xref: /openbmc/linux/fs/ubifs/super.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 /*
30  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31  * allocating too much.
32  */
33 #define UBIFS_KMALLOC_OK (128*1024)
34 
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
37 
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 	.scan_objects = ubifs_shrink_scan,
41 	.count_objects = ubifs_shrink_count,
42 	.seeks = DEFAULT_SEEKS,
43 };
44 
45 /**
46  * validate_inode - validate inode.
47  * @c: UBIFS file-system description object
48  * @inode: the inode to validate
49  *
50  * This is a helper function for 'ubifs_iget()' which validates various fields
51  * of a newly built inode to make sure they contain sane values and prevent
52  * possible vulnerabilities. Returns zero if the inode is all right and
53  * a non-zero error code if not.
54  */
55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56 {
57 	int err;
58 	const struct ubifs_inode *ui = ubifs_inode(inode);
59 
60 	if (inode->i_size > c->max_inode_sz) {
61 		ubifs_err(c, "inode is too large (%lld)",
62 			  (long long)inode->i_size);
63 		return 1;
64 	}
65 
66 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 		return 2;
69 	}
70 
71 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 		return 3;
73 
74 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 		return 4;
76 
77 	if (ui->xattr && !S_ISREG(inode->i_mode))
78 		return 5;
79 
80 	if (!ubifs_compr_present(c, ui->compr_type)) {
81 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 	}
84 
85 	err = dbg_check_dir(c, inode);
86 	return err;
87 }
88 
89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90 {
91 	int err;
92 	union ubifs_key key;
93 	struct ubifs_ino_node *ino;
94 	struct ubifs_info *c = sb->s_fs_info;
95 	struct inode *inode;
96 	struct ubifs_inode *ui;
97 
98 	dbg_gen("inode %lu", inum);
99 
100 	inode = iget_locked(sb, inum);
101 	if (!inode)
102 		return ERR_PTR(-ENOMEM);
103 	if (!(inode->i_state & I_NEW))
104 		return inode;
105 	ui = ubifs_inode(inode);
106 
107 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 	if (!ino) {
109 		err = -ENOMEM;
110 		goto out;
111 	}
112 
113 	ino_key_init(c, &key, inode->i_ino);
114 
115 	err = ubifs_tnc_lookup(c, &key, ino);
116 	if (err)
117 		goto out_ino;
118 
119 	inode->i_flags |= S_NOCMTIME;
120 
121 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 		inode->i_flags |= S_NOATIME;
123 
124 	set_nlink(inode, le32_to_cpu(ino->nlink));
125 	i_uid_write(inode, le32_to_cpu(ino->uid));
126 	i_gid_write(inode, le32_to_cpu(ino->gid));
127 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 	inode->i_mode = le32_to_cpu(ino->mode);
134 	inode->i_size = le64_to_cpu(ino->size);
135 
136 	ui->data_len    = le32_to_cpu(ino->data_len);
137 	ui->flags       = le32_to_cpu(ino->flags);
138 	ui->compr_type  = le16_to_cpu(ino->compr_type);
139 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 	ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147 	err = validate_inode(c, inode);
148 	if (err)
149 		goto out_invalid;
150 
151 	switch (inode->i_mode & S_IFMT) {
152 	case S_IFREG:
153 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 		inode->i_op = &ubifs_file_inode_operations;
155 		inode->i_fop = &ubifs_file_operations;
156 		if (ui->xattr) {
157 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 			if (!ui->data) {
159 				err = -ENOMEM;
160 				goto out_ino;
161 			}
162 			memcpy(ui->data, ino->data, ui->data_len);
163 			((char *)ui->data)[ui->data_len] = '\0';
164 		} else if (ui->data_len != 0) {
165 			err = 10;
166 			goto out_invalid;
167 		}
168 		break;
169 	case S_IFDIR:
170 		inode->i_op  = &ubifs_dir_inode_operations;
171 		inode->i_fop = &ubifs_dir_operations;
172 		if (ui->data_len != 0) {
173 			err = 11;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFLNK:
178 		inode->i_op = &ubifs_symlink_inode_operations;
179 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 			err = 12;
181 			goto out_invalid;
182 		}
183 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 		if (!ui->data) {
185 			err = -ENOMEM;
186 			goto out_ino;
187 		}
188 		memcpy(ui->data, ino->data, ui->data_len);
189 		((char *)ui->data)[ui->data_len] = '\0';
190 		break;
191 	case S_IFBLK:
192 	case S_IFCHR:
193 	{
194 		dev_t rdev;
195 		union ubifs_dev_desc *dev;
196 
197 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 		if (!ui->data) {
199 			err = -ENOMEM;
200 			goto out_ino;
201 		}
202 
203 		dev = (union ubifs_dev_desc *)ino->data;
204 		if (ui->data_len == sizeof(dev->new))
205 			rdev = new_decode_dev(le32_to_cpu(dev->new));
206 		else if (ui->data_len == sizeof(dev->huge))
207 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 		else {
209 			err = 13;
210 			goto out_invalid;
211 		}
212 		memcpy(ui->data, ino->data, ui->data_len);
213 		inode->i_op = &ubifs_file_inode_operations;
214 		init_special_inode(inode, inode->i_mode, rdev);
215 		break;
216 	}
217 	case S_IFSOCK:
218 	case S_IFIFO:
219 		inode->i_op = &ubifs_file_inode_operations;
220 		init_special_inode(inode, inode->i_mode, 0);
221 		if (ui->data_len != 0) {
222 			err = 14;
223 			goto out_invalid;
224 		}
225 		break;
226 	default:
227 		err = 15;
228 		goto out_invalid;
229 	}
230 
231 	kfree(ino);
232 	ubifs_set_inode_flags(inode);
233 	unlock_new_inode(inode);
234 	return inode;
235 
236 out_invalid:
237 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 	ubifs_dump_node(c, ino);
239 	ubifs_dump_inode(c, inode);
240 	err = -EINVAL;
241 out_ino:
242 	kfree(ino);
243 out:
244 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 	iget_failed(inode);
246 	return ERR_PTR(err);
247 }
248 
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251 	struct ubifs_inode *ui;
252 
253 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 	if (!ui)
255 		return NULL;
256 
257 	memset((void *)ui + sizeof(struct inode), 0,
258 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
259 	mutex_init(&ui->ui_mutex);
260 	spin_lock_init(&ui->ui_lock);
261 	return &ui->vfs_inode;
262 };
263 
264 static void ubifs_free_inode(struct inode *inode)
265 {
266 	struct ubifs_inode *ui = ubifs_inode(inode);
267 
268 	kfree(ui->data);
269 	fscrypt_free_inode(inode);
270 
271 	kmem_cache_free(ubifs_inode_slab, ui);
272 }
273 
274 /*
275  * Note, Linux write-back code calls this without 'i_mutex'.
276  */
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
278 {
279 	int err = 0;
280 	struct ubifs_info *c = inode->i_sb->s_fs_info;
281 	struct ubifs_inode *ui = ubifs_inode(inode);
282 
283 	ubifs_assert(c, !ui->xattr);
284 	if (is_bad_inode(inode))
285 		return 0;
286 
287 	mutex_lock(&ui->ui_mutex);
288 	/*
289 	 * Due to races between write-back forced by budgeting
290 	 * (see 'sync_some_inodes()') and background write-back, the inode may
291 	 * have already been synchronized, do not do this again. This might
292 	 * also happen if it was synchronized in an VFS operation, e.g.
293 	 * 'ubifs_link()'.
294 	 */
295 	if (!ui->dirty) {
296 		mutex_unlock(&ui->ui_mutex);
297 		return 0;
298 	}
299 
300 	/*
301 	 * As an optimization, do not write orphan inodes to the media just
302 	 * because this is not needed.
303 	 */
304 	dbg_gen("inode %lu, mode %#x, nlink %u",
305 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 	if (inode->i_nlink) {
307 		err = ubifs_jnl_write_inode(c, inode);
308 		if (err)
309 			ubifs_err(c, "can't write inode %lu, error %d",
310 				  inode->i_ino, err);
311 		else
312 			err = dbg_check_inode_size(c, inode, ui->ui_size);
313 	}
314 
315 	ui->dirty = 0;
316 	mutex_unlock(&ui->ui_mutex);
317 	ubifs_release_dirty_inode_budget(c, ui);
318 	return err;
319 }
320 
321 static void ubifs_evict_inode(struct inode *inode)
322 {
323 	int err;
324 	struct ubifs_info *c = inode->i_sb->s_fs_info;
325 	struct ubifs_inode *ui = ubifs_inode(inode);
326 
327 	if (ui->xattr)
328 		/*
329 		 * Extended attribute inode deletions are fully handled in
330 		 * 'ubifs_removexattr()'. These inodes are special and have
331 		 * limited usage, so there is nothing to do here.
332 		 */
333 		goto out;
334 
335 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
336 	ubifs_assert(c, !atomic_read(&inode->i_count));
337 
338 	truncate_inode_pages_final(&inode->i_data);
339 
340 	if (inode->i_nlink)
341 		goto done;
342 
343 	if (is_bad_inode(inode))
344 		goto out;
345 
346 	ui->ui_size = inode->i_size = 0;
347 	err = ubifs_jnl_delete_inode(c, inode);
348 	if (err)
349 		/*
350 		 * Worst case we have a lost orphan inode wasting space, so a
351 		 * simple error message is OK here.
352 		 */
353 		ubifs_err(c, "can't delete inode %lu, error %d",
354 			  inode->i_ino, err);
355 
356 out:
357 	if (ui->dirty)
358 		ubifs_release_dirty_inode_budget(c, ui);
359 	else {
360 		/* We've deleted something - clean the "no space" flags */
361 		c->bi.nospace = c->bi.nospace_rp = 0;
362 		smp_wmb();
363 	}
364 done:
365 	clear_inode(inode);
366 	fscrypt_put_encryption_info(inode);
367 }
368 
369 static void ubifs_dirty_inode(struct inode *inode, int flags)
370 {
371 	struct ubifs_info *c = inode->i_sb->s_fs_info;
372 	struct ubifs_inode *ui = ubifs_inode(inode);
373 
374 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
375 	if (!ui->dirty) {
376 		ui->dirty = 1;
377 		dbg_gen("inode %lu",  inode->i_ino);
378 	}
379 }
380 
381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
382 {
383 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
384 	unsigned long long free;
385 	__le32 *uuid = (__le32 *)c->uuid;
386 
387 	free = ubifs_get_free_space(c);
388 	dbg_gen("free space %lld bytes (%lld blocks)",
389 		free, free >> UBIFS_BLOCK_SHIFT);
390 
391 	buf->f_type = UBIFS_SUPER_MAGIC;
392 	buf->f_bsize = UBIFS_BLOCK_SIZE;
393 	buf->f_blocks = c->block_cnt;
394 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
395 	if (free > c->report_rp_size)
396 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
397 	else
398 		buf->f_bavail = 0;
399 	buf->f_files = 0;
400 	buf->f_ffree = 0;
401 	buf->f_namelen = UBIFS_MAX_NLEN;
402 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
403 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
404 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
405 	return 0;
406 }
407 
408 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
409 {
410 	struct ubifs_info *c = root->d_sb->s_fs_info;
411 
412 	if (c->mount_opts.unmount_mode == 2)
413 		seq_puts(s, ",fast_unmount");
414 	else if (c->mount_opts.unmount_mode == 1)
415 		seq_puts(s, ",norm_unmount");
416 
417 	if (c->mount_opts.bulk_read == 2)
418 		seq_puts(s, ",bulk_read");
419 	else if (c->mount_opts.bulk_read == 1)
420 		seq_puts(s, ",no_bulk_read");
421 
422 	if (c->mount_opts.chk_data_crc == 2)
423 		seq_puts(s, ",chk_data_crc");
424 	else if (c->mount_opts.chk_data_crc == 1)
425 		seq_puts(s, ",no_chk_data_crc");
426 
427 	if (c->mount_opts.override_compr) {
428 		seq_printf(s, ",compr=%s",
429 			   ubifs_compr_name(c, c->mount_opts.compr_type));
430 	}
431 
432 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
433 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
434 
435 	return 0;
436 }
437 
438 static int ubifs_sync_fs(struct super_block *sb, int wait)
439 {
440 	int i, err;
441 	struct ubifs_info *c = sb->s_fs_info;
442 
443 	/*
444 	 * Zero @wait is just an advisory thing to help the file system shove
445 	 * lots of data into the queues, and there will be the second
446 	 * '->sync_fs()' call, with non-zero @wait.
447 	 */
448 	if (!wait)
449 		return 0;
450 
451 	/*
452 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
453 	 * do this if it waits for an already running commit.
454 	 */
455 	for (i = 0; i < c->jhead_cnt; i++) {
456 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
457 		if (err)
458 			return err;
459 	}
460 
461 	/*
462 	 * Strictly speaking, it is not necessary to commit the journal here,
463 	 * synchronizing write-buffers would be enough. But committing makes
464 	 * UBIFS free space predictions much more accurate, so we want to let
465 	 * the user be able to get more accurate results of 'statfs()' after
466 	 * they synchronize the file system.
467 	 */
468 	err = ubifs_run_commit(c);
469 	if (err)
470 		return err;
471 
472 	return ubi_sync(c->vi.ubi_num);
473 }
474 
475 /**
476  * init_constants_early - initialize UBIFS constants.
477  * @c: UBIFS file-system description object
478  *
479  * This function initialize UBIFS constants which do not need the superblock to
480  * be read. It also checks that the UBI volume satisfies basic UBIFS
481  * requirements. Returns zero in case of success and a negative error code in
482  * case of failure.
483  */
484 static int init_constants_early(struct ubifs_info *c)
485 {
486 	if (c->vi.corrupted) {
487 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
488 		c->ro_media = 1;
489 	}
490 
491 	if (c->di.ro_mode) {
492 		ubifs_msg(c, "read-only UBI device");
493 		c->ro_media = 1;
494 	}
495 
496 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
497 		ubifs_msg(c, "static UBI volume - read-only mode");
498 		c->ro_media = 1;
499 	}
500 
501 	c->leb_cnt = c->vi.size;
502 	c->leb_size = c->vi.usable_leb_size;
503 	c->leb_start = c->di.leb_start;
504 	c->half_leb_size = c->leb_size / 2;
505 	c->min_io_size = c->di.min_io_size;
506 	c->min_io_shift = fls(c->min_io_size) - 1;
507 	c->max_write_size = c->di.max_write_size;
508 	c->max_write_shift = fls(c->max_write_size) - 1;
509 
510 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
511 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
512 			   c->leb_size, UBIFS_MIN_LEB_SZ);
513 		return -EINVAL;
514 	}
515 
516 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
517 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
518 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
519 		return -EINVAL;
520 	}
521 
522 	if (!is_power_of_2(c->min_io_size)) {
523 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
524 		return -EINVAL;
525 	}
526 
527 	/*
528 	 * Maximum write size has to be greater or equivalent to min. I/O
529 	 * size, and be multiple of min. I/O size.
530 	 */
531 	if (c->max_write_size < c->min_io_size ||
532 	    c->max_write_size % c->min_io_size ||
533 	    !is_power_of_2(c->max_write_size)) {
534 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
535 			   c->max_write_size, c->min_io_size);
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
541 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
542 	 * less than 8.
543 	 */
544 	if (c->min_io_size < 8) {
545 		c->min_io_size = 8;
546 		c->min_io_shift = 3;
547 		if (c->max_write_size < c->min_io_size) {
548 			c->max_write_size = c->min_io_size;
549 			c->max_write_shift = c->min_io_shift;
550 		}
551 	}
552 
553 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
554 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
555 
556 	/*
557 	 * Initialize node length ranges which are mostly needed for node
558 	 * length validation.
559 	 */
560 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
561 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
562 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
563 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
564 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
565 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
566 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
567 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
568 				UBIFS_MAX_HMAC_LEN;
569 
570 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
571 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
572 	c->ranges[UBIFS_ORPH_NODE].min_len =
573 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
574 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
575 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
576 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
577 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
578 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
579 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
580 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
581 	/*
582 	 * Minimum indexing node size is amended later when superblock is
583 	 * read and the key length is known.
584 	 */
585 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
586 	/*
587 	 * Maximum indexing node size is amended later when superblock is
588 	 * read and the fanout is known.
589 	 */
590 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
591 
592 	/*
593 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
594 	 * about these values.
595 	 */
596 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
597 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
598 
599 	/*
600 	 * Calculate how many bytes would be wasted at the end of LEB if it was
601 	 * fully filled with data nodes of maximum size. This is used in
602 	 * calculations when reporting free space.
603 	 */
604 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
605 
606 	/* Buffer size for bulk-reads */
607 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
608 	if (c->max_bu_buf_len > c->leb_size)
609 		c->max_bu_buf_len = c->leb_size;
610 	return 0;
611 }
612 
613 /**
614  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
615  * @c: UBIFS file-system description object
616  * @lnum: LEB the write-buffer was synchronized to
617  * @free: how many free bytes left in this LEB
618  * @pad: how many bytes were padded
619  *
620  * This is a callback function which is called by the I/O unit when the
621  * write-buffer is synchronized. We need this to correctly maintain space
622  * accounting in bud logical eraseblocks. This function returns zero in case of
623  * success and a negative error code in case of failure.
624  *
625  * This function actually belongs to the journal, but we keep it here because
626  * we want to keep it static.
627  */
628 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
629 {
630 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
631 }
632 
633 /*
634  * init_constants_sb - initialize UBIFS constants.
635  * @c: UBIFS file-system description object
636  *
637  * This is a helper function which initializes various UBIFS constants after
638  * the superblock has been read. It also checks various UBIFS parameters and
639  * makes sure they are all right. Returns zero in case of success and a
640  * negative error code in case of failure.
641  */
642 static int init_constants_sb(struct ubifs_info *c)
643 {
644 	int tmp, err;
645 	long long tmp64;
646 
647 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
648 	c->max_znode_sz = sizeof(struct ubifs_znode) +
649 				c->fanout * sizeof(struct ubifs_zbranch);
650 
651 	tmp = ubifs_idx_node_sz(c, 1);
652 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
653 	c->min_idx_node_sz = ALIGN(tmp, 8);
654 
655 	tmp = ubifs_idx_node_sz(c, c->fanout);
656 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
657 	c->max_idx_node_sz = ALIGN(tmp, 8);
658 
659 	/* Make sure LEB size is large enough to fit full commit */
660 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
661 	tmp = ALIGN(tmp, c->min_io_size);
662 	if (tmp > c->leb_size) {
663 		ubifs_err(c, "too small LEB size %d, at least %d needed",
664 			  c->leb_size, tmp);
665 		return -EINVAL;
666 	}
667 
668 	/*
669 	 * Make sure that the log is large enough to fit reference nodes for
670 	 * all buds plus one reserved LEB.
671 	 */
672 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
673 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
674 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
675 	tmp /= c->leb_size;
676 	tmp += 1;
677 	if (c->log_lebs < tmp) {
678 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
679 			  c->log_lebs, tmp);
680 		return -EINVAL;
681 	}
682 
683 	/*
684 	 * When budgeting we assume worst-case scenarios when the pages are not
685 	 * be compressed and direntries are of the maximum size.
686 	 *
687 	 * Note, data, which may be stored in inodes is budgeted separately, so
688 	 * it is not included into 'c->bi.inode_budget'.
689 	 */
690 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
691 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
692 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
693 
694 	/*
695 	 * When the amount of flash space used by buds becomes
696 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
697 	 * The writers are unblocked when the commit is finished. To avoid
698 	 * writers to be blocked UBIFS initiates background commit in advance,
699 	 * when number of bud bytes becomes above the limit defined below.
700 	 */
701 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
702 
703 	/*
704 	 * Ensure minimum journal size. All the bytes in the journal heads are
705 	 * considered to be used, when calculating the current journal usage.
706 	 * Consequently, if the journal is too small, UBIFS will treat it as
707 	 * always full.
708 	 */
709 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
710 	if (c->bg_bud_bytes < tmp64)
711 		c->bg_bud_bytes = tmp64;
712 	if (c->max_bud_bytes < tmp64 + c->leb_size)
713 		c->max_bud_bytes = tmp64 + c->leb_size;
714 
715 	err = ubifs_calc_lpt_geom(c);
716 	if (err)
717 		return err;
718 
719 	/* Initialize effective LEB size used in budgeting calculations */
720 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
721 	return 0;
722 }
723 
724 /*
725  * init_constants_master - initialize UBIFS constants.
726  * @c: UBIFS file-system description object
727  *
728  * This is a helper function which initializes various UBIFS constants after
729  * the master node has been read. It also checks various UBIFS parameters and
730  * makes sure they are all right.
731  */
732 static void init_constants_master(struct ubifs_info *c)
733 {
734 	long long tmp64;
735 
736 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
737 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
738 
739 	/*
740 	 * Calculate total amount of FS blocks. This number is not used
741 	 * internally because it does not make much sense for UBIFS, but it is
742 	 * necessary to report something for the 'statfs()' call.
743 	 *
744 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
745 	 * deletions, minimum LEBs for the index, and assume only one journal
746 	 * head is available.
747 	 */
748 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
749 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
750 	tmp64 = ubifs_reported_space(c, tmp64);
751 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
752 }
753 
754 /**
755  * take_gc_lnum - reserve GC LEB.
756  * @c: UBIFS file-system description object
757  *
758  * This function ensures that the LEB reserved for garbage collection is marked
759  * as "taken" in lprops. We also have to set free space to LEB size and dirty
760  * space to zero, because lprops may contain out-of-date information if the
761  * file-system was un-mounted before it has been committed. This function
762  * returns zero in case of success and a negative error code in case of
763  * failure.
764  */
765 static int take_gc_lnum(struct ubifs_info *c)
766 {
767 	int err;
768 
769 	if (c->gc_lnum == -1) {
770 		ubifs_err(c, "no LEB for GC");
771 		return -EINVAL;
772 	}
773 
774 	/* And we have to tell lprops that this LEB is taken */
775 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
776 				  LPROPS_TAKEN, 0, 0);
777 	return err;
778 }
779 
780 /**
781  * alloc_wbufs - allocate write-buffers.
782  * @c: UBIFS file-system description object
783  *
784  * This helper function allocates and initializes UBIFS write-buffers. Returns
785  * zero in case of success and %-ENOMEM in case of failure.
786  */
787 static int alloc_wbufs(struct ubifs_info *c)
788 {
789 	int i, err;
790 
791 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
792 			    GFP_KERNEL);
793 	if (!c->jheads)
794 		return -ENOMEM;
795 
796 	/* Initialize journal heads */
797 	for (i = 0; i < c->jhead_cnt; i++) {
798 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
799 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
800 		if (err)
801 			return err;
802 
803 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
804 		c->jheads[i].wbuf.jhead = i;
805 		c->jheads[i].grouped = 1;
806 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
807 		if (IS_ERR(c->jheads[i].log_hash))
808 			goto out;
809 	}
810 
811 	/*
812 	 * Garbage Collector head does not need to be synchronized by timer.
813 	 * Also GC head nodes are not grouped.
814 	 */
815 	c->jheads[GCHD].wbuf.no_timer = 1;
816 	c->jheads[GCHD].grouped = 0;
817 
818 	return 0;
819 
820 out:
821 	while (i--)
822 		kfree(c->jheads[i].log_hash);
823 
824 	return err;
825 }
826 
827 /**
828  * free_wbufs - free write-buffers.
829  * @c: UBIFS file-system description object
830  */
831 static void free_wbufs(struct ubifs_info *c)
832 {
833 	int i;
834 
835 	if (c->jheads) {
836 		for (i = 0; i < c->jhead_cnt; i++) {
837 			kfree(c->jheads[i].wbuf.buf);
838 			kfree(c->jheads[i].wbuf.inodes);
839 			kfree(c->jheads[i].log_hash);
840 		}
841 		kfree(c->jheads);
842 		c->jheads = NULL;
843 	}
844 }
845 
846 /**
847  * free_orphans - free orphans.
848  * @c: UBIFS file-system description object
849  */
850 static void free_orphans(struct ubifs_info *c)
851 {
852 	struct ubifs_orphan *orph;
853 
854 	while (c->orph_dnext) {
855 		orph = c->orph_dnext;
856 		c->orph_dnext = orph->dnext;
857 		list_del(&orph->list);
858 		kfree(orph);
859 	}
860 
861 	while (!list_empty(&c->orph_list)) {
862 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
863 		list_del(&orph->list);
864 		kfree(orph);
865 		ubifs_err(c, "orphan list not empty at unmount");
866 	}
867 
868 	vfree(c->orph_buf);
869 	c->orph_buf = NULL;
870 }
871 
872 /**
873  * free_buds - free per-bud objects.
874  * @c: UBIFS file-system description object
875  */
876 static void free_buds(struct ubifs_info *c)
877 {
878 	struct ubifs_bud *bud, *n;
879 
880 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
881 		kfree(bud);
882 }
883 
884 /**
885  * check_volume_empty - check if the UBI volume is empty.
886  * @c: UBIFS file-system description object
887  *
888  * This function checks if the UBIFS volume is empty by looking if its LEBs are
889  * mapped or not. The result of checking is stored in the @c->empty variable.
890  * Returns zero in case of success and a negative error code in case of
891  * failure.
892  */
893 static int check_volume_empty(struct ubifs_info *c)
894 {
895 	int lnum, err;
896 
897 	c->empty = 1;
898 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
899 		err = ubifs_is_mapped(c, lnum);
900 		if (unlikely(err < 0))
901 			return err;
902 		if (err == 1) {
903 			c->empty = 0;
904 			break;
905 		}
906 
907 		cond_resched();
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * UBIFS mount options.
915  *
916  * Opt_fast_unmount: do not run a journal commit before un-mounting
917  * Opt_norm_unmount: run a journal commit before un-mounting
918  * Opt_bulk_read: enable bulk-reads
919  * Opt_no_bulk_read: disable bulk-reads
920  * Opt_chk_data_crc: check CRCs when reading data nodes
921  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
922  * Opt_override_compr: override default compressor
923  * Opt_assert: set ubifs_assert() action
924  * Opt_auth_key: The key name used for authentication
925  * Opt_auth_hash_name: The hash type used for authentication
926  * Opt_err: just end of array marker
927  */
928 enum {
929 	Opt_fast_unmount,
930 	Opt_norm_unmount,
931 	Opt_bulk_read,
932 	Opt_no_bulk_read,
933 	Opt_chk_data_crc,
934 	Opt_no_chk_data_crc,
935 	Opt_override_compr,
936 	Opt_assert,
937 	Opt_auth_key,
938 	Opt_auth_hash_name,
939 	Opt_ignore,
940 	Opt_err,
941 };
942 
943 static const match_table_t tokens = {
944 	{Opt_fast_unmount, "fast_unmount"},
945 	{Opt_norm_unmount, "norm_unmount"},
946 	{Opt_bulk_read, "bulk_read"},
947 	{Opt_no_bulk_read, "no_bulk_read"},
948 	{Opt_chk_data_crc, "chk_data_crc"},
949 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
950 	{Opt_override_compr, "compr=%s"},
951 	{Opt_auth_key, "auth_key=%s"},
952 	{Opt_auth_hash_name, "auth_hash_name=%s"},
953 	{Opt_ignore, "ubi=%s"},
954 	{Opt_ignore, "vol=%s"},
955 	{Opt_assert, "assert=%s"},
956 	{Opt_err, NULL},
957 };
958 
959 /**
960  * parse_standard_option - parse a standard mount option.
961  * @option: the option to parse
962  *
963  * Normally, standard mount options like "sync" are passed to file-systems as
964  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
965  * be present in the options string. This function tries to deal with this
966  * situation and parse standard options. Returns 0 if the option was not
967  * recognized, and the corresponding integer flag if it was.
968  *
969  * UBIFS is only interested in the "sync" option, so do not check for anything
970  * else.
971  */
972 static int parse_standard_option(const char *option)
973 {
974 
975 	pr_notice("UBIFS: parse %s\n", option);
976 	if (!strcmp(option, "sync"))
977 		return SB_SYNCHRONOUS;
978 	return 0;
979 }
980 
981 /**
982  * ubifs_parse_options - parse mount parameters.
983  * @c: UBIFS file-system description object
984  * @options: parameters to parse
985  * @is_remount: non-zero if this is FS re-mount
986  *
987  * This function parses UBIFS mount options and returns zero in case success
988  * and a negative error code in case of failure.
989  */
990 static int ubifs_parse_options(struct ubifs_info *c, char *options,
991 			       int is_remount)
992 {
993 	char *p;
994 	substring_t args[MAX_OPT_ARGS];
995 
996 	if (!options)
997 		return 0;
998 
999 	while ((p = strsep(&options, ","))) {
1000 		int token;
1001 
1002 		if (!*p)
1003 			continue;
1004 
1005 		token = match_token(p, tokens, args);
1006 		switch (token) {
1007 		/*
1008 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1009 		 * We accept them in order to be backward-compatible. But this
1010 		 * should be removed at some point.
1011 		 */
1012 		case Opt_fast_unmount:
1013 			c->mount_opts.unmount_mode = 2;
1014 			break;
1015 		case Opt_norm_unmount:
1016 			c->mount_opts.unmount_mode = 1;
1017 			break;
1018 		case Opt_bulk_read:
1019 			c->mount_opts.bulk_read = 2;
1020 			c->bulk_read = 1;
1021 			break;
1022 		case Opt_no_bulk_read:
1023 			c->mount_opts.bulk_read = 1;
1024 			c->bulk_read = 0;
1025 			break;
1026 		case Opt_chk_data_crc:
1027 			c->mount_opts.chk_data_crc = 2;
1028 			c->no_chk_data_crc = 0;
1029 			break;
1030 		case Opt_no_chk_data_crc:
1031 			c->mount_opts.chk_data_crc = 1;
1032 			c->no_chk_data_crc = 1;
1033 			break;
1034 		case Opt_override_compr:
1035 		{
1036 			char *name = match_strdup(&args[0]);
1037 
1038 			if (!name)
1039 				return -ENOMEM;
1040 			if (!strcmp(name, "none"))
1041 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1042 			else if (!strcmp(name, "lzo"))
1043 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1044 			else if (!strcmp(name, "zlib"))
1045 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1046 			else {
1047 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1048 				kfree(name);
1049 				return -EINVAL;
1050 			}
1051 			kfree(name);
1052 			c->mount_opts.override_compr = 1;
1053 			c->default_compr = c->mount_opts.compr_type;
1054 			break;
1055 		}
1056 		case Opt_assert:
1057 		{
1058 			char *act = match_strdup(&args[0]);
1059 
1060 			if (!act)
1061 				return -ENOMEM;
1062 			if (!strcmp(act, "report"))
1063 				c->assert_action = ASSACT_REPORT;
1064 			else if (!strcmp(act, "read-only"))
1065 				c->assert_action = ASSACT_RO;
1066 			else if (!strcmp(act, "panic"))
1067 				c->assert_action = ASSACT_PANIC;
1068 			else {
1069 				ubifs_err(c, "unknown assert action \"%s\"", act);
1070 				kfree(act);
1071 				return -EINVAL;
1072 			}
1073 			kfree(act);
1074 			break;
1075 		}
1076 		case Opt_auth_key:
1077 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1078 			if (!c->auth_key_name)
1079 				return -ENOMEM;
1080 			break;
1081 		case Opt_auth_hash_name:
1082 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1083 			if (!c->auth_hash_name)
1084 				return -ENOMEM;
1085 			break;
1086 		case Opt_ignore:
1087 			break;
1088 		default:
1089 		{
1090 			unsigned long flag;
1091 			struct super_block *sb = c->vfs_sb;
1092 
1093 			flag = parse_standard_option(p);
1094 			if (!flag) {
1095 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1096 					  p);
1097 				return -EINVAL;
1098 			}
1099 			sb->s_flags |= flag;
1100 			break;
1101 		}
1102 		}
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * destroy_journal - destroy journal data structures.
1110  * @c: UBIFS file-system description object
1111  *
1112  * This function destroys journal data structures including those that may have
1113  * been created by recovery functions.
1114  */
1115 static void destroy_journal(struct ubifs_info *c)
1116 {
1117 	while (!list_empty(&c->unclean_leb_list)) {
1118 		struct ubifs_unclean_leb *ucleb;
1119 
1120 		ucleb = list_entry(c->unclean_leb_list.next,
1121 				   struct ubifs_unclean_leb, list);
1122 		list_del(&ucleb->list);
1123 		kfree(ucleb);
1124 	}
1125 	while (!list_empty(&c->old_buds)) {
1126 		struct ubifs_bud *bud;
1127 
1128 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1129 		list_del(&bud->list);
1130 		kfree(bud);
1131 	}
1132 	ubifs_destroy_idx_gc(c);
1133 	ubifs_destroy_size_tree(c);
1134 	ubifs_tnc_close(c);
1135 	free_buds(c);
1136 }
1137 
1138 /**
1139  * bu_init - initialize bulk-read information.
1140  * @c: UBIFS file-system description object
1141  */
1142 static void bu_init(struct ubifs_info *c)
1143 {
1144 	ubifs_assert(c, c->bulk_read == 1);
1145 
1146 	if (c->bu.buf)
1147 		return; /* Already initialized */
1148 
1149 again:
1150 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1151 	if (!c->bu.buf) {
1152 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1153 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1154 			goto again;
1155 		}
1156 
1157 		/* Just disable bulk-read */
1158 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1159 			   c->max_bu_buf_len);
1160 		c->mount_opts.bulk_read = 1;
1161 		c->bulk_read = 0;
1162 		return;
1163 	}
1164 }
1165 
1166 /**
1167  * check_free_space - check if there is enough free space to mount.
1168  * @c: UBIFS file-system description object
1169  *
1170  * This function makes sure UBIFS has enough free space to be mounted in
1171  * read/write mode. UBIFS must always have some free space to allow deletions.
1172  */
1173 static int check_free_space(struct ubifs_info *c)
1174 {
1175 	ubifs_assert(c, c->dark_wm > 0);
1176 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1177 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1178 		ubifs_dump_budg(c, &c->bi);
1179 		ubifs_dump_lprops(c);
1180 		return -ENOSPC;
1181 	}
1182 	return 0;
1183 }
1184 
1185 /**
1186  * mount_ubifs - mount UBIFS file-system.
1187  * @c: UBIFS file-system description object
1188  *
1189  * This function mounts UBIFS file system. Returns zero in case of success and
1190  * a negative error code in case of failure.
1191  */
1192 static int mount_ubifs(struct ubifs_info *c)
1193 {
1194 	int err;
1195 	long long x, y;
1196 	size_t sz;
1197 
1198 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1199 	/* Suppress error messages while probing if SB_SILENT is set */
1200 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1201 
1202 	err = init_constants_early(c);
1203 	if (err)
1204 		return err;
1205 
1206 	err = ubifs_debugging_init(c);
1207 	if (err)
1208 		return err;
1209 
1210 	err = check_volume_empty(c);
1211 	if (err)
1212 		goto out_free;
1213 
1214 	if (c->empty && (c->ro_mount || c->ro_media)) {
1215 		/*
1216 		 * This UBI volume is empty, and read-only, or the file system
1217 		 * is mounted read-only - we cannot format it.
1218 		 */
1219 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1220 			  c->ro_media ? "UBI volume" : "mount");
1221 		err = -EROFS;
1222 		goto out_free;
1223 	}
1224 
1225 	if (c->ro_media && !c->ro_mount) {
1226 		ubifs_err(c, "cannot mount read-write - read-only media");
1227 		err = -EROFS;
1228 		goto out_free;
1229 	}
1230 
1231 	/*
1232 	 * The requirement for the buffer is that it should fit indexing B-tree
1233 	 * height amount of integers. We assume the height if the TNC tree will
1234 	 * never exceed 64.
1235 	 */
1236 	err = -ENOMEM;
1237 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1238 					 GFP_KERNEL);
1239 	if (!c->bottom_up_buf)
1240 		goto out_free;
1241 
1242 	c->sbuf = vmalloc(c->leb_size);
1243 	if (!c->sbuf)
1244 		goto out_free;
1245 
1246 	if (!c->ro_mount) {
1247 		c->ileb_buf = vmalloc(c->leb_size);
1248 		if (!c->ileb_buf)
1249 			goto out_free;
1250 	}
1251 
1252 	if (c->bulk_read == 1)
1253 		bu_init(c);
1254 
1255 	if (!c->ro_mount) {
1256 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1257 					       UBIFS_CIPHER_BLOCK_SIZE,
1258 					       GFP_KERNEL);
1259 		if (!c->write_reserve_buf)
1260 			goto out_free;
1261 	}
1262 
1263 	c->mounting = 1;
1264 
1265 	if (c->auth_key_name) {
1266 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1267 			err = ubifs_init_authentication(c);
1268 			if (err)
1269 				goto out_free;
1270 		} else {
1271 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1272 				  " authentication support");
1273 			err = -EINVAL;
1274 			goto out_free;
1275 		}
1276 	}
1277 
1278 	err = ubifs_read_superblock(c);
1279 	if (err)
1280 		goto out_free;
1281 
1282 	c->probing = 0;
1283 
1284 	/*
1285 	 * Make sure the compressor which is set as default in the superblock
1286 	 * or overridden by mount options is actually compiled in.
1287 	 */
1288 	if (!ubifs_compr_present(c, c->default_compr)) {
1289 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1290 			  ubifs_compr_name(c, c->default_compr));
1291 		err = -ENOTSUPP;
1292 		goto out_free;
1293 	}
1294 
1295 	err = init_constants_sb(c);
1296 	if (err)
1297 		goto out_free;
1298 
1299 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1300 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1301 	c->cbuf = kmalloc(sz, GFP_NOFS);
1302 	if (!c->cbuf) {
1303 		err = -ENOMEM;
1304 		goto out_free;
1305 	}
1306 
1307 	err = alloc_wbufs(c);
1308 	if (err)
1309 		goto out_cbuf;
1310 
1311 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1312 	if (!c->ro_mount) {
1313 		/* Create background thread */
1314 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1315 		if (IS_ERR(c->bgt)) {
1316 			err = PTR_ERR(c->bgt);
1317 			c->bgt = NULL;
1318 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1319 				  c->bgt_name, err);
1320 			goto out_wbufs;
1321 		}
1322 		wake_up_process(c->bgt);
1323 	}
1324 
1325 	err = ubifs_read_master(c);
1326 	if (err)
1327 		goto out_master;
1328 
1329 	init_constants_master(c);
1330 
1331 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1332 		ubifs_msg(c, "recovery needed");
1333 		c->need_recovery = 1;
1334 	}
1335 
1336 	if (c->need_recovery && !c->ro_mount) {
1337 		err = ubifs_recover_inl_heads(c, c->sbuf);
1338 		if (err)
1339 			goto out_master;
1340 	}
1341 
1342 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1343 	if (err)
1344 		goto out_master;
1345 
1346 	if (!c->ro_mount && c->space_fixup) {
1347 		err = ubifs_fixup_free_space(c);
1348 		if (err)
1349 			goto out_lpt;
1350 	}
1351 
1352 	if (!c->ro_mount && !c->need_recovery) {
1353 		/*
1354 		 * Set the "dirty" flag so that if we reboot uncleanly we
1355 		 * will notice this immediately on the next mount.
1356 		 */
1357 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1358 		err = ubifs_write_master(c);
1359 		if (err)
1360 			goto out_lpt;
1361 	}
1362 
1363 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1364 	if (err)
1365 		goto out_lpt;
1366 
1367 	err = ubifs_replay_journal(c);
1368 	if (err)
1369 		goto out_journal;
1370 
1371 	/* Calculate 'min_idx_lebs' after journal replay */
1372 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1373 
1374 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1375 	if (err)
1376 		goto out_orphans;
1377 
1378 	if (!c->ro_mount) {
1379 		int lnum;
1380 
1381 		err = check_free_space(c);
1382 		if (err)
1383 			goto out_orphans;
1384 
1385 		/* Check for enough log space */
1386 		lnum = c->lhead_lnum + 1;
1387 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1388 			lnum = UBIFS_LOG_LNUM;
1389 		if (lnum == c->ltail_lnum) {
1390 			err = ubifs_consolidate_log(c);
1391 			if (err)
1392 				goto out_orphans;
1393 		}
1394 
1395 		if (c->need_recovery) {
1396 			if (!ubifs_authenticated(c)) {
1397 				err = ubifs_recover_size(c, true);
1398 				if (err)
1399 					goto out_orphans;
1400 			}
1401 
1402 			err = ubifs_rcvry_gc_commit(c);
1403 			if (err)
1404 				goto out_orphans;
1405 
1406 			if (ubifs_authenticated(c)) {
1407 				err = ubifs_recover_size(c, false);
1408 				if (err)
1409 					goto out_orphans;
1410 			}
1411 		} else {
1412 			err = take_gc_lnum(c);
1413 			if (err)
1414 				goto out_orphans;
1415 
1416 			/*
1417 			 * GC LEB may contain garbage if there was an unclean
1418 			 * reboot, and it should be un-mapped.
1419 			 */
1420 			err = ubifs_leb_unmap(c, c->gc_lnum);
1421 			if (err)
1422 				goto out_orphans;
1423 		}
1424 
1425 		err = dbg_check_lprops(c);
1426 		if (err)
1427 			goto out_orphans;
1428 	} else if (c->need_recovery) {
1429 		err = ubifs_recover_size(c, false);
1430 		if (err)
1431 			goto out_orphans;
1432 	} else {
1433 		/*
1434 		 * Even if we mount read-only, we have to set space in GC LEB
1435 		 * to proper value because this affects UBIFS free space
1436 		 * reporting. We do not want to have a situation when
1437 		 * re-mounting from R/O to R/W changes amount of free space.
1438 		 */
1439 		err = take_gc_lnum(c);
1440 		if (err)
1441 			goto out_orphans;
1442 	}
1443 
1444 	spin_lock(&ubifs_infos_lock);
1445 	list_add_tail(&c->infos_list, &ubifs_infos);
1446 	spin_unlock(&ubifs_infos_lock);
1447 
1448 	if (c->need_recovery) {
1449 		if (c->ro_mount)
1450 			ubifs_msg(c, "recovery deferred");
1451 		else {
1452 			c->need_recovery = 0;
1453 			ubifs_msg(c, "recovery completed");
1454 			/*
1455 			 * GC LEB has to be empty and taken at this point. But
1456 			 * the journal head LEBs may also be accounted as
1457 			 * "empty taken" if they are empty.
1458 			 */
1459 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1460 		}
1461 	} else
1462 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1463 
1464 	err = dbg_check_filesystem(c);
1465 	if (err)
1466 		goto out_infos;
1467 
1468 	err = dbg_debugfs_init_fs(c);
1469 	if (err)
1470 		goto out_infos;
1471 
1472 	c->mounting = 0;
1473 
1474 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1475 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1476 		  c->ro_mount ? ", R/O mode" : "");
1477 	x = (long long)c->main_lebs * c->leb_size;
1478 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1479 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1480 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1481 		  c->max_write_size);
1482 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1483 		  x, x >> 20, c->main_lebs,
1484 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1485 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1486 		  c->report_rp_size, c->report_rp_size >> 10);
1487 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1488 		  c->fmt_version, c->ro_compat_version,
1489 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1490 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1491 
1492 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1493 	dbg_gen("data journal heads:  %d",
1494 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1495 	dbg_gen("log LEBs:            %d (%d - %d)",
1496 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1497 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1498 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1499 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1500 		c->orph_lebs, c->orph_first, c->orph_last);
1501 	dbg_gen("main area LEBs:      %d (%d - %d)",
1502 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1503 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1504 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1505 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1506 		c->bi.old_idx_sz >> 20);
1507 	dbg_gen("key hash type:       %d", c->key_hash_type);
1508 	dbg_gen("tree fanout:         %d", c->fanout);
1509 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1510 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1511 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1512 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1513 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1514 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1515 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1516 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1517 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1518 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1519 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1520 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1521 	dbg_gen("dead watermark:      %d", c->dead_wm);
1522 	dbg_gen("dark watermark:      %d", c->dark_wm);
1523 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1524 	x = (long long)c->main_lebs * c->dark_wm;
1525 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1526 		x, x >> 10, x >> 20);
1527 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1528 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1529 		c->max_bud_bytes >> 20);
1530 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1531 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1532 		c->bg_bud_bytes >> 20);
1533 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1534 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1535 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1536 	dbg_gen("commit number:       %llu", c->cmt_no);
1537 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1538 	dbg_gen("max orphans:           %d", c->max_orphans);
1539 
1540 	return 0;
1541 
1542 out_infos:
1543 	spin_lock(&ubifs_infos_lock);
1544 	list_del(&c->infos_list);
1545 	spin_unlock(&ubifs_infos_lock);
1546 out_orphans:
1547 	free_orphans(c);
1548 out_journal:
1549 	destroy_journal(c);
1550 out_lpt:
1551 	ubifs_lpt_free(c, 0);
1552 out_master:
1553 	kfree(c->mst_node);
1554 	kfree(c->rcvrd_mst_node);
1555 	if (c->bgt)
1556 		kthread_stop(c->bgt);
1557 out_wbufs:
1558 	free_wbufs(c);
1559 out_cbuf:
1560 	kfree(c->cbuf);
1561 out_free:
1562 	kfree(c->write_reserve_buf);
1563 	kfree(c->bu.buf);
1564 	vfree(c->ileb_buf);
1565 	vfree(c->sbuf);
1566 	kfree(c->bottom_up_buf);
1567 	ubifs_debugging_exit(c);
1568 	return err;
1569 }
1570 
1571 /**
1572  * ubifs_umount - un-mount UBIFS file-system.
1573  * @c: UBIFS file-system description object
1574  *
1575  * Note, this function is called to free allocated resourced when un-mounting,
1576  * as well as free resources when an error occurred while we were half way
1577  * through mounting (error path cleanup function). So it has to make sure the
1578  * resource was actually allocated before freeing it.
1579  */
1580 static void ubifs_umount(struct ubifs_info *c)
1581 {
1582 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1583 		c->vi.vol_id);
1584 
1585 	dbg_debugfs_exit_fs(c);
1586 	spin_lock(&ubifs_infos_lock);
1587 	list_del(&c->infos_list);
1588 	spin_unlock(&ubifs_infos_lock);
1589 
1590 	if (c->bgt)
1591 		kthread_stop(c->bgt);
1592 
1593 	destroy_journal(c);
1594 	free_wbufs(c);
1595 	free_orphans(c);
1596 	ubifs_lpt_free(c, 0);
1597 	ubifs_exit_authentication(c);
1598 
1599 	kfree(c->auth_key_name);
1600 	kfree(c->auth_hash_name);
1601 	kfree(c->cbuf);
1602 	kfree(c->rcvrd_mst_node);
1603 	kfree(c->mst_node);
1604 	kfree(c->write_reserve_buf);
1605 	kfree(c->bu.buf);
1606 	vfree(c->ileb_buf);
1607 	vfree(c->sbuf);
1608 	kfree(c->bottom_up_buf);
1609 	ubifs_debugging_exit(c);
1610 }
1611 
1612 /**
1613  * ubifs_remount_rw - re-mount in read-write mode.
1614  * @c: UBIFS file-system description object
1615  *
1616  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1617  * mode. This function allocates the needed resources and re-mounts UBIFS in
1618  * read-write mode.
1619  */
1620 static int ubifs_remount_rw(struct ubifs_info *c)
1621 {
1622 	int err, lnum;
1623 
1624 	if (c->rw_incompat) {
1625 		ubifs_err(c, "the file-system is not R/W-compatible");
1626 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1627 			  c->fmt_version, c->ro_compat_version,
1628 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1629 		return -EROFS;
1630 	}
1631 
1632 	mutex_lock(&c->umount_mutex);
1633 	dbg_save_space_info(c);
1634 	c->remounting_rw = 1;
1635 	c->ro_mount = 0;
1636 
1637 	if (c->space_fixup) {
1638 		err = ubifs_fixup_free_space(c);
1639 		if (err)
1640 			goto out;
1641 	}
1642 
1643 	err = check_free_space(c);
1644 	if (err)
1645 		goto out;
1646 
1647 	if (c->old_leb_cnt != c->leb_cnt) {
1648 		struct ubifs_sb_node *sup = c->sup_node;
1649 
1650 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1651 		err = ubifs_write_sb_node(c, sup);
1652 		if (err)
1653 			goto out;
1654 	}
1655 
1656 	if (c->need_recovery) {
1657 		ubifs_msg(c, "completing deferred recovery");
1658 		err = ubifs_write_rcvrd_mst_node(c);
1659 		if (err)
1660 			goto out;
1661 		if (!ubifs_authenticated(c)) {
1662 			err = ubifs_recover_size(c, true);
1663 			if (err)
1664 				goto out;
1665 		}
1666 		err = ubifs_clean_lebs(c, c->sbuf);
1667 		if (err)
1668 			goto out;
1669 		err = ubifs_recover_inl_heads(c, c->sbuf);
1670 		if (err)
1671 			goto out;
1672 	} else {
1673 		/* A readonly mount is not allowed to have orphans */
1674 		ubifs_assert(c, c->tot_orphans == 0);
1675 		err = ubifs_clear_orphans(c);
1676 		if (err)
1677 			goto out;
1678 	}
1679 
1680 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1681 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1682 		err = ubifs_write_master(c);
1683 		if (err)
1684 			goto out;
1685 	}
1686 
1687 	c->ileb_buf = vmalloc(c->leb_size);
1688 	if (!c->ileb_buf) {
1689 		err = -ENOMEM;
1690 		goto out;
1691 	}
1692 
1693 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1694 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1695 	if (!c->write_reserve_buf) {
1696 		err = -ENOMEM;
1697 		goto out;
1698 	}
1699 
1700 	err = ubifs_lpt_init(c, 0, 1);
1701 	if (err)
1702 		goto out;
1703 
1704 	/* Create background thread */
1705 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1706 	if (IS_ERR(c->bgt)) {
1707 		err = PTR_ERR(c->bgt);
1708 		c->bgt = NULL;
1709 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1710 			  c->bgt_name, err);
1711 		goto out;
1712 	}
1713 	wake_up_process(c->bgt);
1714 
1715 	c->orph_buf = vmalloc(c->leb_size);
1716 	if (!c->orph_buf) {
1717 		err = -ENOMEM;
1718 		goto out;
1719 	}
1720 
1721 	/* Check for enough log space */
1722 	lnum = c->lhead_lnum + 1;
1723 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1724 		lnum = UBIFS_LOG_LNUM;
1725 	if (lnum == c->ltail_lnum) {
1726 		err = ubifs_consolidate_log(c);
1727 		if (err)
1728 			goto out;
1729 	}
1730 
1731 	if (c->need_recovery) {
1732 		err = ubifs_rcvry_gc_commit(c);
1733 		if (err)
1734 			goto out;
1735 
1736 		if (ubifs_authenticated(c)) {
1737 			err = ubifs_recover_size(c, false);
1738 			if (err)
1739 				goto out;
1740 		}
1741 	} else {
1742 		err = ubifs_leb_unmap(c, c->gc_lnum);
1743 	}
1744 	if (err)
1745 		goto out;
1746 
1747 	dbg_gen("re-mounted read-write");
1748 	c->remounting_rw = 0;
1749 
1750 	if (c->need_recovery) {
1751 		c->need_recovery = 0;
1752 		ubifs_msg(c, "deferred recovery completed");
1753 	} else {
1754 		/*
1755 		 * Do not run the debugging space check if the were doing
1756 		 * recovery, because when we saved the information we had the
1757 		 * file-system in a state where the TNC and lprops has been
1758 		 * modified in memory, but all the I/O operations (including a
1759 		 * commit) were deferred. So the file-system was in
1760 		 * "non-committed" state. Now the file-system is in committed
1761 		 * state, and of course the amount of free space will change
1762 		 * because, for example, the old index size was imprecise.
1763 		 */
1764 		err = dbg_check_space_info(c);
1765 	}
1766 
1767 	mutex_unlock(&c->umount_mutex);
1768 	return err;
1769 
1770 out:
1771 	c->ro_mount = 1;
1772 	vfree(c->orph_buf);
1773 	c->orph_buf = NULL;
1774 	if (c->bgt) {
1775 		kthread_stop(c->bgt);
1776 		c->bgt = NULL;
1777 	}
1778 	free_wbufs(c);
1779 	kfree(c->write_reserve_buf);
1780 	c->write_reserve_buf = NULL;
1781 	vfree(c->ileb_buf);
1782 	c->ileb_buf = NULL;
1783 	ubifs_lpt_free(c, 1);
1784 	c->remounting_rw = 0;
1785 	mutex_unlock(&c->umount_mutex);
1786 	return err;
1787 }
1788 
1789 /**
1790  * ubifs_remount_ro - re-mount in read-only mode.
1791  * @c: UBIFS file-system description object
1792  *
1793  * We assume VFS has stopped writing. Possibly the background thread could be
1794  * running a commit, however kthread_stop will wait in that case.
1795  */
1796 static void ubifs_remount_ro(struct ubifs_info *c)
1797 {
1798 	int i, err;
1799 
1800 	ubifs_assert(c, !c->need_recovery);
1801 	ubifs_assert(c, !c->ro_mount);
1802 
1803 	mutex_lock(&c->umount_mutex);
1804 	if (c->bgt) {
1805 		kthread_stop(c->bgt);
1806 		c->bgt = NULL;
1807 	}
1808 
1809 	dbg_save_space_info(c);
1810 
1811 	for (i = 0; i < c->jhead_cnt; i++) {
1812 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1813 		if (err)
1814 			ubifs_ro_mode(c, err);
1815 	}
1816 
1817 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1818 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1819 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1820 	err = ubifs_write_master(c);
1821 	if (err)
1822 		ubifs_ro_mode(c, err);
1823 
1824 	vfree(c->orph_buf);
1825 	c->orph_buf = NULL;
1826 	kfree(c->write_reserve_buf);
1827 	c->write_reserve_buf = NULL;
1828 	vfree(c->ileb_buf);
1829 	c->ileb_buf = NULL;
1830 	ubifs_lpt_free(c, 1);
1831 	c->ro_mount = 1;
1832 	err = dbg_check_space_info(c);
1833 	if (err)
1834 		ubifs_ro_mode(c, err);
1835 	mutex_unlock(&c->umount_mutex);
1836 }
1837 
1838 static void ubifs_put_super(struct super_block *sb)
1839 {
1840 	int i;
1841 	struct ubifs_info *c = sb->s_fs_info;
1842 
1843 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1844 
1845 	/*
1846 	 * The following asserts are only valid if there has not been a failure
1847 	 * of the media. For example, there will be dirty inodes if we failed
1848 	 * to write them back because of I/O errors.
1849 	 */
1850 	if (!c->ro_error) {
1851 		ubifs_assert(c, c->bi.idx_growth == 0);
1852 		ubifs_assert(c, c->bi.dd_growth == 0);
1853 		ubifs_assert(c, c->bi.data_growth == 0);
1854 	}
1855 
1856 	/*
1857 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1858 	 * and file system un-mount. Namely, it prevents the shrinker from
1859 	 * picking this superblock for shrinking - it will be just skipped if
1860 	 * the mutex is locked.
1861 	 */
1862 	mutex_lock(&c->umount_mutex);
1863 	if (!c->ro_mount) {
1864 		/*
1865 		 * First of all kill the background thread to make sure it does
1866 		 * not interfere with un-mounting and freeing resources.
1867 		 */
1868 		if (c->bgt) {
1869 			kthread_stop(c->bgt);
1870 			c->bgt = NULL;
1871 		}
1872 
1873 		/*
1874 		 * On fatal errors c->ro_error is set to 1, in which case we do
1875 		 * not write the master node.
1876 		 */
1877 		if (!c->ro_error) {
1878 			int err;
1879 
1880 			/* Synchronize write-buffers */
1881 			for (i = 0; i < c->jhead_cnt; i++) {
1882 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1883 				if (err)
1884 					ubifs_ro_mode(c, err);
1885 			}
1886 
1887 			/*
1888 			 * We are being cleanly unmounted which means the
1889 			 * orphans were killed - indicate this in the master
1890 			 * node. Also save the reserved GC LEB number.
1891 			 */
1892 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1893 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1894 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1895 			err = ubifs_write_master(c);
1896 			if (err)
1897 				/*
1898 				 * Recovery will attempt to fix the master area
1899 				 * next mount, so we just print a message and
1900 				 * continue to unmount normally.
1901 				 */
1902 				ubifs_err(c, "failed to write master node, error %d",
1903 					  err);
1904 		} else {
1905 			for (i = 0; i < c->jhead_cnt; i++)
1906 				/* Make sure write-buffer timers are canceled */
1907 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1908 		}
1909 	}
1910 
1911 	ubifs_umount(c);
1912 	ubi_close_volume(c->ubi);
1913 	mutex_unlock(&c->umount_mutex);
1914 }
1915 
1916 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1917 {
1918 	int err;
1919 	struct ubifs_info *c = sb->s_fs_info;
1920 
1921 	sync_filesystem(sb);
1922 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1923 
1924 	err = ubifs_parse_options(c, data, 1);
1925 	if (err) {
1926 		ubifs_err(c, "invalid or unknown remount parameter");
1927 		return err;
1928 	}
1929 
1930 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1931 		if (c->ro_error) {
1932 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1933 			return -EROFS;
1934 		}
1935 		if (c->ro_media) {
1936 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1937 			return -EROFS;
1938 		}
1939 		err = ubifs_remount_rw(c);
1940 		if (err)
1941 			return err;
1942 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1943 		if (c->ro_error) {
1944 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1945 			return -EROFS;
1946 		}
1947 		ubifs_remount_ro(c);
1948 	}
1949 
1950 	if (c->bulk_read == 1)
1951 		bu_init(c);
1952 	else {
1953 		dbg_gen("disable bulk-read");
1954 		mutex_lock(&c->bu_mutex);
1955 		kfree(c->bu.buf);
1956 		c->bu.buf = NULL;
1957 		mutex_unlock(&c->bu_mutex);
1958 	}
1959 
1960 	if (!c->need_recovery)
1961 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1962 
1963 	return 0;
1964 }
1965 
1966 const struct super_operations ubifs_super_operations = {
1967 	.alloc_inode   = ubifs_alloc_inode,
1968 	.free_inode    = ubifs_free_inode,
1969 	.put_super     = ubifs_put_super,
1970 	.write_inode   = ubifs_write_inode,
1971 	.evict_inode   = ubifs_evict_inode,
1972 	.statfs        = ubifs_statfs,
1973 	.dirty_inode   = ubifs_dirty_inode,
1974 	.remount_fs    = ubifs_remount_fs,
1975 	.show_options  = ubifs_show_options,
1976 	.sync_fs       = ubifs_sync_fs,
1977 };
1978 
1979 /**
1980  * open_ubi - parse UBI device name string and open the UBI device.
1981  * @name: UBI volume name
1982  * @mode: UBI volume open mode
1983  *
1984  * The primary method of mounting UBIFS is by specifying the UBI volume
1985  * character device node path. However, UBIFS may also be mounted withoug any
1986  * character device node using one of the following methods:
1987  *
1988  * o ubiX_Y    - mount UBI device number X, volume Y;
1989  * o ubiY      - mount UBI device number 0, volume Y;
1990  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1991  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1992  *
1993  * Alternative '!' separator may be used instead of ':' (because some shells
1994  * like busybox may interpret ':' as an NFS host name separator). This function
1995  * returns UBI volume description object in case of success and a negative
1996  * error code in case of failure.
1997  */
1998 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1999 {
2000 	struct ubi_volume_desc *ubi;
2001 	int dev, vol;
2002 	char *endptr;
2003 
2004 	if (!name || !*name)
2005 		return ERR_PTR(-EINVAL);
2006 
2007 	/* First, try to open using the device node path method */
2008 	ubi = ubi_open_volume_path(name, mode);
2009 	if (!IS_ERR(ubi))
2010 		return ubi;
2011 
2012 	/* Try the "nodev" method */
2013 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2014 		return ERR_PTR(-EINVAL);
2015 
2016 	/* ubi:NAME method */
2017 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2018 		return ubi_open_volume_nm(0, name + 4, mode);
2019 
2020 	if (!isdigit(name[3]))
2021 		return ERR_PTR(-EINVAL);
2022 
2023 	dev = simple_strtoul(name + 3, &endptr, 0);
2024 
2025 	/* ubiY method */
2026 	if (*endptr == '\0')
2027 		return ubi_open_volume(0, dev, mode);
2028 
2029 	/* ubiX_Y method */
2030 	if (*endptr == '_' && isdigit(endptr[1])) {
2031 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2032 		if (*endptr != '\0')
2033 			return ERR_PTR(-EINVAL);
2034 		return ubi_open_volume(dev, vol, mode);
2035 	}
2036 
2037 	/* ubiX:NAME method */
2038 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2039 		return ubi_open_volume_nm(dev, ++endptr, mode);
2040 
2041 	return ERR_PTR(-EINVAL);
2042 }
2043 
2044 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2045 {
2046 	struct ubifs_info *c;
2047 
2048 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2049 	if (c) {
2050 		spin_lock_init(&c->cnt_lock);
2051 		spin_lock_init(&c->cs_lock);
2052 		spin_lock_init(&c->buds_lock);
2053 		spin_lock_init(&c->space_lock);
2054 		spin_lock_init(&c->orphan_lock);
2055 		init_rwsem(&c->commit_sem);
2056 		mutex_init(&c->lp_mutex);
2057 		mutex_init(&c->tnc_mutex);
2058 		mutex_init(&c->log_mutex);
2059 		mutex_init(&c->umount_mutex);
2060 		mutex_init(&c->bu_mutex);
2061 		mutex_init(&c->write_reserve_mutex);
2062 		init_waitqueue_head(&c->cmt_wq);
2063 		c->buds = RB_ROOT;
2064 		c->old_idx = RB_ROOT;
2065 		c->size_tree = RB_ROOT;
2066 		c->orph_tree = RB_ROOT;
2067 		INIT_LIST_HEAD(&c->infos_list);
2068 		INIT_LIST_HEAD(&c->idx_gc);
2069 		INIT_LIST_HEAD(&c->replay_list);
2070 		INIT_LIST_HEAD(&c->replay_buds);
2071 		INIT_LIST_HEAD(&c->uncat_list);
2072 		INIT_LIST_HEAD(&c->empty_list);
2073 		INIT_LIST_HEAD(&c->freeable_list);
2074 		INIT_LIST_HEAD(&c->frdi_idx_list);
2075 		INIT_LIST_HEAD(&c->unclean_leb_list);
2076 		INIT_LIST_HEAD(&c->old_buds);
2077 		INIT_LIST_HEAD(&c->orph_list);
2078 		INIT_LIST_HEAD(&c->orph_new);
2079 		c->no_chk_data_crc = 1;
2080 		c->assert_action = ASSACT_RO;
2081 
2082 		c->highest_inum = UBIFS_FIRST_INO;
2083 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2084 
2085 		ubi_get_volume_info(ubi, &c->vi);
2086 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2087 	}
2088 	return c;
2089 }
2090 
2091 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2092 {
2093 	struct ubifs_info *c = sb->s_fs_info;
2094 	struct inode *root;
2095 	int err;
2096 
2097 	c->vfs_sb = sb;
2098 	/* Re-open the UBI device in read-write mode */
2099 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2100 	if (IS_ERR(c->ubi)) {
2101 		err = PTR_ERR(c->ubi);
2102 		goto out;
2103 	}
2104 
2105 	err = ubifs_parse_options(c, data, 0);
2106 	if (err)
2107 		goto out_close;
2108 
2109 	/*
2110 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2111 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2112 	 * which means the user would have to wait not just for their own I/O
2113 	 * but the read-ahead I/O as well i.e. completely pointless.
2114 	 *
2115 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2116 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2117 	 * writeback happening.
2118 	 */
2119 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2120 				   c->vi.vol_id);
2121 	if (err)
2122 		goto out_close;
2123 
2124 	sb->s_fs_info = c;
2125 	sb->s_magic = UBIFS_SUPER_MAGIC;
2126 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2127 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2128 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2129 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2130 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2131 	sb->s_op = &ubifs_super_operations;
2132 #ifdef CONFIG_UBIFS_FS_XATTR
2133 	sb->s_xattr = ubifs_xattr_handlers;
2134 #endif
2135 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2136 
2137 	mutex_lock(&c->umount_mutex);
2138 	err = mount_ubifs(c);
2139 	if (err) {
2140 		ubifs_assert(c, err < 0);
2141 		goto out_unlock;
2142 	}
2143 
2144 	/* Read the root inode */
2145 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2146 	if (IS_ERR(root)) {
2147 		err = PTR_ERR(root);
2148 		goto out_umount;
2149 	}
2150 
2151 	sb->s_root = d_make_root(root);
2152 	if (!sb->s_root) {
2153 		err = -ENOMEM;
2154 		goto out_umount;
2155 	}
2156 
2157 	mutex_unlock(&c->umount_mutex);
2158 	return 0;
2159 
2160 out_umount:
2161 	ubifs_umount(c);
2162 out_unlock:
2163 	mutex_unlock(&c->umount_mutex);
2164 out_close:
2165 	ubi_close_volume(c->ubi);
2166 out:
2167 	return err;
2168 }
2169 
2170 static int sb_test(struct super_block *sb, void *data)
2171 {
2172 	struct ubifs_info *c1 = data;
2173 	struct ubifs_info *c = sb->s_fs_info;
2174 
2175 	return c->vi.cdev == c1->vi.cdev;
2176 }
2177 
2178 static int sb_set(struct super_block *sb, void *data)
2179 {
2180 	sb->s_fs_info = data;
2181 	return set_anon_super(sb, NULL);
2182 }
2183 
2184 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2185 			const char *name, void *data)
2186 {
2187 	struct ubi_volume_desc *ubi;
2188 	struct ubifs_info *c;
2189 	struct super_block *sb;
2190 	int err;
2191 
2192 	dbg_gen("name %s, flags %#x", name, flags);
2193 
2194 	/*
2195 	 * Get UBI device number and volume ID. Mount it read-only so far
2196 	 * because this might be a new mount point, and UBI allows only one
2197 	 * read-write user at a time.
2198 	 */
2199 	ubi = open_ubi(name, UBI_READONLY);
2200 	if (IS_ERR(ubi)) {
2201 		if (!(flags & SB_SILENT))
2202 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2203 			       current->pid, name, (int)PTR_ERR(ubi));
2204 		return ERR_CAST(ubi);
2205 	}
2206 
2207 	c = alloc_ubifs_info(ubi);
2208 	if (!c) {
2209 		err = -ENOMEM;
2210 		goto out_close;
2211 	}
2212 
2213 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2214 
2215 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2216 	if (IS_ERR(sb)) {
2217 		err = PTR_ERR(sb);
2218 		kfree(c);
2219 		goto out_close;
2220 	}
2221 
2222 	if (sb->s_root) {
2223 		struct ubifs_info *c1 = sb->s_fs_info;
2224 		kfree(c);
2225 		/* A new mount point for already mounted UBIFS */
2226 		dbg_gen("this ubi volume is already mounted");
2227 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2228 			err = -EBUSY;
2229 			goto out_deact;
2230 		}
2231 	} else {
2232 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2233 		if (err)
2234 			goto out_deact;
2235 		/* We do not support atime */
2236 		sb->s_flags |= SB_ACTIVE;
2237 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2238 			ubifs_msg(c, "full atime support is enabled.");
2239 		else
2240 			sb->s_flags |= SB_NOATIME;
2241 	}
2242 
2243 	/* 'fill_super()' opens ubi again so we must close it here */
2244 	ubi_close_volume(ubi);
2245 
2246 	return dget(sb->s_root);
2247 
2248 out_deact:
2249 	deactivate_locked_super(sb);
2250 out_close:
2251 	ubi_close_volume(ubi);
2252 	return ERR_PTR(err);
2253 }
2254 
2255 static void kill_ubifs_super(struct super_block *s)
2256 {
2257 	struct ubifs_info *c = s->s_fs_info;
2258 	kill_anon_super(s);
2259 	kfree(c);
2260 }
2261 
2262 static struct file_system_type ubifs_fs_type = {
2263 	.name    = "ubifs",
2264 	.owner   = THIS_MODULE,
2265 	.mount   = ubifs_mount,
2266 	.kill_sb = kill_ubifs_super,
2267 };
2268 MODULE_ALIAS_FS("ubifs");
2269 
2270 /*
2271  * Inode slab cache constructor.
2272  */
2273 static void inode_slab_ctor(void *obj)
2274 {
2275 	struct ubifs_inode *ui = obj;
2276 	inode_init_once(&ui->vfs_inode);
2277 }
2278 
2279 static int __init ubifs_init(void)
2280 {
2281 	int err;
2282 
2283 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2284 
2285 	/* Make sure node sizes are 8-byte aligned */
2286 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2287 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2288 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2289 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2290 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2291 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2292 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2293 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2294 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2295 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2296 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2297 
2298 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2299 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2300 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2301 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2302 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2303 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2304 
2305 	/* Check min. node size */
2306 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2307 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2308 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2309 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2310 
2311 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2312 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2313 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2314 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2315 
2316 	/* Defined node sizes */
2317 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2318 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2319 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2320 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2321 
2322 	/*
2323 	 * We use 2 bit wide bit-fields to store compression type, which should
2324 	 * be amended if more compressors are added. The bit-fields are:
2325 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2326 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2327 	 */
2328 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2329 
2330 	/*
2331 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2332 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2333 	 */
2334 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2335 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2336 		       current->pid, (unsigned int)PAGE_SIZE);
2337 		return -EINVAL;
2338 	}
2339 
2340 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2341 				sizeof(struct ubifs_inode), 0,
2342 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2343 				SLAB_ACCOUNT, &inode_slab_ctor);
2344 	if (!ubifs_inode_slab)
2345 		return -ENOMEM;
2346 
2347 	err = register_shrinker(&ubifs_shrinker_info);
2348 	if (err)
2349 		goto out_slab;
2350 
2351 	err = ubifs_compressors_init();
2352 	if (err)
2353 		goto out_shrinker;
2354 
2355 	err = dbg_debugfs_init();
2356 	if (err)
2357 		goto out_compr;
2358 
2359 	err = register_filesystem(&ubifs_fs_type);
2360 	if (err) {
2361 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2362 		       current->pid, err);
2363 		goto out_dbg;
2364 	}
2365 	return 0;
2366 
2367 out_dbg:
2368 	dbg_debugfs_exit();
2369 out_compr:
2370 	ubifs_compressors_exit();
2371 out_shrinker:
2372 	unregister_shrinker(&ubifs_shrinker_info);
2373 out_slab:
2374 	kmem_cache_destroy(ubifs_inode_slab);
2375 	return err;
2376 }
2377 /* late_initcall to let compressors initialize first */
2378 late_initcall(ubifs_init);
2379 
2380 static void __exit ubifs_exit(void)
2381 {
2382 	WARN_ON(!list_empty(&ubifs_infos));
2383 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2384 
2385 	dbg_debugfs_exit();
2386 	ubifs_compressors_exit();
2387 	unregister_shrinker(&ubifs_shrinker_info);
2388 
2389 	/*
2390 	 * Make sure all delayed rcu free inodes are flushed before we
2391 	 * destroy cache.
2392 	 */
2393 	rcu_barrier();
2394 	kmem_cache_destroy(ubifs_inode_slab);
2395 	unregister_filesystem(&ubifs_fs_type);
2396 }
2397 module_exit(ubifs_exit);
2398 
2399 MODULE_LICENSE("GPL");
2400 MODULE_VERSION(__stringify(UBIFS_VERSION));
2401 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2402 MODULE_DESCRIPTION("UBIFS - UBI File System");
2403