xref: /openbmc/linux/fs/ubifs/super.c (revision afc98d90)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err("inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err("unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	set_nlink(inode, le32_to_cpu(ino->nlink));
133 	i_uid_write(inode, le32_to_cpu(ino->uid));
134 	i_gid_write(inode, le32_to_cpu(ino->gid));
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	/* Disable read-ahead */
160 	inode->i_mapping->backing_dev_info = &c->bdi;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kmem_cache_free(ubifs_inode_slab, ui);
280 }
281 
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289 
290 /*
291  * Note, Linux write-back code calls this without 'i_mutex'.
292  */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	int err = 0;
296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
297 	struct ubifs_inode *ui = ubifs_inode(inode);
298 
299 	ubifs_assert(!ui->xattr);
300 	if (is_bad_inode(inode))
301 		return 0;
302 
303 	mutex_lock(&ui->ui_mutex);
304 	/*
305 	 * Due to races between write-back forced by budgeting
306 	 * (see 'sync_some_inodes()') and background write-back, the inode may
307 	 * have already been synchronized, do not do this again. This might
308 	 * also happen if it was synchronized in an VFS operation, e.g.
309 	 * 'ubifs_link()'.
310 	 */
311 	if (!ui->dirty) {
312 		mutex_unlock(&ui->ui_mutex);
313 		return 0;
314 	}
315 
316 	/*
317 	 * As an optimization, do not write orphan inodes to the media just
318 	 * because this is not needed.
319 	 */
320 	dbg_gen("inode %lu, mode %#x, nlink %u",
321 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 	if (inode->i_nlink) {
323 		err = ubifs_jnl_write_inode(c, inode);
324 		if (err)
325 			ubifs_err("can't write inode %lu, error %d",
326 				  inode->i_ino, err);
327 		else
328 			err = dbg_check_inode_size(c, inode, ui->ui_size);
329 	}
330 
331 	ui->dirty = 0;
332 	mutex_unlock(&ui->ui_mutex);
333 	ubifs_release_dirty_inode_budget(c, ui);
334 	return err;
335 }
336 
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 	int err;
340 	struct ubifs_info *c = inode->i_sb->s_fs_info;
341 	struct ubifs_inode *ui = ubifs_inode(inode);
342 
343 	if (ui->xattr)
344 		/*
345 		 * Extended attribute inode deletions are fully handled in
346 		 * 'ubifs_removexattr()'. These inodes are special and have
347 		 * limited usage, so there is nothing to do here.
348 		 */
349 		goto out;
350 
351 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 	ubifs_assert(!atomic_read(&inode->i_count));
353 
354 	truncate_inode_pages(&inode->i_data, 0);
355 
356 	if (inode->i_nlink)
357 		goto done;
358 
359 	if (is_bad_inode(inode))
360 		goto out;
361 
362 	ui->ui_size = inode->i_size = 0;
363 	err = ubifs_jnl_delete_inode(c, inode);
364 	if (err)
365 		/*
366 		 * Worst case we have a lost orphan inode wasting space, so a
367 		 * simple error message is OK here.
368 		 */
369 		ubifs_err("can't delete inode %lu, error %d",
370 			  inode->i_ino, err);
371 
372 out:
373 	if (ui->dirty)
374 		ubifs_release_dirty_inode_budget(c, ui);
375 	else {
376 		/* We've deleted something - clean the "no space" flags */
377 		c->bi.nospace = c->bi.nospace_rp = 0;
378 		smp_wmb();
379 	}
380 done:
381 	clear_inode(inode);
382 }
383 
384 static void ubifs_dirty_inode(struct inode *inode, int flags)
385 {
386 	struct ubifs_inode *ui = ubifs_inode(inode);
387 
388 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
389 	if (!ui->dirty) {
390 		ui->dirty = 1;
391 		dbg_gen("inode %lu",  inode->i_ino);
392 	}
393 }
394 
395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
396 {
397 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
398 	unsigned long long free;
399 	__le32 *uuid = (__le32 *)c->uuid;
400 
401 	free = ubifs_get_free_space(c);
402 	dbg_gen("free space %lld bytes (%lld blocks)",
403 		free, free >> UBIFS_BLOCK_SHIFT);
404 
405 	buf->f_type = UBIFS_SUPER_MAGIC;
406 	buf->f_bsize = UBIFS_BLOCK_SIZE;
407 	buf->f_blocks = c->block_cnt;
408 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
409 	if (free > c->report_rp_size)
410 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
411 	else
412 		buf->f_bavail = 0;
413 	buf->f_files = 0;
414 	buf->f_ffree = 0;
415 	buf->f_namelen = UBIFS_MAX_NLEN;
416 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
417 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
418 	ubifs_assert(buf->f_bfree <= c->block_cnt);
419 	return 0;
420 }
421 
422 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
423 {
424 	struct ubifs_info *c = root->d_sb->s_fs_info;
425 
426 	if (c->mount_opts.unmount_mode == 2)
427 		seq_printf(s, ",fast_unmount");
428 	else if (c->mount_opts.unmount_mode == 1)
429 		seq_printf(s, ",norm_unmount");
430 
431 	if (c->mount_opts.bulk_read == 2)
432 		seq_printf(s, ",bulk_read");
433 	else if (c->mount_opts.bulk_read == 1)
434 		seq_printf(s, ",no_bulk_read");
435 
436 	if (c->mount_opts.chk_data_crc == 2)
437 		seq_printf(s, ",chk_data_crc");
438 	else if (c->mount_opts.chk_data_crc == 1)
439 		seq_printf(s, ",no_chk_data_crc");
440 
441 	if (c->mount_opts.override_compr) {
442 		seq_printf(s, ",compr=%s",
443 			   ubifs_compr_name(c->mount_opts.compr_type));
444 	}
445 
446 	return 0;
447 }
448 
449 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 {
451 	int i, err;
452 	struct ubifs_info *c = sb->s_fs_info;
453 
454 	/*
455 	 * Zero @wait is just an advisory thing to help the file system shove
456 	 * lots of data into the queues, and there will be the second
457 	 * '->sync_fs()' call, with non-zero @wait.
458 	 */
459 	if (!wait)
460 		return 0;
461 
462 	/*
463 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 	 * do this if it waits for an already running commit.
465 	 */
466 	for (i = 0; i < c->jhead_cnt; i++) {
467 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 		if (err)
469 			return err;
470 	}
471 
472 	/*
473 	 * Strictly speaking, it is not necessary to commit the journal here,
474 	 * synchronizing write-buffers would be enough. But committing makes
475 	 * UBIFS free space predictions much more accurate, so we want to let
476 	 * the user be able to get more accurate results of 'statfs()' after
477 	 * they synchronize the file system.
478 	 */
479 	err = ubifs_run_commit(c);
480 	if (err)
481 		return err;
482 
483 	return ubi_sync(c->vi.ubi_num);
484 }
485 
486 /**
487  * init_constants_early - initialize UBIFS constants.
488  * @c: UBIFS file-system description object
489  *
490  * This function initialize UBIFS constants which do not need the superblock to
491  * be read. It also checks that the UBI volume satisfies basic UBIFS
492  * requirements. Returns zero in case of success and a negative error code in
493  * case of failure.
494  */
495 static int init_constants_early(struct ubifs_info *c)
496 {
497 	if (c->vi.corrupted) {
498 		ubifs_warn("UBI volume is corrupted - read-only mode");
499 		c->ro_media = 1;
500 	}
501 
502 	if (c->di.ro_mode) {
503 		ubifs_msg("read-only UBI device");
504 		c->ro_media = 1;
505 	}
506 
507 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 		ubifs_msg("static UBI volume - read-only mode");
509 		c->ro_media = 1;
510 	}
511 
512 	c->leb_cnt = c->vi.size;
513 	c->leb_size = c->vi.usable_leb_size;
514 	c->leb_start = c->di.leb_start;
515 	c->half_leb_size = c->leb_size / 2;
516 	c->min_io_size = c->di.min_io_size;
517 	c->min_io_shift = fls(c->min_io_size) - 1;
518 	c->max_write_size = c->di.max_write_size;
519 	c->max_write_shift = fls(c->max_write_size) - 1;
520 
521 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
523 			  c->leb_size, UBIFS_MIN_LEB_SZ);
524 		return -EINVAL;
525 	}
526 
527 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 		ubifs_err("too few LEBs (%d), min. is %d",
529 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 		return -EINVAL;
531 	}
532 
533 	if (!is_power_of_2(c->min_io_size)) {
534 		ubifs_err("bad min. I/O size %d", c->min_io_size);
535 		return -EINVAL;
536 	}
537 
538 	/*
539 	 * Maximum write size has to be greater or equivalent to min. I/O
540 	 * size, and be multiple of min. I/O size.
541 	 */
542 	if (c->max_write_size < c->min_io_size ||
543 	    c->max_write_size % c->min_io_size ||
544 	    !is_power_of_2(c->max_write_size)) {
545 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
546 			  c->max_write_size, c->min_io_size);
547 		return -EINVAL;
548 	}
549 
550 	/*
551 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 	 * less than 8.
554 	 */
555 	if (c->min_io_size < 8) {
556 		c->min_io_size = 8;
557 		c->min_io_shift = 3;
558 		if (c->max_write_size < c->min_io_size) {
559 			c->max_write_size = c->min_io_size;
560 			c->max_write_shift = c->min_io_shift;
561 		}
562 	}
563 
564 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566 
567 	/*
568 	 * Initialize node length ranges which are mostly needed for node
569 	 * length validation.
570 	 */
571 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
572 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
573 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
574 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
575 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
577 
578 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
579 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
580 	c->ranges[UBIFS_ORPH_NODE].min_len =
581 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
582 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
583 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
584 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
585 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
586 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
587 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
588 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
589 	/*
590 	 * Minimum indexing node size is amended later when superblock is
591 	 * read and the key length is known.
592 	 */
593 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
594 	/*
595 	 * Maximum indexing node size is amended later when superblock is
596 	 * read and the fanout is known.
597 	 */
598 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
599 
600 	/*
601 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
602 	 * about these values.
603 	 */
604 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
605 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
606 
607 	/*
608 	 * Calculate how many bytes would be wasted at the end of LEB if it was
609 	 * fully filled with data nodes of maximum size. This is used in
610 	 * calculations when reporting free space.
611 	 */
612 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
613 
614 	/* Buffer size for bulk-reads */
615 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
616 	if (c->max_bu_buf_len > c->leb_size)
617 		c->max_bu_buf_len = c->leb_size;
618 	return 0;
619 }
620 
621 /**
622  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
623  * @c: UBIFS file-system description object
624  * @lnum: LEB the write-buffer was synchronized to
625  * @free: how many free bytes left in this LEB
626  * @pad: how many bytes were padded
627  *
628  * This is a callback function which is called by the I/O unit when the
629  * write-buffer is synchronized. We need this to correctly maintain space
630  * accounting in bud logical eraseblocks. This function returns zero in case of
631  * success and a negative error code in case of failure.
632  *
633  * This function actually belongs to the journal, but we keep it here because
634  * we want to keep it static.
635  */
636 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
637 {
638 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
639 }
640 
641 /*
642  * init_constants_sb - initialize UBIFS constants.
643  * @c: UBIFS file-system description object
644  *
645  * This is a helper function which initializes various UBIFS constants after
646  * the superblock has been read. It also checks various UBIFS parameters and
647  * makes sure they are all right. Returns zero in case of success and a
648  * negative error code in case of failure.
649  */
650 static int init_constants_sb(struct ubifs_info *c)
651 {
652 	int tmp, err;
653 	long long tmp64;
654 
655 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
656 	c->max_znode_sz = sizeof(struct ubifs_znode) +
657 				c->fanout * sizeof(struct ubifs_zbranch);
658 
659 	tmp = ubifs_idx_node_sz(c, 1);
660 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
661 	c->min_idx_node_sz = ALIGN(tmp, 8);
662 
663 	tmp = ubifs_idx_node_sz(c, c->fanout);
664 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
665 	c->max_idx_node_sz = ALIGN(tmp, 8);
666 
667 	/* Make sure LEB size is large enough to fit full commit */
668 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
669 	tmp = ALIGN(tmp, c->min_io_size);
670 	if (tmp > c->leb_size) {
671 		ubifs_err("too small LEB size %d, at least %d needed",
672 			  c->leb_size, tmp);
673 		return -EINVAL;
674 	}
675 
676 	/*
677 	 * Make sure that the log is large enough to fit reference nodes for
678 	 * all buds plus one reserved LEB.
679 	 */
680 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
681 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
682 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
683 	tmp /= c->leb_size;
684 	tmp += 1;
685 	if (c->log_lebs < tmp) {
686 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
687 			  c->log_lebs, tmp);
688 		return -EINVAL;
689 	}
690 
691 	/*
692 	 * When budgeting we assume worst-case scenarios when the pages are not
693 	 * be compressed and direntries are of the maximum size.
694 	 *
695 	 * Note, data, which may be stored in inodes is budgeted separately, so
696 	 * it is not included into 'c->bi.inode_budget'.
697 	 */
698 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
699 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
700 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
701 
702 	/*
703 	 * When the amount of flash space used by buds becomes
704 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
705 	 * The writers are unblocked when the commit is finished. To avoid
706 	 * writers to be blocked UBIFS initiates background commit in advance,
707 	 * when number of bud bytes becomes above the limit defined below.
708 	 */
709 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
710 
711 	/*
712 	 * Ensure minimum journal size. All the bytes in the journal heads are
713 	 * considered to be used, when calculating the current journal usage.
714 	 * Consequently, if the journal is too small, UBIFS will treat it as
715 	 * always full.
716 	 */
717 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
718 	if (c->bg_bud_bytes < tmp64)
719 		c->bg_bud_bytes = tmp64;
720 	if (c->max_bud_bytes < tmp64 + c->leb_size)
721 		c->max_bud_bytes = tmp64 + c->leb_size;
722 
723 	err = ubifs_calc_lpt_geom(c);
724 	if (err)
725 		return err;
726 
727 	/* Initialize effective LEB size used in budgeting calculations */
728 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
729 	return 0;
730 }
731 
732 /*
733  * init_constants_master - initialize UBIFS constants.
734  * @c: UBIFS file-system description object
735  *
736  * This is a helper function which initializes various UBIFS constants after
737  * the master node has been read. It also checks various UBIFS parameters and
738  * makes sure they are all right.
739  */
740 static void init_constants_master(struct ubifs_info *c)
741 {
742 	long long tmp64;
743 
744 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
745 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
746 
747 	/*
748 	 * Calculate total amount of FS blocks. This number is not used
749 	 * internally because it does not make much sense for UBIFS, but it is
750 	 * necessary to report something for the 'statfs()' call.
751 	 *
752 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
753 	 * deletions, minimum LEBs for the index, and assume only one journal
754 	 * head is available.
755 	 */
756 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
757 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
758 	tmp64 = ubifs_reported_space(c, tmp64);
759 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
760 }
761 
762 /**
763  * take_gc_lnum - reserve GC LEB.
764  * @c: UBIFS file-system description object
765  *
766  * This function ensures that the LEB reserved for garbage collection is marked
767  * as "taken" in lprops. We also have to set free space to LEB size and dirty
768  * space to zero, because lprops may contain out-of-date information if the
769  * file-system was un-mounted before it has been committed. This function
770  * returns zero in case of success and a negative error code in case of
771  * failure.
772  */
773 static int take_gc_lnum(struct ubifs_info *c)
774 {
775 	int err;
776 
777 	if (c->gc_lnum == -1) {
778 		ubifs_err("no LEB for GC");
779 		return -EINVAL;
780 	}
781 
782 	/* And we have to tell lprops that this LEB is taken */
783 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
784 				  LPROPS_TAKEN, 0, 0);
785 	return err;
786 }
787 
788 /**
789  * alloc_wbufs - allocate write-buffers.
790  * @c: UBIFS file-system description object
791  *
792  * This helper function allocates and initializes UBIFS write-buffers. Returns
793  * zero in case of success and %-ENOMEM in case of failure.
794  */
795 static int alloc_wbufs(struct ubifs_info *c)
796 {
797 	int i, err;
798 
799 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
800 			   GFP_KERNEL);
801 	if (!c->jheads)
802 		return -ENOMEM;
803 
804 	/* Initialize journal heads */
805 	for (i = 0; i < c->jhead_cnt; i++) {
806 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
807 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
808 		if (err)
809 			return err;
810 
811 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
812 		c->jheads[i].wbuf.jhead = i;
813 		c->jheads[i].grouped = 1;
814 	}
815 
816 	/*
817 	 * Garbage Collector head does not need to be synchronized by timer.
818 	 * Also GC head nodes are not grouped.
819 	 */
820 	c->jheads[GCHD].wbuf.no_timer = 1;
821 	c->jheads[GCHD].grouped = 0;
822 
823 	return 0;
824 }
825 
826 /**
827  * free_wbufs - free write-buffers.
828  * @c: UBIFS file-system description object
829  */
830 static void free_wbufs(struct ubifs_info *c)
831 {
832 	int i;
833 
834 	if (c->jheads) {
835 		for (i = 0; i < c->jhead_cnt; i++) {
836 			kfree(c->jheads[i].wbuf.buf);
837 			kfree(c->jheads[i].wbuf.inodes);
838 		}
839 		kfree(c->jheads);
840 		c->jheads = NULL;
841 	}
842 }
843 
844 /**
845  * free_orphans - free orphans.
846  * @c: UBIFS file-system description object
847  */
848 static void free_orphans(struct ubifs_info *c)
849 {
850 	struct ubifs_orphan *orph;
851 
852 	while (c->orph_dnext) {
853 		orph = c->orph_dnext;
854 		c->orph_dnext = orph->dnext;
855 		list_del(&orph->list);
856 		kfree(orph);
857 	}
858 
859 	while (!list_empty(&c->orph_list)) {
860 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
861 		list_del(&orph->list);
862 		kfree(orph);
863 		ubifs_err("orphan list not empty at unmount");
864 	}
865 
866 	vfree(c->orph_buf);
867 	c->orph_buf = NULL;
868 }
869 
870 /**
871  * free_buds - free per-bud objects.
872  * @c: UBIFS file-system description object
873  */
874 static void free_buds(struct ubifs_info *c)
875 {
876 	struct ubifs_bud *bud, *n;
877 
878 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
879 		kfree(bud);
880 }
881 
882 /**
883  * check_volume_empty - check if the UBI volume is empty.
884  * @c: UBIFS file-system description object
885  *
886  * This function checks if the UBIFS volume is empty by looking if its LEBs are
887  * mapped or not. The result of checking is stored in the @c->empty variable.
888  * Returns zero in case of success and a negative error code in case of
889  * failure.
890  */
891 static int check_volume_empty(struct ubifs_info *c)
892 {
893 	int lnum, err;
894 
895 	c->empty = 1;
896 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
897 		err = ubifs_is_mapped(c, lnum);
898 		if (unlikely(err < 0))
899 			return err;
900 		if (err == 1) {
901 			c->empty = 0;
902 			break;
903 		}
904 
905 		cond_resched();
906 	}
907 
908 	return 0;
909 }
910 
911 /*
912  * UBIFS mount options.
913  *
914  * Opt_fast_unmount: do not run a journal commit before un-mounting
915  * Opt_norm_unmount: run a journal commit before un-mounting
916  * Opt_bulk_read: enable bulk-reads
917  * Opt_no_bulk_read: disable bulk-reads
918  * Opt_chk_data_crc: check CRCs when reading data nodes
919  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
920  * Opt_override_compr: override default compressor
921  * Opt_err: just end of array marker
922  */
923 enum {
924 	Opt_fast_unmount,
925 	Opt_norm_unmount,
926 	Opt_bulk_read,
927 	Opt_no_bulk_read,
928 	Opt_chk_data_crc,
929 	Opt_no_chk_data_crc,
930 	Opt_override_compr,
931 	Opt_err,
932 };
933 
934 static const match_table_t tokens = {
935 	{Opt_fast_unmount, "fast_unmount"},
936 	{Opt_norm_unmount, "norm_unmount"},
937 	{Opt_bulk_read, "bulk_read"},
938 	{Opt_no_bulk_read, "no_bulk_read"},
939 	{Opt_chk_data_crc, "chk_data_crc"},
940 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
941 	{Opt_override_compr, "compr=%s"},
942 	{Opt_err, NULL},
943 };
944 
945 /**
946  * parse_standard_option - parse a standard mount option.
947  * @option: the option to parse
948  *
949  * Normally, standard mount options like "sync" are passed to file-systems as
950  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
951  * be present in the options string. This function tries to deal with this
952  * situation and parse standard options. Returns 0 if the option was not
953  * recognized, and the corresponding integer flag if it was.
954  *
955  * UBIFS is only interested in the "sync" option, so do not check for anything
956  * else.
957  */
958 static int parse_standard_option(const char *option)
959 {
960 	ubifs_msg("parse %s", option);
961 	if (!strcmp(option, "sync"))
962 		return MS_SYNCHRONOUS;
963 	return 0;
964 }
965 
966 /**
967  * ubifs_parse_options - parse mount parameters.
968  * @c: UBIFS file-system description object
969  * @options: parameters to parse
970  * @is_remount: non-zero if this is FS re-mount
971  *
972  * This function parses UBIFS mount options and returns zero in case success
973  * and a negative error code in case of failure.
974  */
975 static int ubifs_parse_options(struct ubifs_info *c, char *options,
976 			       int is_remount)
977 {
978 	char *p;
979 	substring_t args[MAX_OPT_ARGS];
980 
981 	if (!options)
982 		return 0;
983 
984 	while ((p = strsep(&options, ","))) {
985 		int token;
986 
987 		if (!*p)
988 			continue;
989 
990 		token = match_token(p, tokens, args);
991 		switch (token) {
992 		/*
993 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
994 		 * We accept them in order to be backward-compatible. But this
995 		 * should be removed at some point.
996 		 */
997 		case Opt_fast_unmount:
998 			c->mount_opts.unmount_mode = 2;
999 			break;
1000 		case Opt_norm_unmount:
1001 			c->mount_opts.unmount_mode = 1;
1002 			break;
1003 		case Opt_bulk_read:
1004 			c->mount_opts.bulk_read = 2;
1005 			c->bulk_read = 1;
1006 			break;
1007 		case Opt_no_bulk_read:
1008 			c->mount_opts.bulk_read = 1;
1009 			c->bulk_read = 0;
1010 			break;
1011 		case Opt_chk_data_crc:
1012 			c->mount_opts.chk_data_crc = 2;
1013 			c->no_chk_data_crc = 0;
1014 			break;
1015 		case Opt_no_chk_data_crc:
1016 			c->mount_opts.chk_data_crc = 1;
1017 			c->no_chk_data_crc = 1;
1018 			break;
1019 		case Opt_override_compr:
1020 		{
1021 			char *name = match_strdup(&args[0]);
1022 
1023 			if (!name)
1024 				return -ENOMEM;
1025 			if (!strcmp(name, "none"))
1026 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1027 			else if (!strcmp(name, "lzo"))
1028 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1029 			else if (!strcmp(name, "zlib"))
1030 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1031 			else {
1032 				ubifs_err("unknown compressor \"%s\"", name);
1033 				kfree(name);
1034 				return -EINVAL;
1035 			}
1036 			kfree(name);
1037 			c->mount_opts.override_compr = 1;
1038 			c->default_compr = c->mount_opts.compr_type;
1039 			break;
1040 		}
1041 		default:
1042 		{
1043 			unsigned long flag;
1044 			struct super_block *sb = c->vfs_sb;
1045 
1046 			flag = parse_standard_option(p);
1047 			if (!flag) {
1048 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1049 					  p);
1050 				return -EINVAL;
1051 			}
1052 			sb->s_flags |= flag;
1053 			break;
1054 		}
1055 		}
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 /**
1062  * destroy_journal - destroy journal data structures.
1063  * @c: UBIFS file-system description object
1064  *
1065  * This function destroys journal data structures including those that may have
1066  * been created by recovery functions.
1067  */
1068 static void destroy_journal(struct ubifs_info *c)
1069 {
1070 	while (!list_empty(&c->unclean_leb_list)) {
1071 		struct ubifs_unclean_leb *ucleb;
1072 
1073 		ucleb = list_entry(c->unclean_leb_list.next,
1074 				   struct ubifs_unclean_leb, list);
1075 		list_del(&ucleb->list);
1076 		kfree(ucleb);
1077 	}
1078 	while (!list_empty(&c->old_buds)) {
1079 		struct ubifs_bud *bud;
1080 
1081 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1082 		list_del(&bud->list);
1083 		kfree(bud);
1084 	}
1085 	ubifs_destroy_idx_gc(c);
1086 	ubifs_destroy_size_tree(c);
1087 	ubifs_tnc_close(c);
1088 	free_buds(c);
1089 }
1090 
1091 /**
1092  * bu_init - initialize bulk-read information.
1093  * @c: UBIFS file-system description object
1094  */
1095 static void bu_init(struct ubifs_info *c)
1096 {
1097 	ubifs_assert(c->bulk_read == 1);
1098 
1099 	if (c->bu.buf)
1100 		return; /* Already initialized */
1101 
1102 again:
1103 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1104 	if (!c->bu.buf) {
1105 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1106 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1107 			goto again;
1108 		}
1109 
1110 		/* Just disable bulk-read */
1111 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1112 			   c->max_bu_buf_len);
1113 		c->mount_opts.bulk_read = 1;
1114 		c->bulk_read = 0;
1115 		return;
1116 	}
1117 }
1118 
1119 /**
1120  * check_free_space - check if there is enough free space to mount.
1121  * @c: UBIFS file-system description object
1122  *
1123  * This function makes sure UBIFS has enough free space to be mounted in
1124  * read/write mode. UBIFS must always have some free space to allow deletions.
1125  */
1126 static int check_free_space(struct ubifs_info *c)
1127 {
1128 	ubifs_assert(c->dark_wm > 0);
1129 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1130 		ubifs_err("insufficient free space to mount in R/W mode");
1131 		ubifs_dump_budg(c, &c->bi);
1132 		ubifs_dump_lprops(c);
1133 		return -ENOSPC;
1134 	}
1135 	return 0;
1136 }
1137 
1138 /**
1139  * mount_ubifs - mount UBIFS file-system.
1140  * @c: UBIFS file-system description object
1141  *
1142  * This function mounts UBIFS file system. Returns zero in case of success and
1143  * a negative error code in case of failure.
1144  */
1145 static int mount_ubifs(struct ubifs_info *c)
1146 {
1147 	int err;
1148 	long long x, y;
1149 	size_t sz;
1150 
1151 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1152 	err = init_constants_early(c);
1153 	if (err)
1154 		return err;
1155 
1156 	err = ubifs_debugging_init(c);
1157 	if (err)
1158 		return err;
1159 
1160 	err = check_volume_empty(c);
1161 	if (err)
1162 		goto out_free;
1163 
1164 	if (c->empty && (c->ro_mount || c->ro_media)) {
1165 		/*
1166 		 * This UBI volume is empty, and read-only, or the file system
1167 		 * is mounted read-only - we cannot format it.
1168 		 */
1169 		ubifs_err("can't format empty UBI volume: read-only %s",
1170 			  c->ro_media ? "UBI volume" : "mount");
1171 		err = -EROFS;
1172 		goto out_free;
1173 	}
1174 
1175 	if (c->ro_media && !c->ro_mount) {
1176 		ubifs_err("cannot mount read-write - read-only media");
1177 		err = -EROFS;
1178 		goto out_free;
1179 	}
1180 
1181 	/*
1182 	 * The requirement for the buffer is that it should fit indexing B-tree
1183 	 * height amount of integers. We assume the height if the TNC tree will
1184 	 * never exceed 64.
1185 	 */
1186 	err = -ENOMEM;
1187 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1188 	if (!c->bottom_up_buf)
1189 		goto out_free;
1190 
1191 	c->sbuf = vmalloc(c->leb_size);
1192 	if (!c->sbuf)
1193 		goto out_free;
1194 
1195 	if (!c->ro_mount) {
1196 		c->ileb_buf = vmalloc(c->leb_size);
1197 		if (!c->ileb_buf)
1198 			goto out_free;
1199 	}
1200 
1201 	if (c->bulk_read == 1)
1202 		bu_init(c);
1203 
1204 	if (!c->ro_mount) {
1205 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1206 					       GFP_KERNEL);
1207 		if (!c->write_reserve_buf)
1208 			goto out_free;
1209 	}
1210 
1211 	c->mounting = 1;
1212 
1213 	err = ubifs_read_superblock(c);
1214 	if (err)
1215 		goto out_free;
1216 
1217 	/*
1218 	 * Make sure the compressor which is set as default in the superblock
1219 	 * or overridden by mount options is actually compiled in.
1220 	 */
1221 	if (!ubifs_compr_present(c->default_compr)) {
1222 		ubifs_err("'compressor \"%s\" is not compiled in",
1223 			  ubifs_compr_name(c->default_compr));
1224 		err = -ENOTSUPP;
1225 		goto out_free;
1226 	}
1227 
1228 	err = init_constants_sb(c);
1229 	if (err)
1230 		goto out_free;
1231 
1232 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1233 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1234 	c->cbuf = kmalloc(sz, GFP_NOFS);
1235 	if (!c->cbuf) {
1236 		err = -ENOMEM;
1237 		goto out_free;
1238 	}
1239 
1240 	err = alloc_wbufs(c);
1241 	if (err)
1242 		goto out_cbuf;
1243 
1244 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1245 	if (!c->ro_mount) {
1246 		/* Create background thread */
1247 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1248 		if (IS_ERR(c->bgt)) {
1249 			err = PTR_ERR(c->bgt);
1250 			c->bgt = NULL;
1251 			ubifs_err("cannot spawn \"%s\", error %d",
1252 				  c->bgt_name, err);
1253 			goto out_wbufs;
1254 		}
1255 		wake_up_process(c->bgt);
1256 	}
1257 
1258 	err = ubifs_read_master(c);
1259 	if (err)
1260 		goto out_master;
1261 
1262 	init_constants_master(c);
1263 
1264 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1265 		ubifs_msg("recovery needed");
1266 		c->need_recovery = 1;
1267 	}
1268 
1269 	if (c->need_recovery && !c->ro_mount) {
1270 		err = ubifs_recover_inl_heads(c, c->sbuf);
1271 		if (err)
1272 			goto out_master;
1273 	}
1274 
1275 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1276 	if (err)
1277 		goto out_master;
1278 
1279 	if (!c->ro_mount && c->space_fixup) {
1280 		err = ubifs_fixup_free_space(c);
1281 		if (err)
1282 			goto out_lpt;
1283 	}
1284 
1285 	if (!c->ro_mount) {
1286 		/*
1287 		 * Set the "dirty" flag so that if we reboot uncleanly we
1288 		 * will notice this immediately on the next mount.
1289 		 */
1290 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1291 		err = ubifs_write_master(c);
1292 		if (err)
1293 			goto out_lpt;
1294 	}
1295 
1296 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1297 	if (err)
1298 		goto out_lpt;
1299 
1300 	err = ubifs_replay_journal(c);
1301 	if (err)
1302 		goto out_journal;
1303 
1304 	/* Calculate 'min_idx_lebs' after journal replay */
1305 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1306 
1307 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1308 	if (err)
1309 		goto out_orphans;
1310 
1311 	if (!c->ro_mount) {
1312 		int lnum;
1313 
1314 		err = check_free_space(c);
1315 		if (err)
1316 			goto out_orphans;
1317 
1318 		/* Check for enough log space */
1319 		lnum = c->lhead_lnum + 1;
1320 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1321 			lnum = UBIFS_LOG_LNUM;
1322 		if (lnum == c->ltail_lnum) {
1323 			err = ubifs_consolidate_log(c);
1324 			if (err)
1325 				goto out_orphans;
1326 		}
1327 
1328 		if (c->need_recovery) {
1329 			err = ubifs_recover_size(c);
1330 			if (err)
1331 				goto out_orphans;
1332 			err = ubifs_rcvry_gc_commit(c);
1333 			if (err)
1334 				goto out_orphans;
1335 		} else {
1336 			err = take_gc_lnum(c);
1337 			if (err)
1338 				goto out_orphans;
1339 
1340 			/*
1341 			 * GC LEB may contain garbage if there was an unclean
1342 			 * reboot, and it should be un-mapped.
1343 			 */
1344 			err = ubifs_leb_unmap(c, c->gc_lnum);
1345 			if (err)
1346 				goto out_orphans;
1347 		}
1348 
1349 		err = dbg_check_lprops(c);
1350 		if (err)
1351 			goto out_orphans;
1352 	} else if (c->need_recovery) {
1353 		err = ubifs_recover_size(c);
1354 		if (err)
1355 			goto out_orphans;
1356 	} else {
1357 		/*
1358 		 * Even if we mount read-only, we have to set space in GC LEB
1359 		 * to proper value because this affects UBIFS free space
1360 		 * reporting. We do not want to have a situation when
1361 		 * re-mounting from R/O to R/W changes amount of free space.
1362 		 */
1363 		err = take_gc_lnum(c);
1364 		if (err)
1365 			goto out_orphans;
1366 	}
1367 
1368 	spin_lock(&ubifs_infos_lock);
1369 	list_add_tail(&c->infos_list, &ubifs_infos);
1370 	spin_unlock(&ubifs_infos_lock);
1371 
1372 	if (c->need_recovery) {
1373 		if (c->ro_mount)
1374 			ubifs_msg("recovery deferred");
1375 		else {
1376 			c->need_recovery = 0;
1377 			ubifs_msg("recovery completed");
1378 			/*
1379 			 * GC LEB has to be empty and taken at this point. But
1380 			 * the journal head LEBs may also be accounted as
1381 			 * "empty taken" if they are empty.
1382 			 */
1383 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1384 		}
1385 	} else
1386 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1387 
1388 	err = dbg_check_filesystem(c);
1389 	if (err)
1390 		goto out_infos;
1391 
1392 	err = dbg_debugfs_init_fs(c);
1393 	if (err)
1394 		goto out_infos;
1395 
1396 	c->mounting = 0;
1397 
1398 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1399 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1400 		  c->ro_mount ? ", R/O mode" : "");
1401 	x = (long long)c->main_lebs * c->leb_size;
1402 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1403 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1404 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1405 		  c->max_write_size);
1406 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1407 		  x, x >> 20, c->main_lebs,
1408 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1409 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1410 		  c->report_rp_size, c->report_rp_size >> 10);
1411 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1412 		  c->fmt_version, c->ro_compat_version,
1413 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1414 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1415 
1416 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1417 	dbg_gen("data journal heads:  %d",
1418 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1419 	dbg_gen("log LEBs:            %d (%d - %d)",
1420 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1421 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1422 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1423 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1424 		c->orph_lebs, c->orph_first, c->orph_last);
1425 	dbg_gen("main area LEBs:      %d (%d - %d)",
1426 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1427 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1428 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1429 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1430 		c->bi.old_idx_sz >> 20);
1431 	dbg_gen("key hash type:       %d", c->key_hash_type);
1432 	dbg_gen("tree fanout:         %d", c->fanout);
1433 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1434 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1435 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1436 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1437 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1438 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1439 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1440 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1441 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1442 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1443 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1444 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1445 	dbg_gen("dead watermark:      %d", c->dead_wm);
1446 	dbg_gen("dark watermark:      %d", c->dark_wm);
1447 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1448 	x = (long long)c->main_lebs * c->dark_wm;
1449 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1450 		x, x >> 10, x >> 20);
1451 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1452 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1453 		c->max_bud_bytes >> 20);
1454 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1455 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1456 		c->bg_bud_bytes >> 20);
1457 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1458 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1459 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1460 	dbg_gen("commit number:       %llu", c->cmt_no);
1461 
1462 	return 0;
1463 
1464 out_infos:
1465 	spin_lock(&ubifs_infos_lock);
1466 	list_del(&c->infos_list);
1467 	spin_unlock(&ubifs_infos_lock);
1468 out_orphans:
1469 	free_orphans(c);
1470 out_journal:
1471 	destroy_journal(c);
1472 out_lpt:
1473 	ubifs_lpt_free(c, 0);
1474 out_master:
1475 	kfree(c->mst_node);
1476 	kfree(c->rcvrd_mst_node);
1477 	if (c->bgt)
1478 		kthread_stop(c->bgt);
1479 out_wbufs:
1480 	free_wbufs(c);
1481 out_cbuf:
1482 	kfree(c->cbuf);
1483 out_free:
1484 	kfree(c->write_reserve_buf);
1485 	kfree(c->bu.buf);
1486 	vfree(c->ileb_buf);
1487 	vfree(c->sbuf);
1488 	kfree(c->bottom_up_buf);
1489 	ubifs_debugging_exit(c);
1490 	return err;
1491 }
1492 
1493 /**
1494  * ubifs_umount - un-mount UBIFS file-system.
1495  * @c: UBIFS file-system description object
1496  *
1497  * Note, this function is called to free allocated resourced when un-mounting,
1498  * as well as free resources when an error occurred while we were half way
1499  * through mounting (error path cleanup function). So it has to make sure the
1500  * resource was actually allocated before freeing it.
1501  */
1502 static void ubifs_umount(struct ubifs_info *c)
1503 {
1504 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1505 		c->vi.vol_id);
1506 
1507 	dbg_debugfs_exit_fs(c);
1508 	spin_lock(&ubifs_infos_lock);
1509 	list_del(&c->infos_list);
1510 	spin_unlock(&ubifs_infos_lock);
1511 
1512 	if (c->bgt)
1513 		kthread_stop(c->bgt);
1514 
1515 	destroy_journal(c);
1516 	free_wbufs(c);
1517 	free_orphans(c);
1518 	ubifs_lpt_free(c, 0);
1519 
1520 	kfree(c->cbuf);
1521 	kfree(c->rcvrd_mst_node);
1522 	kfree(c->mst_node);
1523 	kfree(c->write_reserve_buf);
1524 	kfree(c->bu.buf);
1525 	vfree(c->ileb_buf);
1526 	vfree(c->sbuf);
1527 	kfree(c->bottom_up_buf);
1528 	ubifs_debugging_exit(c);
1529 }
1530 
1531 /**
1532  * ubifs_remount_rw - re-mount in read-write mode.
1533  * @c: UBIFS file-system description object
1534  *
1535  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1536  * mode. This function allocates the needed resources and re-mounts UBIFS in
1537  * read-write mode.
1538  */
1539 static int ubifs_remount_rw(struct ubifs_info *c)
1540 {
1541 	int err, lnum;
1542 
1543 	if (c->rw_incompat) {
1544 		ubifs_err("the file-system is not R/W-compatible");
1545 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1546 			  c->fmt_version, c->ro_compat_version,
1547 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1548 		return -EROFS;
1549 	}
1550 
1551 	mutex_lock(&c->umount_mutex);
1552 	dbg_save_space_info(c);
1553 	c->remounting_rw = 1;
1554 	c->ro_mount = 0;
1555 
1556 	if (c->space_fixup) {
1557 		err = ubifs_fixup_free_space(c);
1558 		if (err)
1559 			return err;
1560 	}
1561 
1562 	err = check_free_space(c);
1563 	if (err)
1564 		goto out;
1565 
1566 	if (c->old_leb_cnt != c->leb_cnt) {
1567 		struct ubifs_sb_node *sup;
1568 
1569 		sup = ubifs_read_sb_node(c);
1570 		if (IS_ERR(sup)) {
1571 			err = PTR_ERR(sup);
1572 			goto out;
1573 		}
1574 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1575 		err = ubifs_write_sb_node(c, sup);
1576 		kfree(sup);
1577 		if (err)
1578 			goto out;
1579 	}
1580 
1581 	if (c->need_recovery) {
1582 		ubifs_msg("completing deferred recovery");
1583 		err = ubifs_write_rcvrd_mst_node(c);
1584 		if (err)
1585 			goto out;
1586 		err = ubifs_recover_size(c);
1587 		if (err)
1588 			goto out;
1589 		err = ubifs_clean_lebs(c, c->sbuf);
1590 		if (err)
1591 			goto out;
1592 		err = ubifs_recover_inl_heads(c, c->sbuf);
1593 		if (err)
1594 			goto out;
1595 	} else {
1596 		/* A readonly mount is not allowed to have orphans */
1597 		ubifs_assert(c->tot_orphans == 0);
1598 		err = ubifs_clear_orphans(c);
1599 		if (err)
1600 			goto out;
1601 	}
1602 
1603 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1604 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1605 		err = ubifs_write_master(c);
1606 		if (err)
1607 			goto out;
1608 	}
1609 
1610 	c->ileb_buf = vmalloc(c->leb_size);
1611 	if (!c->ileb_buf) {
1612 		err = -ENOMEM;
1613 		goto out;
1614 	}
1615 
1616 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1617 	if (!c->write_reserve_buf) {
1618 		err = -ENOMEM;
1619 		goto out;
1620 	}
1621 
1622 	err = ubifs_lpt_init(c, 0, 1);
1623 	if (err)
1624 		goto out;
1625 
1626 	/* Create background thread */
1627 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1628 	if (IS_ERR(c->bgt)) {
1629 		err = PTR_ERR(c->bgt);
1630 		c->bgt = NULL;
1631 		ubifs_err("cannot spawn \"%s\", error %d",
1632 			  c->bgt_name, err);
1633 		goto out;
1634 	}
1635 	wake_up_process(c->bgt);
1636 
1637 	c->orph_buf = vmalloc(c->leb_size);
1638 	if (!c->orph_buf) {
1639 		err = -ENOMEM;
1640 		goto out;
1641 	}
1642 
1643 	/* Check for enough log space */
1644 	lnum = c->lhead_lnum + 1;
1645 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1646 		lnum = UBIFS_LOG_LNUM;
1647 	if (lnum == c->ltail_lnum) {
1648 		err = ubifs_consolidate_log(c);
1649 		if (err)
1650 			goto out;
1651 	}
1652 
1653 	if (c->need_recovery)
1654 		err = ubifs_rcvry_gc_commit(c);
1655 	else
1656 		err = ubifs_leb_unmap(c, c->gc_lnum);
1657 	if (err)
1658 		goto out;
1659 
1660 	dbg_gen("re-mounted read-write");
1661 	c->remounting_rw = 0;
1662 
1663 	if (c->need_recovery) {
1664 		c->need_recovery = 0;
1665 		ubifs_msg("deferred recovery completed");
1666 	} else {
1667 		/*
1668 		 * Do not run the debugging space check if the were doing
1669 		 * recovery, because when we saved the information we had the
1670 		 * file-system in a state where the TNC and lprops has been
1671 		 * modified in memory, but all the I/O operations (including a
1672 		 * commit) were deferred. So the file-system was in
1673 		 * "non-committed" state. Now the file-system is in committed
1674 		 * state, and of course the amount of free space will change
1675 		 * because, for example, the old index size was imprecise.
1676 		 */
1677 		err = dbg_check_space_info(c);
1678 	}
1679 
1680 	mutex_unlock(&c->umount_mutex);
1681 	return err;
1682 
1683 out:
1684 	c->ro_mount = 1;
1685 	vfree(c->orph_buf);
1686 	c->orph_buf = NULL;
1687 	if (c->bgt) {
1688 		kthread_stop(c->bgt);
1689 		c->bgt = NULL;
1690 	}
1691 	free_wbufs(c);
1692 	kfree(c->write_reserve_buf);
1693 	c->write_reserve_buf = NULL;
1694 	vfree(c->ileb_buf);
1695 	c->ileb_buf = NULL;
1696 	ubifs_lpt_free(c, 1);
1697 	c->remounting_rw = 0;
1698 	mutex_unlock(&c->umount_mutex);
1699 	return err;
1700 }
1701 
1702 /**
1703  * ubifs_remount_ro - re-mount in read-only mode.
1704  * @c: UBIFS file-system description object
1705  *
1706  * We assume VFS has stopped writing. Possibly the background thread could be
1707  * running a commit, however kthread_stop will wait in that case.
1708  */
1709 static void ubifs_remount_ro(struct ubifs_info *c)
1710 {
1711 	int i, err;
1712 
1713 	ubifs_assert(!c->need_recovery);
1714 	ubifs_assert(!c->ro_mount);
1715 
1716 	mutex_lock(&c->umount_mutex);
1717 	if (c->bgt) {
1718 		kthread_stop(c->bgt);
1719 		c->bgt = NULL;
1720 	}
1721 
1722 	dbg_save_space_info(c);
1723 
1724 	for (i = 0; i < c->jhead_cnt; i++)
1725 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1726 
1727 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1728 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1729 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1730 	err = ubifs_write_master(c);
1731 	if (err)
1732 		ubifs_ro_mode(c, err);
1733 
1734 	vfree(c->orph_buf);
1735 	c->orph_buf = NULL;
1736 	kfree(c->write_reserve_buf);
1737 	c->write_reserve_buf = NULL;
1738 	vfree(c->ileb_buf);
1739 	c->ileb_buf = NULL;
1740 	ubifs_lpt_free(c, 1);
1741 	c->ro_mount = 1;
1742 	err = dbg_check_space_info(c);
1743 	if (err)
1744 		ubifs_ro_mode(c, err);
1745 	mutex_unlock(&c->umount_mutex);
1746 }
1747 
1748 static void ubifs_put_super(struct super_block *sb)
1749 {
1750 	int i;
1751 	struct ubifs_info *c = sb->s_fs_info;
1752 
1753 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1754 		  c->vi.vol_id);
1755 
1756 	/*
1757 	 * The following asserts are only valid if there has not been a failure
1758 	 * of the media. For example, there will be dirty inodes if we failed
1759 	 * to write them back because of I/O errors.
1760 	 */
1761 	if (!c->ro_error) {
1762 		ubifs_assert(c->bi.idx_growth == 0);
1763 		ubifs_assert(c->bi.dd_growth == 0);
1764 		ubifs_assert(c->bi.data_growth == 0);
1765 	}
1766 
1767 	/*
1768 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1769 	 * and file system un-mount. Namely, it prevents the shrinker from
1770 	 * picking this superblock for shrinking - it will be just skipped if
1771 	 * the mutex is locked.
1772 	 */
1773 	mutex_lock(&c->umount_mutex);
1774 	if (!c->ro_mount) {
1775 		/*
1776 		 * First of all kill the background thread to make sure it does
1777 		 * not interfere with un-mounting and freeing resources.
1778 		 */
1779 		if (c->bgt) {
1780 			kthread_stop(c->bgt);
1781 			c->bgt = NULL;
1782 		}
1783 
1784 		/*
1785 		 * On fatal errors c->ro_error is set to 1, in which case we do
1786 		 * not write the master node.
1787 		 */
1788 		if (!c->ro_error) {
1789 			int err;
1790 
1791 			/* Synchronize write-buffers */
1792 			for (i = 0; i < c->jhead_cnt; i++)
1793 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1794 
1795 			/*
1796 			 * We are being cleanly unmounted which means the
1797 			 * orphans were killed - indicate this in the master
1798 			 * node. Also save the reserved GC LEB number.
1799 			 */
1800 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1801 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1802 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1803 			err = ubifs_write_master(c);
1804 			if (err)
1805 				/*
1806 				 * Recovery will attempt to fix the master area
1807 				 * next mount, so we just print a message and
1808 				 * continue to unmount normally.
1809 				 */
1810 				ubifs_err("failed to write master node, error %d",
1811 					  err);
1812 		} else {
1813 			for (i = 0; i < c->jhead_cnt; i++)
1814 				/* Make sure write-buffer timers are canceled */
1815 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1816 		}
1817 	}
1818 
1819 	ubifs_umount(c);
1820 	bdi_destroy(&c->bdi);
1821 	ubi_close_volume(c->ubi);
1822 	mutex_unlock(&c->umount_mutex);
1823 }
1824 
1825 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1826 {
1827 	int err;
1828 	struct ubifs_info *c = sb->s_fs_info;
1829 
1830 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1831 
1832 	err = ubifs_parse_options(c, data, 1);
1833 	if (err) {
1834 		ubifs_err("invalid or unknown remount parameter");
1835 		return err;
1836 	}
1837 
1838 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1839 		if (c->ro_error) {
1840 			ubifs_msg("cannot re-mount R/W due to prior errors");
1841 			return -EROFS;
1842 		}
1843 		if (c->ro_media) {
1844 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1845 			return -EROFS;
1846 		}
1847 		err = ubifs_remount_rw(c);
1848 		if (err)
1849 			return err;
1850 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1851 		if (c->ro_error) {
1852 			ubifs_msg("cannot re-mount R/O due to prior errors");
1853 			return -EROFS;
1854 		}
1855 		ubifs_remount_ro(c);
1856 	}
1857 
1858 	if (c->bulk_read == 1)
1859 		bu_init(c);
1860 	else {
1861 		dbg_gen("disable bulk-read");
1862 		kfree(c->bu.buf);
1863 		c->bu.buf = NULL;
1864 	}
1865 
1866 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1867 	return 0;
1868 }
1869 
1870 const struct super_operations ubifs_super_operations = {
1871 	.alloc_inode   = ubifs_alloc_inode,
1872 	.destroy_inode = ubifs_destroy_inode,
1873 	.put_super     = ubifs_put_super,
1874 	.write_inode   = ubifs_write_inode,
1875 	.evict_inode   = ubifs_evict_inode,
1876 	.statfs        = ubifs_statfs,
1877 	.dirty_inode   = ubifs_dirty_inode,
1878 	.remount_fs    = ubifs_remount_fs,
1879 	.show_options  = ubifs_show_options,
1880 	.sync_fs       = ubifs_sync_fs,
1881 };
1882 
1883 /**
1884  * open_ubi - parse UBI device name string and open the UBI device.
1885  * @name: UBI volume name
1886  * @mode: UBI volume open mode
1887  *
1888  * The primary method of mounting UBIFS is by specifying the UBI volume
1889  * character device node path. However, UBIFS may also be mounted withoug any
1890  * character device node using one of the following methods:
1891  *
1892  * o ubiX_Y    - mount UBI device number X, volume Y;
1893  * o ubiY      - mount UBI device number 0, volume Y;
1894  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1895  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1896  *
1897  * Alternative '!' separator may be used instead of ':' (because some shells
1898  * like busybox may interpret ':' as an NFS host name separator). This function
1899  * returns UBI volume description object in case of success and a negative
1900  * error code in case of failure.
1901  */
1902 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1903 {
1904 	struct ubi_volume_desc *ubi;
1905 	int dev, vol;
1906 	char *endptr;
1907 
1908 	/* First, try to open using the device node path method */
1909 	ubi = ubi_open_volume_path(name, mode);
1910 	if (!IS_ERR(ubi))
1911 		return ubi;
1912 
1913 	/* Try the "nodev" method */
1914 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1915 		return ERR_PTR(-EINVAL);
1916 
1917 	/* ubi:NAME method */
1918 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1919 		return ubi_open_volume_nm(0, name + 4, mode);
1920 
1921 	if (!isdigit(name[3]))
1922 		return ERR_PTR(-EINVAL);
1923 
1924 	dev = simple_strtoul(name + 3, &endptr, 0);
1925 
1926 	/* ubiY method */
1927 	if (*endptr == '\0')
1928 		return ubi_open_volume(0, dev, mode);
1929 
1930 	/* ubiX_Y method */
1931 	if (*endptr == '_' && isdigit(endptr[1])) {
1932 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1933 		if (*endptr != '\0')
1934 			return ERR_PTR(-EINVAL);
1935 		return ubi_open_volume(dev, vol, mode);
1936 	}
1937 
1938 	/* ubiX:NAME method */
1939 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1940 		return ubi_open_volume_nm(dev, ++endptr, mode);
1941 
1942 	return ERR_PTR(-EINVAL);
1943 }
1944 
1945 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1946 {
1947 	struct ubifs_info *c;
1948 
1949 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1950 	if (c) {
1951 		spin_lock_init(&c->cnt_lock);
1952 		spin_lock_init(&c->cs_lock);
1953 		spin_lock_init(&c->buds_lock);
1954 		spin_lock_init(&c->space_lock);
1955 		spin_lock_init(&c->orphan_lock);
1956 		init_rwsem(&c->commit_sem);
1957 		mutex_init(&c->lp_mutex);
1958 		mutex_init(&c->tnc_mutex);
1959 		mutex_init(&c->log_mutex);
1960 		mutex_init(&c->mst_mutex);
1961 		mutex_init(&c->umount_mutex);
1962 		mutex_init(&c->bu_mutex);
1963 		mutex_init(&c->write_reserve_mutex);
1964 		init_waitqueue_head(&c->cmt_wq);
1965 		c->buds = RB_ROOT;
1966 		c->old_idx = RB_ROOT;
1967 		c->size_tree = RB_ROOT;
1968 		c->orph_tree = RB_ROOT;
1969 		INIT_LIST_HEAD(&c->infos_list);
1970 		INIT_LIST_HEAD(&c->idx_gc);
1971 		INIT_LIST_HEAD(&c->replay_list);
1972 		INIT_LIST_HEAD(&c->replay_buds);
1973 		INIT_LIST_HEAD(&c->uncat_list);
1974 		INIT_LIST_HEAD(&c->empty_list);
1975 		INIT_LIST_HEAD(&c->freeable_list);
1976 		INIT_LIST_HEAD(&c->frdi_idx_list);
1977 		INIT_LIST_HEAD(&c->unclean_leb_list);
1978 		INIT_LIST_HEAD(&c->old_buds);
1979 		INIT_LIST_HEAD(&c->orph_list);
1980 		INIT_LIST_HEAD(&c->orph_new);
1981 		c->no_chk_data_crc = 1;
1982 
1983 		c->highest_inum = UBIFS_FIRST_INO;
1984 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1985 
1986 		ubi_get_volume_info(ubi, &c->vi);
1987 		ubi_get_device_info(c->vi.ubi_num, &c->di);
1988 	}
1989 	return c;
1990 }
1991 
1992 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1993 {
1994 	struct ubifs_info *c = sb->s_fs_info;
1995 	struct inode *root;
1996 	int err;
1997 
1998 	c->vfs_sb = sb;
1999 	/* Re-open the UBI device in read-write mode */
2000 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2001 	if (IS_ERR(c->ubi)) {
2002 		err = PTR_ERR(c->ubi);
2003 		goto out;
2004 	}
2005 
2006 	/*
2007 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2008 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2009 	 * which means the user would have to wait not just for their own I/O
2010 	 * but the read-ahead I/O as well i.e. completely pointless.
2011 	 *
2012 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2013 	 */
2014 	c->bdi.name = "ubifs",
2015 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2016 	err  = bdi_init(&c->bdi);
2017 	if (err)
2018 		goto out_close;
2019 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2020 			   c->vi.ubi_num, c->vi.vol_id);
2021 	if (err)
2022 		goto out_bdi;
2023 
2024 	err = ubifs_parse_options(c, data, 0);
2025 	if (err)
2026 		goto out_bdi;
2027 
2028 	sb->s_bdi = &c->bdi;
2029 	sb->s_fs_info = c;
2030 	sb->s_magic = UBIFS_SUPER_MAGIC;
2031 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2032 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2033 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2034 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2035 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2036 	sb->s_op = &ubifs_super_operations;
2037 
2038 	mutex_lock(&c->umount_mutex);
2039 	err = mount_ubifs(c);
2040 	if (err) {
2041 		ubifs_assert(err < 0);
2042 		goto out_unlock;
2043 	}
2044 
2045 	/* Read the root inode */
2046 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2047 	if (IS_ERR(root)) {
2048 		err = PTR_ERR(root);
2049 		goto out_umount;
2050 	}
2051 
2052 	sb->s_root = d_make_root(root);
2053 	if (!sb->s_root) {
2054 		err = -ENOMEM;
2055 		goto out_umount;
2056 	}
2057 
2058 	mutex_unlock(&c->umount_mutex);
2059 	return 0;
2060 
2061 out_umount:
2062 	ubifs_umount(c);
2063 out_unlock:
2064 	mutex_unlock(&c->umount_mutex);
2065 out_bdi:
2066 	bdi_destroy(&c->bdi);
2067 out_close:
2068 	ubi_close_volume(c->ubi);
2069 out:
2070 	return err;
2071 }
2072 
2073 static int sb_test(struct super_block *sb, void *data)
2074 {
2075 	struct ubifs_info *c1 = data;
2076 	struct ubifs_info *c = sb->s_fs_info;
2077 
2078 	return c->vi.cdev == c1->vi.cdev;
2079 }
2080 
2081 static int sb_set(struct super_block *sb, void *data)
2082 {
2083 	sb->s_fs_info = data;
2084 	return set_anon_super(sb, NULL);
2085 }
2086 
2087 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2088 			const char *name, void *data)
2089 {
2090 	struct ubi_volume_desc *ubi;
2091 	struct ubifs_info *c;
2092 	struct super_block *sb;
2093 	int err;
2094 
2095 	dbg_gen("name %s, flags %#x", name, flags);
2096 
2097 	/*
2098 	 * Get UBI device number and volume ID. Mount it read-only so far
2099 	 * because this might be a new mount point, and UBI allows only one
2100 	 * read-write user at a time.
2101 	 */
2102 	ubi = open_ubi(name, UBI_READONLY);
2103 	if (IS_ERR(ubi)) {
2104 		ubifs_err("cannot open \"%s\", error %d",
2105 			  name, (int)PTR_ERR(ubi));
2106 		return ERR_CAST(ubi);
2107 	}
2108 
2109 	c = alloc_ubifs_info(ubi);
2110 	if (!c) {
2111 		err = -ENOMEM;
2112 		goto out_close;
2113 	}
2114 
2115 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2116 
2117 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2118 	if (IS_ERR(sb)) {
2119 		err = PTR_ERR(sb);
2120 		kfree(c);
2121 		goto out_close;
2122 	}
2123 
2124 	if (sb->s_root) {
2125 		struct ubifs_info *c1 = sb->s_fs_info;
2126 		kfree(c);
2127 		/* A new mount point for already mounted UBIFS */
2128 		dbg_gen("this ubi volume is already mounted");
2129 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2130 			err = -EBUSY;
2131 			goto out_deact;
2132 		}
2133 	} else {
2134 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2135 		if (err)
2136 			goto out_deact;
2137 		/* We do not support atime */
2138 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2139 	}
2140 
2141 	/* 'fill_super()' opens ubi again so we must close it here */
2142 	ubi_close_volume(ubi);
2143 
2144 	return dget(sb->s_root);
2145 
2146 out_deact:
2147 	deactivate_locked_super(sb);
2148 out_close:
2149 	ubi_close_volume(ubi);
2150 	return ERR_PTR(err);
2151 }
2152 
2153 static void kill_ubifs_super(struct super_block *s)
2154 {
2155 	struct ubifs_info *c = s->s_fs_info;
2156 	kill_anon_super(s);
2157 	kfree(c);
2158 }
2159 
2160 static struct file_system_type ubifs_fs_type = {
2161 	.name    = "ubifs",
2162 	.owner   = THIS_MODULE,
2163 	.mount   = ubifs_mount,
2164 	.kill_sb = kill_ubifs_super,
2165 };
2166 MODULE_ALIAS_FS("ubifs");
2167 
2168 /*
2169  * Inode slab cache constructor.
2170  */
2171 static void inode_slab_ctor(void *obj)
2172 {
2173 	struct ubifs_inode *ui = obj;
2174 	inode_init_once(&ui->vfs_inode);
2175 }
2176 
2177 static int __init ubifs_init(void)
2178 {
2179 	int err;
2180 
2181 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2182 
2183 	/* Make sure node sizes are 8-byte aligned */
2184 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2185 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2186 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2187 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2188 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2189 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2190 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2191 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2192 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2193 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2194 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2195 
2196 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2197 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2198 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2199 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2200 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2201 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2202 
2203 	/* Check min. node size */
2204 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2205 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2206 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2207 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2208 
2209 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2210 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2211 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2212 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2213 
2214 	/* Defined node sizes */
2215 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2216 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2217 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2218 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2219 
2220 	/*
2221 	 * We use 2 bit wide bit-fields to store compression type, which should
2222 	 * be amended if more compressors are added. The bit-fields are:
2223 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2224 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2225 	 */
2226 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2227 
2228 	/*
2229 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2230 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2231 	 */
2232 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2233 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2234 			  (unsigned int)PAGE_CACHE_SIZE);
2235 		return -EINVAL;
2236 	}
2237 
2238 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2239 				sizeof(struct ubifs_inode), 0,
2240 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2241 				&inode_slab_ctor);
2242 	if (!ubifs_inode_slab)
2243 		return -ENOMEM;
2244 
2245 	register_shrinker(&ubifs_shrinker_info);
2246 
2247 	err = ubifs_compressors_init();
2248 	if (err)
2249 		goto out_shrinker;
2250 
2251 	err = dbg_debugfs_init();
2252 	if (err)
2253 		goto out_compr;
2254 
2255 	err = register_filesystem(&ubifs_fs_type);
2256 	if (err) {
2257 		ubifs_err("cannot register file system, error %d", err);
2258 		goto out_dbg;
2259 	}
2260 	return 0;
2261 
2262 out_dbg:
2263 	dbg_debugfs_exit();
2264 out_compr:
2265 	ubifs_compressors_exit();
2266 out_shrinker:
2267 	unregister_shrinker(&ubifs_shrinker_info);
2268 	kmem_cache_destroy(ubifs_inode_slab);
2269 	return err;
2270 }
2271 /* late_initcall to let compressors initialize first */
2272 late_initcall(ubifs_init);
2273 
2274 static void __exit ubifs_exit(void)
2275 {
2276 	ubifs_assert(list_empty(&ubifs_infos));
2277 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2278 
2279 	dbg_debugfs_exit();
2280 	ubifs_compressors_exit();
2281 	unregister_shrinker(&ubifs_shrinker_info);
2282 
2283 	/*
2284 	 * Make sure all delayed rcu free inodes are flushed before we
2285 	 * destroy cache.
2286 	 */
2287 	rcu_barrier();
2288 	kmem_cache_destroy(ubifs_inode_slab);
2289 	unregister_filesystem(&ubifs_fs_type);
2290 }
2291 module_exit(ubifs_exit);
2292 
2293 MODULE_LICENSE("GPL");
2294 MODULE_VERSION(__stringify(UBIFS_VERSION));
2295 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2296 MODULE_DESCRIPTION("UBIFS - UBI File System");
2297