1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/kthread.h> 22 #include <linux/parser.h> 23 #include <linux/seq_file.h> 24 #include <linux/mount.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include "ubifs.h" 28 29 /* 30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 31 * allocating too much. 32 */ 33 #define UBIFS_KMALLOC_OK (128*1024) 34 35 /* Slab cache for UBIFS inodes */ 36 static struct kmem_cache *ubifs_inode_slab; 37 38 /* UBIFS TNC shrinker description */ 39 static struct shrinker ubifs_shrinker_info = { 40 .scan_objects = ubifs_shrink_scan, 41 .count_objects = ubifs_shrink_count, 42 .seeks = DEFAULT_SEEKS, 43 }; 44 45 /** 46 * validate_inode - validate inode. 47 * @c: UBIFS file-system description object 48 * @inode: the inode to validate 49 * 50 * This is a helper function for 'ubifs_iget()' which validates various fields 51 * of a newly built inode to make sure they contain sane values and prevent 52 * possible vulnerabilities. Returns zero if the inode is all right and 53 * a non-zero error code if not. 54 */ 55 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 56 { 57 int err; 58 const struct ubifs_inode *ui = ubifs_inode(inode); 59 60 if (inode->i_size > c->max_inode_sz) { 61 ubifs_err(c, "inode is too large (%lld)", 62 (long long)inode->i_size); 63 return 1; 64 } 65 66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 67 ubifs_err(c, "unknown compression type %d", ui->compr_type); 68 return 2; 69 } 70 71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 72 return 3; 73 74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 75 return 4; 76 77 if (ui->xattr && !S_ISREG(inode->i_mode)) 78 return 5; 79 80 if (!ubifs_compr_present(c, ui->compr_type)) { 81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 82 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 83 } 84 85 err = dbg_check_dir(c, inode); 86 return err; 87 } 88 89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 90 { 91 int err; 92 union ubifs_key key; 93 struct ubifs_ino_node *ino; 94 struct ubifs_info *c = sb->s_fs_info; 95 struct inode *inode; 96 struct ubifs_inode *ui; 97 98 dbg_gen("inode %lu", inum); 99 100 inode = iget_locked(sb, inum); 101 if (!inode) 102 return ERR_PTR(-ENOMEM); 103 if (!(inode->i_state & I_NEW)) 104 return inode; 105 ui = ubifs_inode(inode); 106 107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 108 if (!ino) { 109 err = -ENOMEM; 110 goto out; 111 } 112 113 ino_key_init(c, &key, inode->i_ino); 114 115 err = ubifs_tnc_lookup(c, &key, ino); 116 if (err) 117 goto out_ino; 118 119 inode->i_flags |= S_NOCMTIME; 120 121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 122 inode->i_flags |= S_NOATIME; 123 124 set_nlink(inode, le32_to_cpu(ino->nlink)); 125 i_uid_write(inode, le32_to_cpu(ino->uid)); 126 i_gid_write(inode, le32_to_cpu(ino->gid)); 127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 133 inode->i_mode = le32_to_cpu(ino->mode); 134 inode->i_size = le64_to_cpu(ino->size); 135 136 ui->data_len = le32_to_cpu(ino->data_len); 137 ui->flags = le32_to_cpu(ino->flags); 138 ui->compr_type = le16_to_cpu(ino->compr_type); 139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 141 ui->xattr_size = le32_to_cpu(ino->xattr_size); 142 ui->xattr_names = le32_to_cpu(ino->xattr_names); 143 ui->synced_i_size = ui->ui_size = inode->i_size; 144 145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 146 147 err = validate_inode(c, inode); 148 if (err) 149 goto out_invalid; 150 151 switch (inode->i_mode & S_IFMT) { 152 case S_IFREG: 153 inode->i_mapping->a_ops = &ubifs_file_address_operations; 154 inode->i_op = &ubifs_file_inode_operations; 155 inode->i_fop = &ubifs_file_operations; 156 if (ui->xattr) { 157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 158 if (!ui->data) { 159 err = -ENOMEM; 160 goto out_ino; 161 } 162 memcpy(ui->data, ino->data, ui->data_len); 163 ((char *)ui->data)[ui->data_len] = '\0'; 164 } else if (ui->data_len != 0) { 165 err = 10; 166 goto out_invalid; 167 } 168 break; 169 case S_IFDIR: 170 inode->i_op = &ubifs_dir_inode_operations; 171 inode->i_fop = &ubifs_dir_operations; 172 if (ui->data_len != 0) { 173 err = 11; 174 goto out_invalid; 175 } 176 break; 177 case S_IFLNK: 178 inode->i_op = &ubifs_symlink_inode_operations; 179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 180 err = 12; 181 goto out_invalid; 182 } 183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 184 if (!ui->data) { 185 err = -ENOMEM; 186 goto out_ino; 187 } 188 memcpy(ui->data, ino->data, ui->data_len); 189 ((char *)ui->data)[ui->data_len] = '\0'; 190 break; 191 case S_IFBLK: 192 case S_IFCHR: 193 { 194 dev_t rdev; 195 union ubifs_dev_desc *dev; 196 197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 198 if (!ui->data) { 199 err = -ENOMEM; 200 goto out_ino; 201 } 202 203 dev = (union ubifs_dev_desc *)ino->data; 204 if (ui->data_len == sizeof(dev->new)) 205 rdev = new_decode_dev(le32_to_cpu(dev->new)); 206 else if (ui->data_len == sizeof(dev->huge)) 207 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 208 else { 209 err = 13; 210 goto out_invalid; 211 } 212 memcpy(ui->data, ino->data, ui->data_len); 213 inode->i_op = &ubifs_file_inode_operations; 214 init_special_inode(inode, inode->i_mode, rdev); 215 break; 216 } 217 case S_IFSOCK: 218 case S_IFIFO: 219 inode->i_op = &ubifs_file_inode_operations; 220 init_special_inode(inode, inode->i_mode, 0); 221 if (ui->data_len != 0) { 222 err = 14; 223 goto out_invalid; 224 } 225 break; 226 default: 227 err = 15; 228 goto out_invalid; 229 } 230 231 kfree(ino); 232 ubifs_set_inode_flags(inode); 233 unlock_new_inode(inode); 234 return inode; 235 236 out_invalid: 237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 238 ubifs_dump_node(c, ino); 239 ubifs_dump_inode(c, inode); 240 err = -EINVAL; 241 out_ino: 242 kfree(ino); 243 out: 244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 245 iget_failed(inode); 246 return ERR_PTR(err); 247 } 248 249 static struct inode *ubifs_alloc_inode(struct super_block *sb) 250 { 251 struct ubifs_inode *ui; 252 253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 254 if (!ui) 255 return NULL; 256 257 memset((void *)ui + sizeof(struct inode), 0, 258 sizeof(struct ubifs_inode) - sizeof(struct inode)); 259 mutex_init(&ui->ui_mutex); 260 spin_lock_init(&ui->ui_lock); 261 return &ui->vfs_inode; 262 }; 263 264 static void ubifs_free_inode(struct inode *inode) 265 { 266 struct ubifs_inode *ui = ubifs_inode(inode); 267 268 kfree(ui->data); 269 fscrypt_free_inode(inode); 270 271 kmem_cache_free(ubifs_inode_slab, ui); 272 } 273 274 /* 275 * Note, Linux write-back code calls this without 'i_mutex'. 276 */ 277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 278 { 279 int err = 0; 280 struct ubifs_info *c = inode->i_sb->s_fs_info; 281 struct ubifs_inode *ui = ubifs_inode(inode); 282 283 ubifs_assert(c, !ui->xattr); 284 if (is_bad_inode(inode)) 285 return 0; 286 287 mutex_lock(&ui->ui_mutex); 288 /* 289 * Due to races between write-back forced by budgeting 290 * (see 'sync_some_inodes()') and background write-back, the inode may 291 * have already been synchronized, do not do this again. This might 292 * also happen if it was synchronized in an VFS operation, e.g. 293 * 'ubifs_link()'. 294 */ 295 if (!ui->dirty) { 296 mutex_unlock(&ui->ui_mutex); 297 return 0; 298 } 299 300 /* 301 * As an optimization, do not write orphan inodes to the media just 302 * because this is not needed. 303 */ 304 dbg_gen("inode %lu, mode %#x, nlink %u", 305 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 306 if (inode->i_nlink) { 307 err = ubifs_jnl_write_inode(c, inode); 308 if (err) 309 ubifs_err(c, "can't write inode %lu, error %d", 310 inode->i_ino, err); 311 else 312 err = dbg_check_inode_size(c, inode, ui->ui_size); 313 } 314 315 ui->dirty = 0; 316 mutex_unlock(&ui->ui_mutex); 317 ubifs_release_dirty_inode_budget(c, ui); 318 return err; 319 } 320 321 static void ubifs_evict_inode(struct inode *inode) 322 { 323 int err; 324 struct ubifs_info *c = inode->i_sb->s_fs_info; 325 struct ubifs_inode *ui = ubifs_inode(inode); 326 327 if (ui->xattr) 328 /* 329 * Extended attribute inode deletions are fully handled in 330 * 'ubifs_removexattr()'. These inodes are special and have 331 * limited usage, so there is nothing to do here. 332 */ 333 goto out; 334 335 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 336 ubifs_assert(c, !atomic_read(&inode->i_count)); 337 338 truncate_inode_pages_final(&inode->i_data); 339 340 if (inode->i_nlink) 341 goto done; 342 343 if (is_bad_inode(inode)) 344 goto out; 345 346 ui->ui_size = inode->i_size = 0; 347 err = ubifs_jnl_delete_inode(c, inode); 348 if (err) 349 /* 350 * Worst case we have a lost orphan inode wasting space, so a 351 * simple error message is OK here. 352 */ 353 ubifs_err(c, "can't delete inode %lu, error %d", 354 inode->i_ino, err); 355 356 out: 357 if (ui->dirty) 358 ubifs_release_dirty_inode_budget(c, ui); 359 else { 360 /* We've deleted something - clean the "no space" flags */ 361 c->bi.nospace = c->bi.nospace_rp = 0; 362 smp_wmb(); 363 } 364 done: 365 clear_inode(inode); 366 fscrypt_put_encryption_info(inode); 367 } 368 369 static void ubifs_dirty_inode(struct inode *inode, int flags) 370 { 371 struct ubifs_info *c = inode->i_sb->s_fs_info; 372 struct ubifs_inode *ui = ubifs_inode(inode); 373 374 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 375 if (!ui->dirty) { 376 ui->dirty = 1; 377 dbg_gen("inode %lu", inode->i_ino); 378 } 379 } 380 381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 382 { 383 struct ubifs_info *c = dentry->d_sb->s_fs_info; 384 unsigned long long free; 385 __le32 *uuid = (__le32 *)c->uuid; 386 387 free = ubifs_get_free_space(c); 388 dbg_gen("free space %lld bytes (%lld blocks)", 389 free, free >> UBIFS_BLOCK_SHIFT); 390 391 buf->f_type = UBIFS_SUPER_MAGIC; 392 buf->f_bsize = UBIFS_BLOCK_SIZE; 393 buf->f_blocks = c->block_cnt; 394 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 395 if (free > c->report_rp_size) 396 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 397 else 398 buf->f_bavail = 0; 399 buf->f_files = 0; 400 buf->f_ffree = 0; 401 buf->f_namelen = UBIFS_MAX_NLEN; 402 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 403 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 404 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 405 return 0; 406 } 407 408 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 409 { 410 struct ubifs_info *c = root->d_sb->s_fs_info; 411 412 if (c->mount_opts.unmount_mode == 2) 413 seq_puts(s, ",fast_unmount"); 414 else if (c->mount_opts.unmount_mode == 1) 415 seq_puts(s, ",norm_unmount"); 416 417 if (c->mount_opts.bulk_read == 2) 418 seq_puts(s, ",bulk_read"); 419 else if (c->mount_opts.bulk_read == 1) 420 seq_puts(s, ",no_bulk_read"); 421 422 if (c->mount_opts.chk_data_crc == 2) 423 seq_puts(s, ",chk_data_crc"); 424 else if (c->mount_opts.chk_data_crc == 1) 425 seq_puts(s, ",no_chk_data_crc"); 426 427 if (c->mount_opts.override_compr) { 428 seq_printf(s, ",compr=%s", 429 ubifs_compr_name(c, c->mount_opts.compr_type)); 430 } 431 432 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 433 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 434 435 return 0; 436 } 437 438 static int ubifs_sync_fs(struct super_block *sb, int wait) 439 { 440 int i, err; 441 struct ubifs_info *c = sb->s_fs_info; 442 443 /* 444 * Zero @wait is just an advisory thing to help the file system shove 445 * lots of data into the queues, and there will be the second 446 * '->sync_fs()' call, with non-zero @wait. 447 */ 448 if (!wait) 449 return 0; 450 451 /* 452 * Synchronize write buffers, because 'ubifs_run_commit()' does not 453 * do this if it waits for an already running commit. 454 */ 455 for (i = 0; i < c->jhead_cnt; i++) { 456 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 457 if (err) 458 return err; 459 } 460 461 /* 462 * Strictly speaking, it is not necessary to commit the journal here, 463 * synchronizing write-buffers would be enough. But committing makes 464 * UBIFS free space predictions much more accurate, so we want to let 465 * the user be able to get more accurate results of 'statfs()' after 466 * they synchronize the file system. 467 */ 468 err = ubifs_run_commit(c); 469 if (err) 470 return err; 471 472 return ubi_sync(c->vi.ubi_num); 473 } 474 475 /** 476 * init_constants_early - initialize UBIFS constants. 477 * @c: UBIFS file-system description object 478 * 479 * This function initialize UBIFS constants which do not need the superblock to 480 * be read. It also checks that the UBI volume satisfies basic UBIFS 481 * requirements. Returns zero in case of success and a negative error code in 482 * case of failure. 483 */ 484 static int init_constants_early(struct ubifs_info *c) 485 { 486 if (c->vi.corrupted) { 487 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 488 c->ro_media = 1; 489 } 490 491 if (c->di.ro_mode) { 492 ubifs_msg(c, "read-only UBI device"); 493 c->ro_media = 1; 494 } 495 496 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 497 ubifs_msg(c, "static UBI volume - read-only mode"); 498 c->ro_media = 1; 499 } 500 501 c->leb_cnt = c->vi.size; 502 c->leb_size = c->vi.usable_leb_size; 503 c->leb_start = c->di.leb_start; 504 c->half_leb_size = c->leb_size / 2; 505 c->min_io_size = c->di.min_io_size; 506 c->min_io_shift = fls(c->min_io_size) - 1; 507 c->max_write_size = c->di.max_write_size; 508 c->max_write_shift = fls(c->max_write_size) - 1; 509 510 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 511 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 512 c->leb_size, UBIFS_MIN_LEB_SZ); 513 return -EINVAL; 514 } 515 516 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 517 ubifs_errc(c, "too few LEBs (%d), min. is %d", 518 c->leb_cnt, UBIFS_MIN_LEB_CNT); 519 return -EINVAL; 520 } 521 522 if (!is_power_of_2(c->min_io_size)) { 523 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 524 return -EINVAL; 525 } 526 527 /* 528 * Maximum write size has to be greater or equivalent to min. I/O 529 * size, and be multiple of min. I/O size. 530 */ 531 if (c->max_write_size < c->min_io_size || 532 c->max_write_size % c->min_io_size || 533 !is_power_of_2(c->max_write_size)) { 534 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 535 c->max_write_size, c->min_io_size); 536 return -EINVAL; 537 } 538 539 /* 540 * UBIFS aligns all node to 8-byte boundary, so to make function in 541 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 542 * less than 8. 543 */ 544 if (c->min_io_size < 8) { 545 c->min_io_size = 8; 546 c->min_io_shift = 3; 547 if (c->max_write_size < c->min_io_size) { 548 c->max_write_size = c->min_io_size; 549 c->max_write_shift = c->min_io_shift; 550 } 551 } 552 553 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 554 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 555 556 /* 557 * Initialize node length ranges which are mostly needed for node 558 * length validation. 559 */ 560 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 561 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 562 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 563 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 564 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 565 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 566 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 567 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 568 UBIFS_MAX_HMAC_LEN; 569 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ; 570 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ; 571 572 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 573 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 574 c->ranges[UBIFS_ORPH_NODE].min_len = 575 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 576 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 577 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 578 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 579 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 580 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 581 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 582 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 583 /* 584 * Minimum indexing node size is amended later when superblock is 585 * read and the key length is known. 586 */ 587 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 588 /* 589 * Maximum indexing node size is amended later when superblock is 590 * read and the fanout is known. 591 */ 592 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 593 594 /* 595 * Initialize dead and dark LEB space watermarks. See gc.c for comments 596 * about these values. 597 */ 598 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 599 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 600 601 /* 602 * Calculate how many bytes would be wasted at the end of LEB if it was 603 * fully filled with data nodes of maximum size. This is used in 604 * calculations when reporting free space. 605 */ 606 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 607 608 /* Buffer size for bulk-reads */ 609 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 610 if (c->max_bu_buf_len > c->leb_size) 611 c->max_bu_buf_len = c->leb_size; 612 return 0; 613 } 614 615 /** 616 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 617 * @c: UBIFS file-system description object 618 * @lnum: LEB the write-buffer was synchronized to 619 * @free: how many free bytes left in this LEB 620 * @pad: how many bytes were padded 621 * 622 * This is a callback function which is called by the I/O unit when the 623 * write-buffer is synchronized. We need this to correctly maintain space 624 * accounting in bud logical eraseblocks. This function returns zero in case of 625 * success and a negative error code in case of failure. 626 * 627 * This function actually belongs to the journal, but we keep it here because 628 * we want to keep it static. 629 */ 630 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 631 { 632 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 633 } 634 635 /* 636 * init_constants_sb - initialize UBIFS constants. 637 * @c: UBIFS file-system description object 638 * 639 * This is a helper function which initializes various UBIFS constants after 640 * the superblock has been read. It also checks various UBIFS parameters and 641 * makes sure they are all right. Returns zero in case of success and a 642 * negative error code in case of failure. 643 */ 644 static int init_constants_sb(struct ubifs_info *c) 645 { 646 int tmp, err; 647 long long tmp64; 648 649 c->main_bytes = (long long)c->main_lebs * c->leb_size; 650 c->max_znode_sz = sizeof(struct ubifs_znode) + 651 c->fanout * sizeof(struct ubifs_zbranch); 652 653 tmp = ubifs_idx_node_sz(c, 1); 654 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 655 c->min_idx_node_sz = ALIGN(tmp, 8); 656 657 tmp = ubifs_idx_node_sz(c, c->fanout); 658 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 659 c->max_idx_node_sz = ALIGN(tmp, 8); 660 661 /* Make sure LEB size is large enough to fit full commit */ 662 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 663 tmp = ALIGN(tmp, c->min_io_size); 664 if (tmp > c->leb_size) { 665 ubifs_err(c, "too small LEB size %d, at least %d needed", 666 c->leb_size, tmp); 667 return -EINVAL; 668 } 669 670 /* 671 * Make sure that the log is large enough to fit reference nodes for 672 * all buds plus one reserved LEB. 673 */ 674 tmp64 = c->max_bud_bytes + c->leb_size - 1; 675 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 676 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 677 tmp /= c->leb_size; 678 tmp += 1; 679 if (c->log_lebs < tmp) { 680 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 681 c->log_lebs, tmp); 682 return -EINVAL; 683 } 684 685 /* 686 * When budgeting we assume worst-case scenarios when the pages are not 687 * be compressed and direntries are of the maximum size. 688 * 689 * Note, data, which may be stored in inodes is budgeted separately, so 690 * it is not included into 'c->bi.inode_budget'. 691 */ 692 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 693 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 694 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 695 696 /* 697 * When the amount of flash space used by buds becomes 698 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 699 * The writers are unblocked when the commit is finished. To avoid 700 * writers to be blocked UBIFS initiates background commit in advance, 701 * when number of bud bytes becomes above the limit defined below. 702 */ 703 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 704 705 /* 706 * Ensure minimum journal size. All the bytes in the journal heads are 707 * considered to be used, when calculating the current journal usage. 708 * Consequently, if the journal is too small, UBIFS will treat it as 709 * always full. 710 */ 711 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 712 if (c->bg_bud_bytes < tmp64) 713 c->bg_bud_bytes = tmp64; 714 if (c->max_bud_bytes < tmp64 + c->leb_size) 715 c->max_bud_bytes = tmp64 + c->leb_size; 716 717 err = ubifs_calc_lpt_geom(c); 718 if (err) 719 return err; 720 721 /* Initialize effective LEB size used in budgeting calculations */ 722 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 723 return 0; 724 } 725 726 /* 727 * init_constants_master - initialize UBIFS constants. 728 * @c: UBIFS file-system description object 729 * 730 * This is a helper function which initializes various UBIFS constants after 731 * the master node has been read. It also checks various UBIFS parameters and 732 * makes sure they are all right. 733 */ 734 static void init_constants_master(struct ubifs_info *c) 735 { 736 long long tmp64; 737 738 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 739 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 740 741 /* 742 * Calculate total amount of FS blocks. This number is not used 743 * internally because it does not make much sense for UBIFS, but it is 744 * necessary to report something for the 'statfs()' call. 745 * 746 * Subtract the LEB reserved for GC, the LEB which is reserved for 747 * deletions, minimum LEBs for the index, and assume only one journal 748 * head is available. 749 */ 750 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 751 tmp64 *= (long long)c->leb_size - c->leb_overhead; 752 tmp64 = ubifs_reported_space(c, tmp64); 753 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 754 } 755 756 /** 757 * take_gc_lnum - reserve GC LEB. 758 * @c: UBIFS file-system description object 759 * 760 * This function ensures that the LEB reserved for garbage collection is marked 761 * as "taken" in lprops. We also have to set free space to LEB size and dirty 762 * space to zero, because lprops may contain out-of-date information if the 763 * file-system was un-mounted before it has been committed. This function 764 * returns zero in case of success and a negative error code in case of 765 * failure. 766 */ 767 static int take_gc_lnum(struct ubifs_info *c) 768 { 769 int err; 770 771 if (c->gc_lnum == -1) { 772 ubifs_err(c, "no LEB for GC"); 773 return -EINVAL; 774 } 775 776 /* And we have to tell lprops that this LEB is taken */ 777 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 778 LPROPS_TAKEN, 0, 0); 779 return err; 780 } 781 782 /** 783 * alloc_wbufs - allocate write-buffers. 784 * @c: UBIFS file-system description object 785 * 786 * This helper function allocates and initializes UBIFS write-buffers. Returns 787 * zero in case of success and %-ENOMEM in case of failure. 788 */ 789 static int alloc_wbufs(struct ubifs_info *c) 790 { 791 int i, err; 792 793 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 794 GFP_KERNEL); 795 if (!c->jheads) 796 return -ENOMEM; 797 798 /* Initialize journal heads */ 799 for (i = 0; i < c->jhead_cnt; i++) { 800 INIT_LIST_HEAD(&c->jheads[i].buds_list); 801 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 802 if (err) 803 return err; 804 805 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 806 c->jheads[i].wbuf.jhead = i; 807 c->jheads[i].grouped = 1; 808 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 809 if (IS_ERR(c->jheads[i].log_hash)) 810 goto out; 811 } 812 813 /* 814 * Garbage Collector head does not need to be synchronized by timer. 815 * Also GC head nodes are not grouped. 816 */ 817 c->jheads[GCHD].wbuf.no_timer = 1; 818 c->jheads[GCHD].grouped = 0; 819 820 return 0; 821 822 out: 823 while (i--) 824 kfree(c->jheads[i].log_hash); 825 826 return err; 827 } 828 829 /** 830 * free_wbufs - free write-buffers. 831 * @c: UBIFS file-system description object 832 */ 833 static void free_wbufs(struct ubifs_info *c) 834 { 835 int i; 836 837 if (c->jheads) { 838 for (i = 0; i < c->jhead_cnt; i++) { 839 kfree(c->jheads[i].wbuf.buf); 840 kfree(c->jheads[i].wbuf.inodes); 841 kfree(c->jheads[i].log_hash); 842 } 843 kfree(c->jheads); 844 c->jheads = NULL; 845 } 846 } 847 848 /** 849 * free_orphans - free orphans. 850 * @c: UBIFS file-system description object 851 */ 852 static void free_orphans(struct ubifs_info *c) 853 { 854 struct ubifs_orphan *orph; 855 856 while (c->orph_dnext) { 857 orph = c->orph_dnext; 858 c->orph_dnext = orph->dnext; 859 list_del(&orph->list); 860 kfree(orph); 861 } 862 863 while (!list_empty(&c->orph_list)) { 864 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 865 list_del(&orph->list); 866 kfree(orph); 867 ubifs_err(c, "orphan list not empty at unmount"); 868 } 869 870 vfree(c->orph_buf); 871 c->orph_buf = NULL; 872 } 873 874 /** 875 * free_buds - free per-bud objects. 876 * @c: UBIFS file-system description object 877 */ 878 static void free_buds(struct ubifs_info *c) 879 { 880 struct ubifs_bud *bud, *n; 881 882 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 883 kfree(bud); 884 } 885 886 /** 887 * check_volume_empty - check if the UBI volume is empty. 888 * @c: UBIFS file-system description object 889 * 890 * This function checks if the UBIFS volume is empty by looking if its LEBs are 891 * mapped or not. The result of checking is stored in the @c->empty variable. 892 * Returns zero in case of success and a negative error code in case of 893 * failure. 894 */ 895 static int check_volume_empty(struct ubifs_info *c) 896 { 897 int lnum, err; 898 899 c->empty = 1; 900 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 901 err = ubifs_is_mapped(c, lnum); 902 if (unlikely(err < 0)) 903 return err; 904 if (err == 1) { 905 c->empty = 0; 906 break; 907 } 908 909 cond_resched(); 910 } 911 912 return 0; 913 } 914 915 /* 916 * UBIFS mount options. 917 * 918 * Opt_fast_unmount: do not run a journal commit before un-mounting 919 * Opt_norm_unmount: run a journal commit before un-mounting 920 * Opt_bulk_read: enable bulk-reads 921 * Opt_no_bulk_read: disable bulk-reads 922 * Opt_chk_data_crc: check CRCs when reading data nodes 923 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 924 * Opt_override_compr: override default compressor 925 * Opt_assert: set ubifs_assert() action 926 * Opt_auth_key: The key name used for authentication 927 * Opt_auth_hash_name: The hash type used for authentication 928 * Opt_err: just end of array marker 929 */ 930 enum { 931 Opt_fast_unmount, 932 Opt_norm_unmount, 933 Opt_bulk_read, 934 Opt_no_bulk_read, 935 Opt_chk_data_crc, 936 Opt_no_chk_data_crc, 937 Opt_override_compr, 938 Opt_assert, 939 Opt_auth_key, 940 Opt_auth_hash_name, 941 Opt_ignore, 942 Opt_err, 943 }; 944 945 static const match_table_t tokens = { 946 {Opt_fast_unmount, "fast_unmount"}, 947 {Opt_norm_unmount, "norm_unmount"}, 948 {Opt_bulk_read, "bulk_read"}, 949 {Opt_no_bulk_read, "no_bulk_read"}, 950 {Opt_chk_data_crc, "chk_data_crc"}, 951 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 952 {Opt_override_compr, "compr=%s"}, 953 {Opt_auth_key, "auth_key=%s"}, 954 {Opt_auth_hash_name, "auth_hash_name=%s"}, 955 {Opt_ignore, "ubi=%s"}, 956 {Opt_ignore, "vol=%s"}, 957 {Opt_assert, "assert=%s"}, 958 {Opt_err, NULL}, 959 }; 960 961 /** 962 * parse_standard_option - parse a standard mount option. 963 * @option: the option to parse 964 * 965 * Normally, standard mount options like "sync" are passed to file-systems as 966 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 967 * be present in the options string. This function tries to deal with this 968 * situation and parse standard options. Returns 0 if the option was not 969 * recognized, and the corresponding integer flag if it was. 970 * 971 * UBIFS is only interested in the "sync" option, so do not check for anything 972 * else. 973 */ 974 static int parse_standard_option(const char *option) 975 { 976 977 pr_notice("UBIFS: parse %s\n", option); 978 if (!strcmp(option, "sync")) 979 return SB_SYNCHRONOUS; 980 return 0; 981 } 982 983 /** 984 * ubifs_parse_options - parse mount parameters. 985 * @c: UBIFS file-system description object 986 * @options: parameters to parse 987 * @is_remount: non-zero if this is FS re-mount 988 * 989 * This function parses UBIFS mount options and returns zero in case success 990 * and a negative error code in case of failure. 991 */ 992 static int ubifs_parse_options(struct ubifs_info *c, char *options, 993 int is_remount) 994 { 995 char *p; 996 substring_t args[MAX_OPT_ARGS]; 997 998 if (!options) 999 return 0; 1000 1001 while ((p = strsep(&options, ","))) { 1002 int token; 1003 1004 if (!*p) 1005 continue; 1006 1007 token = match_token(p, tokens, args); 1008 switch (token) { 1009 /* 1010 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1011 * We accept them in order to be backward-compatible. But this 1012 * should be removed at some point. 1013 */ 1014 case Opt_fast_unmount: 1015 c->mount_opts.unmount_mode = 2; 1016 break; 1017 case Opt_norm_unmount: 1018 c->mount_opts.unmount_mode = 1; 1019 break; 1020 case Opt_bulk_read: 1021 c->mount_opts.bulk_read = 2; 1022 c->bulk_read = 1; 1023 break; 1024 case Opt_no_bulk_read: 1025 c->mount_opts.bulk_read = 1; 1026 c->bulk_read = 0; 1027 break; 1028 case Opt_chk_data_crc: 1029 c->mount_opts.chk_data_crc = 2; 1030 c->no_chk_data_crc = 0; 1031 break; 1032 case Opt_no_chk_data_crc: 1033 c->mount_opts.chk_data_crc = 1; 1034 c->no_chk_data_crc = 1; 1035 break; 1036 case Opt_override_compr: 1037 { 1038 char *name = match_strdup(&args[0]); 1039 1040 if (!name) 1041 return -ENOMEM; 1042 if (!strcmp(name, "none")) 1043 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1044 else if (!strcmp(name, "lzo")) 1045 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1046 else if (!strcmp(name, "zlib")) 1047 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1048 else if (!strcmp(name, "zstd")) 1049 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD; 1050 else { 1051 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1052 kfree(name); 1053 return -EINVAL; 1054 } 1055 kfree(name); 1056 c->mount_opts.override_compr = 1; 1057 c->default_compr = c->mount_opts.compr_type; 1058 break; 1059 } 1060 case Opt_assert: 1061 { 1062 char *act = match_strdup(&args[0]); 1063 1064 if (!act) 1065 return -ENOMEM; 1066 if (!strcmp(act, "report")) 1067 c->assert_action = ASSACT_REPORT; 1068 else if (!strcmp(act, "read-only")) 1069 c->assert_action = ASSACT_RO; 1070 else if (!strcmp(act, "panic")) 1071 c->assert_action = ASSACT_PANIC; 1072 else { 1073 ubifs_err(c, "unknown assert action \"%s\"", act); 1074 kfree(act); 1075 return -EINVAL; 1076 } 1077 kfree(act); 1078 break; 1079 } 1080 case Opt_auth_key: 1081 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL); 1082 if (!c->auth_key_name) 1083 return -ENOMEM; 1084 break; 1085 case Opt_auth_hash_name: 1086 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL); 1087 if (!c->auth_hash_name) 1088 return -ENOMEM; 1089 break; 1090 case Opt_ignore: 1091 break; 1092 default: 1093 { 1094 unsigned long flag; 1095 struct super_block *sb = c->vfs_sb; 1096 1097 flag = parse_standard_option(p); 1098 if (!flag) { 1099 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1100 p); 1101 return -EINVAL; 1102 } 1103 sb->s_flags |= flag; 1104 break; 1105 } 1106 } 1107 } 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * destroy_journal - destroy journal data structures. 1114 * @c: UBIFS file-system description object 1115 * 1116 * This function destroys journal data structures including those that may have 1117 * been created by recovery functions. 1118 */ 1119 static void destroy_journal(struct ubifs_info *c) 1120 { 1121 while (!list_empty(&c->unclean_leb_list)) { 1122 struct ubifs_unclean_leb *ucleb; 1123 1124 ucleb = list_entry(c->unclean_leb_list.next, 1125 struct ubifs_unclean_leb, list); 1126 list_del(&ucleb->list); 1127 kfree(ucleb); 1128 } 1129 while (!list_empty(&c->old_buds)) { 1130 struct ubifs_bud *bud; 1131 1132 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1133 list_del(&bud->list); 1134 kfree(bud); 1135 } 1136 ubifs_destroy_idx_gc(c); 1137 ubifs_destroy_size_tree(c); 1138 ubifs_tnc_close(c); 1139 free_buds(c); 1140 } 1141 1142 /** 1143 * bu_init - initialize bulk-read information. 1144 * @c: UBIFS file-system description object 1145 */ 1146 static void bu_init(struct ubifs_info *c) 1147 { 1148 ubifs_assert(c, c->bulk_read == 1); 1149 1150 if (c->bu.buf) 1151 return; /* Already initialized */ 1152 1153 again: 1154 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1155 if (!c->bu.buf) { 1156 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1157 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1158 goto again; 1159 } 1160 1161 /* Just disable bulk-read */ 1162 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1163 c->max_bu_buf_len); 1164 c->mount_opts.bulk_read = 1; 1165 c->bulk_read = 0; 1166 return; 1167 } 1168 } 1169 1170 /** 1171 * check_free_space - check if there is enough free space to mount. 1172 * @c: UBIFS file-system description object 1173 * 1174 * This function makes sure UBIFS has enough free space to be mounted in 1175 * read/write mode. UBIFS must always have some free space to allow deletions. 1176 */ 1177 static int check_free_space(struct ubifs_info *c) 1178 { 1179 ubifs_assert(c, c->dark_wm > 0); 1180 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1181 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1182 ubifs_dump_budg(c, &c->bi); 1183 ubifs_dump_lprops(c); 1184 return -ENOSPC; 1185 } 1186 return 0; 1187 } 1188 1189 /** 1190 * mount_ubifs - mount UBIFS file-system. 1191 * @c: UBIFS file-system description object 1192 * 1193 * This function mounts UBIFS file system. Returns zero in case of success and 1194 * a negative error code in case of failure. 1195 */ 1196 static int mount_ubifs(struct ubifs_info *c) 1197 { 1198 int err; 1199 long long x, y; 1200 size_t sz; 1201 1202 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1203 /* Suppress error messages while probing if SB_SILENT is set */ 1204 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1205 1206 err = init_constants_early(c); 1207 if (err) 1208 return err; 1209 1210 err = ubifs_debugging_init(c); 1211 if (err) 1212 return err; 1213 1214 err = check_volume_empty(c); 1215 if (err) 1216 goto out_free; 1217 1218 if (c->empty && (c->ro_mount || c->ro_media)) { 1219 /* 1220 * This UBI volume is empty, and read-only, or the file system 1221 * is mounted read-only - we cannot format it. 1222 */ 1223 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1224 c->ro_media ? "UBI volume" : "mount"); 1225 err = -EROFS; 1226 goto out_free; 1227 } 1228 1229 if (c->ro_media && !c->ro_mount) { 1230 ubifs_err(c, "cannot mount read-write - read-only media"); 1231 err = -EROFS; 1232 goto out_free; 1233 } 1234 1235 /* 1236 * The requirement for the buffer is that it should fit indexing B-tree 1237 * height amount of integers. We assume the height if the TNC tree will 1238 * never exceed 64. 1239 */ 1240 err = -ENOMEM; 1241 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1242 GFP_KERNEL); 1243 if (!c->bottom_up_buf) 1244 goto out_free; 1245 1246 c->sbuf = vmalloc(c->leb_size); 1247 if (!c->sbuf) 1248 goto out_free; 1249 1250 if (!c->ro_mount) { 1251 c->ileb_buf = vmalloc(c->leb_size); 1252 if (!c->ileb_buf) 1253 goto out_free; 1254 } 1255 1256 if (c->bulk_read == 1) 1257 bu_init(c); 1258 1259 if (!c->ro_mount) { 1260 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1261 UBIFS_CIPHER_BLOCK_SIZE, 1262 GFP_KERNEL); 1263 if (!c->write_reserve_buf) 1264 goto out_free; 1265 } 1266 1267 c->mounting = 1; 1268 1269 if (c->auth_key_name) { 1270 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1271 err = ubifs_init_authentication(c); 1272 if (err) 1273 goto out_free; 1274 } else { 1275 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1276 " authentication support"); 1277 err = -EINVAL; 1278 goto out_free; 1279 } 1280 } 1281 1282 err = ubifs_read_superblock(c); 1283 if (err) 1284 goto out_free; 1285 1286 c->probing = 0; 1287 1288 /* 1289 * Make sure the compressor which is set as default in the superblock 1290 * or overridden by mount options is actually compiled in. 1291 */ 1292 if (!ubifs_compr_present(c, c->default_compr)) { 1293 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1294 ubifs_compr_name(c, c->default_compr)); 1295 err = -ENOTSUPP; 1296 goto out_free; 1297 } 1298 1299 err = init_constants_sb(c); 1300 if (err) 1301 goto out_free; 1302 1303 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2; 1304 c->cbuf = kmalloc(sz, GFP_NOFS); 1305 if (!c->cbuf) { 1306 err = -ENOMEM; 1307 goto out_free; 1308 } 1309 1310 err = alloc_wbufs(c); 1311 if (err) 1312 goto out_cbuf; 1313 1314 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1315 if (!c->ro_mount) { 1316 /* Create background thread */ 1317 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1318 if (IS_ERR(c->bgt)) { 1319 err = PTR_ERR(c->bgt); 1320 c->bgt = NULL; 1321 ubifs_err(c, "cannot spawn \"%s\", error %d", 1322 c->bgt_name, err); 1323 goto out_wbufs; 1324 } 1325 wake_up_process(c->bgt); 1326 } 1327 1328 err = ubifs_read_master(c); 1329 if (err) 1330 goto out_master; 1331 1332 init_constants_master(c); 1333 1334 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1335 ubifs_msg(c, "recovery needed"); 1336 c->need_recovery = 1; 1337 } 1338 1339 if (c->need_recovery && !c->ro_mount) { 1340 err = ubifs_recover_inl_heads(c, c->sbuf); 1341 if (err) 1342 goto out_master; 1343 } 1344 1345 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1346 if (err) 1347 goto out_master; 1348 1349 if (!c->ro_mount && c->space_fixup) { 1350 err = ubifs_fixup_free_space(c); 1351 if (err) 1352 goto out_lpt; 1353 } 1354 1355 if (!c->ro_mount && !c->need_recovery) { 1356 /* 1357 * Set the "dirty" flag so that if we reboot uncleanly we 1358 * will notice this immediately on the next mount. 1359 */ 1360 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1361 err = ubifs_write_master(c); 1362 if (err) 1363 goto out_lpt; 1364 } 1365 1366 /* 1367 * Handle offline signed images: Now that the master node is 1368 * written and its validation no longer depends on the hash 1369 * in the superblock, we can update the offline signed 1370 * superblock with a HMAC version, 1371 */ 1372 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) { 1373 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm); 1374 if (err) 1375 goto out_lpt; 1376 c->superblock_need_write = 1; 1377 } 1378 1379 if (!c->ro_mount && c->superblock_need_write) { 1380 err = ubifs_write_sb_node(c, c->sup_node); 1381 if (err) 1382 goto out_lpt; 1383 c->superblock_need_write = 0; 1384 } 1385 1386 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1387 if (err) 1388 goto out_lpt; 1389 1390 err = ubifs_replay_journal(c); 1391 if (err) 1392 goto out_journal; 1393 1394 /* Calculate 'min_idx_lebs' after journal replay */ 1395 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1396 1397 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1398 if (err) 1399 goto out_orphans; 1400 1401 if (!c->ro_mount) { 1402 int lnum; 1403 1404 err = check_free_space(c); 1405 if (err) 1406 goto out_orphans; 1407 1408 /* Check for enough log space */ 1409 lnum = c->lhead_lnum + 1; 1410 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1411 lnum = UBIFS_LOG_LNUM; 1412 if (lnum == c->ltail_lnum) { 1413 err = ubifs_consolidate_log(c); 1414 if (err) 1415 goto out_orphans; 1416 } 1417 1418 if (c->need_recovery) { 1419 if (!ubifs_authenticated(c)) { 1420 err = ubifs_recover_size(c, true); 1421 if (err) 1422 goto out_orphans; 1423 } 1424 1425 err = ubifs_rcvry_gc_commit(c); 1426 if (err) 1427 goto out_orphans; 1428 1429 if (ubifs_authenticated(c)) { 1430 err = ubifs_recover_size(c, false); 1431 if (err) 1432 goto out_orphans; 1433 } 1434 } else { 1435 err = take_gc_lnum(c); 1436 if (err) 1437 goto out_orphans; 1438 1439 /* 1440 * GC LEB may contain garbage if there was an unclean 1441 * reboot, and it should be un-mapped. 1442 */ 1443 err = ubifs_leb_unmap(c, c->gc_lnum); 1444 if (err) 1445 goto out_orphans; 1446 } 1447 1448 err = dbg_check_lprops(c); 1449 if (err) 1450 goto out_orphans; 1451 } else if (c->need_recovery) { 1452 err = ubifs_recover_size(c, false); 1453 if (err) 1454 goto out_orphans; 1455 } else { 1456 /* 1457 * Even if we mount read-only, we have to set space in GC LEB 1458 * to proper value because this affects UBIFS free space 1459 * reporting. We do not want to have a situation when 1460 * re-mounting from R/O to R/W changes amount of free space. 1461 */ 1462 err = take_gc_lnum(c); 1463 if (err) 1464 goto out_orphans; 1465 } 1466 1467 spin_lock(&ubifs_infos_lock); 1468 list_add_tail(&c->infos_list, &ubifs_infos); 1469 spin_unlock(&ubifs_infos_lock); 1470 1471 if (c->need_recovery) { 1472 if (c->ro_mount) 1473 ubifs_msg(c, "recovery deferred"); 1474 else { 1475 c->need_recovery = 0; 1476 ubifs_msg(c, "recovery completed"); 1477 /* 1478 * GC LEB has to be empty and taken at this point. But 1479 * the journal head LEBs may also be accounted as 1480 * "empty taken" if they are empty. 1481 */ 1482 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1483 } 1484 } else 1485 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1486 1487 err = dbg_check_filesystem(c); 1488 if (err) 1489 goto out_infos; 1490 1491 dbg_debugfs_init_fs(c); 1492 1493 c->mounting = 0; 1494 1495 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1496 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1497 c->ro_mount ? ", R/O mode" : ""); 1498 x = (long long)c->main_lebs * c->leb_size; 1499 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1500 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1501 c->leb_size, c->leb_size >> 10, c->min_io_size, 1502 c->max_write_size); 1503 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1504 x, x >> 20, c->main_lebs, 1505 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1506 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1507 c->report_rp_size, c->report_rp_size >> 10); 1508 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1509 c->fmt_version, c->ro_compat_version, 1510 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1511 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1512 1513 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1514 dbg_gen("data journal heads: %d", 1515 c->jhead_cnt - NONDATA_JHEADS_CNT); 1516 dbg_gen("log LEBs: %d (%d - %d)", 1517 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1518 dbg_gen("LPT area LEBs: %d (%d - %d)", 1519 c->lpt_lebs, c->lpt_first, c->lpt_last); 1520 dbg_gen("orphan area LEBs: %d (%d - %d)", 1521 c->orph_lebs, c->orph_first, c->orph_last); 1522 dbg_gen("main area LEBs: %d (%d - %d)", 1523 c->main_lebs, c->main_first, c->leb_cnt - 1); 1524 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1525 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1526 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1527 c->bi.old_idx_sz >> 20); 1528 dbg_gen("key hash type: %d", c->key_hash_type); 1529 dbg_gen("tree fanout: %d", c->fanout); 1530 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1531 dbg_gen("max. znode size %d", c->max_znode_sz); 1532 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1533 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1534 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1535 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1536 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1537 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1538 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1539 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1540 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1541 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1542 dbg_gen("dead watermark: %d", c->dead_wm); 1543 dbg_gen("dark watermark: %d", c->dark_wm); 1544 dbg_gen("LEB overhead: %d", c->leb_overhead); 1545 x = (long long)c->main_lebs * c->dark_wm; 1546 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1547 x, x >> 10, x >> 20); 1548 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1549 c->max_bud_bytes, c->max_bud_bytes >> 10, 1550 c->max_bud_bytes >> 20); 1551 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1552 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1553 c->bg_bud_bytes >> 20); 1554 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1555 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1556 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1557 dbg_gen("commit number: %llu", c->cmt_no); 1558 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c)); 1559 dbg_gen("max orphans: %d", c->max_orphans); 1560 1561 return 0; 1562 1563 out_infos: 1564 spin_lock(&ubifs_infos_lock); 1565 list_del(&c->infos_list); 1566 spin_unlock(&ubifs_infos_lock); 1567 out_orphans: 1568 free_orphans(c); 1569 out_journal: 1570 destroy_journal(c); 1571 out_lpt: 1572 ubifs_lpt_free(c, 0); 1573 out_master: 1574 kfree(c->mst_node); 1575 kfree(c->rcvrd_mst_node); 1576 if (c->bgt) 1577 kthread_stop(c->bgt); 1578 out_wbufs: 1579 free_wbufs(c); 1580 out_cbuf: 1581 kfree(c->cbuf); 1582 out_free: 1583 kfree(c->write_reserve_buf); 1584 kfree(c->bu.buf); 1585 vfree(c->ileb_buf); 1586 vfree(c->sbuf); 1587 kfree(c->bottom_up_buf); 1588 ubifs_debugging_exit(c); 1589 return err; 1590 } 1591 1592 /** 1593 * ubifs_umount - un-mount UBIFS file-system. 1594 * @c: UBIFS file-system description object 1595 * 1596 * Note, this function is called to free allocated resourced when un-mounting, 1597 * as well as free resources when an error occurred while we were half way 1598 * through mounting (error path cleanup function). So it has to make sure the 1599 * resource was actually allocated before freeing it. 1600 */ 1601 static void ubifs_umount(struct ubifs_info *c) 1602 { 1603 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1604 c->vi.vol_id); 1605 1606 dbg_debugfs_exit_fs(c); 1607 spin_lock(&ubifs_infos_lock); 1608 list_del(&c->infos_list); 1609 spin_unlock(&ubifs_infos_lock); 1610 1611 if (c->bgt) 1612 kthread_stop(c->bgt); 1613 1614 destroy_journal(c); 1615 free_wbufs(c); 1616 free_orphans(c); 1617 ubifs_lpt_free(c, 0); 1618 ubifs_exit_authentication(c); 1619 1620 kfree(c->auth_key_name); 1621 kfree(c->auth_hash_name); 1622 kfree(c->cbuf); 1623 kfree(c->rcvrd_mst_node); 1624 kfree(c->mst_node); 1625 kfree(c->write_reserve_buf); 1626 kfree(c->bu.buf); 1627 vfree(c->ileb_buf); 1628 vfree(c->sbuf); 1629 kfree(c->bottom_up_buf); 1630 ubifs_debugging_exit(c); 1631 } 1632 1633 /** 1634 * ubifs_remount_rw - re-mount in read-write mode. 1635 * @c: UBIFS file-system description object 1636 * 1637 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1638 * mode. This function allocates the needed resources and re-mounts UBIFS in 1639 * read-write mode. 1640 */ 1641 static int ubifs_remount_rw(struct ubifs_info *c) 1642 { 1643 int err, lnum; 1644 1645 if (c->rw_incompat) { 1646 ubifs_err(c, "the file-system is not R/W-compatible"); 1647 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1648 c->fmt_version, c->ro_compat_version, 1649 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1650 return -EROFS; 1651 } 1652 1653 mutex_lock(&c->umount_mutex); 1654 dbg_save_space_info(c); 1655 c->remounting_rw = 1; 1656 c->ro_mount = 0; 1657 1658 if (c->space_fixup) { 1659 err = ubifs_fixup_free_space(c); 1660 if (err) 1661 goto out; 1662 } 1663 1664 err = check_free_space(c); 1665 if (err) 1666 goto out; 1667 1668 if (c->need_recovery) { 1669 ubifs_msg(c, "completing deferred recovery"); 1670 err = ubifs_write_rcvrd_mst_node(c); 1671 if (err) 1672 goto out; 1673 if (!ubifs_authenticated(c)) { 1674 err = ubifs_recover_size(c, true); 1675 if (err) 1676 goto out; 1677 } 1678 err = ubifs_clean_lebs(c, c->sbuf); 1679 if (err) 1680 goto out; 1681 err = ubifs_recover_inl_heads(c, c->sbuf); 1682 if (err) 1683 goto out; 1684 } else { 1685 /* A readonly mount is not allowed to have orphans */ 1686 ubifs_assert(c, c->tot_orphans == 0); 1687 err = ubifs_clear_orphans(c); 1688 if (err) 1689 goto out; 1690 } 1691 1692 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1693 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1694 err = ubifs_write_master(c); 1695 if (err) 1696 goto out; 1697 } 1698 1699 if (c->superblock_need_write) { 1700 struct ubifs_sb_node *sup = c->sup_node; 1701 1702 err = ubifs_write_sb_node(c, sup); 1703 if (err) 1704 goto out; 1705 1706 c->superblock_need_write = 0; 1707 } 1708 1709 c->ileb_buf = vmalloc(c->leb_size); 1710 if (!c->ileb_buf) { 1711 err = -ENOMEM; 1712 goto out; 1713 } 1714 1715 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1716 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1717 if (!c->write_reserve_buf) { 1718 err = -ENOMEM; 1719 goto out; 1720 } 1721 1722 err = ubifs_lpt_init(c, 0, 1); 1723 if (err) 1724 goto out; 1725 1726 /* Create background thread */ 1727 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1728 if (IS_ERR(c->bgt)) { 1729 err = PTR_ERR(c->bgt); 1730 c->bgt = NULL; 1731 ubifs_err(c, "cannot spawn \"%s\", error %d", 1732 c->bgt_name, err); 1733 goto out; 1734 } 1735 wake_up_process(c->bgt); 1736 1737 c->orph_buf = vmalloc(c->leb_size); 1738 if (!c->orph_buf) { 1739 err = -ENOMEM; 1740 goto out; 1741 } 1742 1743 /* Check for enough log space */ 1744 lnum = c->lhead_lnum + 1; 1745 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1746 lnum = UBIFS_LOG_LNUM; 1747 if (lnum == c->ltail_lnum) { 1748 err = ubifs_consolidate_log(c); 1749 if (err) 1750 goto out; 1751 } 1752 1753 if (c->need_recovery) { 1754 err = ubifs_rcvry_gc_commit(c); 1755 if (err) 1756 goto out; 1757 1758 if (ubifs_authenticated(c)) { 1759 err = ubifs_recover_size(c, false); 1760 if (err) 1761 goto out; 1762 } 1763 } else { 1764 err = ubifs_leb_unmap(c, c->gc_lnum); 1765 } 1766 if (err) 1767 goto out; 1768 1769 dbg_gen("re-mounted read-write"); 1770 c->remounting_rw = 0; 1771 1772 if (c->need_recovery) { 1773 c->need_recovery = 0; 1774 ubifs_msg(c, "deferred recovery completed"); 1775 } else { 1776 /* 1777 * Do not run the debugging space check if the were doing 1778 * recovery, because when we saved the information we had the 1779 * file-system in a state where the TNC and lprops has been 1780 * modified in memory, but all the I/O operations (including a 1781 * commit) were deferred. So the file-system was in 1782 * "non-committed" state. Now the file-system is in committed 1783 * state, and of course the amount of free space will change 1784 * because, for example, the old index size was imprecise. 1785 */ 1786 err = dbg_check_space_info(c); 1787 } 1788 1789 mutex_unlock(&c->umount_mutex); 1790 return err; 1791 1792 out: 1793 c->ro_mount = 1; 1794 vfree(c->orph_buf); 1795 c->orph_buf = NULL; 1796 if (c->bgt) { 1797 kthread_stop(c->bgt); 1798 c->bgt = NULL; 1799 } 1800 free_wbufs(c); 1801 kfree(c->write_reserve_buf); 1802 c->write_reserve_buf = NULL; 1803 vfree(c->ileb_buf); 1804 c->ileb_buf = NULL; 1805 ubifs_lpt_free(c, 1); 1806 c->remounting_rw = 0; 1807 mutex_unlock(&c->umount_mutex); 1808 return err; 1809 } 1810 1811 /** 1812 * ubifs_remount_ro - re-mount in read-only mode. 1813 * @c: UBIFS file-system description object 1814 * 1815 * We assume VFS has stopped writing. Possibly the background thread could be 1816 * running a commit, however kthread_stop will wait in that case. 1817 */ 1818 static void ubifs_remount_ro(struct ubifs_info *c) 1819 { 1820 int i, err; 1821 1822 ubifs_assert(c, !c->need_recovery); 1823 ubifs_assert(c, !c->ro_mount); 1824 1825 mutex_lock(&c->umount_mutex); 1826 if (c->bgt) { 1827 kthread_stop(c->bgt); 1828 c->bgt = NULL; 1829 } 1830 1831 dbg_save_space_info(c); 1832 1833 for (i = 0; i < c->jhead_cnt; i++) { 1834 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1835 if (err) 1836 ubifs_ro_mode(c, err); 1837 } 1838 1839 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1840 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1841 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1842 err = ubifs_write_master(c); 1843 if (err) 1844 ubifs_ro_mode(c, err); 1845 1846 vfree(c->orph_buf); 1847 c->orph_buf = NULL; 1848 kfree(c->write_reserve_buf); 1849 c->write_reserve_buf = NULL; 1850 vfree(c->ileb_buf); 1851 c->ileb_buf = NULL; 1852 ubifs_lpt_free(c, 1); 1853 c->ro_mount = 1; 1854 err = dbg_check_space_info(c); 1855 if (err) 1856 ubifs_ro_mode(c, err); 1857 mutex_unlock(&c->umount_mutex); 1858 } 1859 1860 static void ubifs_put_super(struct super_block *sb) 1861 { 1862 int i; 1863 struct ubifs_info *c = sb->s_fs_info; 1864 1865 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1866 1867 /* 1868 * The following asserts are only valid if there has not been a failure 1869 * of the media. For example, there will be dirty inodes if we failed 1870 * to write them back because of I/O errors. 1871 */ 1872 if (!c->ro_error) { 1873 ubifs_assert(c, c->bi.idx_growth == 0); 1874 ubifs_assert(c, c->bi.dd_growth == 0); 1875 ubifs_assert(c, c->bi.data_growth == 0); 1876 } 1877 1878 /* 1879 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1880 * and file system un-mount. Namely, it prevents the shrinker from 1881 * picking this superblock for shrinking - it will be just skipped if 1882 * the mutex is locked. 1883 */ 1884 mutex_lock(&c->umount_mutex); 1885 if (!c->ro_mount) { 1886 /* 1887 * First of all kill the background thread to make sure it does 1888 * not interfere with un-mounting and freeing resources. 1889 */ 1890 if (c->bgt) { 1891 kthread_stop(c->bgt); 1892 c->bgt = NULL; 1893 } 1894 1895 /* 1896 * On fatal errors c->ro_error is set to 1, in which case we do 1897 * not write the master node. 1898 */ 1899 if (!c->ro_error) { 1900 int err; 1901 1902 /* Synchronize write-buffers */ 1903 for (i = 0; i < c->jhead_cnt; i++) { 1904 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1905 if (err) 1906 ubifs_ro_mode(c, err); 1907 } 1908 1909 /* 1910 * We are being cleanly unmounted which means the 1911 * orphans were killed - indicate this in the master 1912 * node. Also save the reserved GC LEB number. 1913 */ 1914 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1915 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1916 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1917 err = ubifs_write_master(c); 1918 if (err) 1919 /* 1920 * Recovery will attempt to fix the master area 1921 * next mount, so we just print a message and 1922 * continue to unmount normally. 1923 */ 1924 ubifs_err(c, "failed to write master node, error %d", 1925 err); 1926 } else { 1927 for (i = 0; i < c->jhead_cnt; i++) 1928 /* Make sure write-buffer timers are canceled */ 1929 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1930 } 1931 } 1932 1933 ubifs_umount(c); 1934 ubi_close_volume(c->ubi); 1935 mutex_unlock(&c->umount_mutex); 1936 } 1937 1938 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1939 { 1940 int err; 1941 struct ubifs_info *c = sb->s_fs_info; 1942 1943 sync_filesystem(sb); 1944 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1945 1946 err = ubifs_parse_options(c, data, 1); 1947 if (err) { 1948 ubifs_err(c, "invalid or unknown remount parameter"); 1949 return err; 1950 } 1951 1952 if (c->ro_mount && !(*flags & SB_RDONLY)) { 1953 if (c->ro_error) { 1954 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1955 return -EROFS; 1956 } 1957 if (c->ro_media) { 1958 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1959 return -EROFS; 1960 } 1961 err = ubifs_remount_rw(c); 1962 if (err) 1963 return err; 1964 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 1965 if (c->ro_error) { 1966 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1967 return -EROFS; 1968 } 1969 ubifs_remount_ro(c); 1970 } 1971 1972 if (c->bulk_read == 1) 1973 bu_init(c); 1974 else { 1975 dbg_gen("disable bulk-read"); 1976 mutex_lock(&c->bu_mutex); 1977 kfree(c->bu.buf); 1978 c->bu.buf = NULL; 1979 mutex_unlock(&c->bu_mutex); 1980 } 1981 1982 if (!c->need_recovery) 1983 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1984 1985 return 0; 1986 } 1987 1988 const struct super_operations ubifs_super_operations = { 1989 .alloc_inode = ubifs_alloc_inode, 1990 .free_inode = ubifs_free_inode, 1991 .put_super = ubifs_put_super, 1992 .write_inode = ubifs_write_inode, 1993 .evict_inode = ubifs_evict_inode, 1994 .statfs = ubifs_statfs, 1995 .dirty_inode = ubifs_dirty_inode, 1996 .remount_fs = ubifs_remount_fs, 1997 .show_options = ubifs_show_options, 1998 .sync_fs = ubifs_sync_fs, 1999 }; 2000 2001 /** 2002 * open_ubi - parse UBI device name string and open the UBI device. 2003 * @name: UBI volume name 2004 * @mode: UBI volume open mode 2005 * 2006 * The primary method of mounting UBIFS is by specifying the UBI volume 2007 * character device node path. However, UBIFS may also be mounted withoug any 2008 * character device node using one of the following methods: 2009 * 2010 * o ubiX_Y - mount UBI device number X, volume Y; 2011 * o ubiY - mount UBI device number 0, volume Y; 2012 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2013 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2014 * 2015 * Alternative '!' separator may be used instead of ':' (because some shells 2016 * like busybox may interpret ':' as an NFS host name separator). This function 2017 * returns UBI volume description object in case of success and a negative 2018 * error code in case of failure. 2019 */ 2020 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2021 { 2022 struct ubi_volume_desc *ubi; 2023 int dev, vol; 2024 char *endptr; 2025 2026 if (!name || !*name) 2027 return ERR_PTR(-EINVAL); 2028 2029 /* First, try to open using the device node path method */ 2030 ubi = ubi_open_volume_path(name, mode); 2031 if (!IS_ERR(ubi)) 2032 return ubi; 2033 2034 /* Try the "nodev" method */ 2035 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2036 return ERR_PTR(-EINVAL); 2037 2038 /* ubi:NAME method */ 2039 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2040 return ubi_open_volume_nm(0, name + 4, mode); 2041 2042 if (!isdigit(name[3])) 2043 return ERR_PTR(-EINVAL); 2044 2045 dev = simple_strtoul(name + 3, &endptr, 0); 2046 2047 /* ubiY method */ 2048 if (*endptr == '\0') 2049 return ubi_open_volume(0, dev, mode); 2050 2051 /* ubiX_Y method */ 2052 if (*endptr == '_' && isdigit(endptr[1])) { 2053 vol = simple_strtoul(endptr + 1, &endptr, 0); 2054 if (*endptr != '\0') 2055 return ERR_PTR(-EINVAL); 2056 return ubi_open_volume(dev, vol, mode); 2057 } 2058 2059 /* ubiX:NAME method */ 2060 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2061 return ubi_open_volume_nm(dev, ++endptr, mode); 2062 2063 return ERR_PTR(-EINVAL); 2064 } 2065 2066 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2067 { 2068 struct ubifs_info *c; 2069 2070 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2071 if (c) { 2072 spin_lock_init(&c->cnt_lock); 2073 spin_lock_init(&c->cs_lock); 2074 spin_lock_init(&c->buds_lock); 2075 spin_lock_init(&c->space_lock); 2076 spin_lock_init(&c->orphan_lock); 2077 init_rwsem(&c->commit_sem); 2078 mutex_init(&c->lp_mutex); 2079 mutex_init(&c->tnc_mutex); 2080 mutex_init(&c->log_mutex); 2081 mutex_init(&c->umount_mutex); 2082 mutex_init(&c->bu_mutex); 2083 mutex_init(&c->write_reserve_mutex); 2084 init_waitqueue_head(&c->cmt_wq); 2085 c->buds = RB_ROOT; 2086 c->old_idx = RB_ROOT; 2087 c->size_tree = RB_ROOT; 2088 c->orph_tree = RB_ROOT; 2089 INIT_LIST_HEAD(&c->infos_list); 2090 INIT_LIST_HEAD(&c->idx_gc); 2091 INIT_LIST_HEAD(&c->replay_list); 2092 INIT_LIST_HEAD(&c->replay_buds); 2093 INIT_LIST_HEAD(&c->uncat_list); 2094 INIT_LIST_HEAD(&c->empty_list); 2095 INIT_LIST_HEAD(&c->freeable_list); 2096 INIT_LIST_HEAD(&c->frdi_idx_list); 2097 INIT_LIST_HEAD(&c->unclean_leb_list); 2098 INIT_LIST_HEAD(&c->old_buds); 2099 INIT_LIST_HEAD(&c->orph_list); 2100 INIT_LIST_HEAD(&c->orph_new); 2101 c->no_chk_data_crc = 1; 2102 c->assert_action = ASSACT_RO; 2103 2104 c->highest_inum = UBIFS_FIRST_INO; 2105 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2106 2107 ubi_get_volume_info(ubi, &c->vi); 2108 ubi_get_device_info(c->vi.ubi_num, &c->di); 2109 } 2110 return c; 2111 } 2112 2113 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2114 { 2115 struct ubifs_info *c = sb->s_fs_info; 2116 struct inode *root; 2117 int err; 2118 2119 c->vfs_sb = sb; 2120 /* Re-open the UBI device in read-write mode */ 2121 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2122 if (IS_ERR(c->ubi)) { 2123 err = PTR_ERR(c->ubi); 2124 goto out; 2125 } 2126 2127 err = ubifs_parse_options(c, data, 0); 2128 if (err) 2129 goto out_close; 2130 2131 /* 2132 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2133 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2134 * which means the user would have to wait not just for their own I/O 2135 * but the read-ahead I/O as well i.e. completely pointless. 2136 * 2137 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2138 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2139 * writeback happening. 2140 */ 2141 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2142 c->vi.vol_id); 2143 if (err) 2144 goto out_close; 2145 2146 sb->s_fs_info = c; 2147 sb->s_magic = UBIFS_SUPER_MAGIC; 2148 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2149 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2150 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2151 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2152 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2153 sb->s_op = &ubifs_super_operations; 2154 #ifdef CONFIG_UBIFS_FS_XATTR 2155 sb->s_xattr = ubifs_xattr_handlers; 2156 #endif 2157 fscrypt_set_ops(sb, &ubifs_crypt_operations); 2158 2159 mutex_lock(&c->umount_mutex); 2160 err = mount_ubifs(c); 2161 if (err) { 2162 ubifs_assert(c, err < 0); 2163 goto out_unlock; 2164 } 2165 2166 /* Read the root inode */ 2167 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2168 if (IS_ERR(root)) { 2169 err = PTR_ERR(root); 2170 goto out_umount; 2171 } 2172 2173 sb->s_root = d_make_root(root); 2174 if (!sb->s_root) { 2175 err = -ENOMEM; 2176 goto out_umount; 2177 } 2178 2179 mutex_unlock(&c->umount_mutex); 2180 return 0; 2181 2182 out_umount: 2183 ubifs_umount(c); 2184 out_unlock: 2185 mutex_unlock(&c->umount_mutex); 2186 out_close: 2187 ubi_close_volume(c->ubi); 2188 out: 2189 return err; 2190 } 2191 2192 static int sb_test(struct super_block *sb, void *data) 2193 { 2194 struct ubifs_info *c1 = data; 2195 struct ubifs_info *c = sb->s_fs_info; 2196 2197 return c->vi.cdev == c1->vi.cdev; 2198 } 2199 2200 static int sb_set(struct super_block *sb, void *data) 2201 { 2202 sb->s_fs_info = data; 2203 return set_anon_super(sb, NULL); 2204 } 2205 2206 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2207 const char *name, void *data) 2208 { 2209 struct ubi_volume_desc *ubi; 2210 struct ubifs_info *c; 2211 struct super_block *sb; 2212 int err; 2213 2214 dbg_gen("name %s, flags %#x", name, flags); 2215 2216 /* 2217 * Get UBI device number and volume ID. Mount it read-only so far 2218 * because this might be a new mount point, and UBI allows only one 2219 * read-write user at a time. 2220 */ 2221 ubi = open_ubi(name, UBI_READONLY); 2222 if (IS_ERR(ubi)) { 2223 if (!(flags & SB_SILENT)) 2224 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2225 current->pid, name, (int)PTR_ERR(ubi)); 2226 return ERR_CAST(ubi); 2227 } 2228 2229 c = alloc_ubifs_info(ubi); 2230 if (!c) { 2231 err = -ENOMEM; 2232 goto out_close; 2233 } 2234 2235 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2236 2237 sb = sget(fs_type, sb_test, sb_set, flags, c); 2238 if (IS_ERR(sb)) { 2239 err = PTR_ERR(sb); 2240 kfree(c); 2241 goto out_close; 2242 } 2243 2244 if (sb->s_root) { 2245 struct ubifs_info *c1 = sb->s_fs_info; 2246 kfree(c); 2247 /* A new mount point for already mounted UBIFS */ 2248 dbg_gen("this ubi volume is already mounted"); 2249 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2250 err = -EBUSY; 2251 goto out_deact; 2252 } 2253 } else { 2254 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2255 if (err) 2256 goto out_deact; 2257 /* We do not support atime */ 2258 sb->s_flags |= SB_ACTIVE; 2259 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 2260 ubifs_msg(c, "full atime support is enabled."); 2261 else 2262 sb->s_flags |= SB_NOATIME; 2263 } 2264 2265 /* 'fill_super()' opens ubi again so we must close it here */ 2266 ubi_close_volume(ubi); 2267 2268 return dget(sb->s_root); 2269 2270 out_deact: 2271 deactivate_locked_super(sb); 2272 out_close: 2273 ubi_close_volume(ubi); 2274 return ERR_PTR(err); 2275 } 2276 2277 static void kill_ubifs_super(struct super_block *s) 2278 { 2279 struct ubifs_info *c = s->s_fs_info; 2280 kill_anon_super(s); 2281 kfree(c); 2282 } 2283 2284 static struct file_system_type ubifs_fs_type = { 2285 .name = "ubifs", 2286 .owner = THIS_MODULE, 2287 .mount = ubifs_mount, 2288 .kill_sb = kill_ubifs_super, 2289 }; 2290 MODULE_ALIAS_FS("ubifs"); 2291 2292 /* 2293 * Inode slab cache constructor. 2294 */ 2295 static void inode_slab_ctor(void *obj) 2296 { 2297 struct ubifs_inode *ui = obj; 2298 inode_init_once(&ui->vfs_inode); 2299 } 2300 2301 static int __init ubifs_init(void) 2302 { 2303 int err; 2304 2305 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2306 2307 /* Make sure node sizes are 8-byte aligned */ 2308 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2309 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2310 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2311 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2312 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2313 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2314 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2315 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2316 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2317 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2318 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2319 2320 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2321 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2322 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2323 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2324 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2325 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2326 2327 /* Check min. node size */ 2328 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2329 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2330 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2331 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2332 2333 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2334 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2335 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2336 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2337 2338 /* Defined node sizes */ 2339 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2340 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2341 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2342 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2343 2344 /* 2345 * We use 2 bit wide bit-fields to store compression type, which should 2346 * be amended if more compressors are added. The bit-fields are: 2347 * @compr_type in 'struct ubifs_inode', @default_compr in 2348 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2349 */ 2350 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2351 2352 /* 2353 * We require that PAGE_SIZE is greater-than-or-equal-to 2354 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2355 */ 2356 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2357 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2358 current->pid, (unsigned int)PAGE_SIZE); 2359 return -EINVAL; 2360 } 2361 2362 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2363 sizeof(struct ubifs_inode), 0, 2364 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2365 SLAB_ACCOUNT, &inode_slab_ctor); 2366 if (!ubifs_inode_slab) 2367 return -ENOMEM; 2368 2369 err = register_shrinker(&ubifs_shrinker_info); 2370 if (err) 2371 goto out_slab; 2372 2373 err = ubifs_compressors_init(); 2374 if (err) 2375 goto out_shrinker; 2376 2377 dbg_debugfs_init(); 2378 2379 err = register_filesystem(&ubifs_fs_type); 2380 if (err) { 2381 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2382 current->pid, err); 2383 goto out_dbg; 2384 } 2385 return 0; 2386 2387 out_dbg: 2388 dbg_debugfs_exit(); 2389 ubifs_compressors_exit(); 2390 out_shrinker: 2391 unregister_shrinker(&ubifs_shrinker_info); 2392 out_slab: 2393 kmem_cache_destroy(ubifs_inode_slab); 2394 return err; 2395 } 2396 /* late_initcall to let compressors initialize first */ 2397 late_initcall(ubifs_init); 2398 2399 static void __exit ubifs_exit(void) 2400 { 2401 WARN_ON(!list_empty(&ubifs_infos)); 2402 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2403 2404 dbg_debugfs_exit(); 2405 ubifs_compressors_exit(); 2406 unregister_shrinker(&ubifs_shrinker_info); 2407 2408 /* 2409 * Make sure all delayed rcu free inodes are flushed before we 2410 * destroy cache. 2411 */ 2412 rcu_barrier(); 2413 kmem_cache_destroy(ubifs_inode_slab); 2414 unregister_filesystem(&ubifs_fs_type); 2415 } 2416 module_exit(ubifs_exit); 2417 2418 MODULE_LICENSE("GPL"); 2419 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2420 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2421 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2422