xref: /openbmc/linux/fs/ubifs/super.c (revision b627b4ed)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.shrink = ubifs_shrinker,
53 	.seeks = DEFAULT_SEEKS,
54 };
55 
56 /**
57  * validate_inode - validate inode.
58  * @c: UBIFS file-system description object
59  * @inode: the inode to validate
60  *
61  * This is a helper function for 'ubifs_iget()' which validates various fields
62  * of a newly built inode to make sure they contain sane values and prevent
63  * possible vulnerabilities. Returns zero if the inode is all right and
64  * a non-zero error code if not.
65  */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 	int err;
69 	const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71 	if (inode->i_size > c->max_inode_sz) {
72 		ubifs_err("inode is too large (%lld)",
73 			  (long long)inode->i_size);
74 		return 1;
75 	}
76 
77 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 		ubifs_err("unknown compression type %d", ui->compr_type);
79 		return 2;
80 	}
81 
82 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 		return 3;
84 
85 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 		return 4;
87 
88 	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89 		return 5;
90 
91 	if (!ubifs_compr_present(ui->compr_type)) {
92 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 			   "compiled in", inode->i_ino,
94 			   ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir_size(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	inode->i_nlink = le32_to_cpu(ino->nlink);
133 	inode->i_uid   = le32_to_cpu(ino->uid);
134 	inode->i_gid   = le32_to_cpu(ino->gid);
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	/* Disable read-ahead */
160 	inode->i_mapping->backing_dev_info = &c->bdi;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 	dbg_dump_node(c, ino);
250 	dbg_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_destroy_inode(struct inode *inode)
276 {
277 	struct ubifs_inode *ui = ubifs_inode(inode);
278 
279 	kfree(ui->data);
280 	kmem_cache_free(ubifs_inode_slab, inode);
281 }
282 
283 /*
284  * Note, Linux write-back code calls this without 'i_mutex'.
285  */
286 static int ubifs_write_inode(struct inode *inode, int wait)
287 {
288 	int err = 0;
289 	struct ubifs_info *c = inode->i_sb->s_fs_info;
290 	struct ubifs_inode *ui = ubifs_inode(inode);
291 
292 	ubifs_assert(!ui->xattr);
293 	if (is_bad_inode(inode))
294 		return 0;
295 
296 	mutex_lock(&ui->ui_mutex);
297 	/*
298 	 * Due to races between write-back forced by budgeting
299 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 	 * have already been synchronized, do not do this again. This might
301 	 * also happen if it was synchronized in an VFS operation, e.g.
302 	 * 'ubifs_link()'.
303 	 */
304 	if (!ui->dirty) {
305 		mutex_unlock(&ui->ui_mutex);
306 		return 0;
307 	}
308 
309 	/*
310 	 * As an optimization, do not write orphan inodes to the media just
311 	 * because this is not needed.
312 	 */
313 	dbg_gen("inode %lu, mode %#x, nlink %u",
314 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315 	if (inode->i_nlink) {
316 		err = ubifs_jnl_write_inode(c, inode);
317 		if (err)
318 			ubifs_err("can't write inode %lu, error %d",
319 				  inode->i_ino, err);
320 	}
321 
322 	ui->dirty = 0;
323 	mutex_unlock(&ui->ui_mutex);
324 	ubifs_release_dirty_inode_budget(c, ui);
325 	return err;
326 }
327 
328 static void ubifs_delete_inode(struct inode *inode)
329 {
330 	int err;
331 	struct ubifs_info *c = inode->i_sb->s_fs_info;
332 	struct ubifs_inode *ui = ubifs_inode(inode);
333 
334 	if (ui->xattr)
335 		/*
336 		 * Extended attribute inode deletions are fully handled in
337 		 * 'ubifs_removexattr()'. These inodes are special and have
338 		 * limited usage, so there is nothing to do here.
339 		 */
340 		goto out;
341 
342 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
343 	ubifs_assert(!atomic_read(&inode->i_count));
344 	ubifs_assert(inode->i_nlink == 0);
345 
346 	truncate_inode_pages(&inode->i_data, 0);
347 	if (is_bad_inode(inode))
348 		goto out;
349 
350 	ui->ui_size = inode->i_size = 0;
351 	err = ubifs_jnl_delete_inode(c, inode);
352 	if (err)
353 		/*
354 		 * Worst case we have a lost orphan inode wasting space, so a
355 		 * simple error message is OK here.
356 		 */
357 		ubifs_err("can't delete inode %lu, error %d",
358 			  inode->i_ino, err);
359 
360 out:
361 	if (ui->dirty)
362 		ubifs_release_dirty_inode_budget(c, ui);
363 	clear_inode(inode);
364 }
365 
366 static void ubifs_dirty_inode(struct inode *inode)
367 {
368 	struct ubifs_inode *ui = ubifs_inode(inode);
369 
370 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
371 	if (!ui->dirty) {
372 		ui->dirty = 1;
373 		dbg_gen("inode %lu",  inode->i_ino);
374 	}
375 }
376 
377 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
378 {
379 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
380 	unsigned long long free;
381 	__le32 *uuid = (__le32 *)c->uuid;
382 
383 	free = ubifs_get_free_space(c);
384 	dbg_gen("free space %lld bytes (%lld blocks)",
385 		free, free >> UBIFS_BLOCK_SHIFT);
386 
387 	buf->f_type = UBIFS_SUPER_MAGIC;
388 	buf->f_bsize = UBIFS_BLOCK_SIZE;
389 	buf->f_blocks = c->block_cnt;
390 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
391 	if (free > c->report_rp_size)
392 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
393 	else
394 		buf->f_bavail = 0;
395 	buf->f_files = 0;
396 	buf->f_ffree = 0;
397 	buf->f_namelen = UBIFS_MAX_NLEN;
398 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
399 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
400 	ubifs_assert(buf->f_bfree <= c->block_cnt);
401 	return 0;
402 }
403 
404 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
405 {
406 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
407 
408 	if (c->mount_opts.unmount_mode == 2)
409 		seq_printf(s, ",fast_unmount");
410 	else if (c->mount_opts.unmount_mode == 1)
411 		seq_printf(s, ",norm_unmount");
412 
413 	if (c->mount_opts.bulk_read == 2)
414 		seq_printf(s, ",bulk_read");
415 	else if (c->mount_opts.bulk_read == 1)
416 		seq_printf(s, ",no_bulk_read");
417 
418 	if (c->mount_opts.chk_data_crc == 2)
419 		seq_printf(s, ",chk_data_crc");
420 	else if (c->mount_opts.chk_data_crc == 1)
421 		seq_printf(s, ",no_chk_data_crc");
422 
423 	if (c->mount_opts.override_compr) {
424 		seq_printf(s, ",compr=%s",
425 			   ubifs_compr_name(c->mount_opts.compr_type));
426 	}
427 
428 	return 0;
429 }
430 
431 static int ubifs_sync_fs(struct super_block *sb, int wait)
432 {
433 	int i, err;
434 	struct ubifs_info *c = sb->s_fs_info;
435 	struct writeback_control wbc = {
436 		.sync_mode   = WB_SYNC_ALL,
437 		.range_start = 0,
438 		.range_end   = LLONG_MAX,
439 		.nr_to_write = LONG_MAX,
440 	};
441 
442 	/*
443 	 * Zero @wait is just an advisory thing to help the file system shove
444 	 * lots of data into the queues, and there will be the second
445 	 * '->sync_fs()' call, with non-zero @wait.
446 	 */
447 	if (!wait)
448 		return 0;
449 
450 	if (sb->s_flags & MS_RDONLY)
451 		return 0;
452 
453 	/*
454 	 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
455 	 * pages, so synchronize them first, then commit the journal. Strictly
456 	 * speaking, it is not necessary to commit the journal here,
457 	 * synchronizing write-buffers would be enough. But committing makes
458 	 * UBIFS free space predictions much more accurate, so we want to let
459 	 * the user be able to get more accurate results of 'statfs()' after
460 	 * they synchronize the file system.
461 	 */
462 	generic_sync_sb_inodes(sb, &wbc);
463 
464 	/*
465 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
466 	 * do this if it waits for an already running commit.
467 	 */
468 	for (i = 0; i < c->jhead_cnt; i++) {
469 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
470 		if (err)
471 			return err;
472 	}
473 
474 	err = ubifs_run_commit(c);
475 	if (err)
476 		return err;
477 
478 	return ubi_sync(c->vi.ubi_num);
479 }
480 
481 /**
482  * init_constants_early - initialize UBIFS constants.
483  * @c: UBIFS file-system description object
484  *
485  * This function initialize UBIFS constants which do not need the superblock to
486  * be read. It also checks that the UBI volume satisfies basic UBIFS
487  * requirements. Returns zero in case of success and a negative error code in
488  * case of failure.
489  */
490 static int init_constants_early(struct ubifs_info *c)
491 {
492 	if (c->vi.corrupted) {
493 		ubifs_warn("UBI volume is corrupted - read-only mode");
494 		c->ro_media = 1;
495 	}
496 
497 	if (c->di.ro_mode) {
498 		ubifs_msg("read-only UBI device");
499 		c->ro_media = 1;
500 	}
501 
502 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
503 		ubifs_msg("static UBI volume - read-only mode");
504 		c->ro_media = 1;
505 	}
506 
507 	c->leb_cnt = c->vi.size;
508 	c->leb_size = c->vi.usable_leb_size;
509 	c->half_leb_size = c->leb_size / 2;
510 	c->min_io_size = c->di.min_io_size;
511 	c->min_io_shift = fls(c->min_io_size) - 1;
512 
513 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
514 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
515 			  c->leb_size, UBIFS_MIN_LEB_SZ);
516 		return -EINVAL;
517 	}
518 
519 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
520 		ubifs_err("too few LEBs (%d), min. is %d",
521 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
522 		return -EINVAL;
523 	}
524 
525 	if (!is_power_of_2(c->min_io_size)) {
526 		ubifs_err("bad min. I/O size %d", c->min_io_size);
527 		return -EINVAL;
528 	}
529 
530 	/*
531 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
532 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
533 	 * less than 8.
534 	 */
535 	if (c->min_io_size < 8) {
536 		c->min_io_size = 8;
537 		c->min_io_shift = 3;
538 	}
539 
540 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
541 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
542 
543 	/*
544 	 * Initialize node length ranges which are mostly needed for node
545 	 * length validation.
546 	 */
547 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
548 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
549 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
550 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
551 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
552 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
553 
554 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
555 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
556 	c->ranges[UBIFS_ORPH_NODE].min_len =
557 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
558 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
559 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
560 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
561 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
562 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
563 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
564 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
565 	/*
566 	 * Minimum indexing node size is amended later when superblock is
567 	 * read and the key length is known.
568 	 */
569 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
570 	/*
571 	 * Maximum indexing node size is amended later when superblock is
572 	 * read and the fanout is known.
573 	 */
574 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
575 
576 	/*
577 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
578 	 * about these values.
579 	 */
580 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
581 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
582 
583 	/*
584 	 * Calculate how many bytes would be wasted at the end of LEB if it was
585 	 * fully filled with data nodes of maximum size. This is used in
586 	 * calculations when reporting free space.
587 	 */
588 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
589 
590 	/* Buffer size for bulk-reads */
591 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
592 	if (c->max_bu_buf_len > c->leb_size)
593 		c->max_bu_buf_len = c->leb_size;
594 	return 0;
595 }
596 
597 /**
598  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
599  * @c: UBIFS file-system description object
600  * @lnum: LEB the write-buffer was synchronized to
601  * @free: how many free bytes left in this LEB
602  * @pad: how many bytes were padded
603  *
604  * This is a callback function which is called by the I/O unit when the
605  * write-buffer is synchronized. We need this to correctly maintain space
606  * accounting in bud logical eraseblocks. This function returns zero in case of
607  * success and a negative error code in case of failure.
608  *
609  * This function actually belongs to the journal, but we keep it here because
610  * we want to keep it static.
611  */
612 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
613 {
614 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
615 }
616 
617 /*
618  * init_constants_sb - initialize UBIFS constants.
619  * @c: UBIFS file-system description object
620  *
621  * This is a helper function which initializes various UBIFS constants after
622  * the superblock has been read. It also checks various UBIFS parameters and
623  * makes sure they are all right. Returns zero in case of success and a
624  * negative error code in case of failure.
625  */
626 static int init_constants_sb(struct ubifs_info *c)
627 {
628 	int tmp, err;
629 	long long tmp64;
630 
631 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
632 	c->max_znode_sz = sizeof(struct ubifs_znode) +
633 				c->fanout * sizeof(struct ubifs_zbranch);
634 
635 	tmp = ubifs_idx_node_sz(c, 1);
636 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
637 	c->min_idx_node_sz = ALIGN(tmp, 8);
638 
639 	tmp = ubifs_idx_node_sz(c, c->fanout);
640 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
641 	c->max_idx_node_sz = ALIGN(tmp, 8);
642 
643 	/* Make sure LEB size is large enough to fit full commit */
644 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
645 	tmp = ALIGN(tmp, c->min_io_size);
646 	if (tmp > c->leb_size) {
647 		dbg_err("too small LEB size %d, at least %d needed",
648 			c->leb_size, tmp);
649 		return -EINVAL;
650 	}
651 
652 	/*
653 	 * Make sure that the log is large enough to fit reference nodes for
654 	 * all buds plus one reserved LEB.
655 	 */
656 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
657 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
658 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
659 	tmp /= c->leb_size;
660 	tmp += 1;
661 	if (c->log_lebs < tmp) {
662 		dbg_err("too small log %d LEBs, required min. %d LEBs",
663 			c->log_lebs, tmp);
664 		return -EINVAL;
665 	}
666 
667 	/*
668 	 * When budgeting we assume worst-case scenarios when the pages are not
669 	 * be compressed and direntries are of the maximum size.
670 	 *
671 	 * Note, data, which may be stored in inodes is budgeted separately, so
672 	 * it is not included into 'c->inode_budget'.
673 	 */
674 	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
675 	c->inode_budget = UBIFS_INO_NODE_SZ;
676 	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
677 
678 	/*
679 	 * When the amount of flash space used by buds becomes
680 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
681 	 * The writers are unblocked when the commit is finished. To avoid
682 	 * writers to be blocked UBIFS initiates background commit in advance,
683 	 * when number of bud bytes becomes above the limit defined below.
684 	 */
685 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
686 
687 	/*
688 	 * Ensure minimum journal size. All the bytes in the journal heads are
689 	 * considered to be used, when calculating the current journal usage.
690 	 * Consequently, if the journal is too small, UBIFS will treat it as
691 	 * always full.
692 	 */
693 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
694 	if (c->bg_bud_bytes < tmp64)
695 		c->bg_bud_bytes = tmp64;
696 	if (c->max_bud_bytes < tmp64 + c->leb_size)
697 		c->max_bud_bytes = tmp64 + c->leb_size;
698 
699 	err = ubifs_calc_lpt_geom(c);
700 	if (err)
701 		return err;
702 
703 	/* Initialize effective LEB size used in budgeting calculations */
704 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
705 	return 0;
706 }
707 
708 /*
709  * init_constants_master - initialize UBIFS constants.
710  * @c: UBIFS file-system description object
711  *
712  * This is a helper function which initializes various UBIFS constants after
713  * the master node has been read. It also checks various UBIFS parameters and
714  * makes sure they are all right.
715  */
716 static void init_constants_master(struct ubifs_info *c)
717 {
718 	long long tmp64;
719 
720 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
721 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
722 
723 	/*
724 	 * Calculate total amount of FS blocks. This number is not used
725 	 * internally because it does not make much sense for UBIFS, but it is
726 	 * necessary to report something for the 'statfs()' call.
727 	 *
728 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
729 	 * deletions, minimum LEBs for the index, and assume only one journal
730 	 * head is available.
731 	 */
732 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
733 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
734 	tmp64 = ubifs_reported_space(c, tmp64);
735 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
736 }
737 
738 /**
739  * take_gc_lnum - reserve GC LEB.
740  * @c: UBIFS file-system description object
741  *
742  * This function ensures that the LEB reserved for garbage collection is marked
743  * as "taken" in lprops. We also have to set free space to LEB size and dirty
744  * space to zero, because lprops may contain out-of-date information if the
745  * file-system was un-mounted before it has been committed. This function
746  * returns zero in case of success and a negative error code in case of
747  * failure.
748  */
749 static int take_gc_lnum(struct ubifs_info *c)
750 {
751 	int err;
752 
753 	if (c->gc_lnum == -1) {
754 		ubifs_err("no LEB for GC");
755 		return -EINVAL;
756 	}
757 
758 	/* And we have to tell lprops that this LEB is taken */
759 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
760 				  LPROPS_TAKEN, 0, 0);
761 	return err;
762 }
763 
764 /**
765  * alloc_wbufs - allocate write-buffers.
766  * @c: UBIFS file-system description object
767  *
768  * This helper function allocates and initializes UBIFS write-buffers. Returns
769  * zero in case of success and %-ENOMEM in case of failure.
770  */
771 static int alloc_wbufs(struct ubifs_info *c)
772 {
773 	int i, err;
774 
775 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
776 			   GFP_KERNEL);
777 	if (!c->jheads)
778 		return -ENOMEM;
779 
780 	/* Initialize journal heads */
781 	for (i = 0; i < c->jhead_cnt; i++) {
782 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
783 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
784 		if (err)
785 			return err;
786 
787 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
788 		c->jheads[i].wbuf.jhead = i;
789 	}
790 
791 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
792 	/*
793 	 * Garbage Collector head likely contains long-term data and
794 	 * does not need to be synchronized by timer.
795 	 */
796 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
797 	c->jheads[GCHD].wbuf.timeout = 0;
798 
799 	return 0;
800 }
801 
802 /**
803  * free_wbufs - free write-buffers.
804  * @c: UBIFS file-system description object
805  */
806 static void free_wbufs(struct ubifs_info *c)
807 {
808 	int i;
809 
810 	if (c->jheads) {
811 		for (i = 0; i < c->jhead_cnt; i++) {
812 			kfree(c->jheads[i].wbuf.buf);
813 			kfree(c->jheads[i].wbuf.inodes);
814 		}
815 		kfree(c->jheads);
816 		c->jheads = NULL;
817 	}
818 }
819 
820 /**
821  * free_orphans - free orphans.
822  * @c: UBIFS file-system description object
823  */
824 static void free_orphans(struct ubifs_info *c)
825 {
826 	struct ubifs_orphan *orph;
827 
828 	while (c->orph_dnext) {
829 		orph = c->orph_dnext;
830 		c->orph_dnext = orph->dnext;
831 		list_del(&orph->list);
832 		kfree(orph);
833 	}
834 
835 	while (!list_empty(&c->orph_list)) {
836 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
837 		list_del(&orph->list);
838 		kfree(orph);
839 		dbg_err("orphan list not empty at unmount");
840 	}
841 
842 	vfree(c->orph_buf);
843 	c->orph_buf = NULL;
844 }
845 
846 /**
847  * free_buds - free per-bud objects.
848  * @c: UBIFS file-system description object
849  */
850 static void free_buds(struct ubifs_info *c)
851 {
852 	struct rb_node *this = c->buds.rb_node;
853 	struct ubifs_bud *bud;
854 
855 	while (this) {
856 		if (this->rb_left)
857 			this = this->rb_left;
858 		else if (this->rb_right)
859 			this = this->rb_right;
860 		else {
861 			bud = rb_entry(this, struct ubifs_bud, rb);
862 			this = rb_parent(this);
863 			if (this) {
864 				if (this->rb_left == &bud->rb)
865 					this->rb_left = NULL;
866 				else
867 					this->rb_right = NULL;
868 			}
869 			kfree(bud);
870 		}
871 	}
872 }
873 
874 /**
875  * check_volume_empty - check if the UBI volume is empty.
876  * @c: UBIFS file-system description object
877  *
878  * This function checks if the UBIFS volume is empty by looking if its LEBs are
879  * mapped or not. The result of checking is stored in the @c->empty variable.
880  * Returns zero in case of success and a negative error code in case of
881  * failure.
882  */
883 static int check_volume_empty(struct ubifs_info *c)
884 {
885 	int lnum, err;
886 
887 	c->empty = 1;
888 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
889 		err = ubi_is_mapped(c->ubi, lnum);
890 		if (unlikely(err < 0))
891 			return err;
892 		if (err == 1) {
893 			c->empty = 0;
894 			break;
895 		}
896 
897 		cond_resched();
898 	}
899 
900 	return 0;
901 }
902 
903 /*
904  * UBIFS mount options.
905  *
906  * Opt_fast_unmount: do not run a journal commit before un-mounting
907  * Opt_norm_unmount: run a journal commit before un-mounting
908  * Opt_bulk_read: enable bulk-reads
909  * Opt_no_bulk_read: disable bulk-reads
910  * Opt_chk_data_crc: check CRCs when reading data nodes
911  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
912  * Opt_override_compr: override default compressor
913  * Opt_err: just end of array marker
914  */
915 enum {
916 	Opt_fast_unmount,
917 	Opt_norm_unmount,
918 	Opt_bulk_read,
919 	Opt_no_bulk_read,
920 	Opt_chk_data_crc,
921 	Opt_no_chk_data_crc,
922 	Opt_override_compr,
923 	Opt_err,
924 };
925 
926 static const match_table_t tokens = {
927 	{Opt_fast_unmount, "fast_unmount"},
928 	{Opt_norm_unmount, "norm_unmount"},
929 	{Opt_bulk_read, "bulk_read"},
930 	{Opt_no_bulk_read, "no_bulk_read"},
931 	{Opt_chk_data_crc, "chk_data_crc"},
932 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
933 	{Opt_override_compr, "compr=%s"},
934 	{Opt_err, NULL},
935 };
936 
937 /**
938  * ubifs_parse_options - parse mount parameters.
939  * @c: UBIFS file-system description object
940  * @options: parameters to parse
941  * @is_remount: non-zero if this is FS re-mount
942  *
943  * This function parses UBIFS mount options and returns zero in case success
944  * and a negative error code in case of failure.
945  */
946 static int ubifs_parse_options(struct ubifs_info *c, char *options,
947 			       int is_remount)
948 {
949 	char *p;
950 	substring_t args[MAX_OPT_ARGS];
951 
952 	if (!options)
953 		return 0;
954 
955 	while ((p = strsep(&options, ","))) {
956 		int token;
957 
958 		if (!*p)
959 			continue;
960 
961 		token = match_token(p, tokens, args);
962 		switch (token) {
963 		/*
964 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
965 		 * We accepte them in order to be backware-compatible. But this
966 		 * should be removed at some point.
967 		 */
968 		case Opt_fast_unmount:
969 			c->mount_opts.unmount_mode = 2;
970 			break;
971 		case Opt_norm_unmount:
972 			c->mount_opts.unmount_mode = 1;
973 			break;
974 		case Opt_bulk_read:
975 			c->mount_opts.bulk_read = 2;
976 			c->bulk_read = 1;
977 			break;
978 		case Opt_no_bulk_read:
979 			c->mount_opts.bulk_read = 1;
980 			c->bulk_read = 0;
981 			break;
982 		case Opt_chk_data_crc:
983 			c->mount_opts.chk_data_crc = 2;
984 			c->no_chk_data_crc = 0;
985 			break;
986 		case Opt_no_chk_data_crc:
987 			c->mount_opts.chk_data_crc = 1;
988 			c->no_chk_data_crc = 1;
989 			break;
990 		case Opt_override_compr:
991 		{
992 			char *name = match_strdup(&args[0]);
993 
994 			if (!name)
995 				return -ENOMEM;
996 			if (!strcmp(name, "none"))
997 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
998 			else if (!strcmp(name, "lzo"))
999 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1000 			else if (!strcmp(name, "zlib"))
1001 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1002 			else {
1003 				ubifs_err("unknown compressor \"%s\"", name);
1004 				kfree(name);
1005 				return -EINVAL;
1006 			}
1007 			kfree(name);
1008 			c->mount_opts.override_compr = 1;
1009 			c->default_compr = c->mount_opts.compr_type;
1010 			break;
1011 		}
1012 		default:
1013 			ubifs_err("unrecognized mount option \"%s\" "
1014 				  "or missing value", p);
1015 			return -EINVAL;
1016 		}
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  * destroy_journal - destroy journal data structures.
1024  * @c: UBIFS file-system description object
1025  *
1026  * This function destroys journal data structures including those that may have
1027  * been created by recovery functions.
1028  */
1029 static void destroy_journal(struct ubifs_info *c)
1030 {
1031 	while (!list_empty(&c->unclean_leb_list)) {
1032 		struct ubifs_unclean_leb *ucleb;
1033 
1034 		ucleb = list_entry(c->unclean_leb_list.next,
1035 				   struct ubifs_unclean_leb, list);
1036 		list_del(&ucleb->list);
1037 		kfree(ucleb);
1038 	}
1039 	while (!list_empty(&c->old_buds)) {
1040 		struct ubifs_bud *bud;
1041 
1042 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1043 		list_del(&bud->list);
1044 		kfree(bud);
1045 	}
1046 	ubifs_destroy_idx_gc(c);
1047 	ubifs_destroy_size_tree(c);
1048 	ubifs_tnc_close(c);
1049 	free_buds(c);
1050 }
1051 
1052 /**
1053  * bu_init - initialize bulk-read information.
1054  * @c: UBIFS file-system description object
1055  */
1056 static void bu_init(struct ubifs_info *c)
1057 {
1058 	ubifs_assert(c->bulk_read == 1);
1059 
1060 	if (c->bu.buf)
1061 		return; /* Already initialized */
1062 
1063 again:
1064 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1065 	if (!c->bu.buf) {
1066 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1067 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1068 			goto again;
1069 		}
1070 
1071 		/* Just disable bulk-read */
1072 		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1073 			   "disabling it", c->max_bu_buf_len);
1074 		c->mount_opts.bulk_read = 1;
1075 		c->bulk_read = 0;
1076 		return;
1077 	}
1078 }
1079 
1080 /**
1081  * check_free_space - check if there is enough free space to mount.
1082  * @c: UBIFS file-system description object
1083  *
1084  * This function makes sure UBIFS has enough free space to be mounted in
1085  * read/write mode. UBIFS must always have some free space to allow deletions.
1086  */
1087 static int check_free_space(struct ubifs_info *c)
1088 {
1089 	ubifs_assert(c->dark_wm > 0);
1090 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1091 		ubifs_err("insufficient free space to mount in read/write mode");
1092 		dbg_dump_budg(c);
1093 		dbg_dump_lprops(c);
1094 		return -ENOSPC;
1095 	}
1096 	return 0;
1097 }
1098 
1099 /**
1100  * mount_ubifs - mount UBIFS file-system.
1101  * @c: UBIFS file-system description object
1102  *
1103  * This function mounts UBIFS file system. Returns zero in case of success and
1104  * a negative error code in case of failure.
1105  *
1106  * Note, the function does not de-allocate resources it it fails half way
1107  * through, and the caller has to do this instead.
1108  */
1109 static int mount_ubifs(struct ubifs_info *c)
1110 {
1111 	struct super_block *sb = c->vfs_sb;
1112 	int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1113 	long long x;
1114 	size_t sz;
1115 
1116 	err = init_constants_early(c);
1117 	if (err)
1118 		return err;
1119 
1120 	err = ubifs_debugging_init(c);
1121 	if (err)
1122 		return err;
1123 
1124 	err = check_volume_empty(c);
1125 	if (err)
1126 		goto out_free;
1127 
1128 	if (c->empty && (mounted_read_only || c->ro_media)) {
1129 		/*
1130 		 * This UBI volume is empty, and read-only, or the file system
1131 		 * is mounted read-only - we cannot format it.
1132 		 */
1133 		ubifs_err("can't format empty UBI volume: read-only %s",
1134 			  c->ro_media ? "UBI volume" : "mount");
1135 		err = -EROFS;
1136 		goto out_free;
1137 	}
1138 
1139 	if (c->ro_media && !mounted_read_only) {
1140 		ubifs_err("cannot mount read-write - read-only media");
1141 		err = -EROFS;
1142 		goto out_free;
1143 	}
1144 
1145 	/*
1146 	 * The requirement for the buffer is that it should fit indexing B-tree
1147 	 * height amount of integers. We assume the height if the TNC tree will
1148 	 * never exceed 64.
1149 	 */
1150 	err = -ENOMEM;
1151 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1152 	if (!c->bottom_up_buf)
1153 		goto out_free;
1154 
1155 	c->sbuf = vmalloc(c->leb_size);
1156 	if (!c->sbuf)
1157 		goto out_free;
1158 
1159 	if (!mounted_read_only) {
1160 		c->ileb_buf = vmalloc(c->leb_size);
1161 		if (!c->ileb_buf)
1162 			goto out_free;
1163 	}
1164 
1165 	if (c->bulk_read == 1)
1166 		bu_init(c);
1167 
1168 	/*
1169 	 * We have to check all CRCs, even for data nodes, when we mount the FS
1170 	 * (specifically, when we are replaying).
1171 	 */
1172 	c->always_chk_crc = 1;
1173 
1174 	err = ubifs_read_superblock(c);
1175 	if (err)
1176 		goto out_free;
1177 
1178 	/*
1179 	 * Make sure the compressor which is set as default in the superblock
1180 	 * or overridden by mount options is actually compiled in.
1181 	 */
1182 	if (!ubifs_compr_present(c->default_compr)) {
1183 		ubifs_err("'compressor \"%s\" is not compiled in",
1184 			  ubifs_compr_name(c->default_compr));
1185 		goto out_free;
1186 	}
1187 
1188 	err = init_constants_sb(c);
1189 	if (err)
1190 		goto out_free;
1191 
1192 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1193 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1194 	c->cbuf = kmalloc(sz, GFP_NOFS);
1195 	if (!c->cbuf) {
1196 		err = -ENOMEM;
1197 		goto out_free;
1198 	}
1199 
1200 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1201 	if (!mounted_read_only) {
1202 		err = alloc_wbufs(c);
1203 		if (err)
1204 			goto out_cbuf;
1205 
1206 		/* Create background thread */
1207 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1208 		if (IS_ERR(c->bgt)) {
1209 			err = PTR_ERR(c->bgt);
1210 			c->bgt = NULL;
1211 			ubifs_err("cannot spawn \"%s\", error %d",
1212 				  c->bgt_name, err);
1213 			goto out_wbufs;
1214 		}
1215 		wake_up_process(c->bgt);
1216 	}
1217 
1218 	err = ubifs_read_master(c);
1219 	if (err)
1220 		goto out_master;
1221 
1222 	init_constants_master(c);
1223 
1224 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1225 		ubifs_msg("recovery needed");
1226 		c->need_recovery = 1;
1227 		if (!mounted_read_only) {
1228 			err = ubifs_recover_inl_heads(c, c->sbuf);
1229 			if (err)
1230 				goto out_master;
1231 		}
1232 	} else if (!mounted_read_only) {
1233 		/*
1234 		 * Set the "dirty" flag so that if we reboot uncleanly we
1235 		 * will notice this immediately on the next mount.
1236 		 */
1237 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1238 		err = ubifs_write_master(c);
1239 		if (err)
1240 			goto out_master;
1241 	}
1242 
1243 	err = ubifs_lpt_init(c, 1, !mounted_read_only);
1244 	if (err)
1245 		goto out_lpt;
1246 
1247 	err = dbg_check_idx_size(c, c->old_idx_sz);
1248 	if (err)
1249 		goto out_lpt;
1250 
1251 	err = ubifs_replay_journal(c);
1252 	if (err)
1253 		goto out_journal;
1254 
1255 	err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1256 	if (err)
1257 		goto out_orphans;
1258 
1259 	if (!mounted_read_only) {
1260 		int lnum;
1261 
1262 		err = check_free_space(c);
1263 		if (err)
1264 			goto out_orphans;
1265 
1266 		/* Check for enough log space */
1267 		lnum = c->lhead_lnum + 1;
1268 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1269 			lnum = UBIFS_LOG_LNUM;
1270 		if (lnum == c->ltail_lnum) {
1271 			err = ubifs_consolidate_log(c);
1272 			if (err)
1273 				goto out_orphans;
1274 		}
1275 
1276 		if (c->need_recovery) {
1277 			err = ubifs_recover_size(c);
1278 			if (err)
1279 				goto out_orphans;
1280 			err = ubifs_rcvry_gc_commit(c);
1281 		} else {
1282 			err = take_gc_lnum(c);
1283 			if (err)
1284 				goto out_orphans;
1285 
1286 			/*
1287 			 * GC LEB may contain garbage if there was an unclean
1288 			 * reboot, and it should be un-mapped.
1289 			 */
1290 			err = ubifs_leb_unmap(c, c->gc_lnum);
1291 			if (err)
1292 				return err;
1293 		}
1294 
1295 		err = dbg_check_lprops(c);
1296 		if (err)
1297 			goto out_orphans;
1298 	} else if (c->need_recovery) {
1299 		err = ubifs_recover_size(c);
1300 		if (err)
1301 			goto out_orphans;
1302 	} else {
1303 		/*
1304 		 * Even if we mount read-only, we have to set space in GC LEB
1305 		 * to proper value because this affects UBIFS free space
1306 		 * reporting. We do not want to have a situation when
1307 		 * re-mounting from R/O to R/W changes amount of free space.
1308 		 */
1309 		err = take_gc_lnum(c);
1310 		if (err)
1311 			goto out_orphans;
1312 	}
1313 
1314 	spin_lock(&ubifs_infos_lock);
1315 	list_add_tail(&c->infos_list, &ubifs_infos);
1316 	spin_unlock(&ubifs_infos_lock);
1317 
1318 	if (c->need_recovery) {
1319 		if (mounted_read_only)
1320 			ubifs_msg("recovery deferred");
1321 		else {
1322 			c->need_recovery = 0;
1323 			ubifs_msg("recovery completed");
1324 			/*
1325 			 * GC LEB has to be empty and taken at this point. But
1326 			 * the journal head LEBs may also be accounted as
1327 			 * "empty taken" if they are empty.
1328 			 */
1329 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1330 		}
1331 	} else
1332 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1333 
1334 	err = dbg_check_filesystem(c);
1335 	if (err)
1336 		goto out_infos;
1337 
1338 	err = dbg_debugfs_init_fs(c);
1339 	if (err)
1340 		goto out_infos;
1341 
1342 	c->always_chk_crc = 0;
1343 
1344 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1345 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1346 	if (mounted_read_only)
1347 		ubifs_msg("mounted read-only");
1348 	x = (long long)c->main_lebs * c->leb_size;
1349 	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1350 		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1351 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1352 	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1353 		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1354 	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1355 		  c->fmt_version, c->ro_compat_version,
1356 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1357 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1358 	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1359 		c->report_rp_size, c->report_rp_size >> 10);
1360 
1361 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1362 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1363 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1364 		c->leb_size, c->leb_size >> 10);
1365 	dbg_msg("data journal heads:  %d",
1366 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1367 	dbg_msg("UUID:                %02X%02X%02X%02X-%02X%02X"
1368 	       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1369 	       c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1370 	       c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1371 	       c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1372 	       c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1373 	dbg_msg("big_lpt              %d", c->big_lpt);
1374 	dbg_msg("log LEBs:            %d (%d - %d)",
1375 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1376 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1377 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1378 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1379 		c->orph_lebs, c->orph_first, c->orph_last);
1380 	dbg_msg("main area LEBs:      %d (%d - %d)",
1381 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1382 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1383 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1384 		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1385 	dbg_msg("key hash type:       %d", c->key_hash_type);
1386 	dbg_msg("tree fanout:         %d", c->fanout);
1387 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1388 	dbg_msg("first main LEB:      %d", c->main_first);
1389 	dbg_msg("max. znode size      %d", c->max_znode_sz);
1390 	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1391 	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1392 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1393 	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1394 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1395 	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1396 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1397 	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu",
1398 	        UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1399 		UBIFS_MAX_DENT_NODE_SZ);
1400 	dbg_msg("dead watermark:      %d", c->dead_wm);
1401 	dbg_msg("dark watermark:      %d", c->dark_wm);
1402 	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1403 	x = (long long)c->main_lebs * c->dark_wm;
1404 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1405 		x, x >> 10, x >> 20);
1406 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1407 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1408 		c->max_bud_bytes >> 20);
1409 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1410 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1411 		c->bg_bud_bytes >> 20);
1412 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1413 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1414 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1415 	dbg_msg("commit number:       %llu", c->cmt_no);
1416 
1417 	return 0;
1418 
1419 out_infos:
1420 	spin_lock(&ubifs_infos_lock);
1421 	list_del(&c->infos_list);
1422 	spin_unlock(&ubifs_infos_lock);
1423 out_orphans:
1424 	free_orphans(c);
1425 out_journal:
1426 	destroy_journal(c);
1427 out_lpt:
1428 	ubifs_lpt_free(c, 0);
1429 out_master:
1430 	kfree(c->mst_node);
1431 	kfree(c->rcvrd_mst_node);
1432 	if (c->bgt)
1433 		kthread_stop(c->bgt);
1434 out_wbufs:
1435 	free_wbufs(c);
1436 out_cbuf:
1437 	kfree(c->cbuf);
1438 out_free:
1439 	kfree(c->bu.buf);
1440 	vfree(c->ileb_buf);
1441 	vfree(c->sbuf);
1442 	kfree(c->bottom_up_buf);
1443 	ubifs_debugging_exit(c);
1444 	return err;
1445 }
1446 
1447 /**
1448  * ubifs_umount - un-mount UBIFS file-system.
1449  * @c: UBIFS file-system description object
1450  *
1451  * Note, this function is called to free allocated resourced when un-mounting,
1452  * as well as free resources when an error occurred while we were half way
1453  * through mounting (error path cleanup function). So it has to make sure the
1454  * resource was actually allocated before freeing it.
1455  */
1456 static void ubifs_umount(struct ubifs_info *c)
1457 {
1458 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1459 		c->vi.vol_id);
1460 
1461 	dbg_debugfs_exit_fs(c);
1462 	spin_lock(&ubifs_infos_lock);
1463 	list_del(&c->infos_list);
1464 	spin_unlock(&ubifs_infos_lock);
1465 
1466 	if (c->bgt)
1467 		kthread_stop(c->bgt);
1468 
1469 	destroy_journal(c);
1470 	free_wbufs(c);
1471 	free_orphans(c);
1472 	ubifs_lpt_free(c, 0);
1473 
1474 	kfree(c->cbuf);
1475 	kfree(c->rcvrd_mst_node);
1476 	kfree(c->mst_node);
1477 	kfree(c->bu.buf);
1478 	vfree(c->ileb_buf);
1479 	vfree(c->sbuf);
1480 	kfree(c->bottom_up_buf);
1481 	ubifs_debugging_exit(c);
1482 }
1483 
1484 /**
1485  * ubifs_remount_rw - re-mount in read-write mode.
1486  * @c: UBIFS file-system description object
1487  *
1488  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1489  * mode. This function allocates the needed resources and re-mounts UBIFS in
1490  * read-write mode.
1491  */
1492 static int ubifs_remount_rw(struct ubifs_info *c)
1493 {
1494 	int err, lnum;
1495 
1496 	if (c->rw_incompat) {
1497 		ubifs_err("the file-system is not R/W-compatible");
1498 		ubifs_msg("on-flash format version is w%d/r%d, but software "
1499 			  "only supports up to version w%d/r%d", c->fmt_version,
1500 			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1501 			  UBIFS_RO_COMPAT_VERSION);
1502 		return -EROFS;
1503 	}
1504 
1505 	mutex_lock(&c->umount_mutex);
1506 	dbg_save_space_info(c);
1507 	c->remounting_rw = 1;
1508 	c->always_chk_crc = 1;
1509 
1510 	err = check_free_space(c);
1511 	if (err)
1512 		goto out;
1513 
1514 	if (c->old_leb_cnt != c->leb_cnt) {
1515 		struct ubifs_sb_node *sup;
1516 
1517 		sup = ubifs_read_sb_node(c);
1518 		if (IS_ERR(sup)) {
1519 			err = PTR_ERR(sup);
1520 			goto out;
1521 		}
1522 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1523 		err = ubifs_write_sb_node(c, sup);
1524 		if (err)
1525 			goto out;
1526 	}
1527 
1528 	if (c->need_recovery) {
1529 		ubifs_msg("completing deferred recovery");
1530 		err = ubifs_write_rcvrd_mst_node(c);
1531 		if (err)
1532 			goto out;
1533 		err = ubifs_recover_size(c);
1534 		if (err)
1535 			goto out;
1536 		err = ubifs_clean_lebs(c, c->sbuf);
1537 		if (err)
1538 			goto out;
1539 		err = ubifs_recover_inl_heads(c, c->sbuf);
1540 		if (err)
1541 			goto out;
1542 	} else {
1543 		/* A readonly mount is not allowed to have orphans */
1544 		ubifs_assert(c->tot_orphans == 0);
1545 		err = ubifs_clear_orphans(c);
1546 		if (err)
1547 			goto out;
1548 	}
1549 
1550 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1551 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1552 		err = ubifs_write_master(c);
1553 		if (err)
1554 			goto out;
1555 	}
1556 
1557 	c->ileb_buf = vmalloc(c->leb_size);
1558 	if (!c->ileb_buf) {
1559 		err = -ENOMEM;
1560 		goto out;
1561 	}
1562 
1563 	err = ubifs_lpt_init(c, 0, 1);
1564 	if (err)
1565 		goto out;
1566 
1567 	err = alloc_wbufs(c);
1568 	if (err)
1569 		goto out;
1570 
1571 	ubifs_create_buds_lists(c);
1572 
1573 	/* Create background thread */
1574 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1575 	if (IS_ERR(c->bgt)) {
1576 		err = PTR_ERR(c->bgt);
1577 		c->bgt = NULL;
1578 		ubifs_err("cannot spawn \"%s\", error %d",
1579 			  c->bgt_name, err);
1580 		goto out;
1581 	}
1582 	wake_up_process(c->bgt);
1583 
1584 	c->orph_buf = vmalloc(c->leb_size);
1585 	if (!c->orph_buf) {
1586 		err = -ENOMEM;
1587 		goto out;
1588 	}
1589 
1590 	/* Check for enough log space */
1591 	lnum = c->lhead_lnum + 1;
1592 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1593 		lnum = UBIFS_LOG_LNUM;
1594 	if (lnum == c->ltail_lnum) {
1595 		err = ubifs_consolidate_log(c);
1596 		if (err)
1597 			goto out;
1598 	}
1599 
1600 	if (c->need_recovery)
1601 		err = ubifs_rcvry_gc_commit(c);
1602 	else
1603 		err = ubifs_leb_unmap(c, c->gc_lnum);
1604 	if (err)
1605 		goto out;
1606 
1607 	if (c->need_recovery) {
1608 		c->need_recovery = 0;
1609 		ubifs_msg("deferred recovery completed");
1610 	}
1611 
1612 	dbg_gen("re-mounted read-write");
1613 	c->vfs_sb->s_flags &= ~MS_RDONLY;
1614 	c->remounting_rw = 0;
1615 	c->always_chk_crc = 0;
1616 	err = dbg_check_space_info(c);
1617 	mutex_unlock(&c->umount_mutex);
1618 	return err;
1619 
1620 out:
1621 	vfree(c->orph_buf);
1622 	c->orph_buf = NULL;
1623 	if (c->bgt) {
1624 		kthread_stop(c->bgt);
1625 		c->bgt = NULL;
1626 	}
1627 	free_wbufs(c);
1628 	vfree(c->ileb_buf);
1629 	c->ileb_buf = NULL;
1630 	ubifs_lpt_free(c, 1);
1631 	c->remounting_rw = 0;
1632 	c->always_chk_crc = 0;
1633 	mutex_unlock(&c->umount_mutex);
1634 	return err;
1635 }
1636 
1637 /**
1638  * ubifs_remount_ro - re-mount in read-only mode.
1639  * @c: UBIFS file-system description object
1640  *
1641  * We assume VFS has stopped writing. Possibly the background thread could be
1642  * running a commit, however kthread_stop will wait in that case.
1643  */
1644 static void ubifs_remount_ro(struct ubifs_info *c)
1645 {
1646 	int i, err;
1647 
1648 	ubifs_assert(!c->need_recovery);
1649 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1650 
1651 	mutex_lock(&c->umount_mutex);
1652 	if (c->bgt) {
1653 		kthread_stop(c->bgt);
1654 		c->bgt = NULL;
1655 	}
1656 
1657 	dbg_save_space_info(c);
1658 
1659 	for (i = 0; i < c->jhead_cnt; i++) {
1660 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1661 		del_timer_sync(&c->jheads[i].wbuf.timer);
1662 	}
1663 
1664 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1665 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1666 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1667 	err = ubifs_write_master(c);
1668 	if (err)
1669 		ubifs_ro_mode(c, err);
1670 
1671 	free_wbufs(c);
1672 	vfree(c->orph_buf);
1673 	c->orph_buf = NULL;
1674 	vfree(c->ileb_buf);
1675 	c->ileb_buf = NULL;
1676 	ubifs_lpt_free(c, 1);
1677 	err = dbg_check_space_info(c);
1678 	if (err)
1679 		ubifs_ro_mode(c, err);
1680 	mutex_unlock(&c->umount_mutex);
1681 }
1682 
1683 static void ubifs_put_super(struct super_block *sb)
1684 {
1685 	int i;
1686 	struct ubifs_info *c = sb->s_fs_info;
1687 
1688 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1689 		  c->vi.vol_id);
1690 	/*
1691 	 * The following asserts are only valid if there has not been a failure
1692 	 * of the media. For example, there will be dirty inodes if we failed
1693 	 * to write them back because of I/O errors.
1694 	 */
1695 	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1696 	ubifs_assert(c->budg_idx_growth == 0);
1697 	ubifs_assert(c->budg_dd_growth == 0);
1698 	ubifs_assert(c->budg_data_growth == 0);
1699 
1700 	/*
1701 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1702 	 * and file system un-mount. Namely, it prevents the shrinker from
1703 	 * picking this superblock for shrinking - it will be just skipped if
1704 	 * the mutex is locked.
1705 	 */
1706 	mutex_lock(&c->umount_mutex);
1707 	if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1708 		/*
1709 		 * First of all kill the background thread to make sure it does
1710 		 * not interfere with un-mounting and freeing resources.
1711 		 */
1712 		if (c->bgt) {
1713 			kthread_stop(c->bgt);
1714 			c->bgt = NULL;
1715 		}
1716 
1717 		/* Synchronize write-buffers */
1718 		if (c->jheads)
1719 			for (i = 0; i < c->jhead_cnt; i++) {
1720 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1721 				del_timer_sync(&c->jheads[i].wbuf.timer);
1722 			}
1723 
1724 		/*
1725 		 * On fatal errors c->ro_media is set to 1, in which case we do
1726 		 * not write the master node.
1727 		 */
1728 		if (!c->ro_media) {
1729 			/*
1730 			 * We are being cleanly unmounted which means the
1731 			 * orphans were killed - indicate this in the master
1732 			 * node. Also save the reserved GC LEB number.
1733 			 */
1734 			int err;
1735 
1736 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1737 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1738 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1739 			err = ubifs_write_master(c);
1740 			if (err)
1741 				/*
1742 				 * Recovery will attempt to fix the master area
1743 				 * next mount, so we just print a message and
1744 				 * continue to unmount normally.
1745 				 */
1746 				ubifs_err("failed to write master node, "
1747 					  "error %d", err);
1748 		}
1749 	}
1750 
1751 	ubifs_umount(c);
1752 	bdi_destroy(&c->bdi);
1753 	ubi_close_volume(c->ubi);
1754 	mutex_unlock(&c->umount_mutex);
1755 	kfree(c);
1756 }
1757 
1758 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1759 {
1760 	int err;
1761 	struct ubifs_info *c = sb->s_fs_info;
1762 
1763 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1764 
1765 	err = ubifs_parse_options(c, data, 1);
1766 	if (err) {
1767 		ubifs_err("invalid or unknown remount parameter");
1768 		return err;
1769 	}
1770 
1771 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1772 		if (c->ro_media) {
1773 			ubifs_msg("cannot re-mount due to prior errors");
1774 			return -EROFS;
1775 		}
1776 		err = ubifs_remount_rw(c);
1777 		if (err)
1778 			return err;
1779 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1780 		if (c->ro_media) {
1781 			ubifs_msg("cannot re-mount due to prior errors");
1782 			return -EROFS;
1783 		}
1784 		ubifs_remount_ro(c);
1785 	}
1786 
1787 	if (c->bulk_read == 1)
1788 		bu_init(c);
1789 	else {
1790 		dbg_gen("disable bulk-read");
1791 		kfree(c->bu.buf);
1792 		c->bu.buf = NULL;
1793 	}
1794 
1795 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1796 	return 0;
1797 }
1798 
1799 const struct super_operations ubifs_super_operations = {
1800 	.alloc_inode   = ubifs_alloc_inode,
1801 	.destroy_inode = ubifs_destroy_inode,
1802 	.put_super     = ubifs_put_super,
1803 	.write_inode   = ubifs_write_inode,
1804 	.delete_inode  = ubifs_delete_inode,
1805 	.statfs        = ubifs_statfs,
1806 	.dirty_inode   = ubifs_dirty_inode,
1807 	.remount_fs    = ubifs_remount_fs,
1808 	.show_options  = ubifs_show_options,
1809 	.sync_fs       = ubifs_sync_fs,
1810 };
1811 
1812 /**
1813  * open_ubi - parse UBI device name string and open the UBI device.
1814  * @name: UBI volume name
1815  * @mode: UBI volume open mode
1816  *
1817  * There are several ways to specify UBI volumes when mounting UBIFS:
1818  * o ubiX_Y    - UBI device number X, volume Y;
1819  * o ubiY      - UBI device number 0, volume Y;
1820  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1821  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1822  *
1823  * Alternative '!' separator may be used instead of ':' (because some shells
1824  * like busybox may interpret ':' as an NFS host name separator). This function
1825  * returns ubi volume object in case of success and a negative error code in
1826  * case of failure.
1827  */
1828 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1829 {
1830 	int dev, vol;
1831 	char *endptr;
1832 
1833 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1834 		return ERR_PTR(-EINVAL);
1835 
1836 	/* ubi:NAME method */
1837 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1838 		return ubi_open_volume_nm(0, name + 4, mode);
1839 
1840 	if (!isdigit(name[3]))
1841 		return ERR_PTR(-EINVAL);
1842 
1843 	dev = simple_strtoul(name + 3, &endptr, 0);
1844 
1845 	/* ubiY method */
1846 	if (*endptr == '\0')
1847 		return ubi_open_volume(0, dev, mode);
1848 
1849 	/* ubiX_Y method */
1850 	if (*endptr == '_' && isdigit(endptr[1])) {
1851 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1852 		if (*endptr != '\0')
1853 			return ERR_PTR(-EINVAL);
1854 		return ubi_open_volume(dev, vol, mode);
1855 	}
1856 
1857 	/* ubiX:NAME method */
1858 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1859 		return ubi_open_volume_nm(dev, ++endptr, mode);
1860 
1861 	return ERR_PTR(-EINVAL);
1862 }
1863 
1864 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1865 {
1866 	struct ubi_volume_desc *ubi = sb->s_fs_info;
1867 	struct ubifs_info *c;
1868 	struct inode *root;
1869 	int err;
1870 
1871 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1872 	if (!c)
1873 		return -ENOMEM;
1874 
1875 	spin_lock_init(&c->cnt_lock);
1876 	spin_lock_init(&c->cs_lock);
1877 	spin_lock_init(&c->buds_lock);
1878 	spin_lock_init(&c->space_lock);
1879 	spin_lock_init(&c->orphan_lock);
1880 	init_rwsem(&c->commit_sem);
1881 	mutex_init(&c->lp_mutex);
1882 	mutex_init(&c->tnc_mutex);
1883 	mutex_init(&c->log_mutex);
1884 	mutex_init(&c->mst_mutex);
1885 	mutex_init(&c->umount_mutex);
1886 	mutex_init(&c->bu_mutex);
1887 	init_waitqueue_head(&c->cmt_wq);
1888 	c->buds = RB_ROOT;
1889 	c->old_idx = RB_ROOT;
1890 	c->size_tree = RB_ROOT;
1891 	c->orph_tree = RB_ROOT;
1892 	INIT_LIST_HEAD(&c->infos_list);
1893 	INIT_LIST_HEAD(&c->idx_gc);
1894 	INIT_LIST_HEAD(&c->replay_list);
1895 	INIT_LIST_HEAD(&c->replay_buds);
1896 	INIT_LIST_HEAD(&c->uncat_list);
1897 	INIT_LIST_HEAD(&c->empty_list);
1898 	INIT_LIST_HEAD(&c->freeable_list);
1899 	INIT_LIST_HEAD(&c->frdi_idx_list);
1900 	INIT_LIST_HEAD(&c->unclean_leb_list);
1901 	INIT_LIST_HEAD(&c->old_buds);
1902 	INIT_LIST_HEAD(&c->orph_list);
1903 	INIT_LIST_HEAD(&c->orph_new);
1904 
1905 	c->highest_inum = UBIFS_FIRST_INO;
1906 	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1907 
1908 	ubi_get_volume_info(ubi, &c->vi);
1909 	ubi_get_device_info(c->vi.ubi_num, &c->di);
1910 
1911 	/* Re-open the UBI device in read-write mode */
1912 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1913 	if (IS_ERR(c->ubi)) {
1914 		err = PTR_ERR(c->ubi);
1915 		goto out_free;
1916 	}
1917 
1918 	/*
1919 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1920 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1921 	 * which means the user would have to wait not just for their own I/O
1922 	 * but the read-ahead I/O as well i.e. completely pointless.
1923 	 *
1924 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1925 	 */
1926 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1927 	c->bdi.unplug_io_fn = default_unplug_io_fn;
1928 	err  = bdi_init(&c->bdi);
1929 	if (err)
1930 		goto out_close;
1931 
1932 	err = ubifs_parse_options(c, data, 0);
1933 	if (err)
1934 		goto out_bdi;
1935 
1936 	c->vfs_sb = sb;
1937 
1938 	sb->s_fs_info = c;
1939 	sb->s_magic = UBIFS_SUPER_MAGIC;
1940 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1941 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1942 	sb->s_dev = c->vi.cdev;
1943 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1944 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
1945 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1946 	sb->s_op = &ubifs_super_operations;
1947 
1948 	mutex_lock(&c->umount_mutex);
1949 	err = mount_ubifs(c);
1950 	if (err) {
1951 		ubifs_assert(err < 0);
1952 		goto out_unlock;
1953 	}
1954 
1955 	/* Read the root inode */
1956 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
1957 	if (IS_ERR(root)) {
1958 		err = PTR_ERR(root);
1959 		goto out_umount;
1960 	}
1961 
1962 	sb->s_root = d_alloc_root(root);
1963 	if (!sb->s_root)
1964 		goto out_iput;
1965 
1966 	mutex_unlock(&c->umount_mutex);
1967 	return 0;
1968 
1969 out_iput:
1970 	iput(root);
1971 out_umount:
1972 	ubifs_umount(c);
1973 out_unlock:
1974 	mutex_unlock(&c->umount_mutex);
1975 out_bdi:
1976 	bdi_destroy(&c->bdi);
1977 out_close:
1978 	ubi_close_volume(c->ubi);
1979 out_free:
1980 	kfree(c);
1981 	return err;
1982 }
1983 
1984 static int sb_test(struct super_block *sb, void *data)
1985 {
1986 	dev_t *dev = data;
1987 
1988 	return sb->s_dev == *dev;
1989 }
1990 
1991 static int sb_set(struct super_block *sb, void *data)
1992 {
1993 	dev_t *dev = data;
1994 
1995 	sb->s_dev = *dev;
1996 	return 0;
1997 }
1998 
1999 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
2000 			const char *name, void *data, struct vfsmount *mnt)
2001 {
2002 	struct ubi_volume_desc *ubi;
2003 	struct ubi_volume_info vi;
2004 	struct super_block *sb;
2005 	int err;
2006 
2007 	dbg_gen("name %s, flags %#x", name, flags);
2008 
2009 	/*
2010 	 * Get UBI device number and volume ID. Mount it read-only so far
2011 	 * because this might be a new mount point, and UBI allows only one
2012 	 * read-write user at a time.
2013 	 */
2014 	ubi = open_ubi(name, UBI_READONLY);
2015 	if (IS_ERR(ubi)) {
2016 		ubifs_err("cannot open \"%s\", error %d",
2017 			  name, (int)PTR_ERR(ubi));
2018 		return PTR_ERR(ubi);
2019 	}
2020 	ubi_get_volume_info(ubi, &vi);
2021 
2022 	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2023 
2024 	sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
2025 	if (IS_ERR(sb)) {
2026 		err = PTR_ERR(sb);
2027 		goto out_close;
2028 	}
2029 
2030 	if (sb->s_root) {
2031 		/* A new mount point for already mounted UBIFS */
2032 		dbg_gen("this ubi volume is already mounted");
2033 		if ((flags ^ sb->s_flags) & MS_RDONLY) {
2034 			err = -EBUSY;
2035 			goto out_deact;
2036 		}
2037 	} else {
2038 		sb->s_flags = flags;
2039 		/*
2040 		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2041 		 * replaced by 'c'.
2042 		 */
2043 		sb->s_fs_info = ubi;
2044 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2045 		if (err)
2046 			goto out_deact;
2047 		/* We do not support atime */
2048 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2049 	}
2050 
2051 	/* 'fill_super()' opens ubi again so we must close it here */
2052 	ubi_close_volume(ubi);
2053 
2054 	simple_set_mnt(mnt, sb);
2055 	return 0;
2056 
2057 out_deact:
2058 	up_write(&sb->s_umount);
2059 	deactivate_super(sb);
2060 out_close:
2061 	ubi_close_volume(ubi);
2062 	return err;
2063 }
2064 
2065 static void ubifs_kill_sb(struct super_block *sb)
2066 {
2067 	generic_shutdown_super(sb);
2068 }
2069 
2070 static struct file_system_type ubifs_fs_type = {
2071 	.name    = "ubifs",
2072 	.owner   = THIS_MODULE,
2073 	.get_sb  = ubifs_get_sb,
2074 	.kill_sb = ubifs_kill_sb
2075 };
2076 
2077 /*
2078  * Inode slab cache constructor.
2079  */
2080 static void inode_slab_ctor(void *obj)
2081 {
2082 	struct ubifs_inode *ui = obj;
2083 	inode_init_once(&ui->vfs_inode);
2084 }
2085 
2086 static int __init ubifs_init(void)
2087 {
2088 	int err;
2089 
2090 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2091 
2092 	/* Make sure node sizes are 8-byte aligned */
2093 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2094 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2095 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2096 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2097 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2098 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2099 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2100 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2101 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2102 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2103 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2104 
2105 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2106 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2107 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2108 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2109 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2110 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2111 
2112 	/* Check min. node size */
2113 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2114 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2115 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2116 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2117 
2118 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2119 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2120 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2121 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2122 
2123 	/* Defined node sizes */
2124 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2125 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2126 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2127 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2128 
2129 	/*
2130 	 * We use 2 bit wide bit-fields to store compression type, which should
2131 	 * be amended if more compressors are added. The bit-fields are:
2132 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2133 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2134 	 */
2135 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2136 
2137 	/*
2138 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2139 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2140 	 */
2141 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2142 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2143 			  " at least 4096 bytes",
2144 			  (unsigned int)PAGE_CACHE_SIZE);
2145 		return -EINVAL;
2146 	}
2147 
2148 	err = register_filesystem(&ubifs_fs_type);
2149 	if (err) {
2150 		ubifs_err("cannot register file system, error %d", err);
2151 		return err;
2152 	}
2153 
2154 	err = -ENOMEM;
2155 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2156 				sizeof(struct ubifs_inode), 0,
2157 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2158 				&inode_slab_ctor);
2159 	if (!ubifs_inode_slab)
2160 		goto out_reg;
2161 
2162 	register_shrinker(&ubifs_shrinker_info);
2163 
2164 	err = ubifs_compressors_init();
2165 	if (err)
2166 		goto out_shrinker;
2167 
2168 	err = dbg_debugfs_init();
2169 	if (err)
2170 		goto out_compr;
2171 
2172 	return 0;
2173 
2174 out_compr:
2175 	ubifs_compressors_exit();
2176 out_shrinker:
2177 	unregister_shrinker(&ubifs_shrinker_info);
2178 	kmem_cache_destroy(ubifs_inode_slab);
2179 out_reg:
2180 	unregister_filesystem(&ubifs_fs_type);
2181 	return err;
2182 }
2183 /* late_initcall to let compressors initialize first */
2184 late_initcall(ubifs_init);
2185 
2186 static void __exit ubifs_exit(void)
2187 {
2188 	ubifs_assert(list_empty(&ubifs_infos));
2189 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2190 
2191 	dbg_debugfs_exit();
2192 	ubifs_compressors_exit();
2193 	unregister_shrinker(&ubifs_shrinker_info);
2194 	kmem_cache_destroy(ubifs_inode_slab);
2195 	unregister_filesystem(&ubifs_fs_type);
2196 }
2197 module_exit(ubifs_exit);
2198 
2199 MODULE_LICENSE("GPL");
2200 MODULE_VERSION(__stringify(UBIFS_VERSION));
2201 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2202 MODULE_DESCRIPTION("UBIFS - UBI File System");
2203