1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err("inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err("unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(ui->compr_type)) { 93 ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 set_nlink(inode, le32_to_cpu(ino->nlink)); 133 i_uid_write(inode, le32_to_cpu(ino->uid)); 134 i_gid_write(inode, le32_to_cpu(ino->gid)); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 ubifs_dump_node(c, ino); 250 ubifs_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 kmem_cache_free(ubifs_inode_slab, ui); 280 } 281 282 static void ubifs_destroy_inode(struct inode *inode) 283 { 284 struct ubifs_inode *ui = ubifs_inode(inode); 285 286 kfree(ui->data); 287 call_rcu(&inode->i_rcu, ubifs_i_callback); 288 } 289 290 /* 291 * Note, Linux write-back code calls this without 'i_mutex'. 292 */ 293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 294 { 295 int err = 0; 296 struct ubifs_info *c = inode->i_sb->s_fs_info; 297 struct ubifs_inode *ui = ubifs_inode(inode); 298 299 ubifs_assert(!ui->xattr); 300 if (is_bad_inode(inode)) 301 return 0; 302 303 mutex_lock(&ui->ui_mutex); 304 /* 305 * Due to races between write-back forced by budgeting 306 * (see 'sync_some_inodes()') and background write-back, the inode may 307 * have already been synchronized, do not do this again. This might 308 * also happen if it was synchronized in an VFS operation, e.g. 309 * 'ubifs_link()'. 310 */ 311 if (!ui->dirty) { 312 mutex_unlock(&ui->ui_mutex); 313 return 0; 314 } 315 316 /* 317 * As an optimization, do not write orphan inodes to the media just 318 * because this is not needed. 319 */ 320 dbg_gen("inode %lu, mode %#x, nlink %u", 321 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 322 if (inode->i_nlink) { 323 err = ubifs_jnl_write_inode(c, inode); 324 if (err) 325 ubifs_err("can't write inode %lu, error %d", 326 inode->i_ino, err); 327 else 328 err = dbg_check_inode_size(c, inode, ui->ui_size); 329 } 330 331 ui->dirty = 0; 332 mutex_unlock(&ui->ui_mutex); 333 ubifs_release_dirty_inode_budget(c, ui); 334 return err; 335 } 336 337 static void ubifs_evict_inode(struct inode *inode) 338 { 339 int err; 340 struct ubifs_info *c = inode->i_sb->s_fs_info; 341 struct ubifs_inode *ui = ubifs_inode(inode); 342 343 if (ui->xattr) 344 /* 345 * Extended attribute inode deletions are fully handled in 346 * 'ubifs_removexattr()'. These inodes are special and have 347 * limited usage, so there is nothing to do here. 348 */ 349 goto out; 350 351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 352 ubifs_assert(!atomic_read(&inode->i_count)); 353 354 truncate_inode_pages_final(&inode->i_data); 355 356 if (inode->i_nlink) 357 goto done; 358 359 if (is_bad_inode(inode)) 360 goto out; 361 362 ui->ui_size = inode->i_size = 0; 363 err = ubifs_jnl_delete_inode(c, inode); 364 if (err) 365 /* 366 * Worst case we have a lost orphan inode wasting space, so a 367 * simple error message is OK here. 368 */ 369 ubifs_err("can't delete inode %lu, error %d", 370 inode->i_ino, err); 371 372 out: 373 if (ui->dirty) 374 ubifs_release_dirty_inode_budget(c, ui); 375 else { 376 /* We've deleted something - clean the "no space" flags */ 377 c->bi.nospace = c->bi.nospace_rp = 0; 378 smp_wmb(); 379 } 380 done: 381 clear_inode(inode); 382 } 383 384 static void ubifs_dirty_inode(struct inode *inode, int flags) 385 { 386 struct ubifs_inode *ui = ubifs_inode(inode); 387 388 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 389 if (!ui->dirty) { 390 ui->dirty = 1; 391 dbg_gen("inode %lu", inode->i_ino); 392 } 393 } 394 395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 396 { 397 struct ubifs_info *c = dentry->d_sb->s_fs_info; 398 unsigned long long free; 399 __le32 *uuid = (__le32 *)c->uuid; 400 401 free = ubifs_get_free_space(c); 402 dbg_gen("free space %lld bytes (%lld blocks)", 403 free, free >> UBIFS_BLOCK_SHIFT); 404 405 buf->f_type = UBIFS_SUPER_MAGIC; 406 buf->f_bsize = UBIFS_BLOCK_SIZE; 407 buf->f_blocks = c->block_cnt; 408 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 409 if (free > c->report_rp_size) 410 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 411 else 412 buf->f_bavail = 0; 413 buf->f_files = 0; 414 buf->f_ffree = 0; 415 buf->f_namelen = UBIFS_MAX_NLEN; 416 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 417 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 418 ubifs_assert(buf->f_bfree <= c->block_cnt); 419 return 0; 420 } 421 422 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 423 { 424 struct ubifs_info *c = root->d_sb->s_fs_info; 425 426 if (c->mount_opts.unmount_mode == 2) 427 seq_printf(s, ",fast_unmount"); 428 else if (c->mount_opts.unmount_mode == 1) 429 seq_printf(s, ",norm_unmount"); 430 431 if (c->mount_opts.bulk_read == 2) 432 seq_printf(s, ",bulk_read"); 433 else if (c->mount_opts.bulk_read == 1) 434 seq_printf(s, ",no_bulk_read"); 435 436 if (c->mount_opts.chk_data_crc == 2) 437 seq_printf(s, ",chk_data_crc"); 438 else if (c->mount_opts.chk_data_crc == 1) 439 seq_printf(s, ",no_chk_data_crc"); 440 441 if (c->mount_opts.override_compr) { 442 seq_printf(s, ",compr=%s", 443 ubifs_compr_name(c->mount_opts.compr_type)); 444 } 445 446 return 0; 447 } 448 449 static int ubifs_sync_fs(struct super_block *sb, int wait) 450 { 451 int i, err; 452 struct ubifs_info *c = sb->s_fs_info; 453 454 /* 455 * Zero @wait is just an advisory thing to help the file system shove 456 * lots of data into the queues, and there will be the second 457 * '->sync_fs()' call, with non-zero @wait. 458 */ 459 if (!wait) 460 return 0; 461 462 /* 463 * Synchronize write buffers, because 'ubifs_run_commit()' does not 464 * do this if it waits for an already running commit. 465 */ 466 for (i = 0; i < c->jhead_cnt; i++) { 467 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 468 if (err) 469 return err; 470 } 471 472 /* 473 * Strictly speaking, it is not necessary to commit the journal here, 474 * synchronizing write-buffers would be enough. But committing makes 475 * UBIFS free space predictions much more accurate, so we want to let 476 * the user be able to get more accurate results of 'statfs()' after 477 * they synchronize the file system. 478 */ 479 err = ubifs_run_commit(c); 480 if (err) 481 return err; 482 483 return ubi_sync(c->vi.ubi_num); 484 } 485 486 /** 487 * init_constants_early - initialize UBIFS constants. 488 * @c: UBIFS file-system description object 489 * 490 * This function initialize UBIFS constants which do not need the superblock to 491 * be read. It also checks that the UBI volume satisfies basic UBIFS 492 * requirements. Returns zero in case of success and a negative error code in 493 * case of failure. 494 */ 495 static int init_constants_early(struct ubifs_info *c) 496 { 497 if (c->vi.corrupted) { 498 ubifs_warn("UBI volume is corrupted - read-only mode"); 499 c->ro_media = 1; 500 } 501 502 if (c->di.ro_mode) { 503 ubifs_msg("read-only UBI device"); 504 c->ro_media = 1; 505 } 506 507 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 508 ubifs_msg("static UBI volume - read-only mode"); 509 c->ro_media = 1; 510 } 511 512 c->leb_cnt = c->vi.size; 513 c->leb_size = c->vi.usable_leb_size; 514 c->leb_start = c->di.leb_start; 515 c->half_leb_size = c->leb_size / 2; 516 c->min_io_size = c->di.min_io_size; 517 c->min_io_shift = fls(c->min_io_size) - 1; 518 c->max_write_size = c->di.max_write_size; 519 c->max_write_shift = fls(c->max_write_size) - 1; 520 521 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 522 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 523 c->leb_size, UBIFS_MIN_LEB_SZ); 524 return -EINVAL; 525 } 526 527 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 528 ubifs_err("too few LEBs (%d), min. is %d", 529 c->leb_cnt, UBIFS_MIN_LEB_CNT); 530 return -EINVAL; 531 } 532 533 if (!is_power_of_2(c->min_io_size)) { 534 ubifs_err("bad min. I/O size %d", c->min_io_size); 535 return -EINVAL; 536 } 537 538 /* 539 * Maximum write size has to be greater or equivalent to min. I/O 540 * size, and be multiple of min. I/O size. 541 */ 542 if (c->max_write_size < c->min_io_size || 543 c->max_write_size % c->min_io_size || 544 !is_power_of_2(c->max_write_size)) { 545 ubifs_err("bad write buffer size %d for %d min. I/O unit", 546 c->max_write_size, c->min_io_size); 547 return -EINVAL; 548 } 549 550 /* 551 * UBIFS aligns all node to 8-byte boundary, so to make function in 552 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 553 * less than 8. 554 */ 555 if (c->min_io_size < 8) { 556 c->min_io_size = 8; 557 c->min_io_shift = 3; 558 if (c->max_write_size < c->min_io_size) { 559 c->max_write_size = c->min_io_size; 560 c->max_write_shift = c->min_io_shift; 561 } 562 } 563 564 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 565 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 566 567 /* 568 * Initialize node length ranges which are mostly needed for node 569 * length validation. 570 */ 571 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 572 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 573 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 574 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 575 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 576 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 577 578 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 579 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 580 c->ranges[UBIFS_ORPH_NODE].min_len = 581 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 582 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 583 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 584 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 585 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 586 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 587 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 588 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 589 /* 590 * Minimum indexing node size is amended later when superblock is 591 * read and the key length is known. 592 */ 593 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 594 /* 595 * Maximum indexing node size is amended later when superblock is 596 * read and the fanout is known. 597 */ 598 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 599 600 /* 601 * Initialize dead and dark LEB space watermarks. See gc.c for comments 602 * about these values. 603 */ 604 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 605 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 606 607 /* 608 * Calculate how many bytes would be wasted at the end of LEB if it was 609 * fully filled with data nodes of maximum size. This is used in 610 * calculations when reporting free space. 611 */ 612 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 613 614 /* Buffer size for bulk-reads */ 615 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 616 if (c->max_bu_buf_len > c->leb_size) 617 c->max_bu_buf_len = c->leb_size; 618 return 0; 619 } 620 621 /** 622 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 623 * @c: UBIFS file-system description object 624 * @lnum: LEB the write-buffer was synchronized to 625 * @free: how many free bytes left in this LEB 626 * @pad: how many bytes were padded 627 * 628 * This is a callback function which is called by the I/O unit when the 629 * write-buffer is synchronized. We need this to correctly maintain space 630 * accounting in bud logical eraseblocks. This function returns zero in case of 631 * success and a negative error code in case of failure. 632 * 633 * This function actually belongs to the journal, but we keep it here because 634 * we want to keep it static. 635 */ 636 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 637 { 638 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 639 } 640 641 /* 642 * init_constants_sb - initialize UBIFS constants. 643 * @c: UBIFS file-system description object 644 * 645 * This is a helper function which initializes various UBIFS constants after 646 * the superblock has been read. It also checks various UBIFS parameters and 647 * makes sure they are all right. Returns zero in case of success and a 648 * negative error code in case of failure. 649 */ 650 static int init_constants_sb(struct ubifs_info *c) 651 { 652 int tmp, err; 653 long long tmp64; 654 655 c->main_bytes = (long long)c->main_lebs * c->leb_size; 656 c->max_znode_sz = sizeof(struct ubifs_znode) + 657 c->fanout * sizeof(struct ubifs_zbranch); 658 659 tmp = ubifs_idx_node_sz(c, 1); 660 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 661 c->min_idx_node_sz = ALIGN(tmp, 8); 662 663 tmp = ubifs_idx_node_sz(c, c->fanout); 664 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 665 c->max_idx_node_sz = ALIGN(tmp, 8); 666 667 /* Make sure LEB size is large enough to fit full commit */ 668 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 669 tmp = ALIGN(tmp, c->min_io_size); 670 if (tmp > c->leb_size) { 671 ubifs_err("too small LEB size %d, at least %d needed", 672 c->leb_size, tmp); 673 return -EINVAL; 674 } 675 676 /* 677 * Make sure that the log is large enough to fit reference nodes for 678 * all buds plus one reserved LEB. 679 */ 680 tmp64 = c->max_bud_bytes + c->leb_size - 1; 681 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 682 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 683 tmp /= c->leb_size; 684 tmp += 1; 685 if (c->log_lebs < tmp) { 686 ubifs_err("too small log %d LEBs, required min. %d LEBs", 687 c->log_lebs, tmp); 688 return -EINVAL; 689 } 690 691 /* 692 * When budgeting we assume worst-case scenarios when the pages are not 693 * be compressed and direntries are of the maximum size. 694 * 695 * Note, data, which may be stored in inodes is budgeted separately, so 696 * it is not included into 'c->bi.inode_budget'. 697 */ 698 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 699 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 700 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 701 702 /* 703 * When the amount of flash space used by buds becomes 704 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 705 * The writers are unblocked when the commit is finished. To avoid 706 * writers to be blocked UBIFS initiates background commit in advance, 707 * when number of bud bytes becomes above the limit defined below. 708 */ 709 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 710 711 /* 712 * Ensure minimum journal size. All the bytes in the journal heads are 713 * considered to be used, when calculating the current journal usage. 714 * Consequently, if the journal is too small, UBIFS will treat it as 715 * always full. 716 */ 717 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 718 if (c->bg_bud_bytes < tmp64) 719 c->bg_bud_bytes = tmp64; 720 if (c->max_bud_bytes < tmp64 + c->leb_size) 721 c->max_bud_bytes = tmp64 + c->leb_size; 722 723 err = ubifs_calc_lpt_geom(c); 724 if (err) 725 return err; 726 727 /* Initialize effective LEB size used in budgeting calculations */ 728 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 729 return 0; 730 } 731 732 /* 733 * init_constants_master - initialize UBIFS constants. 734 * @c: UBIFS file-system description object 735 * 736 * This is a helper function which initializes various UBIFS constants after 737 * the master node has been read. It also checks various UBIFS parameters and 738 * makes sure they are all right. 739 */ 740 static void init_constants_master(struct ubifs_info *c) 741 { 742 long long tmp64; 743 744 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 745 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 746 747 /* 748 * Calculate total amount of FS blocks. This number is not used 749 * internally because it does not make much sense for UBIFS, but it is 750 * necessary to report something for the 'statfs()' call. 751 * 752 * Subtract the LEB reserved for GC, the LEB which is reserved for 753 * deletions, minimum LEBs for the index, and assume only one journal 754 * head is available. 755 */ 756 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 757 tmp64 *= (long long)c->leb_size - c->leb_overhead; 758 tmp64 = ubifs_reported_space(c, tmp64); 759 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 760 } 761 762 /** 763 * take_gc_lnum - reserve GC LEB. 764 * @c: UBIFS file-system description object 765 * 766 * This function ensures that the LEB reserved for garbage collection is marked 767 * as "taken" in lprops. We also have to set free space to LEB size and dirty 768 * space to zero, because lprops may contain out-of-date information if the 769 * file-system was un-mounted before it has been committed. This function 770 * returns zero in case of success and a negative error code in case of 771 * failure. 772 */ 773 static int take_gc_lnum(struct ubifs_info *c) 774 { 775 int err; 776 777 if (c->gc_lnum == -1) { 778 ubifs_err("no LEB for GC"); 779 return -EINVAL; 780 } 781 782 /* And we have to tell lprops that this LEB is taken */ 783 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 784 LPROPS_TAKEN, 0, 0); 785 return err; 786 } 787 788 /** 789 * alloc_wbufs - allocate write-buffers. 790 * @c: UBIFS file-system description object 791 * 792 * This helper function allocates and initializes UBIFS write-buffers. Returns 793 * zero in case of success and %-ENOMEM in case of failure. 794 */ 795 static int alloc_wbufs(struct ubifs_info *c) 796 { 797 int i, err; 798 799 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 800 GFP_KERNEL); 801 if (!c->jheads) 802 return -ENOMEM; 803 804 /* Initialize journal heads */ 805 for (i = 0; i < c->jhead_cnt; i++) { 806 INIT_LIST_HEAD(&c->jheads[i].buds_list); 807 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 808 if (err) 809 return err; 810 811 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 812 c->jheads[i].wbuf.jhead = i; 813 c->jheads[i].grouped = 1; 814 } 815 816 /* 817 * Garbage Collector head does not need to be synchronized by timer. 818 * Also GC head nodes are not grouped. 819 */ 820 c->jheads[GCHD].wbuf.no_timer = 1; 821 c->jheads[GCHD].grouped = 0; 822 823 return 0; 824 } 825 826 /** 827 * free_wbufs - free write-buffers. 828 * @c: UBIFS file-system description object 829 */ 830 static void free_wbufs(struct ubifs_info *c) 831 { 832 int i; 833 834 if (c->jheads) { 835 for (i = 0; i < c->jhead_cnt; i++) { 836 kfree(c->jheads[i].wbuf.buf); 837 kfree(c->jheads[i].wbuf.inodes); 838 } 839 kfree(c->jheads); 840 c->jheads = NULL; 841 } 842 } 843 844 /** 845 * free_orphans - free orphans. 846 * @c: UBIFS file-system description object 847 */ 848 static void free_orphans(struct ubifs_info *c) 849 { 850 struct ubifs_orphan *orph; 851 852 while (c->orph_dnext) { 853 orph = c->orph_dnext; 854 c->orph_dnext = orph->dnext; 855 list_del(&orph->list); 856 kfree(orph); 857 } 858 859 while (!list_empty(&c->orph_list)) { 860 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 861 list_del(&orph->list); 862 kfree(orph); 863 ubifs_err("orphan list not empty at unmount"); 864 } 865 866 vfree(c->orph_buf); 867 c->orph_buf = NULL; 868 } 869 870 /** 871 * free_buds - free per-bud objects. 872 * @c: UBIFS file-system description object 873 */ 874 static void free_buds(struct ubifs_info *c) 875 { 876 struct ubifs_bud *bud, *n; 877 878 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 879 kfree(bud); 880 } 881 882 /** 883 * check_volume_empty - check if the UBI volume is empty. 884 * @c: UBIFS file-system description object 885 * 886 * This function checks if the UBIFS volume is empty by looking if its LEBs are 887 * mapped or not. The result of checking is stored in the @c->empty variable. 888 * Returns zero in case of success and a negative error code in case of 889 * failure. 890 */ 891 static int check_volume_empty(struct ubifs_info *c) 892 { 893 int lnum, err; 894 895 c->empty = 1; 896 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 897 err = ubifs_is_mapped(c, lnum); 898 if (unlikely(err < 0)) 899 return err; 900 if (err == 1) { 901 c->empty = 0; 902 break; 903 } 904 905 cond_resched(); 906 } 907 908 return 0; 909 } 910 911 /* 912 * UBIFS mount options. 913 * 914 * Opt_fast_unmount: do not run a journal commit before un-mounting 915 * Opt_norm_unmount: run a journal commit before un-mounting 916 * Opt_bulk_read: enable bulk-reads 917 * Opt_no_bulk_read: disable bulk-reads 918 * Opt_chk_data_crc: check CRCs when reading data nodes 919 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 920 * Opt_override_compr: override default compressor 921 * Opt_err: just end of array marker 922 */ 923 enum { 924 Opt_fast_unmount, 925 Opt_norm_unmount, 926 Opt_bulk_read, 927 Opt_no_bulk_read, 928 Opt_chk_data_crc, 929 Opt_no_chk_data_crc, 930 Opt_override_compr, 931 Opt_err, 932 }; 933 934 static const match_table_t tokens = { 935 {Opt_fast_unmount, "fast_unmount"}, 936 {Opt_norm_unmount, "norm_unmount"}, 937 {Opt_bulk_read, "bulk_read"}, 938 {Opt_no_bulk_read, "no_bulk_read"}, 939 {Opt_chk_data_crc, "chk_data_crc"}, 940 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 941 {Opt_override_compr, "compr=%s"}, 942 {Opt_err, NULL}, 943 }; 944 945 /** 946 * parse_standard_option - parse a standard mount option. 947 * @option: the option to parse 948 * 949 * Normally, standard mount options like "sync" are passed to file-systems as 950 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 951 * be present in the options string. This function tries to deal with this 952 * situation and parse standard options. Returns 0 if the option was not 953 * recognized, and the corresponding integer flag if it was. 954 * 955 * UBIFS is only interested in the "sync" option, so do not check for anything 956 * else. 957 */ 958 static int parse_standard_option(const char *option) 959 { 960 ubifs_msg("parse %s", option); 961 if (!strcmp(option, "sync")) 962 return MS_SYNCHRONOUS; 963 return 0; 964 } 965 966 /** 967 * ubifs_parse_options - parse mount parameters. 968 * @c: UBIFS file-system description object 969 * @options: parameters to parse 970 * @is_remount: non-zero if this is FS re-mount 971 * 972 * This function parses UBIFS mount options and returns zero in case success 973 * and a negative error code in case of failure. 974 */ 975 static int ubifs_parse_options(struct ubifs_info *c, char *options, 976 int is_remount) 977 { 978 char *p; 979 substring_t args[MAX_OPT_ARGS]; 980 981 if (!options) 982 return 0; 983 984 while ((p = strsep(&options, ","))) { 985 int token; 986 987 if (!*p) 988 continue; 989 990 token = match_token(p, tokens, args); 991 switch (token) { 992 /* 993 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 994 * We accept them in order to be backward-compatible. But this 995 * should be removed at some point. 996 */ 997 case Opt_fast_unmount: 998 c->mount_opts.unmount_mode = 2; 999 break; 1000 case Opt_norm_unmount: 1001 c->mount_opts.unmount_mode = 1; 1002 break; 1003 case Opt_bulk_read: 1004 c->mount_opts.bulk_read = 2; 1005 c->bulk_read = 1; 1006 break; 1007 case Opt_no_bulk_read: 1008 c->mount_opts.bulk_read = 1; 1009 c->bulk_read = 0; 1010 break; 1011 case Opt_chk_data_crc: 1012 c->mount_opts.chk_data_crc = 2; 1013 c->no_chk_data_crc = 0; 1014 break; 1015 case Opt_no_chk_data_crc: 1016 c->mount_opts.chk_data_crc = 1; 1017 c->no_chk_data_crc = 1; 1018 break; 1019 case Opt_override_compr: 1020 { 1021 char *name = match_strdup(&args[0]); 1022 1023 if (!name) 1024 return -ENOMEM; 1025 if (!strcmp(name, "none")) 1026 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1027 else if (!strcmp(name, "lzo")) 1028 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1029 else if (!strcmp(name, "zlib")) 1030 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1031 else { 1032 ubifs_err("unknown compressor \"%s\"", name); 1033 kfree(name); 1034 return -EINVAL; 1035 } 1036 kfree(name); 1037 c->mount_opts.override_compr = 1; 1038 c->default_compr = c->mount_opts.compr_type; 1039 break; 1040 } 1041 default: 1042 { 1043 unsigned long flag; 1044 struct super_block *sb = c->vfs_sb; 1045 1046 flag = parse_standard_option(p); 1047 if (!flag) { 1048 ubifs_err("unrecognized mount option \"%s\" or missing value", 1049 p); 1050 return -EINVAL; 1051 } 1052 sb->s_flags |= flag; 1053 break; 1054 } 1055 } 1056 } 1057 1058 return 0; 1059 } 1060 1061 /** 1062 * destroy_journal - destroy journal data structures. 1063 * @c: UBIFS file-system description object 1064 * 1065 * This function destroys journal data structures including those that may have 1066 * been created by recovery functions. 1067 */ 1068 static void destroy_journal(struct ubifs_info *c) 1069 { 1070 while (!list_empty(&c->unclean_leb_list)) { 1071 struct ubifs_unclean_leb *ucleb; 1072 1073 ucleb = list_entry(c->unclean_leb_list.next, 1074 struct ubifs_unclean_leb, list); 1075 list_del(&ucleb->list); 1076 kfree(ucleb); 1077 } 1078 while (!list_empty(&c->old_buds)) { 1079 struct ubifs_bud *bud; 1080 1081 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1082 list_del(&bud->list); 1083 kfree(bud); 1084 } 1085 ubifs_destroy_idx_gc(c); 1086 ubifs_destroy_size_tree(c); 1087 ubifs_tnc_close(c); 1088 free_buds(c); 1089 } 1090 1091 /** 1092 * bu_init - initialize bulk-read information. 1093 * @c: UBIFS file-system description object 1094 */ 1095 static void bu_init(struct ubifs_info *c) 1096 { 1097 ubifs_assert(c->bulk_read == 1); 1098 1099 if (c->bu.buf) 1100 return; /* Already initialized */ 1101 1102 again: 1103 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1104 if (!c->bu.buf) { 1105 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1106 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1107 goto again; 1108 } 1109 1110 /* Just disable bulk-read */ 1111 ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it", 1112 c->max_bu_buf_len); 1113 c->mount_opts.bulk_read = 1; 1114 c->bulk_read = 0; 1115 return; 1116 } 1117 } 1118 1119 /** 1120 * check_free_space - check if there is enough free space to mount. 1121 * @c: UBIFS file-system description object 1122 * 1123 * This function makes sure UBIFS has enough free space to be mounted in 1124 * read/write mode. UBIFS must always have some free space to allow deletions. 1125 */ 1126 static int check_free_space(struct ubifs_info *c) 1127 { 1128 ubifs_assert(c->dark_wm > 0); 1129 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1130 ubifs_err("insufficient free space to mount in R/W mode"); 1131 ubifs_dump_budg(c, &c->bi); 1132 ubifs_dump_lprops(c); 1133 return -ENOSPC; 1134 } 1135 return 0; 1136 } 1137 1138 /** 1139 * mount_ubifs - mount UBIFS file-system. 1140 * @c: UBIFS file-system description object 1141 * 1142 * This function mounts UBIFS file system. Returns zero in case of success and 1143 * a negative error code in case of failure. 1144 */ 1145 static int mount_ubifs(struct ubifs_info *c) 1146 { 1147 int err; 1148 long long x, y; 1149 size_t sz; 1150 1151 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1152 err = init_constants_early(c); 1153 if (err) 1154 return err; 1155 1156 err = ubifs_debugging_init(c); 1157 if (err) 1158 return err; 1159 1160 err = check_volume_empty(c); 1161 if (err) 1162 goto out_free; 1163 1164 if (c->empty && (c->ro_mount || c->ro_media)) { 1165 /* 1166 * This UBI volume is empty, and read-only, or the file system 1167 * is mounted read-only - we cannot format it. 1168 */ 1169 ubifs_err("can't format empty UBI volume: read-only %s", 1170 c->ro_media ? "UBI volume" : "mount"); 1171 err = -EROFS; 1172 goto out_free; 1173 } 1174 1175 if (c->ro_media && !c->ro_mount) { 1176 ubifs_err("cannot mount read-write - read-only media"); 1177 err = -EROFS; 1178 goto out_free; 1179 } 1180 1181 /* 1182 * The requirement for the buffer is that it should fit indexing B-tree 1183 * height amount of integers. We assume the height if the TNC tree will 1184 * never exceed 64. 1185 */ 1186 err = -ENOMEM; 1187 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1188 if (!c->bottom_up_buf) 1189 goto out_free; 1190 1191 c->sbuf = vmalloc(c->leb_size); 1192 if (!c->sbuf) 1193 goto out_free; 1194 1195 if (!c->ro_mount) { 1196 c->ileb_buf = vmalloc(c->leb_size); 1197 if (!c->ileb_buf) 1198 goto out_free; 1199 } 1200 1201 if (c->bulk_read == 1) 1202 bu_init(c); 1203 1204 if (!c->ro_mount) { 1205 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1206 GFP_KERNEL); 1207 if (!c->write_reserve_buf) 1208 goto out_free; 1209 } 1210 1211 c->mounting = 1; 1212 1213 err = ubifs_read_superblock(c); 1214 if (err) 1215 goto out_free; 1216 1217 /* 1218 * Make sure the compressor which is set as default in the superblock 1219 * or overridden by mount options is actually compiled in. 1220 */ 1221 if (!ubifs_compr_present(c->default_compr)) { 1222 ubifs_err("'compressor \"%s\" is not compiled in", 1223 ubifs_compr_name(c->default_compr)); 1224 err = -ENOTSUPP; 1225 goto out_free; 1226 } 1227 1228 err = init_constants_sb(c); 1229 if (err) 1230 goto out_free; 1231 1232 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1233 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1234 c->cbuf = kmalloc(sz, GFP_NOFS); 1235 if (!c->cbuf) { 1236 err = -ENOMEM; 1237 goto out_free; 1238 } 1239 1240 err = alloc_wbufs(c); 1241 if (err) 1242 goto out_cbuf; 1243 1244 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1245 if (!c->ro_mount) { 1246 /* Create background thread */ 1247 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1248 if (IS_ERR(c->bgt)) { 1249 err = PTR_ERR(c->bgt); 1250 c->bgt = NULL; 1251 ubifs_err("cannot spawn \"%s\", error %d", 1252 c->bgt_name, err); 1253 goto out_wbufs; 1254 } 1255 wake_up_process(c->bgt); 1256 } 1257 1258 err = ubifs_read_master(c); 1259 if (err) 1260 goto out_master; 1261 1262 init_constants_master(c); 1263 1264 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1265 ubifs_msg("recovery needed"); 1266 c->need_recovery = 1; 1267 } 1268 1269 if (c->need_recovery && !c->ro_mount) { 1270 err = ubifs_recover_inl_heads(c, c->sbuf); 1271 if (err) 1272 goto out_master; 1273 } 1274 1275 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1276 if (err) 1277 goto out_master; 1278 1279 if (!c->ro_mount && c->space_fixup) { 1280 err = ubifs_fixup_free_space(c); 1281 if (err) 1282 goto out_lpt; 1283 } 1284 1285 if (!c->ro_mount) { 1286 /* 1287 * Set the "dirty" flag so that if we reboot uncleanly we 1288 * will notice this immediately on the next mount. 1289 */ 1290 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1291 err = ubifs_write_master(c); 1292 if (err) 1293 goto out_lpt; 1294 } 1295 1296 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1297 if (err) 1298 goto out_lpt; 1299 1300 err = ubifs_replay_journal(c); 1301 if (err) 1302 goto out_journal; 1303 1304 /* Calculate 'min_idx_lebs' after journal replay */ 1305 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1306 1307 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1308 if (err) 1309 goto out_orphans; 1310 1311 if (!c->ro_mount) { 1312 int lnum; 1313 1314 err = check_free_space(c); 1315 if (err) 1316 goto out_orphans; 1317 1318 /* Check for enough log space */ 1319 lnum = c->lhead_lnum + 1; 1320 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1321 lnum = UBIFS_LOG_LNUM; 1322 if (lnum == c->ltail_lnum) { 1323 err = ubifs_consolidate_log(c); 1324 if (err) 1325 goto out_orphans; 1326 } 1327 1328 if (c->need_recovery) { 1329 err = ubifs_recover_size(c); 1330 if (err) 1331 goto out_orphans; 1332 err = ubifs_rcvry_gc_commit(c); 1333 if (err) 1334 goto out_orphans; 1335 } else { 1336 err = take_gc_lnum(c); 1337 if (err) 1338 goto out_orphans; 1339 1340 /* 1341 * GC LEB may contain garbage if there was an unclean 1342 * reboot, and it should be un-mapped. 1343 */ 1344 err = ubifs_leb_unmap(c, c->gc_lnum); 1345 if (err) 1346 goto out_orphans; 1347 } 1348 1349 err = dbg_check_lprops(c); 1350 if (err) 1351 goto out_orphans; 1352 } else if (c->need_recovery) { 1353 err = ubifs_recover_size(c); 1354 if (err) 1355 goto out_orphans; 1356 } else { 1357 /* 1358 * Even if we mount read-only, we have to set space in GC LEB 1359 * to proper value because this affects UBIFS free space 1360 * reporting. We do not want to have a situation when 1361 * re-mounting from R/O to R/W changes amount of free space. 1362 */ 1363 err = take_gc_lnum(c); 1364 if (err) 1365 goto out_orphans; 1366 } 1367 1368 spin_lock(&ubifs_infos_lock); 1369 list_add_tail(&c->infos_list, &ubifs_infos); 1370 spin_unlock(&ubifs_infos_lock); 1371 1372 if (c->need_recovery) { 1373 if (c->ro_mount) 1374 ubifs_msg("recovery deferred"); 1375 else { 1376 c->need_recovery = 0; 1377 ubifs_msg("recovery completed"); 1378 /* 1379 * GC LEB has to be empty and taken at this point. But 1380 * the journal head LEBs may also be accounted as 1381 * "empty taken" if they are empty. 1382 */ 1383 ubifs_assert(c->lst.taken_empty_lebs > 0); 1384 } 1385 } else 1386 ubifs_assert(c->lst.taken_empty_lebs > 0); 1387 1388 err = dbg_check_filesystem(c); 1389 if (err) 1390 goto out_infos; 1391 1392 err = dbg_debugfs_init_fs(c); 1393 if (err) 1394 goto out_infos; 1395 1396 c->mounting = 0; 1397 1398 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s", 1399 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1400 c->ro_mount ? ", R/O mode" : ""); 1401 x = (long long)c->main_lebs * c->leb_size; 1402 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1403 ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1404 c->leb_size, c->leb_size >> 10, c->min_io_size, 1405 c->max_write_size); 1406 ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1407 x, x >> 20, c->main_lebs, 1408 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1409 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1410 c->report_rp_size, c->report_rp_size >> 10); 1411 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1412 c->fmt_version, c->ro_compat_version, 1413 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1414 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1415 1416 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1417 dbg_gen("data journal heads: %d", 1418 c->jhead_cnt - NONDATA_JHEADS_CNT); 1419 dbg_gen("log LEBs: %d (%d - %d)", 1420 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1421 dbg_gen("LPT area LEBs: %d (%d - %d)", 1422 c->lpt_lebs, c->lpt_first, c->lpt_last); 1423 dbg_gen("orphan area LEBs: %d (%d - %d)", 1424 c->orph_lebs, c->orph_first, c->orph_last); 1425 dbg_gen("main area LEBs: %d (%d - %d)", 1426 c->main_lebs, c->main_first, c->leb_cnt - 1); 1427 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1428 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1429 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1430 c->bi.old_idx_sz >> 20); 1431 dbg_gen("key hash type: %d", c->key_hash_type); 1432 dbg_gen("tree fanout: %d", c->fanout); 1433 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1434 dbg_gen("max. znode size %d", c->max_znode_sz); 1435 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1436 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1437 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1438 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1439 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1440 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1441 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1442 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1443 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1444 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1445 dbg_gen("dead watermark: %d", c->dead_wm); 1446 dbg_gen("dark watermark: %d", c->dark_wm); 1447 dbg_gen("LEB overhead: %d", c->leb_overhead); 1448 x = (long long)c->main_lebs * c->dark_wm; 1449 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1450 x, x >> 10, x >> 20); 1451 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1452 c->max_bud_bytes, c->max_bud_bytes >> 10, 1453 c->max_bud_bytes >> 20); 1454 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1455 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1456 c->bg_bud_bytes >> 20); 1457 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1458 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1459 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1460 dbg_gen("commit number: %llu", c->cmt_no); 1461 1462 return 0; 1463 1464 out_infos: 1465 spin_lock(&ubifs_infos_lock); 1466 list_del(&c->infos_list); 1467 spin_unlock(&ubifs_infos_lock); 1468 out_orphans: 1469 free_orphans(c); 1470 out_journal: 1471 destroy_journal(c); 1472 out_lpt: 1473 ubifs_lpt_free(c, 0); 1474 out_master: 1475 kfree(c->mst_node); 1476 kfree(c->rcvrd_mst_node); 1477 if (c->bgt) 1478 kthread_stop(c->bgt); 1479 out_wbufs: 1480 free_wbufs(c); 1481 out_cbuf: 1482 kfree(c->cbuf); 1483 out_free: 1484 kfree(c->write_reserve_buf); 1485 kfree(c->bu.buf); 1486 vfree(c->ileb_buf); 1487 vfree(c->sbuf); 1488 kfree(c->bottom_up_buf); 1489 ubifs_debugging_exit(c); 1490 return err; 1491 } 1492 1493 /** 1494 * ubifs_umount - un-mount UBIFS file-system. 1495 * @c: UBIFS file-system description object 1496 * 1497 * Note, this function is called to free allocated resourced when un-mounting, 1498 * as well as free resources when an error occurred while we were half way 1499 * through mounting (error path cleanup function). So it has to make sure the 1500 * resource was actually allocated before freeing it. 1501 */ 1502 static void ubifs_umount(struct ubifs_info *c) 1503 { 1504 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1505 c->vi.vol_id); 1506 1507 dbg_debugfs_exit_fs(c); 1508 spin_lock(&ubifs_infos_lock); 1509 list_del(&c->infos_list); 1510 spin_unlock(&ubifs_infos_lock); 1511 1512 if (c->bgt) 1513 kthread_stop(c->bgt); 1514 1515 destroy_journal(c); 1516 free_wbufs(c); 1517 free_orphans(c); 1518 ubifs_lpt_free(c, 0); 1519 1520 kfree(c->cbuf); 1521 kfree(c->rcvrd_mst_node); 1522 kfree(c->mst_node); 1523 kfree(c->write_reserve_buf); 1524 kfree(c->bu.buf); 1525 vfree(c->ileb_buf); 1526 vfree(c->sbuf); 1527 kfree(c->bottom_up_buf); 1528 ubifs_debugging_exit(c); 1529 } 1530 1531 /** 1532 * ubifs_remount_rw - re-mount in read-write mode. 1533 * @c: UBIFS file-system description object 1534 * 1535 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1536 * mode. This function allocates the needed resources and re-mounts UBIFS in 1537 * read-write mode. 1538 */ 1539 static int ubifs_remount_rw(struct ubifs_info *c) 1540 { 1541 int err, lnum; 1542 1543 if (c->rw_incompat) { 1544 ubifs_err("the file-system is not R/W-compatible"); 1545 ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1546 c->fmt_version, c->ro_compat_version, 1547 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1548 return -EROFS; 1549 } 1550 1551 mutex_lock(&c->umount_mutex); 1552 dbg_save_space_info(c); 1553 c->remounting_rw = 1; 1554 c->ro_mount = 0; 1555 1556 if (c->space_fixup) { 1557 err = ubifs_fixup_free_space(c); 1558 if (err) 1559 return err; 1560 } 1561 1562 err = check_free_space(c); 1563 if (err) 1564 goto out; 1565 1566 if (c->old_leb_cnt != c->leb_cnt) { 1567 struct ubifs_sb_node *sup; 1568 1569 sup = ubifs_read_sb_node(c); 1570 if (IS_ERR(sup)) { 1571 err = PTR_ERR(sup); 1572 goto out; 1573 } 1574 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1575 err = ubifs_write_sb_node(c, sup); 1576 kfree(sup); 1577 if (err) 1578 goto out; 1579 } 1580 1581 if (c->need_recovery) { 1582 ubifs_msg("completing deferred recovery"); 1583 err = ubifs_write_rcvrd_mst_node(c); 1584 if (err) 1585 goto out; 1586 err = ubifs_recover_size(c); 1587 if (err) 1588 goto out; 1589 err = ubifs_clean_lebs(c, c->sbuf); 1590 if (err) 1591 goto out; 1592 err = ubifs_recover_inl_heads(c, c->sbuf); 1593 if (err) 1594 goto out; 1595 } else { 1596 /* A readonly mount is not allowed to have orphans */ 1597 ubifs_assert(c->tot_orphans == 0); 1598 err = ubifs_clear_orphans(c); 1599 if (err) 1600 goto out; 1601 } 1602 1603 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1604 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1605 err = ubifs_write_master(c); 1606 if (err) 1607 goto out; 1608 } 1609 1610 c->ileb_buf = vmalloc(c->leb_size); 1611 if (!c->ileb_buf) { 1612 err = -ENOMEM; 1613 goto out; 1614 } 1615 1616 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1617 if (!c->write_reserve_buf) { 1618 err = -ENOMEM; 1619 goto out; 1620 } 1621 1622 err = ubifs_lpt_init(c, 0, 1); 1623 if (err) 1624 goto out; 1625 1626 /* Create background thread */ 1627 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1628 if (IS_ERR(c->bgt)) { 1629 err = PTR_ERR(c->bgt); 1630 c->bgt = NULL; 1631 ubifs_err("cannot spawn \"%s\", error %d", 1632 c->bgt_name, err); 1633 goto out; 1634 } 1635 wake_up_process(c->bgt); 1636 1637 c->orph_buf = vmalloc(c->leb_size); 1638 if (!c->orph_buf) { 1639 err = -ENOMEM; 1640 goto out; 1641 } 1642 1643 /* Check for enough log space */ 1644 lnum = c->lhead_lnum + 1; 1645 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1646 lnum = UBIFS_LOG_LNUM; 1647 if (lnum == c->ltail_lnum) { 1648 err = ubifs_consolidate_log(c); 1649 if (err) 1650 goto out; 1651 } 1652 1653 if (c->need_recovery) 1654 err = ubifs_rcvry_gc_commit(c); 1655 else 1656 err = ubifs_leb_unmap(c, c->gc_lnum); 1657 if (err) 1658 goto out; 1659 1660 dbg_gen("re-mounted read-write"); 1661 c->remounting_rw = 0; 1662 1663 if (c->need_recovery) { 1664 c->need_recovery = 0; 1665 ubifs_msg("deferred recovery completed"); 1666 } else { 1667 /* 1668 * Do not run the debugging space check if the were doing 1669 * recovery, because when we saved the information we had the 1670 * file-system in a state where the TNC and lprops has been 1671 * modified in memory, but all the I/O operations (including a 1672 * commit) were deferred. So the file-system was in 1673 * "non-committed" state. Now the file-system is in committed 1674 * state, and of course the amount of free space will change 1675 * because, for example, the old index size was imprecise. 1676 */ 1677 err = dbg_check_space_info(c); 1678 } 1679 1680 mutex_unlock(&c->umount_mutex); 1681 return err; 1682 1683 out: 1684 c->ro_mount = 1; 1685 vfree(c->orph_buf); 1686 c->orph_buf = NULL; 1687 if (c->bgt) { 1688 kthread_stop(c->bgt); 1689 c->bgt = NULL; 1690 } 1691 free_wbufs(c); 1692 kfree(c->write_reserve_buf); 1693 c->write_reserve_buf = NULL; 1694 vfree(c->ileb_buf); 1695 c->ileb_buf = NULL; 1696 ubifs_lpt_free(c, 1); 1697 c->remounting_rw = 0; 1698 mutex_unlock(&c->umount_mutex); 1699 return err; 1700 } 1701 1702 /** 1703 * ubifs_remount_ro - re-mount in read-only mode. 1704 * @c: UBIFS file-system description object 1705 * 1706 * We assume VFS has stopped writing. Possibly the background thread could be 1707 * running a commit, however kthread_stop will wait in that case. 1708 */ 1709 static void ubifs_remount_ro(struct ubifs_info *c) 1710 { 1711 int i, err; 1712 1713 ubifs_assert(!c->need_recovery); 1714 ubifs_assert(!c->ro_mount); 1715 1716 mutex_lock(&c->umount_mutex); 1717 if (c->bgt) { 1718 kthread_stop(c->bgt); 1719 c->bgt = NULL; 1720 } 1721 1722 dbg_save_space_info(c); 1723 1724 for (i = 0; i < c->jhead_cnt; i++) 1725 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1726 1727 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1728 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1729 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1730 err = ubifs_write_master(c); 1731 if (err) 1732 ubifs_ro_mode(c, err); 1733 1734 vfree(c->orph_buf); 1735 c->orph_buf = NULL; 1736 kfree(c->write_reserve_buf); 1737 c->write_reserve_buf = NULL; 1738 vfree(c->ileb_buf); 1739 c->ileb_buf = NULL; 1740 ubifs_lpt_free(c, 1); 1741 c->ro_mount = 1; 1742 err = dbg_check_space_info(c); 1743 if (err) 1744 ubifs_ro_mode(c, err); 1745 mutex_unlock(&c->umount_mutex); 1746 } 1747 1748 static void ubifs_put_super(struct super_block *sb) 1749 { 1750 int i; 1751 struct ubifs_info *c = sb->s_fs_info; 1752 1753 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1754 c->vi.vol_id); 1755 1756 /* 1757 * The following asserts are only valid if there has not been a failure 1758 * of the media. For example, there will be dirty inodes if we failed 1759 * to write them back because of I/O errors. 1760 */ 1761 if (!c->ro_error) { 1762 ubifs_assert(c->bi.idx_growth == 0); 1763 ubifs_assert(c->bi.dd_growth == 0); 1764 ubifs_assert(c->bi.data_growth == 0); 1765 } 1766 1767 /* 1768 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1769 * and file system un-mount. Namely, it prevents the shrinker from 1770 * picking this superblock for shrinking - it will be just skipped if 1771 * the mutex is locked. 1772 */ 1773 mutex_lock(&c->umount_mutex); 1774 if (!c->ro_mount) { 1775 /* 1776 * First of all kill the background thread to make sure it does 1777 * not interfere with un-mounting and freeing resources. 1778 */ 1779 if (c->bgt) { 1780 kthread_stop(c->bgt); 1781 c->bgt = NULL; 1782 } 1783 1784 /* 1785 * On fatal errors c->ro_error is set to 1, in which case we do 1786 * not write the master node. 1787 */ 1788 if (!c->ro_error) { 1789 int err; 1790 1791 /* Synchronize write-buffers */ 1792 for (i = 0; i < c->jhead_cnt; i++) 1793 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1794 1795 /* 1796 * We are being cleanly unmounted which means the 1797 * orphans were killed - indicate this in the master 1798 * node. Also save the reserved GC LEB number. 1799 */ 1800 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1801 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1802 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1803 err = ubifs_write_master(c); 1804 if (err) 1805 /* 1806 * Recovery will attempt to fix the master area 1807 * next mount, so we just print a message and 1808 * continue to unmount normally. 1809 */ 1810 ubifs_err("failed to write master node, error %d", 1811 err); 1812 } else { 1813 for (i = 0; i < c->jhead_cnt; i++) 1814 /* Make sure write-buffer timers are canceled */ 1815 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1816 } 1817 } 1818 1819 ubifs_umount(c); 1820 bdi_destroy(&c->bdi); 1821 ubi_close_volume(c->ubi); 1822 mutex_unlock(&c->umount_mutex); 1823 } 1824 1825 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1826 { 1827 int err; 1828 struct ubifs_info *c = sb->s_fs_info; 1829 1830 sync_filesystem(sb); 1831 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1832 1833 err = ubifs_parse_options(c, data, 1); 1834 if (err) { 1835 ubifs_err("invalid or unknown remount parameter"); 1836 return err; 1837 } 1838 1839 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1840 if (c->ro_error) { 1841 ubifs_msg("cannot re-mount R/W due to prior errors"); 1842 return -EROFS; 1843 } 1844 if (c->ro_media) { 1845 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 1846 return -EROFS; 1847 } 1848 err = ubifs_remount_rw(c); 1849 if (err) 1850 return err; 1851 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1852 if (c->ro_error) { 1853 ubifs_msg("cannot re-mount R/O due to prior errors"); 1854 return -EROFS; 1855 } 1856 ubifs_remount_ro(c); 1857 } 1858 1859 if (c->bulk_read == 1) 1860 bu_init(c); 1861 else { 1862 dbg_gen("disable bulk-read"); 1863 kfree(c->bu.buf); 1864 c->bu.buf = NULL; 1865 } 1866 1867 ubifs_assert(c->lst.taken_empty_lebs > 0); 1868 return 0; 1869 } 1870 1871 const struct super_operations ubifs_super_operations = { 1872 .alloc_inode = ubifs_alloc_inode, 1873 .destroy_inode = ubifs_destroy_inode, 1874 .put_super = ubifs_put_super, 1875 .write_inode = ubifs_write_inode, 1876 .evict_inode = ubifs_evict_inode, 1877 .statfs = ubifs_statfs, 1878 .dirty_inode = ubifs_dirty_inode, 1879 .remount_fs = ubifs_remount_fs, 1880 .show_options = ubifs_show_options, 1881 .sync_fs = ubifs_sync_fs, 1882 }; 1883 1884 /** 1885 * open_ubi - parse UBI device name string and open the UBI device. 1886 * @name: UBI volume name 1887 * @mode: UBI volume open mode 1888 * 1889 * The primary method of mounting UBIFS is by specifying the UBI volume 1890 * character device node path. However, UBIFS may also be mounted withoug any 1891 * character device node using one of the following methods: 1892 * 1893 * o ubiX_Y - mount UBI device number X, volume Y; 1894 * o ubiY - mount UBI device number 0, volume Y; 1895 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1896 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1897 * 1898 * Alternative '!' separator may be used instead of ':' (because some shells 1899 * like busybox may interpret ':' as an NFS host name separator). This function 1900 * returns UBI volume description object in case of success and a negative 1901 * error code in case of failure. 1902 */ 1903 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1904 { 1905 struct ubi_volume_desc *ubi; 1906 int dev, vol; 1907 char *endptr; 1908 1909 /* First, try to open using the device node path method */ 1910 ubi = ubi_open_volume_path(name, mode); 1911 if (!IS_ERR(ubi)) 1912 return ubi; 1913 1914 /* Try the "nodev" method */ 1915 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1916 return ERR_PTR(-EINVAL); 1917 1918 /* ubi:NAME method */ 1919 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1920 return ubi_open_volume_nm(0, name + 4, mode); 1921 1922 if (!isdigit(name[3])) 1923 return ERR_PTR(-EINVAL); 1924 1925 dev = simple_strtoul(name + 3, &endptr, 0); 1926 1927 /* ubiY method */ 1928 if (*endptr == '\0') 1929 return ubi_open_volume(0, dev, mode); 1930 1931 /* ubiX_Y method */ 1932 if (*endptr == '_' && isdigit(endptr[1])) { 1933 vol = simple_strtoul(endptr + 1, &endptr, 0); 1934 if (*endptr != '\0') 1935 return ERR_PTR(-EINVAL); 1936 return ubi_open_volume(dev, vol, mode); 1937 } 1938 1939 /* ubiX:NAME method */ 1940 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1941 return ubi_open_volume_nm(dev, ++endptr, mode); 1942 1943 return ERR_PTR(-EINVAL); 1944 } 1945 1946 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1947 { 1948 struct ubifs_info *c; 1949 1950 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1951 if (c) { 1952 spin_lock_init(&c->cnt_lock); 1953 spin_lock_init(&c->cs_lock); 1954 spin_lock_init(&c->buds_lock); 1955 spin_lock_init(&c->space_lock); 1956 spin_lock_init(&c->orphan_lock); 1957 init_rwsem(&c->commit_sem); 1958 mutex_init(&c->lp_mutex); 1959 mutex_init(&c->tnc_mutex); 1960 mutex_init(&c->log_mutex); 1961 mutex_init(&c->mst_mutex); 1962 mutex_init(&c->umount_mutex); 1963 mutex_init(&c->bu_mutex); 1964 mutex_init(&c->write_reserve_mutex); 1965 init_waitqueue_head(&c->cmt_wq); 1966 c->buds = RB_ROOT; 1967 c->old_idx = RB_ROOT; 1968 c->size_tree = RB_ROOT; 1969 c->orph_tree = RB_ROOT; 1970 INIT_LIST_HEAD(&c->infos_list); 1971 INIT_LIST_HEAD(&c->idx_gc); 1972 INIT_LIST_HEAD(&c->replay_list); 1973 INIT_LIST_HEAD(&c->replay_buds); 1974 INIT_LIST_HEAD(&c->uncat_list); 1975 INIT_LIST_HEAD(&c->empty_list); 1976 INIT_LIST_HEAD(&c->freeable_list); 1977 INIT_LIST_HEAD(&c->frdi_idx_list); 1978 INIT_LIST_HEAD(&c->unclean_leb_list); 1979 INIT_LIST_HEAD(&c->old_buds); 1980 INIT_LIST_HEAD(&c->orph_list); 1981 INIT_LIST_HEAD(&c->orph_new); 1982 c->no_chk_data_crc = 1; 1983 1984 c->highest_inum = UBIFS_FIRST_INO; 1985 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1986 1987 ubi_get_volume_info(ubi, &c->vi); 1988 ubi_get_device_info(c->vi.ubi_num, &c->di); 1989 } 1990 return c; 1991 } 1992 1993 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1994 { 1995 struct ubifs_info *c = sb->s_fs_info; 1996 struct inode *root; 1997 int err; 1998 1999 c->vfs_sb = sb; 2000 /* Re-open the UBI device in read-write mode */ 2001 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2002 if (IS_ERR(c->ubi)) { 2003 err = PTR_ERR(c->ubi); 2004 goto out; 2005 } 2006 2007 /* 2008 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2009 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2010 * which means the user would have to wait not just for their own I/O 2011 * but the read-ahead I/O as well i.e. completely pointless. 2012 * 2013 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2014 */ 2015 c->bdi.name = "ubifs", 2016 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2017 err = bdi_init(&c->bdi); 2018 if (err) 2019 goto out_close; 2020 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2021 c->vi.ubi_num, c->vi.vol_id); 2022 if (err) 2023 goto out_bdi; 2024 2025 err = ubifs_parse_options(c, data, 0); 2026 if (err) 2027 goto out_bdi; 2028 2029 sb->s_bdi = &c->bdi; 2030 sb->s_fs_info = c; 2031 sb->s_magic = UBIFS_SUPER_MAGIC; 2032 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2033 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2034 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2035 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2036 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2037 sb->s_op = &ubifs_super_operations; 2038 2039 mutex_lock(&c->umount_mutex); 2040 err = mount_ubifs(c); 2041 if (err) { 2042 ubifs_assert(err < 0); 2043 goto out_unlock; 2044 } 2045 2046 /* Read the root inode */ 2047 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2048 if (IS_ERR(root)) { 2049 err = PTR_ERR(root); 2050 goto out_umount; 2051 } 2052 2053 sb->s_root = d_make_root(root); 2054 if (!sb->s_root) { 2055 err = -ENOMEM; 2056 goto out_umount; 2057 } 2058 2059 mutex_unlock(&c->umount_mutex); 2060 return 0; 2061 2062 out_umount: 2063 ubifs_umount(c); 2064 out_unlock: 2065 mutex_unlock(&c->umount_mutex); 2066 out_bdi: 2067 bdi_destroy(&c->bdi); 2068 out_close: 2069 ubi_close_volume(c->ubi); 2070 out: 2071 return err; 2072 } 2073 2074 static int sb_test(struct super_block *sb, void *data) 2075 { 2076 struct ubifs_info *c1 = data; 2077 struct ubifs_info *c = sb->s_fs_info; 2078 2079 return c->vi.cdev == c1->vi.cdev; 2080 } 2081 2082 static int sb_set(struct super_block *sb, void *data) 2083 { 2084 sb->s_fs_info = data; 2085 return set_anon_super(sb, NULL); 2086 } 2087 2088 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2089 const char *name, void *data) 2090 { 2091 struct ubi_volume_desc *ubi; 2092 struct ubifs_info *c; 2093 struct super_block *sb; 2094 int err; 2095 2096 dbg_gen("name %s, flags %#x", name, flags); 2097 2098 /* 2099 * Get UBI device number and volume ID. Mount it read-only so far 2100 * because this might be a new mount point, and UBI allows only one 2101 * read-write user at a time. 2102 */ 2103 ubi = open_ubi(name, UBI_READONLY); 2104 if (IS_ERR(ubi)) { 2105 ubifs_err("cannot open \"%s\", error %d", 2106 name, (int)PTR_ERR(ubi)); 2107 return ERR_CAST(ubi); 2108 } 2109 2110 c = alloc_ubifs_info(ubi); 2111 if (!c) { 2112 err = -ENOMEM; 2113 goto out_close; 2114 } 2115 2116 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2117 2118 sb = sget(fs_type, sb_test, sb_set, flags, c); 2119 if (IS_ERR(sb)) { 2120 err = PTR_ERR(sb); 2121 kfree(c); 2122 goto out_close; 2123 } 2124 2125 if (sb->s_root) { 2126 struct ubifs_info *c1 = sb->s_fs_info; 2127 kfree(c); 2128 /* A new mount point for already mounted UBIFS */ 2129 dbg_gen("this ubi volume is already mounted"); 2130 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2131 err = -EBUSY; 2132 goto out_deact; 2133 } 2134 } else { 2135 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2136 if (err) 2137 goto out_deact; 2138 /* We do not support atime */ 2139 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2140 } 2141 2142 /* 'fill_super()' opens ubi again so we must close it here */ 2143 ubi_close_volume(ubi); 2144 2145 return dget(sb->s_root); 2146 2147 out_deact: 2148 deactivate_locked_super(sb); 2149 out_close: 2150 ubi_close_volume(ubi); 2151 return ERR_PTR(err); 2152 } 2153 2154 static void kill_ubifs_super(struct super_block *s) 2155 { 2156 struct ubifs_info *c = s->s_fs_info; 2157 kill_anon_super(s); 2158 kfree(c); 2159 } 2160 2161 static struct file_system_type ubifs_fs_type = { 2162 .name = "ubifs", 2163 .owner = THIS_MODULE, 2164 .mount = ubifs_mount, 2165 .kill_sb = kill_ubifs_super, 2166 }; 2167 MODULE_ALIAS_FS("ubifs"); 2168 2169 /* 2170 * Inode slab cache constructor. 2171 */ 2172 static void inode_slab_ctor(void *obj) 2173 { 2174 struct ubifs_inode *ui = obj; 2175 inode_init_once(&ui->vfs_inode); 2176 } 2177 2178 static int __init ubifs_init(void) 2179 { 2180 int err; 2181 2182 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2183 2184 /* Make sure node sizes are 8-byte aligned */ 2185 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2186 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2187 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2188 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2189 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2190 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2191 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2192 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2193 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2194 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2195 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2196 2197 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2198 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2199 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2200 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2201 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2202 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2203 2204 /* Check min. node size */ 2205 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2206 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2207 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2208 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2209 2210 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2211 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2212 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2213 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2214 2215 /* Defined node sizes */ 2216 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2217 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2218 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2219 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2220 2221 /* 2222 * We use 2 bit wide bit-fields to store compression type, which should 2223 * be amended if more compressors are added. The bit-fields are: 2224 * @compr_type in 'struct ubifs_inode', @default_compr in 2225 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2226 */ 2227 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2228 2229 /* 2230 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2231 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2232 */ 2233 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2234 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2235 (unsigned int)PAGE_CACHE_SIZE); 2236 return -EINVAL; 2237 } 2238 2239 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2240 sizeof(struct ubifs_inode), 0, 2241 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2242 &inode_slab_ctor); 2243 if (!ubifs_inode_slab) 2244 return -ENOMEM; 2245 2246 register_shrinker(&ubifs_shrinker_info); 2247 2248 err = ubifs_compressors_init(); 2249 if (err) 2250 goto out_shrinker; 2251 2252 err = dbg_debugfs_init(); 2253 if (err) 2254 goto out_compr; 2255 2256 err = register_filesystem(&ubifs_fs_type); 2257 if (err) { 2258 ubifs_err("cannot register file system, error %d", err); 2259 goto out_dbg; 2260 } 2261 return 0; 2262 2263 out_dbg: 2264 dbg_debugfs_exit(); 2265 out_compr: 2266 ubifs_compressors_exit(); 2267 out_shrinker: 2268 unregister_shrinker(&ubifs_shrinker_info); 2269 kmem_cache_destroy(ubifs_inode_slab); 2270 return err; 2271 } 2272 /* late_initcall to let compressors initialize first */ 2273 late_initcall(ubifs_init); 2274 2275 static void __exit ubifs_exit(void) 2276 { 2277 ubifs_assert(list_empty(&ubifs_infos)); 2278 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2279 2280 dbg_debugfs_exit(); 2281 ubifs_compressors_exit(); 2282 unregister_shrinker(&ubifs_shrinker_info); 2283 2284 /* 2285 * Make sure all delayed rcu free inodes are flushed before we 2286 * destroy cache. 2287 */ 2288 rcu_barrier(); 2289 kmem_cache_destroy(ubifs_inode_slab); 2290 unregister_filesystem(&ubifs_fs_type); 2291 } 2292 module_exit(ubifs_exit); 2293 2294 MODULE_LICENSE("GPL"); 2295 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2296 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2297 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2298