1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not " 93 "compiled in", inode->i_ino, 94 ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir_size(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 inode->i_nlink = le32_to_cpu(ino->nlink); 133 inode->i_uid = le32_to_cpu(ino->uid); 134 inode->i_gid = le32_to_cpu(ino->gid); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 dbg_dump_node(c, ino); 250 dbg_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_destroy_inode(struct inode *inode) 276 { 277 struct ubifs_inode *ui = ubifs_inode(inode); 278 279 kfree(ui->data); 280 kmem_cache_free(ubifs_inode_slab, inode); 281 } 282 283 /* 284 * Note, Linux write-back code calls this without 'i_mutex'. 285 */ 286 static int ubifs_write_inode(struct inode *inode, int wait) 287 { 288 int err = 0; 289 struct ubifs_info *c = inode->i_sb->s_fs_info; 290 struct ubifs_inode *ui = ubifs_inode(inode); 291 292 ubifs_assert(!ui->xattr); 293 if (is_bad_inode(inode)) 294 return 0; 295 296 mutex_lock(&ui->ui_mutex); 297 /* 298 * Due to races between write-back forced by budgeting 299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 300 * have already been synchronized, do not do this again. This might 301 * also happen if it was synchronized in an VFS operation, e.g. 302 * 'ubifs_link()'. 303 */ 304 if (!ui->dirty) { 305 mutex_unlock(&ui->ui_mutex); 306 return 0; 307 } 308 309 /* 310 * As an optimization, do not write orphan inodes to the media just 311 * because this is not needed. 312 */ 313 dbg_gen("inode %lu, mode %#x, nlink %u", 314 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 315 if (inode->i_nlink) { 316 err = ubifs_jnl_write_inode(c, inode); 317 if (err) 318 ubifs_err("can't write inode %lu, error %d", 319 inode->i_ino, err); 320 } 321 322 ui->dirty = 0; 323 mutex_unlock(&ui->ui_mutex); 324 ubifs_release_dirty_inode_budget(c, ui); 325 return err; 326 } 327 328 static void ubifs_delete_inode(struct inode *inode) 329 { 330 int err; 331 struct ubifs_info *c = inode->i_sb->s_fs_info; 332 struct ubifs_inode *ui = ubifs_inode(inode); 333 334 if (ui->xattr) 335 /* 336 * Extended attribute inode deletions are fully handled in 337 * 'ubifs_removexattr()'. These inodes are special and have 338 * limited usage, so there is nothing to do here. 339 */ 340 goto out; 341 342 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 343 ubifs_assert(!atomic_read(&inode->i_count)); 344 ubifs_assert(inode->i_nlink == 0); 345 346 truncate_inode_pages(&inode->i_data, 0); 347 if (is_bad_inode(inode)) 348 goto out; 349 350 ui->ui_size = inode->i_size = 0; 351 err = ubifs_jnl_delete_inode(c, inode); 352 if (err) 353 /* 354 * Worst case we have a lost orphan inode wasting space, so a 355 * simple error message is OK here. 356 */ 357 ubifs_err("can't delete inode %lu, error %d", 358 inode->i_ino, err); 359 360 out: 361 if (ui->dirty) 362 ubifs_release_dirty_inode_budget(c, ui); 363 clear_inode(inode); 364 } 365 366 static void ubifs_dirty_inode(struct inode *inode) 367 { 368 struct ubifs_inode *ui = ubifs_inode(inode); 369 370 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 371 if (!ui->dirty) { 372 ui->dirty = 1; 373 dbg_gen("inode %lu", inode->i_ino); 374 } 375 } 376 377 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 378 { 379 struct ubifs_info *c = dentry->d_sb->s_fs_info; 380 unsigned long long free; 381 __le32 *uuid = (__le32 *)c->uuid; 382 383 free = ubifs_get_free_space(c); 384 dbg_gen("free space %lld bytes (%lld blocks)", 385 free, free >> UBIFS_BLOCK_SHIFT); 386 387 buf->f_type = UBIFS_SUPER_MAGIC; 388 buf->f_bsize = UBIFS_BLOCK_SIZE; 389 buf->f_blocks = c->block_cnt; 390 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 391 if (free > c->report_rp_size) 392 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 393 else 394 buf->f_bavail = 0; 395 buf->f_files = 0; 396 buf->f_ffree = 0; 397 buf->f_namelen = UBIFS_MAX_NLEN; 398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 400 ubifs_assert(buf->f_bfree <= c->block_cnt); 401 return 0; 402 } 403 404 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 405 { 406 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 407 408 if (c->mount_opts.unmount_mode == 2) 409 seq_printf(s, ",fast_unmount"); 410 else if (c->mount_opts.unmount_mode == 1) 411 seq_printf(s, ",norm_unmount"); 412 413 if (c->mount_opts.bulk_read == 2) 414 seq_printf(s, ",bulk_read"); 415 else if (c->mount_opts.bulk_read == 1) 416 seq_printf(s, ",no_bulk_read"); 417 418 if (c->mount_opts.chk_data_crc == 2) 419 seq_printf(s, ",chk_data_crc"); 420 else if (c->mount_opts.chk_data_crc == 1) 421 seq_printf(s, ",no_chk_data_crc"); 422 423 if (c->mount_opts.override_compr) { 424 seq_printf(s, ",compr=%s", 425 ubifs_compr_name(c->mount_opts.compr_type)); 426 } 427 428 return 0; 429 } 430 431 static int ubifs_sync_fs(struct super_block *sb, int wait) 432 { 433 int i, err; 434 struct ubifs_info *c = sb->s_fs_info; 435 struct writeback_control wbc = { 436 .sync_mode = WB_SYNC_ALL, 437 .range_start = 0, 438 .range_end = LLONG_MAX, 439 .nr_to_write = LONG_MAX, 440 }; 441 442 /* 443 * Zero @wait is just an advisory thing to help the file system shove 444 * lots of data into the queues, and there will be the second 445 * '->sync_fs()' call, with non-zero @wait. 446 */ 447 if (!wait) 448 return 0; 449 450 if (sb->s_flags & MS_RDONLY) 451 return 0; 452 453 /* 454 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and 455 * pages, so synchronize them first, then commit the journal. Strictly 456 * speaking, it is not necessary to commit the journal here, 457 * synchronizing write-buffers would be enough. But committing makes 458 * UBIFS free space predictions much more accurate, so we want to let 459 * the user be able to get more accurate results of 'statfs()' after 460 * they synchronize the file system. 461 */ 462 generic_sync_sb_inodes(sb, &wbc); 463 464 /* 465 * Synchronize write buffers, because 'ubifs_run_commit()' does not 466 * do this if it waits for an already running commit. 467 */ 468 for (i = 0; i < c->jhead_cnt; i++) { 469 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 470 if (err) 471 return err; 472 } 473 474 err = ubifs_run_commit(c); 475 if (err) 476 return err; 477 478 return ubi_sync(c->vi.ubi_num); 479 } 480 481 /** 482 * init_constants_early - initialize UBIFS constants. 483 * @c: UBIFS file-system description object 484 * 485 * This function initialize UBIFS constants which do not need the superblock to 486 * be read. It also checks that the UBI volume satisfies basic UBIFS 487 * requirements. Returns zero in case of success and a negative error code in 488 * case of failure. 489 */ 490 static int init_constants_early(struct ubifs_info *c) 491 { 492 if (c->vi.corrupted) { 493 ubifs_warn("UBI volume is corrupted - read-only mode"); 494 c->ro_media = 1; 495 } 496 497 if (c->di.ro_mode) { 498 ubifs_msg("read-only UBI device"); 499 c->ro_media = 1; 500 } 501 502 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 503 ubifs_msg("static UBI volume - read-only mode"); 504 c->ro_media = 1; 505 } 506 507 c->leb_cnt = c->vi.size; 508 c->leb_size = c->vi.usable_leb_size; 509 c->half_leb_size = c->leb_size / 2; 510 c->min_io_size = c->di.min_io_size; 511 c->min_io_shift = fls(c->min_io_size) - 1; 512 513 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 514 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 515 c->leb_size, UBIFS_MIN_LEB_SZ); 516 return -EINVAL; 517 } 518 519 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 520 ubifs_err("too few LEBs (%d), min. is %d", 521 c->leb_cnt, UBIFS_MIN_LEB_CNT); 522 return -EINVAL; 523 } 524 525 if (!is_power_of_2(c->min_io_size)) { 526 ubifs_err("bad min. I/O size %d", c->min_io_size); 527 return -EINVAL; 528 } 529 530 /* 531 * UBIFS aligns all node to 8-byte boundary, so to make function in 532 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 533 * less than 8. 534 */ 535 if (c->min_io_size < 8) { 536 c->min_io_size = 8; 537 c->min_io_shift = 3; 538 } 539 540 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 541 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 542 543 /* 544 * Initialize node length ranges which are mostly needed for node 545 * length validation. 546 */ 547 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 548 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 549 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 550 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 551 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 552 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 553 554 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 555 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 556 c->ranges[UBIFS_ORPH_NODE].min_len = 557 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 558 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 559 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 560 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 561 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 562 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 563 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 564 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 565 /* 566 * Minimum indexing node size is amended later when superblock is 567 * read and the key length is known. 568 */ 569 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 570 /* 571 * Maximum indexing node size is amended later when superblock is 572 * read and the fanout is known. 573 */ 574 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 575 576 /* 577 * Initialize dead and dark LEB space watermarks. See gc.c for comments 578 * about these values. 579 */ 580 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 581 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 582 583 /* 584 * Calculate how many bytes would be wasted at the end of LEB if it was 585 * fully filled with data nodes of maximum size. This is used in 586 * calculations when reporting free space. 587 */ 588 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 589 590 /* Buffer size for bulk-reads */ 591 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 592 if (c->max_bu_buf_len > c->leb_size) 593 c->max_bu_buf_len = c->leb_size; 594 return 0; 595 } 596 597 /** 598 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 599 * @c: UBIFS file-system description object 600 * @lnum: LEB the write-buffer was synchronized to 601 * @free: how many free bytes left in this LEB 602 * @pad: how many bytes were padded 603 * 604 * This is a callback function which is called by the I/O unit when the 605 * write-buffer is synchronized. We need this to correctly maintain space 606 * accounting in bud logical eraseblocks. This function returns zero in case of 607 * success and a negative error code in case of failure. 608 * 609 * This function actually belongs to the journal, but we keep it here because 610 * we want to keep it static. 611 */ 612 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 613 { 614 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 615 } 616 617 /* 618 * init_constants_sb - initialize UBIFS constants. 619 * @c: UBIFS file-system description object 620 * 621 * This is a helper function which initializes various UBIFS constants after 622 * the superblock has been read. It also checks various UBIFS parameters and 623 * makes sure they are all right. Returns zero in case of success and a 624 * negative error code in case of failure. 625 */ 626 static int init_constants_sb(struct ubifs_info *c) 627 { 628 int tmp, err; 629 long long tmp64; 630 631 c->main_bytes = (long long)c->main_lebs * c->leb_size; 632 c->max_znode_sz = sizeof(struct ubifs_znode) + 633 c->fanout * sizeof(struct ubifs_zbranch); 634 635 tmp = ubifs_idx_node_sz(c, 1); 636 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 637 c->min_idx_node_sz = ALIGN(tmp, 8); 638 639 tmp = ubifs_idx_node_sz(c, c->fanout); 640 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 641 c->max_idx_node_sz = ALIGN(tmp, 8); 642 643 /* Make sure LEB size is large enough to fit full commit */ 644 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 645 tmp = ALIGN(tmp, c->min_io_size); 646 if (tmp > c->leb_size) { 647 dbg_err("too small LEB size %d, at least %d needed", 648 c->leb_size, tmp); 649 return -EINVAL; 650 } 651 652 /* 653 * Make sure that the log is large enough to fit reference nodes for 654 * all buds plus one reserved LEB. 655 */ 656 tmp64 = c->max_bud_bytes + c->leb_size - 1; 657 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 658 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 659 tmp /= c->leb_size; 660 tmp += 1; 661 if (c->log_lebs < tmp) { 662 dbg_err("too small log %d LEBs, required min. %d LEBs", 663 c->log_lebs, tmp); 664 return -EINVAL; 665 } 666 667 /* 668 * When budgeting we assume worst-case scenarios when the pages are not 669 * be compressed and direntries are of the maximum size. 670 * 671 * Note, data, which may be stored in inodes is budgeted separately, so 672 * it is not included into 'c->inode_budget'. 673 */ 674 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 675 c->inode_budget = UBIFS_INO_NODE_SZ; 676 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 677 678 /* 679 * When the amount of flash space used by buds becomes 680 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 681 * The writers are unblocked when the commit is finished. To avoid 682 * writers to be blocked UBIFS initiates background commit in advance, 683 * when number of bud bytes becomes above the limit defined below. 684 */ 685 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 686 687 /* 688 * Ensure minimum journal size. All the bytes in the journal heads are 689 * considered to be used, when calculating the current journal usage. 690 * Consequently, if the journal is too small, UBIFS will treat it as 691 * always full. 692 */ 693 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 694 if (c->bg_bud_bytes < tmp64) 695 c->bg_bud_bytes = tmp64; 696 if (c->max_bud_bytes < tmp64 + c->leb_size) 697 c->max_bud_bytes = tmp64 + c->leb_size; 698 699 err = ubifs_calc_lpt_geom(c); 700 if (err) 701 return err; 702 703 /* Initialize effective LEB size used in budgeting calculations */ 704 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 705 return 0; 706 } 707 708 /* 709 * init_constants_master - initialize UBIFS constants. 710 * @c: UBIFS file-system description object 711 * 712 * This is a helper function which initializes various UBIFS constants after 713 * the master node has been read. It also checks various UBIFS parameters and 714 * makes sure they are all right. 715 */ 716 static void init_constants_master(struct ubifs_info *c) 717 { 718 long long tmp64; 719 720 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 721 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 722 723 /* 724 * Calculate total amount of FS blocks. This number is not used 725 * internally because it does not make much sense for UBIFS, but it is 726 * necessary to report something for the 'statfs()' call. 727 * 728 * Subtract the LEB reserved for GC, the LEB which is reserved for 729 * deletions, minimum LEBs for the index, and assume only one journal 730 * head is available. 731 */ 732 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 733 tmp64 *= (long long)c->leb_size - c->leb_overhead; 734 tmp64 = ubifs_reported_space(c, tmp64); 735 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 736 } 737 738 /** 739 * take_gc_lnum - reserve GC LEB. 740 * @c: UBIFS file-system description object 741 * 742 * This function ensures that the LEB reserved for garbage collection is marked 743 * as "taken" in lprops. We also have to set free space to LEB size and dirty 744 * space to zero, because lprops may contain out-of-date information if the 745 * file-system was un-mounted before it has been committed. This function 746 * returns zero in case of success and a negative error code in case of 747 * failure. 748 */ 749 static int take_gc_lnum(struct ubifs_info *c) 750 { 751 int err; 752 753 if (c->gc_lnum == -1) { 754 ubifs_err("no LEB for GC"); 755 return -EINVAL; 756 } 757 758 /* And we have to tell lprops that this LEB is taken */ 759 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 760 LPROPS_TAKEN, 0, 0); 761 return err; 762 } 763 764 /** 765 * alloc_wbufs - allocate write-buffers. 766 * @c: UBIFS file-system description object 767 * 768 * This helper function allocates and initializes UBIFS write-buffers. Returns 769 * zero in case of success and %-ENOMEM in case of failure. 770 */ 771 static int alloc_wbufs(struct ubifs_info *c) 772 { 773 int i, err; 774 775 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 776 GFP_KERNEL); 777 if (!c->jheads) 778 return -ENOMEM; 779 780 /* Initialize journal heads */ 781 for (i = 0; i < c->jhead_cnt; i++) { 782 INIT_LIST_HEAD(&c->jheads[i].buds_list); 783 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 784 if (err) 785 return err; 786 787 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 788 c->jheads[i].wbuf.jhead = i; 789 } 790 791 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 792 /* 793 * Garbage Collector head likely contains long-term data and 794 * does not need to be synchronized by timer. 795 */ 796 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 797 c->jheads[GCHD].wbuf.timeout = 0; 798 799 return 0; 800 } 801 802 /** 803 * free_wbufs - free write-buffers. 804 * @c: UBIFS file-system description object 805 */ 806 static void free_wbufs(struct ubifs_info *c) 807 { 808 int i; 809 810 if (c->jheads) { 811 for (i = 0; i < c->jhead_cnt; i++) { 812 kfree(c->jheads[i].wbuf.buf); 813 kfree(c->jheads[i].wbuf.inodes); 814 } 815 kfree(c->jheads); 816 c->jheads = NULL; 817 } 818 } 819 820 /** 821 * free_orphans - free orphans. 822 * @c: UBIFS file-system description object 823 */ 824 static void free_orphans(struct ubifs_info *c) 825 { 826 struct ubifs_orphan *orph; 827 828 while (c->orph_dnext) { 829 orph = c->orph_dnext; 830 c->orph_dnext = orph->dnext; 831 list_del(&orph->list); 832 kfree(orph); 833 } 834 835 while (!list_empty(&c->orph_list)) { 836 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 837 list_del(&orph->list); 838 kfree(orph); 839 dbg_err("orphan list not empty at unmount"); 840 } 841 842 vfree(c->orph_buf); 843 c->orph_buf = NULL; 844 } 845 846 /** 847 * free_buds - free per-bud objects. 848 * @c: UBIFS file-system description object 849 */ 850 static void free_buds(struct ubifs_info *c) 851 { 852 struct rb_node *this = c->buds.rb_node; 853 struct ubifs_bud *bud; 854 855 while (this) { 856 if (this->rb_left) 857 this = this->rb_left; 858 else if (this->rb_right) 859 this = this->rb_right; 860 else { 861 bud = rb_entry(this, struct ubifs_bud, rb); 862 this = rb_parent(this); 863 if (this) { 864 if (this->rb_left == &bud->rb) 865 this->rb_left = NULL; 866 else 867 this->rb_right = NULL; 868 } 869 kfree(bud); 870 } 871 } 872 } 873 874 /** 875 * check_volume_empty - check if the UBI volume is empty. 876 * @c: UBIFS file-system description object 877 * 878 * This function checks if the UBIFS volume is empty by looking if its LEBs are 879 * mapped or not. The result of checking is stored in the @c->empty variable. 880 * Returns zero in case of success and a negative error code in case of 881 * failure. 882 */ 883 static int check_volume_empty(struct ubifs_info *c) 884 { 885 int lnum, err; 886 887 c->empty = 1; 888 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 889 err = ubi_is_mapped(c->ubi, lnum); 890 if (unlikely(err < 0)) 891 return err; 892 if (err == 1) { 893 c->empty = 0; 894 break; 895 } 896 897 cond_resched(); 898 } 899 900 return 0; 901 } 902 903 /* 904 * UBIFS mount options. 905 * 906 * Opt_fast_unmount: do not run a journal commit before un-mounting 907 * Opt_norm_unmount: run a journal commit before un-mounting 908 * Opt_bulk_read: enable bulk-reads 909 * Opt_no_bulk_read: disable bulk-reads 910 * Opt_chk_data_crc: check CRCs when reading data nodes 911 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 912 * Opt_override_compr: override default compressor 913 * Opt_err: just end of array marker 914 */ 915 enum { 916 Opt_fast_unmount, 917 Opt_norm_unmount, 918 Opt_bulk_read, 919 Opt_no_bulk_read, 920 Opt_chk_data_crc, 921 Opt_no_chk_data_crc, 922 Opt_override_compr, 923 Opt_err, 924 }; 925 926 static const match_table_t tokens = { 927 {Opt_fast_unmount, "fast_unmount"}, 928 {Opt_norm_unmount, "norm_unmount"}, 929 {Opt_bulk_read, "bulk_read"}, 930 {Opt_no_bulk_read, "no_bulk_read"}, 931 {Opt_chk_data_crc, "chk_data_crc"}, 932 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 933 {Opt_override_compr, "compr=%s"}, 934 {Opt_err, NULL}, 935 }; 936 937 /** 938 * ubifs_parse_options - parse mount parameters. 939 * @c: UBIFS file-system description object 940 * @options: parameters to parse 941 * @is_remount: non-zero if this is FS re-mount 942 * 943 * This function parses UBIFS mount options and returns zero in case success 944 * and a negative error code in case of failure. 945 */ 946 static int ubifs_parse_options(struct ubifs_info *c, char *options, 947 int is_remount) 948 { 949 char *p; 950 substring_t args[MAX_OPT_ARGS]; 951 952 if (!options) 953 return 0; 954 955 while ((p = strsep(&options, ","))) { 956 int token; 957 958 if (!*p) 959 continue; 960 961 token = match_token(p, tokens, args); 962 switch (token) { 963 /* 964 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 965 * We accepte them in order to be backware-compatible. But this 966 * should be removed at some point. 967 */ 968 case Opt_fast_unmount: 969 c->mount_opts.unmount_mode = 2; 970 break; 971 case Opt_norm_unmount: 972 c->mount_opts.unmount_mode = 1; 973 break; 974 case Opt_bulk_read: 975 c->mount_opts.bulk_read = 2; 976 c->bulk_read = 1; 977 break; 978 case Opt_no_bulk_read: 979 c->mount_opts.bulk_read = 1; 980 c->bulk_read = 0; 981 break; 982 case Opt_chk_data_crc: 983 c->mount_opts.chk_data_crc = 2; 984 c->no_chk_data_crc = 0; 985 break; 986 case Opt_no_chk_data_crc: 987 c->mount_opts.chk_data_crc = 1; 988 c->no_chk_data_crc = 1; 989 break; 990 case Opt_override_compr: 991 { 992 char *name = match_strdup(&args[0]); 993 994 if (!name) 995 return -ENOMEM; 996 if (!strcmp(name, "none")) 997 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 998 else if (!strcmp(name, "lzo")) 999 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1000 else if (!strcmp(name, "zlib")) 1001 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1002 else { 1003 ubifs_err("unknown compressor \"%s\"", name); 1004 kfree(name); 1005 return -EINVAL; 1006 } 1007 kfree(name); 1008 c->mount_opts.override_compr = 1; 1009 c->default_compr = c->mount_opts.compr_type; 1010 break; 1011 } 1012 default: 1013 ubifs_err("unrecognized mount option \"%s\" " 1014 "or missing value", p); 1015 return -EINVAL; 1016 } 1017 } 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * destroy_journal - destroy journal data structures. 1024 * @c: UBIFS file-system description object 1025 * 1026 * This function destroys journal data structures including those that may have 1027 * been created by recovery functions. 1028 */ 1029 static void destroy_journal(struct ubifs_info *c) 1030 { 1031 while (!list_empty(&c->unclean_leb_list)) { 1032 struct ubifs_unclean_leb *ucleb; 1033 1034 ucleb = list_entry(c->unclean_leb_list.next, 1035 struct ubifs_unclean_leb, list); 1036 list_del(&ucleb->list); 1037 kfree(ucleb); 1038 } 1039 while (!list_empty(&c->old_buds)) { 1040 struct ubifs_bud *bud; 1041 1042 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1043 list_del(&bud->list); 1044 kfree(bud); 1045 } 1046 ubifs_destroy_idx_gc(c); 1047 ubifs_destroy_size_tree(c); 1048 ubifs_tnc_close(c); 1049 free_buds(c); 1050 } 1051 1052 /** 1053 * bu_init - initialize bulk-read information. 1054 * @c: UBIFS file-system description object 1055 */ 1056 static void bu_init(struct ubifs_info *c) 1057 { 1058 ubifs_assert(c->bulk_read == 1); 1059 1060 if (c->bu.buf) 1061 return; /* Already initialized */ 1062 1063 again: 1064 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1065 if (!c->bu.buf) { 1066 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1067 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1068 goto again; 1069 } 1070 1071 /* Just disable bulk-read */ 1072 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1073 "disabling it", c->max_bu_buf_len); 1074 c->mount_opts.bulk_read = 1; 1075 c->bulk_read = 0; 1076 return; 1077 } 1078 } 1079 1080 /** 1081 * check_free_space - check if there is enough free space to mount. 1082 * @c: UBIFS file-system description object 1083 * 1084 * This function makes sure UBIFS has enough free space to be mounted in 1085 * read/write mode. UBIFS must always have some free space to allow deletions. 1086 */ 1087 static int check_free_space(struct ubifs_info *c) 1088 { 1089 ubifs_assert(c->dark_wm > 0); 1090 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1091 ubifs_err("insufficient free space to mount in read/write mode"); 1092 dbg_dump_budg(c); 1093 dbg_dump_lprops(c); 1094 return -ENOSPC; 1095 } 1096 return 0; 1097 } 1098 1099 /** 1100 * mount_ubifs - mount UBIFS file-system. 1101 * @c: UBIFS file-system description object 1102 * 1103 * This function mounts UBIFS file system. Returns zero in case of success and 1104 * a negative error code in case of failure. 1105 * 1106 * Note, the function does not de-allocate resources it it fails half way 1107 * through, and the caller has to do this instead. 1108 */ 1109 static int mount_ubifs(struct ubifs_info *c) 1110 { 1111 struct super_block *sb = c->vfs_sb; 1112 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 1113 long long x; 1114 size_t sz; 1115 1116 err = init_constants_early(c); 1117 if (err) 1118 return err; 1119 1120 err = ubifs_debugging_init(c); 1121 if (err) 1122 return err; 1123 1124 err = check_volume_empty(c); 1125 if (err) 1126 goto out_free; 1127 1128 if (c->empty && (mounted_read_only || c->ro_media)) { 1129 /* 1130 * This UBI volume is empty, and read-only, or the file system 1131 * is mounted read-only - we cannot format it. 1132 */ 1133 ubifs_err("can't format empty UBI volume: read-only %s", 1134 c->ro_media ? "UBI volume" : "mount"); 1135 err = -EROFS; 1136 goto out_free; 1137 } 1138 1139 if (c->ro_media && !mounted_read_only) { 1140 ubifs_err("cannot mount read-write - read-only media"); 1141 err = -EROFS; 1142 goto out_free; 1143 } 1144 1145 /* 1146 * The requirement for the buffer is that it should fit indexing B-tree 1147 * height amount of integers. We assume the height if the TNC tree will 1148 * never exceed 64. 1149 */ 1150 err = -ENOMEM; 1151 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1152 if (!c->bottom_up_buf) 1153 goto out_free; 1154 1155 c->sbuf = vmalloc(c->leb_size); 1156 if (!c->sbuf) 1157 goto out_free; 1158 1159 if (!mounted_read_only) { 1160 c->ileb_buf = vmalloc(c->leb_size); 1161 if (!c->ileb_buf) 1162 goto out_free; 1163 } 1164 1165 if (c->bulk_read == 1) 1166 bu_init(c); 1167 1168 /* 1169 * We have to check all CRCs, even for data nodes, when we mount the FS 1170 * (specifically, when we are replaying). 1171 */ 1172 c->always_chk_crc = 1; 1173 1174 err = ubifs_read_superblock(c); 1175 if (err) 1176 goto out_free; 1177 1178 /* 1179 * Make sure the compressor which is set as default in the superblock 1180 * or overridden by mount options is actually compiled in. 1181 */ 1182 if (!ubifs_compr_present(c->default_compr)) { 1183 ubifs_err("'compressor \"%s\" is not compiled in", 1184 ubifs_compr_name(c->default_compr)); 1185 goto out_free; 1186 } 1187 1188 err = init_constants_sb(c); 1189 if (err) 1190 goto out_free; 1191 1192 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1193 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1194 c->cbuf = kmalloc(sz, GFP_NOFS); 1195 if (!c->cbuf) { 1196 err = -ENOMEM; 1197 goto out_free; 1198 } 1199 1200 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1201 if (!mounted_read_only) { 1202 err = alloc_wbufs(c); 1203 if (err) 1204 goto out_cbuf; 1205 1206 /* Create background thread */ 1207 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1208 if (IS_ERR(c->bgt)) { 1209 err = PTR_ERR(c->bgt); 1210 c->bgt = NULL; 1211 ubifs_err("cannot spawn \"%s\", error %d", 1212 c->bgt_name, err); 1213 goto out_wbufs; 1214 } 1215 wake_up_process(c->bgt); 1216 } 1217 1218 err = ubifs_read_master(c); 1219 if (err) 1220 goto out_master; 1221 1222 init_constants_master(c); 1223 1224 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1225 ubifs_msg("recovery needed"); 1226 c->need_recovery = 1; 1227 if (!mounted_read_only) { 1228 err = ubifs_recover_inl_heads(c, c->sbuf); 1229 if (err) 1230 goto out_master; 1231 } 1232 } else if (!mounted_read_only) { 1233 /* 1234 * Set the "dirty" flag so that if we reboot uncleanly we 1235 * will notice this immediately on the next mount. 1236 */ 1237 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1238 err = ubifs_write_master(c); 1239 if (err) 1240 goto out_master; 1241 } 1242 1243 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1244 if (err) 1245 goto out_lpt; 1246 1247 err = dbg_check_idx_size(c, c->old_idx_sz); 1248 if (err) 1249 goto out_lpt; 1250 1251 err = ubifs_replay_journal(c); 1252 if (err) 1253 goto out_journal; 1254 1255 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1256 if (err) 1257 goto out_orphans; 1258 1259 if (!mounted_read_only) { 1260 int lnum; 1261 1262 err = check_free_space(c); 1263 if (err) 1264 goto out_orphans; 1265 1266 /* Check for enough log space */ 1267 lnum = c->lhead_lnum + 1; 1268 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1269 lnum = UBIFS_LOG_LNUM; 1270 if (lnum == c->ltail_lnum) { 1271 err = ubifs_consolidate_log(c); 1272 if (err) 1273 goto out_orphans; 1274 } 1275 1276 if (c->need_recovery) { 1277 err = ubifs_recover_size(c); 1278 if (err) 1279 goto out_orphans; 1280 err = ubifs_rcvry_gc_commit(c); 1281 } else { 1282 err = take_gc_lnum(c); 1283 if (err) 1284 goto out_orphans; 1285 1286 /* 1287 * GC LEB may contain garbage if there was an unclean 1288 * reboot, and it should be un-mapped. 1289 */ 1290 err = ubifs_leb_unmap(c, c->gc_lnum); 1291 if (err) 1292 return err; 1293 } 1294 1295 err = dbg_check_lprops(c); 1296 if (err) 1297 goto out_orphans; 1298 } else if (c->need_recovery) { 1299 err = ubifs_recover_size(c); 1300 if (err) 1301 goto out_orphans; 1302 } else { 1303 /* 1304 * Even if we mount read-only, we have to set space in GC LEB 1305 * to proper value because this affects UBIFS free space 1306 * reporting. We do not want to have a situation when 1307 * re-mounting from R/O to R/W changes amount of free space. 1308 */ 1309 err = take_gc_lnum(c); 1310 if (err) 1311 goto out_orphans; 1312 } 1313 1314 spin_lock(&ubifs_infos_lock); 1315 list_add_tail(&c->infos_list, &ubifs_infos); 1316 spin_unlock(&ubifs_infos_lock); 1317 1318 if (c->need_recovery) { 1319 if (mounted_read_only) 1320 ubifs_msg("recovery deferred"); 1321 else { 1322 c->need_recovery = 0; 1323 ubifs_msg("recovery completed"); 1324 /* 1325 * GC LEB has to be empty and taken at this point. But 1326 * the journal head LEBs may also be accounted as 1327 * "empty taken" if they are empty. 1328 */ 1329 ubifs_assert(c->lst.taken_empty_lebs > 0); 1330 } 1331 } else 1332 ubifs_assert(c->lst.taken_empty_lebs > 0); 1333 1334 err = dbg_check_filesystem(c); 1335 if (err) 1336 goto out_infos; 1337 1338 err = dbg_debugfs_init_fs(c); 1339 if (err) 1340 goto out_infos; 1341 1342 c->always_chk_crc = 0; 1343 1344 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1345 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1346 if (mounted_read_only) 1347 ubifs_msg("mounted read-only"); 1348 x = (long long)c->main_lebs * c->leb_size; 1349 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1350 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1351 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1352 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1353 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1354 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", 1355 c->fmt_version, c->ro_compat_version, 1356 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1357 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1358 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1359 c->report_rp_size, c->report_rp_size >> 10); 1360 1361 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1362 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1363 dbg_msg("LEB size: %d bytes (%d KiB)", 1364 c->leb_size, c->leb_size >> 10); 1365 dbg_msg("data journal heads: %d", 1366 c->jhead_cnt - NONDATA_JHEADS_CNT); 1367 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" 1368 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 1369 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], 1370 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1371 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1372 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1373 dbg_msg("big_lpt %d", c->big_lpt); 1374 dbg_msg("log LEBs: %d (%d - %d)", 1375 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1376 dbg_msg("LPT area LEBs: %d (%d - %d)", 1377 c->lpt_lebs, c->lpt_first, c->lpt_last); 1378 dbg_msg("orphan area LEBs: %d (%d - %d)", 1379 c->orph_lebs, c->orph_first, c->orph_last); 1380 dbg_msg("main area LEBs: %d (%d - %d)", 1381 c->main_lebs, c->main_first, c->leb_cnt - 1); 1382 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1383 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1384 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1385 dbg_msg("key hash type: %d", c->key_hash_type); 1386 dbg_msg("tree fanout: %d", c->fanout); 1387 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1388 dbg_msg("first main LEB: %d", c->main_first); 1389 dbg_msg("max. znode size %d", c->max_znode_sz); 1390 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1391 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1392 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1393 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1394 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1395 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1396 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1397 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", 1398 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1399 UBIFS_MAX_DENT_NODE_SZ); 1400 dbg_msg("dead watermark: %d", c->dead_wm); 1401 dbg_msg("dark watermark: %d", c->dark_wm); 1402 dbg_msg("LEB overhead: %d", c->leb_overhead); 1403 x = (long long)c->main_lebs * c->dark_wm; 1404 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1405 x, x >> 10, x >> 20); 1406 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1407 c->max_bud_bytes, c->max_bud_bytes >> 10, 1408 c->max_bud_bytes >> 20); 1409 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1410 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1411 c->bg_bud_bytes >> 20); 1412 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1413 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1414 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1415 dbg_msg("commit number: %llu", c->cmt_no); 1416 1417 return 0; 1418 1419 out_infos: 1420 spin_lock(&ubifs_infos_lock); 1421 list_del(&c->infos_list); 1422 spin_unlock(&ubifs_infos_lock); 1423 out_orphans: 1424 free_orphans(c); 1425 out_journal: 1426 destroy_journal(c); 1427 out_lpt: 1428 ubifs_lpt_free(c, 0); 1429 out_master: 1430 kfree(c->mst_node); 1431 kfree(c->rcvrd_mst_node); 1432 if (c->bgt) 1433 kthread_stop(c->bgt); 1434 out_wbufs: 1435 free_wbufs(c); 1436 out_cbuf: 1437 kfree(c->cbuf); 1438 out_free: 1439 kfree(c->bu.buf); 1440 vfree(c->ileb_buf); 1441 vfree(c->sbuf); 1442 kfree(c->bottom_up_buf); 1443 ubifs_debugging_exit(c); 1444 return err; 1445 } 1446 1447 /** 1448 * ubifs_umount - un-mount UBIFS file-system. 1449 * @c: UBIFS file-system description object 1450 * 1451 * Note, this function is called to free allocated resourced when un-mounting, 1452 * as well as free resources when an error occurred while we were half way 1453 * through mounting (error path cleanup function). So it has to make sure the 1454 * resource was actually allocated before freeing it. 1455 */ 1456 static void ubifs_umount(struct ubifs_info *c) 1457 { 1458 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1459 c->vi.vol_id); 1460 1461 dbg_debugfs_exit_fs(c); 1462 spin_lock(&ubifs_infos_lock); 1463 list_del(&c->infos_list); 1464 spin_unlock(&ubifs_infos_lock); 1465 1466 if (c->bgt) 1467 kthread_stop(c->bgt); 1468 1469 destroy_journal(c); 1470 free_wbufs(c); 1471 free_orphans(c); 1472 ubifs_lpt_free(c, 0); 1473 1474 kfree(c->cbuf); 1475 kfree(c->rcvrd_mst_node); 1476 kfree(c->mst_node); 1477 kfree(c->bu.buf); 1478 vfree(c->ileb_buf); 1479 vfree(c->sbuf); 1480 kfree(c->bottom_up_buf); 1481 ubifs_debugging_exit(c); 1482 } 1483 1484 /** 1485 * ubifs_remount_rw - re-mount in read-write mode. 1486 * @c: UBIFS file-system description object 1487 * 1488 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1489 * mode. This function allocates the needed resources and re-mounts UBIFS in 1490 * read-write mode. 1491 */ 1492 static int ubifs_remount_rw(struct ubifs_info *c) 1493 { 1494 int err, lnum; 1495 1496 if (c->rw_incompat) { 1497 ubifs_err("the file-system is not R/W-compatible"); 1498 ubifs_msg("on-flash format version is w%d/r%d, but software " 1499 "only supports up to version w%d/r%d", c->fmt_version, 1500 c->ro_compat_version, UBIFS_FORMAT_VERSION, 1501 UBIFS_RO_COMPAT_VERSION); 1502 return -EROFS; 1503 } 1504 1505 mutex_lock(&c->umount_mutex); 1506 dbg_save_space_info(c); 1507 c->remounting_rw = 1; 1508 c->always_chk_crc = 1; 1509 1510 err = check_free_space(c); 1511 if (err) 1512 goto out; 1513 1514 if (c->old_leb_cnt != c->leb_cnt) { 1515 struct ubifs_sb_node *sup; 1516 1517 sup = ubifs_read_sb_node(c); 1518 if (IS_ERR(sup)) { 1519 err = PTR_ERR(sup); 1520 goto out; 1521 } 1522 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1523 err = ubifs_write_sb_node(c, sup); 1524 if (err) 1525 goto out; 1526 } 1527 1528 if (c->need_recovery) { 1529 ubifs_msg("completing deferred recovery"); 1530 err = ubifs_write_rcvrd_mst_node(c); 1531 if (err) 1532 goto out; 1533 err = ubifs_recover_size(c); 1534 if (err) 1535 goto out; 1536 err = ubifs_clean_lebs(c, c->sbuf); 1537 if (err) 1538 goto out; 1539 err = ubifs_recover_inl_heads(c, c->sbuf); 1540 if (err) 1541 goto out; 1542 } else { 1543 /* A readonly mount is not allowed to have orphans */ 1544 ubifs_assert(c->tot_orphans == 0); 1545 err = ubifs_clear_orphans(c); 1546 if (err) 1547 goto out; 1548 } 1549 1550 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1551 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1552 err = ubifs_write_master(c); 1553 if (err) 1554 goto out; 1555 } 1556 1557 c->ileb_buf = vmalloc(c->leb_size); 1558 if (!c->ileb_buf) { 1559 err = -ENOMEM; 1560 goto out; 1561 } 1562 1563 err = ubifs_lpt_init(c, 0, 1); 1564 if (err) 1565 goto out; 1566 1567 err = alloc_wbufs(c); 1568 if (err) 1569 goto out; 1570 1571 ubifs_create_buds_lists(c); 1572 1573 /* Create background thread */ 1574 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1575 if (IS_ERR(c->bgt)) { 1576 err = PTR_ERR(c->bgt); 1577 c->bgt = NULL; 1578 ubifs_err("cannot spawn \"%s\", error %d", 1579 c->bgt_name, err); 1580 goto out; 1581 } 1582 wake_up_process(c->bgt); 1583 1584 c->orph_buf = vmalloc(c->leb_size); 1585 if (!c->orph_buf) { 1586 err = -ENOMEM; 1587 goto out; 1588 } 1589 1590 /* Check for enough log space */ 1591 lnum = c->lhead_lnum + 1; 1592 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1593 lnum = UBIFS_LOG_LNUM; 1594 if (lnum == c->ltail_lnum) { 1595 err = ubifs_consolidate_log(c); 1596 if (err) 1597 goto out; 1598 } 1599 1600 if (c->need_recovery) 1601 err = ubifs_rcvry_gc_commit(c); 1602 else 1603 err = ubifs_leb_unmap(c, c->gc_lnum); 1604 if (err) 1605 goto out; 1606 1607 if (c->need_recovery) { 1608 c->need_recovery = 0; 1609 ubifs_msg("deferred recovery completed"); 1610 } 1611 1612 dbg_gen("re-mounted read-write"); 1613 c->vfs_sb->s_flags &= ~MS_RDONLY; 1614 c->remounting_rw = 0; 1615 c->always_chk_crc = 0; 1616 err = dbg_check_space_info(c); 1617 mutex_unlock(&c->umount_mutex); 1618 return err; 1619 1620 out: 1621 vfree(c->orph_buf); 1622 c->orph_buf = NULL; 1623 if (c->bgt) { 1624 kthread_stop(c->bgt); 1625 c->bgt = NULL; 1626 } 1627 free_wbufs(c); 1628 vfree(c->ileb_buf); 1629 c->ileb_buf = NULL; 1630 ubifs_lpt_free(c, 1); 1631 c->remounting_rw = 0; 1632 c->always_chk_crc = 0; 1633 mutex_unlock(&c->umount_mutex); 1634 return err; 1635 } 1636 1637 /** 1638 * ubifs_remount_ro - re-mount in read-only mode. 1639 * @c: UBIFS file-system description object 1640 * 1641 * We assume VFS has stopped writing. Possibly the background thread could be 1642 * running a commit, however kthread_stop will wait in that case. 1643 */ 1644 static void ubifs_remount_ro(struct ubifs_info *c) 1645 { 1646 int i, err; 1647 1648 ubifs_assert(!c->need_recovery); 1649 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 1650 1651 mutex_lock(&c->umount_mutex); 1652 if (c->bgt) { 1653 kthread_stop(c->bgt); 1654 c->bgt = NULL; 1655 } 1656 1657 dbg_save_space_info(c); 1658 1659 for (i = 0; i < c->jhead_cnt; i++) { 1660 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1661 del_timer_sync(&c->jheads[i].wbuf.timer); 1662 } 1663 1664 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1665 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1666 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1667 err = ubifs_write_master(c); 1668 if (err) 1669 ubifs_ro_mode(c, err); 1670 1671 free_wbufs(c); 1672 vfree(c->orph_buf); 1673 c->orph_buf = NULL; 1674 vfree(c->ileb_buf); 1675 c->ileb_buf = NULL; 1676 ubifs_lpt_free(c, 1); 1677 err = dbg_check_space_info(c); 1678 if (err) 1679 ubifs_ro_mode(c, err); 1680 mutex_unlock(&c->umount_mutex); 1681 } 1682 1683 static void ubifs_put_super(struct super_block *sb) 1684 { 1685 int i; 1686 struct ubifs_info *c = sb->s_fs_info; 1687 1688 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1689 c->vi.vol_id); 1690 /* 1691 * The following asserts are only valid if there has not been a failure 1692 * of the media. For example, there will be dirty inodes if we failed 1693 * to write them back because of I/O errors. 1694 */ 1695 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1696 ubifs_assert(c->budg_idx_growth == 0); 1697 ubifs_assert(c->budg_dd_growth == 0); 1698 ubifs_assert(c->budg_data_growth == 0); 1699 1700 /* 1701 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1702 * and file system un-mount. Namely, it prevents the shrinker from 1703 * picking this superblock for shrinking - it will be just skipped if 1704 * the mutex is locked. 1705 */ 1706 mutex_lock(&c->umount_mutex); 1707 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1708 /* 1709 * First of all kill the background thread to make sure it does 1710 * not interfere with un-mounting and freeing resources. 1711 */ 1712 if (c->bgt) { 1713 kthread_stop(c->bgt); 1714 c->bgt = NULL; 1715 } 1716 1717 /* Synchronize write-buffers */ 1718 if (c->jheads) 1719 for (i = 0; i < c->jhead_cnt; i++) { 1720 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1721 del_timer_sync(&c->jheads[i].wbuf.timer); 1722 } 1723 1724 /* 1725 * On fatal errors c->ro_media is set to 1, in which case we do 1726 * not write the master node. 1727 */ 1728 if (!c->ro_media) { 1729 /* 1730 * We are being cleanly unmounted which means the 1731 * orphans were killed - indicate this in the master 1732 * node. Also save the reserved GC LEB number. 1733 */ 1734 int err; 1735 1736 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1737 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1738 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1739 err = ubifs_write_master(c); 1740 if (err) 1741 /* 1742 * Recovery will attempt to fix the master area 1743 * next mount, so we just print a message and 1744 * continue to unmount normally. 1745 */ 1746 ubifs_err("failed to write master node, " 1747 "error %d", err); 1748 } 1749 } 1750 1751 ubifs_umount(c); 1752 bdi_destroy(&c->bdi); 1753 ubi_close_volume(c->ubi); 1754 mutex_unlock(&c->umount_mutex); 1755 kfree(c); 1756 } 1757 1758 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1759 { 1760 int err; 1761 struct ubifs_info *c = sb->s_fs_info; 1762 1763 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1764 1765 err = ubifs_parse_options(c, data, 1); 1766 if (err) { 1767 ubifs_err("invalid or unknown remount parameter"); 1768 return err; 1769 } 1770 1771 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1772 if (c->ro_media) { 1773 ubifs_msg("cannot re-mount due to prior errors"); 1774 return -EROFS; 1775 } 1776 err = ubifs_remount_rw(c); 1777 if (err) 1778 return err; 1779 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { 1780 if (c->ro_media) { 1781 ubifs_msg("cannot re-mount due to prior errors"); 1782 return -EROFS; 1783 } 1784 ubifs_remount_ro(c); 1785 } 1786 1787 if (c->bulk_read == 1) 1788 bu_init(c); 1789 else { 1790 dbg_gen("disable bulk-read"); 1791 kfree(c->bu.buf); 1792 c->bu.buf = NULL; 1793 } 1794 1795 ubifs_assert(c->lst.taken_empty_lebs > 0); 1796 return 0; 1797 } 1798 1799 const struct super_operations ubifs_super_operations = { 1800 .alloc_inode = ubifs_alloc_inode, 1801 .destroy_inode = ubifs_destroy_inode, 1802 .put_super = ubifs_put_super, 1803 .write_inode = ubifs_write_inode, 1804 .delete_inode = ubifs_delete_inode, 1805 .statfs = ubifs_statfs, 1806 .dirty_inode = ubifs_dirty_inode, 1807 .remount_fs = ubifs_remount_fs, 1808 .show_options = ubifs_show_options, 1809 .sync_fs = ubifs_sync_fs, 1810 }; 1811 1812 /** 1813 * open_ubi - parse UBI device name string and open the UBI device. 1814 * @name: UBI volume name 1815 * @mode: UBI volume open mode 1816 * 1817 * There are several ways to specify UBI volumes when mounting UBIFS: 1818 * o ubiX_Y - UBI device number X, volume Y; 1819 * o ubiY - UBI device number 0, volume Y; 1820 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1821 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1822 * 1823 * Alternative '!' separator may be used instead of ':' (because some shells 1824 * like busybox may interpret ':' as an NFS host name separator). This function 1825 * returns ubi volume object in case of success and a negative error code in 1826 * case of failure. 1827 */ 1828 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1829 { 1830 int dev, vol; 1831 char *endptr; 1832 1833 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1834 return ERR_PTR(-EINVAL); 1835 1836 /* ubi:NAME method */ 1837 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1838 return ubi_open_volume_nm(0, name + 4, mode); 1839 1840 if (!isdigit(name[3])) 1841 return ERR_PTR(-EINVAL); 1842 1843 dev = simple_strtoul(name + 3, &endptr, 0); 1844 1845 /* ubiY method */ 1846 if (*endptr == '\0') 1847 return ubi_open_volume(0, dev, mode); 1848 1849 /* ubiX_Y method */ 1850 if (*endptr == '_' && isdigit(endptr[1])) { 1851 vol = simple_strtoul(endptr + 1, &endptr, 0); 1852 if (*endptr != '\0') 1853 return ERR_PTR(-EINVAL); 1854 return ubi_open_volume(dev, vol, mode); 1855 } 1856 1857 /* ubiX:NAME method */ 1858 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1859 return ubi_open_volume_nm(dev, ++endptr, mode); 1860 1861 return ERR_PTR(-EINVAL); 1862 } 1863 1864 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1865 { 1866 struct ubi_volume_desc *ubi = sb->s_fs_info; 1867 struct ubifs_info *c; 1868 struct inode *root; 1869 int err; 1870 1871 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1872 if (!c) 1873 return -ENOMEM; 1874 1875 spin_lock_init(&c->cnt_lock); 1876 spin_lock_init(&c->cs_lock); 1877 spin_lock_init(&c->buds_lock); 1878 spin_lock_init(&c->space_lock); 1879 spin_lock_init(&c->orphan_lock); 1880 init_rwsem(&c->commit_sem); 1881 mutex_init(&c->lp_mutex); 1882 mutex_init(&c->tnc_mutex); 1883 mutex_init(&c->log_mutex); 1884 mutex_init(&c->mst_mutex); 1885 mutex_init(&c->umount_mutex); 1886 mutex_init(&c->bu_mutex); 1887 init_waitqueue_head(&c->cmt_wq); 1888 c->buds = RB_ROOT; 1889 c->old_idx = RB_ROOT; 1890 c->size_tree = RB_ROOT; 1891 c->orph_tree = RB_ROOT; 1892 INIT_LIST_HEAD(&c->infos_list); 1893 INIT_LIST_HEAD(&c->idx_gc); 1894 INIT_LIST_HEAD(&c->replay_list); 1895 INIT_LIST_HEAD(&c->replay_buds); 1896 INIT_LIST_HEAD(&c->uncat_list); 1897 INIT_LIST_HEAD(&c->empty_list); 1898 INIT_LIST_HEAD(&c->freeable_list); 1899 INIT_LIST_HEAD(&c->frdi_idx_list); 1900 INIT_LIST_HEAD(&c->unclean_leb_list); 1901 INIT_LIST_HEAD(&c->old_buds); 1902 INIT_LIST_HEAD(&c->orph_list); 1903 INIT_LIST_HEAD(&c->orph_new); 1904 1905 c->highest_inum = UBIFS_FIRST_INO; 1906 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1907 1908 ubi_get_volume_info(ubi, &c->vi); 1909 ubi_get_device_info(c->vi.ubi_num, &c->di); 1910 1911 /* Re-open the UBI device in read-write mode */ 1912 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1913 if (IS_ERR(c->ubi)) { 1914 err = PTR_ERR(c->ubi); 1915 goto out_free; 1916 } 1917 1918 /* 1919 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1920 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1921 * which means the user would have to wait not just for their own I/O 1922 * but the read-ahead I/O as well i.e. completely pointless. 1923 * 1924 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1925 */ 1926 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1927 c->bdi.unplug_io_fn = default_unplug_io_fn; 1928 err = bdi_init(&c->bdi); 1929 if (err) 1930 goto out_close; 1931 1932 err = ubifs_parse_options(c, data, 0); 1933 if (err) 1934 goto out_bdi; 1935 1936 c->vfs_sb = sb; 1937 1938 sb->s_fs_info = c; 1939 sb->s_magic = UBIFS_SUPER_MAGIC; 1940 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1941 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1942 sb->s_dev = c->vi.cdev; 1943 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1944 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1945 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1946 sb->s_op = &ubifs_super_operations; 1947 1948 mutex_lock(&c->umount_mutex); 1949 err = mount_ubifs(c); 1950 if (err) { 1951 ubifs_assert(err < 0); 1952 goto out_unlock; 1953 } 1954 1955 /* Read the root inode */ 1956 root = ubifs_iget(sb, UBIFS_ROOT_INO); 1957 if (IS_ERR(root)) { 1958 err = PTR_ERR(root); 1959 goto out_umount; 1960 } 1961 1962 sb->s_root = d_alloc_root(root); 1963 if (!sb->s_root) 1964 goto out_iput; 1965 1966 mutex_unlock(&c->umount_mutex); 1967 return 0; 1968 1969 out_iput: 1970 iput(root); 1971 out_umount: 1972 ubifs_umount(c); 1973 out_unlock: 1974 mutex_unlock(&c->umount_mutex); 1975 out_bdi: 1976 bdi_destroy(&c->bdi); 1977 out_close: 1978 ubi_close_volume(c->ubi); 1979 out_free: 1980 kfree(c); 1981 return err; 1982 } 1983 1984 static int sb_test(struct super_block *sb, void *data) 1985 { 1986 dev_t *dev = data; 1987 1988 return sb->s_dev == *dev; 1989 } 1990 1991 static int sb_set(struct super_block *sb, void *data) 1992 { 1993 dev_t *dev = data; 1994 1995 sb->s_dev = *dev; 1996 return 0; 1997 } 1998 1999 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 2000 const char *name, void *data, struct vfsmount *mnt) 2001 { 2002 struct ubi_volume_desc *ubi; 2003 struct ubi_volume_info vi; 2004 struct super_block *sb; 2005 int err; 2006 2007 dbg_gen("name %s, flags %#x", name, flags); 2008 2009 /* 2010 * Get UBI device number and volume ID. Mount it read-only so far 2011 * because this might be a new mount point, and UBI allows only one 2012 * read-write user at a time. 2013 */ 2014 ubi = open_ubi(name, UBI_READONLY); 2015 if (IS_ERR(ubi)) { 2016 ubifs_err("cannot open \"%s\", error %d", 2017 name, (int)PTR_ERR(ubi)); 2018 return PTR_ERR(ubi); 2019 } 2020 ubi_get_volume_info(ubi, &vi); 2021 2022 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 2023 2024 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev); 2025 if (IS_ERR(sb)) { 2026 err = PTR_ERR(sb); 2027 goto out_close; 2028 } 2029 2030 if (sb->s_root) { 2031 /* A new mount point for already mounted UBIFS */ 2032 dbg_gen("this ubi volume is already mounted"); 2033 if ((flags ^ sb->s_flags) & MS_RDONLY) { 2034 err = -EBUSY; 2035 goto out_deact; 2036 } 2037 } else { 2038 sb->s_flags = flags; 2039 /* 2040 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 2041 * replaced by 'c'. 2042 */ 2043 sb->s_fs_info = ubi; 2044 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2045 if (err) 2046 goto out_deact; 2047 /* We do not support atime */ 2048 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2049 } 2050 2051 /* 'fill_super()' opens ubi again so we must close it here */ 2052 ubi_close_volume(ubi); 2053 2054 simple_set_mnt(mnt, sb); 2055 return 0; 2056 2057 out_deact: 2058 up_write(&sb->s_umount); 2059 deactivate_super(sb); 2060 out_close: 2061 ubi_close_volume(ubi); 2062 return err; 2063 } 2064 2065 static void ubifs_kill_sb(struct super_block *sb) 2066 { 2067 generic_shutdown_super(sb); 2068 } 2069 2070 static struct file_system_type ubifs_fs_type = { 2071 .name = "ubifs", 2072 .owner = THIS_MODULE, 2073 .get_sb = ubifs_get_sb, 2074 .kill_sb = ubifs_kill_sb 2075 }; 2076 2077 /* 2078 * Inode slab cache constructor. 2079 */ 2080 static void inode_slab_ctor(void *obj) 2081 { 2082 struct ubifs_inode *ui = obj; 2083 inode_init_once(&ui->vfs_inode); 2084 } 2085 2086 static int __init ubifs_init(void) 2087 { 2088 int err; 2089 2090 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2091 2092 /* Make sure node sizes are 8-byte aligned */ 2093 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2094 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2095 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2096 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2097 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2098 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2099 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2100 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2101 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2102 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2103 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2104 2105 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2106 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2107 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2108 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2109 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2110 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2111 2112 /* Check min. node size */ 2113 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2114 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2115 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2116 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2117 2118 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2119 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2120 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2121 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2122 2123 /* Defined node sizes */ 2124 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2125 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2126 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2127 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2128 2129 /* 2130 * We use 2 bit wide bit-fields to store compression type, which should 2131 * be amended if more compressors are added. The bit-fields are: 2132 * @compr_type in 'struct ubifs_inode', @default_compr in 2133 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2134 */ 2135 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2136 2137 /* 2138 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2139 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2140 */ 2141 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2142 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2143 " at least 4096 bytes", 2144 (unsigned int)PAGE_CACHE_SIZE); 2145 return -EINVAL; 2146 } 2147 2148 err = register_filesystem(&ubifs_fs_type); 2149 if (err) { 2150 ubifs_err("cannot register file system, error %d", err); 2151 return err; 2152 } 2153 2154 err = -ENOMEM; 2155 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2156 sizeof(struct ubifs_inode), 0, 2157 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2158 &inode_slab_ctor); 2159 if (!ubifs_inode_slab) 2160 goto out_reg; 2161 2162 register_shrinker(&ubifs_shrinker_info); 2163 2164 err = ubifs_compressors_init(); 2165 if (err) 2166 goto out_shrinker; 2167 2168 err = dbg_debugfs_init(); 2169 if (err) 2170 goto out_compr; 2171 2172 return 0; 2173 2174 out_compr: 2175 ubifs_compressors_exit(); 2176 out_shrinker: 2177 unregister_shrinker(&ubifs_shrinker_info); 2178 kmem_cache_destroy(ubifs_inode_slab); 2179 out_reg: 2180 unregister_filesystem(&ubifs_fs_type); 2181 return err; 2182 } 2183 /* late_initcall to let compressors initialize first */ 2184 late_initcall(ubifs_init); 2185 2186 static void __exit ubifs_exit(void) 2187 { 2188 ubifs_assert(list_empty(&ubifs_infos)); 2189 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2190 2191 dbg_debugfs_exit(); 2192 ubifs_compressors_exit(); 2193 unregister_shrinker(&ubifs_shrinker_info); 2194 kmem_cache_destroy(ubifs_inode_slab); 2195 unregister_filesystem(&ubifs_fs_type); 2196 } 2197 module_exit(ubifs_exit); 2198 2199 MODULE_LICENSE("GPL"); 2200 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2201 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2202 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2203