R/O mode" : ""); 1405 x = (long long)c->main_lebs * c->leb_size; 1406 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1407 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1408 c->leb_size, c->leb_size >> 10, c->min_io_size, 1409 c->max_write_size); 1410 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1411 x, x >> 20, c->main_lebs, 1412 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1413 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1414 c->report_rp_size, c->report_rp_size >> 10); 1415 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1416 c->fmt_version, c->ro_compat_version, 1417 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1418 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1419 1420 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1421 dbg_gen("data journal heads: %d", 1422 c->jhead_cnt - NONDATA_JHEADS_CNT); 1423 dbg_gen("log LEBs: %d (%d - %d)", 1424 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1425 dbg_gen("LPT area LEBs: %d (%d - %d)", 1426 c->lpt_lebs, c->lpt_first, c->lpt_last); 1427 dbg_gen("orphan area LEBs: %d (%d - %d)", 1428 c->orph_lebs, c->orph_first, c->orph_last); 1429 dbg_gen("main area LEBs: %d (%d - %d)", 1430 c->main_lebs, c->main_first, c->leb_cnt - 1); 1431 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1432 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1433 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1434 c->bi.old_idx_sz >> 20); 1435 dbg_gen("key hash type: %d", c->key_hash_type); 1436 dbg_gen("tree fanout: %d", c->fanout); 1437 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1438 dbg_gen("max. znode size %d", c->max_znode_sz); 1439 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1440 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1441 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1442 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1443 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1444 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1445 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1446 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1447 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1448 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1449 dbg_gen("dead watermark: %d", c->dead_wm); 1450 dbg_gen("dark watermark: %d", c->dark_wm); 1451 dbg_gen("LEB overhead: %d", c->leb_overhead); 1452 x = (long long)c->main_lebs * c->dark_wm; 1453 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1454 x, x >> 10, x >> 20); 1455 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1456 c->max_bud_bytes, c->max_bud_bytes >> 10, 1457 c->max_bud_bytes >> 20); 1458 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1459 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1460 c->bg_bud_bytes >> 20); 1461 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1462 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1463 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1464 dbg_gen("commit number: %llu", c->cmt_no); 1465 1466 return 0; 1467 1468 out_infos: 1469 spin_lock(&ubifs_infos_lock); 1470 list_del(&c->infos_list); 1471 spin_unlock(&ubifs_infos_lock); 1472 out_orphans: 1473 free_orphans(c); 1474 out_journal: 1475 destroy_journal(c); 1476 out_lpt: 1477 ubifs_lpt_free(c, 0); 1478 out_master: 1479 kfree(c->mst_node); 1480 kfree(c->rcvrd_mst_node); 1481 if (c->bgt) 1482 kthread_stop(c->bgt); 1483 out_wbufs: 1484 free_wbufs(c); 1485 out_cbuf: 1486 kfree(c->cbuf); 1487 out_free: 1488 kfree(c->write_reserve_buf); 1489 kfree(c->bu.buf); 1490 vfree(c->ileb_buf); 1491 vfree(c->sbuf); 1492 kfree(c->bottom_up_buf); 1493 ubifs_debugging_exit(c); 1494 return err; 1495 } 1496 1497 /** 1498 * ubifs_umount - un-mount UBIFS file-system. 1499 * @c: UBIFS file-system description object 1500 * 1501 * Note, this function is called to free allocated resourced when un-mounting, 1502 * as well as free resources when an error occurred while we were half way 1503 * through mounting (error path cleanup function). So it has to make sure the 1504 * resource was actually allocated before freeing it. 1505 */ 1506 static void ubifs_umount(struct ubifs_info *c) 1507 { 1508 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1509 c->vi.vol_id); 1510 1511 dbg_debugfs_exit_fs(c); 1512 spin_lock(&ubifs_infos_lock); 1513 list_del(&c->infos_list); 1514 spin_unlock(&ubifs_infos_lock); 1515 1516 if (c->bgt) 1517 kthread_stop(c->bgt); 1518 1519 destroy_journal(c); 1520 free_wbufs(c); 1521 free_orphans(c); 1522 ubifs_lpt_free(c, 0); 1523 1524 kfree(c->cbuf); 1525 kfree(c->rcvrd_mst_node); 1526 kfree(c->mst_node); 1527 kfree(c->write_reserve_buf); 1528 kfree(c->bu.buf); 1529 vfree(c->ileb_buf); 1530 vfree(c->sbuf); 1531 kfree(c->bottom_up_buf); 1532 ubifs_debugging_exit(c); 1533 } 1534 1535 /** 1536 * ubifs_remount_rw - re-mount in read-write mode. 1537 * @c: UBIFS file-system description object 1538 * 1539 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1540 * mode. This function allocates the needed resources and re-mounts UBIFS in 1541 * read-write mode. 1542 */ 1543 static int ubifs_remount_rw(struct ubifs_info *c) 1544 { 1545 int err, lnum; 1546 1547 if (c->rw_incompat) { 1548 ubifs_err(c, "the file-system is not R/W-compatible"); 1549 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1550 c->fmt_version, c->ro_compat_version, 1551 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1552 return -EROFS; 1553 } 1554 1555 mutex_lock(&c->umount_mutex); 1556 dbg_save_space_info(c); 1557 c->remounting_rw = 1; 1558 c->ro_mount = 0; 1559 1560 if (c->space_fixup) { 1561 err = ubifs_fixup_free_space(c); 1562 if (err) 1563 goto out; 1564 } 1565 1566 err = check_free_space(c); 1567 if (err) 1568 goto out; 1569 1570 if (c->old_leb_cnt != c->leb_cnt) { 1571 struct ubifs_sb_node *sup; 1572 1573 sup = ubifs_read_sb_node(c); 1574 if (IS_ERR(sup)) { 1575 err = PTR_ERR(sup); 1576 goto out; 1577 } 1578 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1579 err = ubifs_write_sb_node(c, sup); 1580 kfree(sup); 1581 if (err) 1582 goto out; 1583 } 1584 1585 if (c->need_recovery) { 1586 ubifs_msg(c, "completing deferred recovery"); 1587 err = ubifs_write_rcvrd_mst_node(c); 1588 if (err) 1589 goto out; 1590 err = ubifs_recover_size(c); 1591 if (err) 1592 goto out; 1593 err = ubifs_clean_lebs(c, c->sbuf); 1594 if (err) 1595 goto out; 1596 err = ubifs_recover_inl_heads(c, c->sbuf); 1597 if (err) 1598 goto out; 1599 } else { 1600 /* A readonly mount is not allowed to have orphans */ 1601 ubifs_assert(c->tot_orphans == 0); 1602 err = ubifs_clear_orphans(c); 1603 if (err) 1604 goto out; 1605 } 1606 1607 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1608 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1609 err = ubifs_write_master(c); 1610 if (err) 1611 goto out; 1612 } 1613 1614 c->ileb_buf = vmalloc(c->leb_size); 1615 if (!c->ileb_buf) { 1616 err = -ENOMEM; 1617 goto out; 1618 } 1619 1620 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1621 if (!c->write_reserve_buf) { 1622 err = -ENOMEM; 1623 goto out; 1624 } 1625 1626 err = ubifs_lpt_init(c, 0, 1); 1627 if (err) 1628 goto out; 1629 1630 /* Create background thread */ 1631 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1632 if (IS_ERR(c->bgt)) { 1633 err = PTR_ERR(c->bgt); 1634 c->bgt = NULL; 1635 ubifs_err(c, "cannot spawn \"%s\", error %d", 1636 c->bgt_name, err); 1637 goto out; 1638 } 1639 wake_up_process(c->bgt); 1640 1641 c->orph_buf = vmalloc(c->leb_size); 1642 if (!c->orph_buf) { 1643 err = -ENOMEM; 1644 goto out; 1645 } 1646 1647 /* Check for enough log space */ 1648 lnum = c->lhead_lnum + 1; 1649 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1650 lnum = UBIFS_LOG_LNUM; 1651 if (lnum == c->ltail_lnum) { 1652 err = ubifs_consolidate_log(c); 1653 if (err) 1654 goto out; 1655 } 1656 1657 if (c->need_recovery) 1658 err = ubifs_rcvry_gc_commit(c); 1659 else 1660 err = ubifs_leb_unmap(c, c->gc_lnum); 1661 if (err) 1662 goto out; 1663 1664 dbg_gen("re-mounted read-write"); 1665 c->remounting_rw = 0; 1666 1667 if (c->need_recovery) { 1668 c->need_recovery = 0; 1669 ubifs_msg(c, "deferred recovery completed"); 1670 } else { 1671 /* 1672 * Do not run the debugging space check if the were doing 1673 * recovery, because when we saved the information we had the 1674 * file-system in a state where the TNC and lprops has been 1675 * modified in memory, but all the I/O operations (including a 1676 * commit) were deferred. So the file-system was in 1677 * "non-committed" state. Now the file-system is in committed 1678 * state, and of course the amount of free space will change 1679 * because, for example, the old index size was imprecise. 1680 */ 1681 err = dbg_check_space_info(c); 1682 } 1683 1684 mutex_unlock(&c->umount_mutex); 1685 return err; 1686 1687 out: 1688 c->ro_mount = 1; 1689 vfree(c->orph_buf); 1690 c->orph_buf = NULL; 1691 if (c->bgt) { 1692 kthread_stop(c->bgt); 1693 c->bgt = NULL; 1694 } 1695 free_wbufs(c); 1696 kfree(c->write_reserve_buf); 1697 c->write_reserve_buf = NULL; 1698 vfree(c->ileb_buf); 1699 c->ileb_buf = NULL; 1700 ubifs_lpt_free(c, 1); 1701 c->remounting_rw = 0; 1702 mutex_unlock(&c->umount_mutex); 1703 return err; 1704 } 1705 1706 /** 1707 * ubifs_remount_ro - re-mount in read-only mode. 1708 * @c: UBIFS file-system description object 1709 * 1710 * We assume VFS has stopped writing. Possibly the background thread could be 1711 * running a commit, however kthread_stop will wait in that case. 1712 */ 1713 static void ubifs_remount_ro(struct ubifs_info *c) 1714 { 1715 int i, err; 1716 1717 ubifs_assert(!c->need_recovery); 1718 ubifs_assert(!c->ro_mount); 1719 1720 mutex_lock(&c->umount_mutex); 1721 if (c->bgt) { 1722 kthread_stop(c->bgt); 1723 c->bgt = NULL; 1724 } 1725 1726 dbg_save_space_info(c); 1727 1728 for (i = 0; i < c->jhead_cnt; i++) 1729 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1730 1731 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1732 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1733 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1734 err = ubifs_write_master(c); 1735 if (err) 1736 ubifs_ro_mode(c, err); 1737 1738 vfree(c->orph_buf); 1739 c->orph_buf = NULL; 1740 kfree(c->write_reserve_buf); 1741 c->write_reserve_buf = NULL; 1742 vfree(c->ileb_buf); 1743 c->ileb_buf = NULL; 1744 ubifs_lpt_free(c, 1); 1745 c->ro_mount = 1; 1746 err = dbg_check_space_info(c); 1747 if (err) 1748 ubifs_ro_mode(c, err); 1749 mutex_unlock(&c->umount_mutex); 1750 } 1751 1752 static void ubifs_put_super(struct super_block *sb) 1753 { 1754 int i; 1755 struct ubifs_info *c = sb->s_fs_info; 1756 1757 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1758 1759 /* 1760 * The following asserts are only valid if there has not been a failure 1761 * of the media. For example, there will be dirty inodes if we failed 1762 * to write them back because of I/O errors. 1763 */ 1764 if (!c->ro_error) { 1765 ubifs_assert(c->bi.idx_growth == 0); 1766 ubifs_assert(c->bi.dd_growth == 0); 1767 ubifs_assert(c->bi.data_growth == 0); 1768 } 1769 1770 /* 1771 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1772 * and file system un-mount. Namely, it prevents the shrinker from 1773 * picking this superblock for shrinking - it will be just skipped if 1774 * the mutex is locked. 1775 */ 1776 mutex_lock(&c->umount_mutex); 1777 if (!c->ro_mount) { 1778 /* 1779 * First of all kill the background thread to make sure it does 1780 * not interfere with un-mounting and freeing resources. 1781 */ 1782 if (c->bgt) { 1783 kthread_stop(c->bgt); 1784 c->bgt = NULL; 1785 } 1786 1787 /* 1788 * On fatal errors c->ro_error is set to 1, in which case we do 1789 * not write the master node. 1790 */ 1791 if (!c->ro_error) { 1792 int err; 1793 1794 /* Synchronize write-buffers */ 1795 for (i = 0; i < c->jhead_cnt; i++) 1796 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1797 1798 /* 1799 * We are being cleanly unmounted which means the 1800 * orphans were killed - indicate this in the master 1801 * node. Also save the reserved GC LEB number. 1802 */ 1803 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1804 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1805 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1806 err = ubifs_write_master(c); 1807 if (err) 1808 /* 1809 * Recovery will attempt to fix the master area 1810 * next mount, so we just print a message and 1811 * continue to unmount normally. 1812 */ 1813 ubifs_err(c, "failed to write master node, error %d", 1814 err); 1815 } else { 1816 for (i = 0; i < c->jhead_cnt; i++) 1817 /* Make sure write-buffer timers are canceled */ 1818 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1819 } 1820 } 1821 1822 ubifs_umount(c); 1823 bdi_destroy(&c->bdi); 1824 ubi_close_volume(c->ubi); 1825 mutex_unlock(&c->umount_mutex); 1826 } 1827 1828 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1829 { 1830 int err; 1831 struct ubifs_info *c = sb->s_fs_info; 1832 1833 sync_filesystem(sb); 1834 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1835 1836 err = ubifs_parse_options(c, data, 1); 1837 if (err) { 1838 ubifs_err(c, "invalid or unknown remount parameter"); 1839 return err; 1840 } 1841 1842 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1843 if (c->ro_error) { 1844 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1845 return -EROFS; 1846 } 1847 if (c->ro_media) { 1848 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1849 return -EROFS; 1850 } 1851 err = ubifs_remount_rw(c); 1852 if (err) 1853 return err; 1854 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1855 if (c->ro_error) { 1856 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1857 return -EROFS; 1858 } 1859 ubifs_remount_ro(c); 1860 } 1861 1862 if (c->bulk_read == 1) 1863 bu_init(c); 1864 else { 1865 dbg_gen("disable bulk-read"); 1866 kfree(c->bu.buf); 1867 c->bu.buf = NULL; 1868 } 1869 1870 ubifs_assert(c->lst.taken_empty_lebs > 0); 1871 return 0; 1872 } 1873 1874 const struct super_operations ubifs_super_operations = { 1875 .alloc_inode = ubifs_alloc_inode, 1876 .destroy_inode = ubifs_destroy_inode, 1877 .put_super = ubifs_put_super, 1878 .write_inode = ubifs_write_inode, 1879 .evict_inode = ubifs_evict_inode, 1880 .statfs = ubifs_statfs, 1881 .dirty_inode = ubifs_dirty_inode, 1882 .remount_fs = ubifs_remount_fs, 1883 .show_options = ubifs_show_options, 1884 .sync_fs = ubifs_sync_fs, 1885 }; 1886 1887 /** 1888 * open_ubi - parse UBI device name string and open the UBI device. 1889 * @name: UBI volume name 1890 * @mode: UBI volume open mode 1891 * 1892 * The primary method of mounting UBIFS is by specifying the UBI volume 1893 * character device node path. However, UBIFS may also be mounted withoug any 1894 * character device node using one of the following methods: 1895 * 1896 * o ubiX_Y - mount UBI device number X, volume Y; 1897 * o ubiY - mount UBI device number 0, volume Y; 1898 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1899 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1900 * 1901 * Alternative '!' separator may be used instead of ':' (because some shells 1902 * like busybox may interpret ':' as an NFS host name separator). This function 1903 * returns UBI volume description object in case of success and a negative 1904 * error code in case of failure. 1905 */ 1906 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1907 { 1908 struct ubi_volume_desc *ubi; 1909 int dev, vol; 1910 char *endptr; 1911 1912 /* First, try to open using the device node path method */ 1913 ubi = ubi_open_volume_path(name, mode); 1914 if (!IS_ERR(ubi)) 1915 return ubi; 1916 1917 /* Try the "nodev" method */ 1918 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1919 return ERR_PTR(-EINVAL); 1920 1921 /* ubi:NAME method */ 1922 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1923 return ubi_open_volume_nm(0, name + 4, mode); 1924 1925 if (!isdigit(name[3])) 1926 return ERR_PTR(-EINVAL); 1927 1928 dev = simple_strtoul(name + 3, &endptr, 0); 1929 1930 /* ubiY method */ 1931 if (*endptr == '\0') 1932 return ubi_open_volume(0, dev, mode); 1933 1934 /* ubiX_Y method */ 1935 if (*endptr == '_' && isdigit(endptr[1])) { 1936 vol = simple_strtoul(endptr + 1, &endptr, 0); 1937 if (*endptr != '\0') 1938 return ERR_PTR(-EINVAL); 1939 return ubi_open_volume(dev, vol, mode); 1940 } 1941 1942 /* ubiX:NAME method */ 1943 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1944 return ubi_open_volume_nm(dev, ++endptr, mode); 1945 1946 return ERR_PTR(-EINVAL); 1947 } 1948 1949 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1950 { 1951 struct ubifs_info *c; 1952 1953 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1954 if (c) { 1955 spin_lock_init(&c->cnt_lock); 1956 spin_lock_init(&c->cs_lock); 1957 spin_lock_init(&c->buds_lock); 1958 spin_lock_init(&c->space_lock); 1959 spin_lock_init(&c->orphan_lock); 1960 init_rwsem(&c->commit_sem); 1961 mutex_init(&c->lp_mutex); 1962 mutex_init(&c->tnc_mutex); 1963 mutex_init(&c->log_mutex); 1964 mutex_init(&c->umount_mutex); 1965 mutex_init(&c->bu_mutex); 1966 mutex_init(&c->write_reserve_mutex); 1967 init_waitqueue_head(&c->cmt_wq); 1968 c->buds = RB_ROOT; 1969 c->old_idx = RB_ROOT; 1970 c->size_tree = RB_ROOT; 1971 c->orph_tree = RB_ROOT; 1972 INIT_LIST_HEAD(&c->infos_list); 1973 INIT_LIST_HEAD(&c->idx_gc); 1974 INIT_LIST_HEAD(&c->replay_list); 1975 INIT_LIST_HEAD(&c->replay_buds); 1976 INIT_LIST_HEAD(&c->uncat_list); 1977 INIT_LIST_HEAD(&c->empty_list); 1978 INIT_LIST_HEAD(&c->freeable_list); 1979 INIT_LIST_HEAD(&c->frdi_idx_list); 1980 INIT_LIST_HEAD(&c->unclean_leb_list); 1981 INIT_LIST_HEAD(&c->old_buds); 1982 INIT_LIST_HEAD(&c->orph_list); 1983 INIT_LIST_HEAD(&c->orph_new); 1984 c->no_chk_data_crc = 1; 1985 1986 c->highest_inum = UBIFS_FIRST_INO; 1987 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1988 1989 ubi_get_volume_info(ubi, &c->vi); 1990 ubi_get_device_info(c->vi.ubi_num, &c->di); 1991 } 1992 return c; 1993 } 1994 1995 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1996 { 1997 struct ubifs_info *c = sb->s_fs_info; 1998 struct inode *root; 1999 int err; 2000 2001 c->vfs_sb = sb; 2002 /* Re-open the UBI device in read-write mode */ 2003 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2004 if (IS_ERR(c->ubi)) { 2005 err = PTR_ERR(c->ubi); 2006 goto out; 2007 } 2008 2009 /* 2010 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2011 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2012 * which means the user would have to wait not just for their own I/O 2013 * but the read-ahead I/O as well i.e. completely pointless. 2014 * 2015 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2016 */ 2017 c->bdi.name = "ubifs", 2018 c->bdi.capabilities = 0; 2019 err = bdi_init(&c->bdi); 2020 if (err) 2021 goto out_close; 2022 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2023 c->vi.ubi_num, c->vi.vol_id); 2024 if (err) 2025 goto out_bdi; 2026 2027 err = ubifs_parse_options(c, data, 0); 2028 if (err) 2029 goto out_bdi; 2030 2031 sb->s_bdi = &c->bdi; 2032 sb->s_fs_info = c; 2033 sb->s_magic = UBIFS_SUPER_MAGIC; 2034 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2035 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2036 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2037 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2038 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2039 sb->s_op = &ubifs_super_operations; 2040 sb->s_xattr = ubifs_xattr_handlers; 2041 2042 mutex_lock(&c->umount_mutex); 2043 err = mount_ubifs(c); 2044 if (err) { 2045 ubifs_assert(err < 0); 2046 goto out_unlock; 2047 } 2048 2049 /* Read the root inode */ 2050 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2051 if (IS_ERR(root)) { 2052 err = PTR_ERR(root); 2053 goto out_umount; 2054 } 2055 2056 sb->s_root = d_make_root(root); 2057 if (!sb->s_root) { 2058 err = -ENOMEM; 2059 goto out_umount; 2060 } 2061 2062 mutex_unlock(&c->umount_mutex); 2063 return 0; 2064 2065 out_umount: 2066 ubifs_umount(c); 2067 out_unlock: 2068 mutex_unlock(&c->umount_mutex); 2069 out_bdi: 2070 bdi_destroy(&c->bdi); 2071 out_close: 2072 ubi_close_volume(c->ubi); 2073 out: 2074 return err; 2075 } 2076 2077 static int sb_test(struct super_block *sb, void *data) 2078 { 2079 struct ubifs_info *c1 = data; 2080 struct ubifs_info *c = sb->s_fs_info; 2081 2082 return c->vi.cdev == c1->vi.cdev; 2083 } 2084 2085 static int sb_set(struct super_block *sb, void *data) 2086 { 2087 sb->s_fs_info = data; 2088 return set_anon_super(sb, NULL); 2089 } 2090 2091 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2092 const char *name, void *data) 2093 { 2094 struct ubi_volume_desc *ubi; 2095 struct ubifs_info *c; 2096 struct super_block *sb; 2097 int err; 2098 2099 dbg_gen("name %s, flags %#x", name, flags); 2100 2101 /* 2102 * Get UBI device number and volume ID. Mount it read-only so far 2103 * because this might be a new mount point, and UBI allows only one 2104 * read-write user at a time. 2105 */ 2106 ubi = open_ubi(name, UBI_READONLY); 2107 if (IS_ERR(ubi)) { 2108 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2109 current->pid, name, (int)PTR_ERR(ubi)); 2110 return ERR_CAST(ubi); 2111 } 2112 2113 c = alloc_ubifs_info(ubi); 2114 if (!c) { 2115 err = -ENOMEM; 2116 goto out_close; 2117 } 2118 2119 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2120 2121 sb = sget(fs_type, sb_test, sb_set, flags, c); 2122 if (IS_ERR(sb)) { 2123 err = PTR_ERR(sb); 2124 kfree(c); 2125 goto out_close; 2126 } 2127 2128 if (sb->s_root) { 2129 struct ubifs_info *c1 = sb->s_fs_info; 2130 kfree(c); 2131 /* A new mount point for already mounted UBIFS */ 2132 dbg_gen("this ubi volume is already mounted"); 2133 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2134 err = -EBUSY; 2135 goto out_deact; 2136 } 2137 } else { 2138 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2139 if (err) 2140 goto out_deact; 2141 /* We do not support atime */ 2142 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2143 } 2144 2145 /* 'fill_super()' opens ubi again so we must close it here */ 2146 ubi_close_volume(ubi); 2147 2148 return dget(sb->s_root); 2149 2150 out_deact: 2151 deactivate_locked_super(sb); 2152 out_close: 2153 ubi_close_volume(ubi); 2154 return ERR_PTR(err); 2155 } 2156 2157 static void kill_ubifs_super(struct super_block *s) 2158 { 2159 struct ubifs_info *c = s->s_fs_info; 2160 kill_anon_super(s); 2161 kfree(c); 2162 } 2163 2164 static struct file_system_type ubifs_fs_type = { 2165 .name = "ubifs", 2166 .owner = THIS_MODULE, 2167 .mount = ubifs_mount, 2168 .kill_sb = kill_ubifs_super, 2169 }; 2170 MODULE_ALIAS_FS("ubifs"); 2171 2172 /* 2173 * Inode slab cache constructor. 2174 */ 2175 static void inode_slab_ctor(void *obj) 2176 { 2177 struct ubifs_inode *ui = obj; 2178 inode_init_once(&ui->vfs_inode); 2179 } 2180 2181 static int __init ubifs_init(void) 2182 { 2183 int err; 2184 2185 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2186 2187 /* Make sure node sizes are 8-byte aligned */ 2188 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2189 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2190 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2191 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2192 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2193 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2194 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2195 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2196 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2197 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2198 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2199 2200 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2201 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2202 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2203 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2204 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2205 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2206 2207 /* Check min. node size */ 2208 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2209 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2210 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2211 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2212 2213 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2214 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2215 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2216 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2217 2218 /* Defined node sizes */ 2219 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2220 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2221 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2222 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2223 2224 /* 2225 * We use 2 bit wide bit-fields to store compression type, which should 2226 * be amended if more compressors are added. The bit-fields are: 2227 * @compr_type in 'struct ubifs_inode', @default_compr in 2228 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2229 */ 2230 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2231 2232 /* 2233 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2234 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2235 */ 2236 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2237 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2238 current->pid, (unsigned int)PAGE_CACHE_SIZE); 2239 return -EINVAL; 2240 } 2241 2242 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2243 sizeof(struct ubifs_inode), 0, 2244 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2245 &inode_slab_ctor); 2246 if (!ubifs_inode_slab) 2247 return -ENOMEM; 2248 2249 err = register_shrinker(&ubifs_shrinker_info); 2250 if (err) 2251 goto out_slab; 2252 2253 err = ubifs_compressors_init(); 2254 if (err) 2255 goto out_shrinker; 2256 2257 err = dbg_debugfs_init(); 2258 if (err) 2259 goto out_compr; 2260 2261 err = register_filesystem(&ubifs_fs_type); 2262 if (err) { 2263 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2264 current->pid, err); 2265 goto out_dbg; 2266 } 2267 return 0; 2268 2269 out_dbg: 2270 dbg_debugfs_exit(); 2271 out_compr: 2272 ubifs_compressors_exit(); 2273 out_shrinker: 2274 unregister_shrinker(&ubifs_shrinker_info); 2275 out_slab: 2276 kmem_cache_destroy(ubifs_inode_slab); 2277 return err; 2278 } 2279 /* late_initcall to let compressors initialize first */ 2280 late_initcall(ubifs_init); 2281 2282 static void __exit ubifs_exit(void) 2283 { 2284 ubifs_assert(list_empty(&ubifs_infos)); 2285 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2286 2287 dbg_debugfs_exit(); 2288 ubifs_compressors_exit(); 2289 unregister_shrinker(&ubifs_shrinker_info); 2290 2291 /* 2292 * Make sure all delayed rcu free inodes are flushed before we 2293 * destroy cache. 2294 */ 2295 rcu_barrier(); 2296 kmem_cache_destroy(ubifs_inode_slab); 2297 unregister_filesystem(&ubifs_fs_type); 2298 } 2299 module_exit(ubifs_exit); 2300 2301 MODULE_LICENSE("GPL"); 2302 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2303 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2304 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2305