1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include "ubifs.h" 38 39 /* Slab cache for UBIFS inodes */ 40 struct kmem_cache *ubifs_inode_slab; 41 42 /* UBIFS TNC shrinker description */ 43 static struct shrinker ubifs_shrinker_info = { 44 .shrink = ubifs_shrinker, 45 .seeks = DEFAULT_SEEKS, 46 }; 47 48 /** 49 * validate_inode - validate inode. 50 * @c: UBIFS file-system description object 51 * @inode: the inode to validate 52 * 53 * This is a helper function for 'ubifs_iget()' which validates various fields 54 * of a newly built inode to make sure they contain sane values and prevent 55 * possible vulnerabilities. Returns zero if the inode is all right and 56 * a non-zero error code if not. 57 */ 58 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 59 { 60 int err; 61 const struct ubifs_inode *ui = ubifs_inode(inode); 62 63 if (inode->i_size > c->max_inode_sz) { 64 ubifs_err("inode is too large (%lld)", 65 (long long)inode->i_size); 66 return 1; 67 } 68 69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 70 ubifs_err("unknown compression type %d", ui->compr_type); 71 return 2; 72 } 73 74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 75 return 3; 76 77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 78 return 4; 79 80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 81 return 5; 82 83 if (!ubifs_compr_present(ui->compr_type)) { 84 ubifs_warn("inode %lu uses '%s' compression, but it was not " 85 "compiled in", inode->i_ino, 86 ubifs_compr_name(ui->compr_type)); 87 } 88 89 err = dbg_check_dir_size(c, inode); 90 return err; 91 } 92 93 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 94 { 95 int err; 96 union ubifs_key key; 97 struct ubifs_ino_node *ino; 98 struct ubifs_info *c = sb->s_fs_info; 99 struct inode *inode; 100 struct ubifs_inode *ui; 101 102 dbg_gen("inode %lu", inum); 103 104 inode = iget_locked(sb, inum); 105 if (!inode) 106 return ERR_PTR(-ENOMEM); 107 if (!(inode->i_state & I_NEW)) 108 return inode; 109 ui = ubifs_inode(inode); 110 111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 112 if (!ino) { 113 err = -ENOMEM; 114 goto out; 115 } 116 117 ino_key_init(c, &key, inode->i_ino); 118 119 err = ubifs_tnc_lookup(c, &key, ino); 120 if (err) 121 goto out_ino; 122 123 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 124 inode->i_nlink = le32_to_cpu(ino->nlink); 125 inode->i_uid = le32_to_cpu(ino->uid); 126 inode->i_gid = le32_to_cpu(ino->gid); 127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 133 inode->i_mode = le32_to_cpu(ino->mode); 134 inode->i_size = le64_to_cpu(ino->size); 135 136 ui->data_len = le32_to_cpu(ino->data_len); 137 ui->flags = le32_to_cpu(ino->flags); 138 ui->compr_type = le16_to_cpu(ino->compr_type); 139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 141 ui->xattr_size = le32_to_cpu(ino->xattr_size); 142 ui->xattr_names = le32_to_cpu(ino->xattr_names); 143 ui->synced_i_size = ui->ui_size = inode->i_size; 144 145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 146 147 err = validate_inode(c, inode); 148 if (err) 149 goto out_invalid; 150 151 /* Disable read-ahead */ 152 inode->i_mapping->backing_dev_info = &c->bdi; 153 154 switch (inode->i_mode & S_IFMT) { 155 case S_IFREG: 156 inode->i_mapping->a_ops = &ubifs_file_address_operations; 157 inode->i_op = &ubifs_file_inode_operations; 158 inode->i_fop = &ubifs_file_operations; 159 if (ui->xattr) { 160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 161 if (!ui->data) { 162 err = -ENOMEM; 163 goto out_ino; 164 } 165 memcpy(ui->data, ino->data, ui->data_len); 166 ((char *)ui->data)[ui->data_len] = '\0'; 167 } else if (ui->data_len != 0) { 168 err = 10; 169 goto out_invalid; 170 } 171 break; 172 case S_IFDIR: 173 inode->i_op = &ubifs_dir_inode_operations; 174 inode->i_fop = &ubifs_dir_operations; 175 if (ui->data_len != 0) { 176 err = 11; 177 goto out_invalid; 178 } 179 break; 180 case S_IFLNK: 181 inode->i_op = &ubifs_symlink_inode_operations; 182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 183 err = 12; 184 goto out_invalid; 185 } 186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 187 if (!ui->data) { 188 err = -ENOMEM; 189 goto out_ino; 190 } 191 memcpy(ui->data, ino->data, ui->data_len); 192 ((char *)ui->data)[ui->data_len] = '\0'; 193 break; 194 case S_IFBLK: 195 case S_IFCHR: 196 { 197 dev_t rdev; 198 union ubifs_dev_desc *dev; 199 200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 201 if (!ui->data) { 202 err = -ENOMEM; 203 goto out_ino; 204 } 205 206 dev = (union ubifs_dev_desc *)ino->data; 207 if (ui->data_len == sizeof(dev->new)) 208 rdev = new_decode_dev(le32_to_cpu(dev->new)); 209 else if (ui->data_len == sizeof(dev->huge)) 210 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 211 else { 212 err = 13; 213 goto out_invalid; 214 } 215 memcpy(ui->data, ino->data, ui->data_len); 216 inode->i_op = &ubifs_file_inode_operations; 217 init_special_inode(inode, inode->i_mode, rdev); 218 break; 219 } 220 case S_IFSOCK: 221 case S_IFIFO: 222 inode->i_op = &ubifs_file_inode_operations; 223 init_special_inode(inode, inode->i_mode, 0); 224 if (ui->data_len != 0) { 225 err = 14; 226 goto out_invalid; 227 } 228 break; 229 default: 230 err = 15; 231 goto out_invalid; 232 } 233 234 kfree(ino); 235 ubifs_set_inode_flags(inode); 236 unlock_new_inode(inode); 237 return inode; 238 239 out_invalid: 240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 241 dbg_dump_node(c, ino); 242 dbg_dump_inode(c, inode); 243 err = -EINVAL; 244 out_ino: 245 kfree(ino); 246 out: 247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 248 iget_failed(inode); 249 return ERR_PTR(err); 250 } 251 252 static struct inode *ubifs_alloc_inode(struct super_block *sb) 253 { 254 struct ubifs_inode *ui; 255 256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 257 if (!ui) 258 return NULL; 259 260 memset((void *)ui + sizeof(struct inode), 0, 261 sizeof(struct ubifs_inode) - sizeof(struct inode)); 262 mutex_init(&ui->ui_mutex); 263 spin_lock_init(&ui->ui_lock); 264 return &ui->vfs_inode; 265 }; 266 267 static void ubifs_destroy_inode(struct inode *inode) 268 { 269 struct ubifs_inode *ui = ubifs_inode(inode); 270 271 kfree(ui->data); 272 kmem_cache_free(ubifs_inode_slab, inode); 273 } 274 275 /* 276 * Note, Linux write-back code calls this without 'i_mutex'. 277 */ 278 static int ubifs_write_inode(struct inode *inode, int wait) 279 { 280 int err = 0; 281 struct ubifs_info *c = inode->i_sb->s_fs_info; 282 struct ubifs_inode *ui = ubifs_inode(inode); 283 284 ubifs_assert(!ui->xattr); 285 if (is_bad_inode(inode)) 286 return 0; 287 288 mutex_lock(&ui->ui_mutex); 289 /* 290 * Due to races between write-back forced by budgeting 291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 292 * have already been synchronized, do not do this again. This might 293 * also happen if it was synchronized in an VFS operation, e.g. 294 * 'ubifs_link()'. 295 */ 296 if (!ui->dirty) { 297 mutex_unlock(&ui->ui_mutex); 298 return 0; 299 } 300 301 /* 302 * As an optimization, do not write orphan inodes to the media just 303 * because this is not needed. 304 */ 305 dbg_gen("inode %lu, mode %#x, nlink %u", 306 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 307 if (inode->i_nlink) { 308 err = ubifs_jnl_write_inode(c, inode); 309 if (err) 310 ubifs_err("can't write inode %lu, error %d", 311 inode->i_ino, err); 312 } 313 314 ui->dirty = 0; 315 mutex_unlock(&ui->ui_mutex); 316 ubifs_release_dirty_inode_budget(c, ui); 317 return err; 318 } 319 320 static void ubifs_delete_inode(struct inode *inode) 321 { 322 int err; 323 struct ubifs_info *c = inode->i_sb->s_fs_info; 324 struct ubifs_inode *ui = ubifs_inode(inode); 325 326 if (ui->xattr) 327 /* 328 * Extended attribute inode deletions are fully handled in 329 * 'ubifs_removexattr()'. These inodes are special and have 330 * limited usage, so there is nothing to do here. 331 */ 332 goto out; 333 334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 335 ubifs_assert(!atomic_read(&inode->i_count)); 336 ubifs_assert(inode->i_nlink == 0); 337 338 truncate_inode_pages(&inode->i_data, 0); 339 if (is_bad_inode(inode)) 340 goto out; 341 342 ui->ui_size = inode->i_size = 0; 343 err = ubifs_jnl_delete_inode(c, inode); 344 if (err) 345 /* 346 * Worst case we have a lost orphan inode wasting space, so a 347 * simple error message is OK here. 348 */ 349 ubifs_err("can't delete inode %lu, error %d", 350 inode->i_ino, err); 351 352 out: 353 if (ui->dirty) 354 ubifs_release_dirty_inode_budget(c, ui); 355 clear_inode(inode); 356 } 357 358 static void ubifs_dirty_inode(struct inode *inode) 359 { 360 struct ubifs_inode *ui = ubifs_inode(inode); 361 362 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 363 if (!ui->dirty) { 364 ui->dirty = 1; 365 dbg_gen("inode %lu", inode->i_ino); 366 } 367 } 368 369 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 370 { 371 struct ubifs_info *c = dentry->d_sb->s_fs_info; 372 unsigned long long free; 373 __le32 *uuid = (__le32 *)c->uuid; 374 375 free = ubifs_get_free_space(c); 376 dbg_gen("free space %lld bytes (%lld blocks)", 377 free, free >> UBIFS_BLOCK_SHIFT); 378 379 buf->f_type = UBIFS_SUPER_MAGIC; 380 buf->f_bsize = UBIFS_BLOCK_SIZE; 381 buf->f_blocks = c->block_cnt; 382 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 383 if (free > c->report_rp_size) 384 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 385 else 386 buf->f_bavail = 0; 387 buf->f_files = 0; 388 buf->f_ffree = 0; 389 buf->f_namelen = UBIFS_MAX_NLEN; 390 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 391 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 392 return 0; 393 } 394 395 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 396 { 397 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 398 399 if (c->mount_opts.unmount_mode == 2) 400 seq_printf(s, ",fast_unmount"); 401 else if (c->mount_opts.unmount_mode == 1) 402 seq_printf(s, ",norm_unmount"); 403 404 if (c->mount_opts.bulk_read == 2) 405 seq_printf(s, ",bulk_read"); 406 else if (c->mount_opts.bulk_read == 1) 407 seq_printf(s, ",no_bulk_read"); 408 409 if (c->mount_opts.chk_data_crc == 2) 410 seq_printf(s, ",chk_data_crc"); 411 else if (c->mount_opts.chk_data_crc == 1) 412 seq_printf(s, ",no_chk_data_crc"); 413 414 return 0; 415 } 416 417 static int ubifs_sync_fs(struct super_block *sb, int wait) 418 { 419 struct ubifs_info *c = sb->s_fs_info; 420 int i, ret = 0, err; 421 long long bud_bytes; 422 423 if (c->jheads) { 424 for (i = 0; i < c->jhead_cnt; i++) { 425 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 426 if (err && !ret) 427 ret = err; 428 } 429 430 /* Commit the journal unless it has too little data */ 431 spin_lock(&c->buds_lock); 432 bud_bytes = c->bud_bytes; 433 spin_unlock(&c->buds_lock); 434 if (bud_bytes > c->leb_size) { 435 err = ubifs_run_commit(c); 436 if (err) 437 return err; 438 } 439 } 440 441 /* 442 * We ought to call sync for c->ubi but it does not have one. If it had 443 * it would in turn call mtd->sync, however mtd operations are 444 * synchronous anyway, so we don't lose any sleep here. 445 */ 446 return ret; 447 } 448 449 /** 450 * init_constants_early - initialize UBIFS constants. 451 * @c: UBIFS file-system description object 452 * 453 * This function initialize UBIFS constants which do not need the superblock to 454 * be read. It also checks that the UBI volume satisfies basic UBIFS 455 * requirements. Returns zero in case of success and a negative error code in 456 * case of failure. 457 */ 458 static int init_constants_early(struct ubifs_info *c) 459 { 460 if (c->vi.corrupted) { 461 ubifs_warn("UBI volume is corrupted - read-only mode"); 462 c->ro_media = 1; 463 } 464 465 if (c->di.ro_mode) { 466 ubifs_msg("read-only UBI device"); 467 c->ro_media = 1; 468 } 469 470 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 471 ubifs_msg("static UBI volume - read-only mode"); 472 c->ro_media = 1; 473 } 474 475 c->leb_cnt = c->vi.size; 476 c->leb_size = c->vi.usable_leb_size; 477 c->half_leb_size = c->leb_size / 2; 478 c->min_io_size = c->di.min_io_size; 479 c->min_io_shift = fls(c->min_io_size) - 1; 480 481 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 482 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 483 c->leb_size, UBIFS_MIN_LEB_SZ); 484 return -EINVAL; 485 } 486 487 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 488 ubifs_err("too few LEBs (%d), min. is %d", 489 c->leb_cnt, UBIFS_MIN_LEB_CNT); 490 return -EINVAL; 491 } 492 493 if (!is_power_of_2(c->min_io_size)) { 494 ubifs_err("bad min. I/O size %d", c->min_io_size); 495 return -EINVAL; 496 } 497 498 /* 499 * UBIFS aligns all node to 8-byte boundary, so to make function in 500 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 501 * less than 8. 502 */ 503 if (c->min_io_size < 8) { 504 c->min_io_size = 8; 505 c->min_io_shift = 3; 506 } 507 508 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 509 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 510 511 /* 512 * Initialize node length ranges which are mostly needed for node 513 * length validation. 514 */ 515 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 516 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 517 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 518 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 519 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 520 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 521 522 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 523 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 524 c->ranges[UBIFS_ORPH_NODE].min_len = 525 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 526 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 527 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 528 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 529 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 530 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 531 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 532 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 533 /* 534 * Minimum indexing node size is amended later when superblock is 535 * read and the key length is known. 536 */ 537 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 538 /* 539 * Maximum indexing node size is amended later when superblock is 540 * read and the fanout is known. 541 */ 542 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 543 544 /* 545 * Initialize dead and dark LEB space watermarks. 546 * 547 * Dead space is the space which cannot be used. Its watermark is 548 * equivalent to min. I/O unit or minimum node size if it is greater 549 * then min. I/O unit. 550 * 551 * Dark space is the space which might be used, or might not, depending 552 * on which node should be written to the LEB. Its watermark is 553 * equivalent to maximum UBIFS node size. 554 */ 555 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 556 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 557 558 /* 559 * Calculate how many bytes would be wasted at the end of LEB if it was 560 * fully filled with data nodes of maximum size. This is used in 561 * calculations when reporting free space. 562 */ 563 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 564 /* Buffer size for bulk-reads */ 565 c->bulk_read_buf_size = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 566 if (c->bulk_read_buf_size > c->leb_size) 567 c->bulk_read_buf_size = c->leb_size; 568 if (c->bulk_read_buf_size > 128 * 1024) { 569 /* Check if we can kmalloc more than 128KiB */ 570 void *try = kmalloc(c->bulk_read_buf_size, GFP_KERNEL); 571 572 kfree(try); 573 if (!try) 574 c->bulk_read_buf_size = 128 * 1024; 575 } 576 return 0; 577 } 578 579 /** 580 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 581 * @c: UBIFS file-system description object 582 * @lnum: LEB the write-buffer was synchronized to 583 * @free: how many free bytes left in this LEB 584 * @pad: how many bytes were padded 585 * 586 * This is a callback function which is called by the I/O unit when the 587 * write-buffer is synchronized. We need this to correctly maintain space 588 * accounting in bud logical eraseblocks. This function returns zero in case of 589 * success and a negative error code in case of failure. 590 * 591 * This function actually belongs to the journal, but we keep it here because 592 * we want to keep it static. 593 */ 594 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 595 { 596 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 597 } 598 599 /* 600 * init_constants_late - initialize UBIFS constants. 601 * @c: UBIFS file-system description object 602 * 603 * This is a helper function which initializes various UBIFS constants after 604 * the superblock has been read. It also checks various UBIFS parameters and 605 * makes sure they are all right. Returns zero in case of success and a 606 * negative error code in case of failure. 607 */ 608 static int init_constants_late(struct ubifs_info *c) 609 { 610 int tmp, err; 611 uint64_t tmp64; 612 613 c->main_bytes = (long long)c->main_lebs * c->leb_size; 614 c->max_znode_sz = sizeof(struct ubifs_znode) + 615 c->fanout * sizeof(struct ubifs_zbranch); 616 617 tmp = ubifs_idx_node_sz(c, 1); 618 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 619 c->min_idx_node_sz = ALIGN(tmp, 8); 620 621 tmp = ubifs_idx_node_sz(c, c->fanout); 622 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 623 c->max_idx_node_sz = ALIGN(tmp, 8); 624 625 /* Make sure LEB size is large enough to fit full commit */ 626 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 627 tmp = ALIGN(tmp, c->min_io_size); 628 if (tmp > c->leb_size) { 629 dbg_err("too small LEB size %d, at least %d needed", 630 c->leb_size, tmp); 631 return -EINVAL; 632 } 633 634 /* 635 * Make sure that the log is large enough to fit reference nodes for 636 * all buds plus one reserved LEB. 637 */ 638 tmp64 = c->max_bud_bytes; 639 tmp = do_div(tmp64, c->leb_size); 640 c->max_bud_cnt = tmp64 + !!tmp; 641 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 642 tmp /= c->leb_size; 643 tmp += 1; 644 if (c->log_lebs < tmp) { 645 dbg_err("too small log %d LEBs, required min. %d LEBs", 646 c->log_lebs, tmp); 647 return -EINVAL; 648 } 649 650 /* 651 * When budgeting we assume worst-case scenarios when the pages are not 652 * be compressed and direntries are of the maximum size. 653 * 654 * Note, data, which may be stored in inodes is budgeted separately, so 655 * it is not included into 'c->inode_budget'. 656 */ 657 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 658 c->inode_budget = UBIFS_INO_NODE_SZ; 659 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 660 661 /* 662 * When the amount of flash space used by buds becomes 663 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 664 * The writers are unblocked when the commit is finished. To avoid 665 * writers to be blocked UBIFS initiates background commit in advance, 666 * when number of bud bytes becomes above the limit defined below. 667 */ 668 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 669 670 /* 671 * Ensure minimum journal size. All the bytes in the journal heads are 672 * considered to be used, when calculating the current journal usage. 673 * Consequently, if the journal is too small, UBIFS will treat it as 674 * always full. 675 */ 676 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1; 677 if (c->bg_bud_bytes < tmp64) 678 c->bg_bud_bytes = tmp64; 679 if (c->max_bud_bytes < tmp64 + c->leb_size) 680 c->max_bud_bytes = tmp64 + c->leb_size; 681 682 err = ubifs_calc_lpt_geom(c); 683 if (err) 684 return err; 685 686 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 687 688 /* 689 * Calculate total amount of FS blocks. This number is not used 690 * internally because it does not make much sense for UBIFS, but it is 691 * necessary to report something for the 'statfs()' call. 692 * 693 * Subtract the LEB reserved for GC, the LEB which is reserved for 694 * deletions, and assume only one journal head is available. 695 */ 696 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1; 697 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead; 698 tmp64 = ubifs_reported_space(c, tmp64); 699 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 700 701 return 0; 702 } 703 704 /** 705 * take_gc_lnum - reserve GC LEB. 706 * @c: UBIFS file-system description object 707 * 708 * This function ensures that the LEB reserved for garbage collection is 709 * unmapped and is marked as "taken" in lprops. We also have to set free space 710 * to LEB size and dirty space to zero, because lprops may contain out-of-date 711 * information if the file-system was un-mounted before it has been committed. 712 * This function returns zero in case of success and a negative error code in 713 * case of failure. 714 */ 715 static int take_gc_lnum(struct ubifs_info *c) 716 { 717 int err; 718 719 if (c->gc_lnum == -1) { 720 ubifs_err("no LEB for GC"); 721 return -EINVAL; 722 } 723 724 err = ubifs_leb_unmap(c, c->gc_lnum); 725 if (err) 726 return err; 727 728 /* And we have to tell lprops that this LEB is taken */ 729 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 730 LPROPS_TAKEN, 0, 0); 731 return err; 732 } 733 734 /** 735 * alloc_wbufs - allocate write-buffers. 736 * @c: UBIFS file-system description object 737 * 738 * This helper function allocates and initializes UBIFS write-buffers. Returns 739 * zero in case of success and %-ENOMEM in case of failure. 740 */ 741 static int alloc_wbufs(struct ubifs_info *c) 742 { 743 int i, err; 744 745 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 746 GFP_KERNEL); 747 if (!c->jheads) 748 return -ENOMEM; 749 750 /* Initialize journal heads */ 751 for (i = 0; i < c->jhead_cnt; i++) { 752 INIT_LIST_HEAD(&c->jheads[i].buds_list); 753 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 754 if (err) 755 return err; 756 757 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 758 c->jheads[i].wbuf.jhead = i; 759 } 760 761 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 762 /* 763 * Garbage Collector head likely contains long-term data and 764 * does not need to be synchronized by timer. 765 */ 766 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 767 c->jheads[GCHD].wbuf.timeout = 0; 768 769 return 0; 770 } 771 772 /** 773 * free_wbufs - free write-buffers. 774 * @c: UBIFS file-system description object 775 */ 776 static void free_wbufs(struct ubifs_info *c) 777 { 778 int i; 779 780 if (c->jheads) { 781 for (i = 0; i < c->jhead_cnt; i++) { 782 kfree(c->jheads[i].wbuf.buf); 783 kfree(c->jheads[i].wbuf.inodes); 784 } 785 kfree(c->jheads); 786 c->jheads = NULL; 787 } 788 } 789 790 /** 791 * free_orphans - free orphans. 792 * @c: UBIFS file-system description object 793 */ 794 static void free_orphans(struct ubifs_info *c) 795 { 796 struct ubifs_orphan *orph; 797 798 while (c->orph_dnext) { 799 orph = c->orph_dnext; 800 c->orph_dnext = orph->dnext; 801 list_del(&orph->list); 802 kfree(orph); 803 } 804 805 while (!list_empty(&c->orph_list)) { 806 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 807 list_del(&orph->list); 808 kfree(orph); 809 dbg_err("orphan list not empty at unmount"); 810 } 811 812 vfree(c->orph_buf); 813 c->orph_buf = NULL; 814 } 815 816 /** 817 * free_buds - free per-bud objects. 818 * @c: UBIFS file-system description object 819 */ 820 static void free_buds(struct ubifs_info *c) 821 { 822 struct rb_node *this = c->buds.rb_node; 823 struct ubifs_bud *bud; 824 825 while (this) { 826 if (this->rb_left) 827 this = this->rb_left; 828 else if (this->rb_right) 829 this = this->rb_right; 830 else { 831 bud = rb_entry(this, struct ubifs_bud, rb); 832 this = rb_parent(this); 833 if (this) { 834 if (this->rb_left == &bud->rb) 835 this->rb_left = NULL; 836 else 837 this->rb_right = NULL; 838 } 839 kfree(bud); 840 } 841 } 842 } 843 844 /** 845 * check_volume_empty - check if the UBI volume is empty. 846 * @c: UBIFS file-system description object 847 * 848 * This function checks if the UBIFS volume is empty by looking if its LEBs are 849 * mapped or not. The result of checking is stored in the @c->empty variable. 850 * Returns zero in case of success and a negative error code in case of 851 * failure. 852 */ 853 static int check_volume_empty(struct ubifs_info *c) 854 { 855 int lnum, err; 856 857 c->empty = 1; 858 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 859 err = ubi_is_mapped(c->ubi, lnum); 860 if (unlikely(err < 0)) 861 return err; 862 if (err == 1) { 863 c->empty = 0; 864 break; 865 } 866 867 cond_resched(); 868 } 869 870 return 0; 871 } 872 873 /* 874 * UBIFS mount options. 875 * 876 * Opt_fast_unmount: do not run a journal commit before un-mounting 877 * Opt_norm_unmount: run a journal commit before un-mounting 878 * Opt_bulk_read: enable bulk-reads 879 * Opt_no_bulk_read: disable bulk-reads 880 * Opt_chk_data_crc: check CRCs when reading data nodes 881 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 882 * Opt_err: just end of array marker 883 */ 884 enum { 885 Opt_fast_unmount, 886 Opt_norm_unmount, 887 Opt_bulk_read, 888 Opt_no_bulk_read, 889 Opt_chk_data_crc, 890 Opt_no_chk_data_crc, 891 Opt_err, 892 }; 893 894 static const match_table_t tokens = { 895 {Opt_fast_unmount, "fast_unmount"}, 896 {Opt_norm_unmount, "norm_unmount"}, 897 {Opt_bulk_read, "bulk_read"}, 898 {Opt_no_bulk_read, "no_bulk_read"}, 899 {Opt_chk_data_crc, "chk_data_crc"}, 900 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 901 {Opt_err, NULL}, 902 }; 903 904 /** 905 * ubifs_parse_options - parse mount parameters. 906 * @c: UBIFS file-system description object 907 * @options: parameters to parse 908 * @is_remount: non-zero if this is FS re-mount 909 * 910 * This function parses UBIFS mount options and returns zero in case success 911 * and a negative error code in case of failure. 912 */ 913 static int ubifs_parse_options(struct ubifs_info *c, char *options, 914 int is_remount) 915 { 916 char *p; 917 substring_t args[MAX_OPT_ARGS]; 918 919 if (!options) 920 return 0; 921 922 while ((p = strsep(&options, ","))) { 923 int token; 924 925 if (!*p) 926 continue; 927 928 token = match_token(p, tokens, args); 929 switch (token) { 930 case Opt_fast_unmount: 931 c->mount_opts.unmount_mode = 2; 932 c->fast_unmount = 1; 933 break; 934 case Opt_norm_unmount: 935 c->mount_opts.unmount_mode = 1; 936 c->fast_unmount = 0; 937 break; 938 case Opt_bulk_read: 939 c->mount_opts.bulk_read = 2; 940 c->bulk_read = 1; 941 break; 942 case Opt_no_bulk_read: 943 c->mount_opts.bulk_read = 1; 944 c->bulk_read = 0; 945 break; 946 case Opt_chk_data_crc: 947 c->mount_opts.chk_data_crc = 2; 948 c->no_chk_data_crc = 0; 949 break; 950 case Opt_no_chk_data_crc: 951 c->mount_opts.chk_data_crc = 1; 952 c->no_chk_data_crc = 1; 953 break; 954 default: 955 ubifs_err("unrecognized mount option \"%s\" " 956 "or missing value", p); 957 return -EINVAL; 958 } 959 } 960 961 return 0; 962 } 963 964 /** 965 * destroy_journal - destroy journal data structures. 966 * @c: UBIFS file-system description object 967 * 968 * This function destroys journal data structures including those that may have 969 * been created by recovery functions. 970 */ 971 static void destroy_journal(struct ubifs_info *c) 972 { 973 while (!list_empty(&c->unclean_leb_list)) { 974 struct ubifs_unclean_leb *ucleb; 975 976 ucleb = list_entry(c->unclean_leb_list.next, 977 struct ubifs_unclean_leb, list); 978 list_del(&ucleb->list); 979 kfree(ucleb); 980 } 981 while (!list_empty(&c->old_buds)) { 982 struct ubifs_bud *bud; 983 984 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 985 list_del(&bud->list); 986 kfree(bud); 987 } 988 ubifs_destroy_idx_gc(c); 989 ubifs_destroy_size_tree(c); 990 ubifs_tnc_close(c); 991 free_buds(c); 992 } 993 994 /** 995 * mount_ubifs - mount UBIFS file-system. 996 * @c: UBIFS file-system description object 997 * 998 * This function mounts UBIFS file system. Returns zero in case of success and 999 * a negative error code in case of failure. 1000 * 1001 * Note, the function does not de-allocate resources it it fails half way 1002 * through, and the caller has to do this instead. 1003 */ 1004 static int mount_ubifs(struct ubifs_info *c) 1005 { 1006 struct super_block *sb = c->vfs_sb; 1007 int err, mounted_read_only = (sb->s_flags & MS_RDONLY); 1008 long long x; 1009 size_t sz; 1010 1011 err = init_constants_early(c); 1012 if (err) 1013 return err; 1014 1015 #ifdef CONFIG_UBIFS_FS_DEBUG 1016 c->dbg_buf = vmalloc(c->leb_size); 1017 if (!c->dbg_buf) 1018 return -ENOMEM; 1019 #endif 1020 1021 err = check_volume_empty(c); 1022 if (err) 1023 goto out_free; 1024 1025 if (c->empty && (mounted_read_only || c->ro_media)) { 1026 /* 1027 * This UBI volume is empty, and read-only, or the file system 1028 * is mounted read-only - we cannot format it. 1029 */ 1030 ubifs_err("can't format empty UBI volume: read-only %s", 1031 c->ro_media ? "UBI volume" : "mount"); 1032 err = -EROFS; 1033 goto out_free; 1034 } 1035 1036 if (c->ro_media && !mounted_read_only) { 1037 ubifs_err("cannot mount read-write - read-only media"); 1038 err = -EROFS; 1039 goto out_free; 1040 } 1041 1042 /* 1043 * The requirement for the buffer is that it should fit indexing B-tree 1044 * height amount of integers. We assume the height if the TNC tree will 1045 * never exceed 64. 1046 */ 1047 err = -ENOMEM; 1048 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1049 if (!c->bottom_up_buf) 1050 goto out_free; 1051 1052 c->sbuf = vmalloc(c->leb_size); 1053 if (!c->sbuf) 1054 goto out_free; 1055 1056 if (!mounted_read_only) { 1057 c->ileb_buf = vmalloc(c->leb_size); 1058 if (!c->ileb_buf) 1059 goto out_free; 1060 } 1061 1062 c->always_chk_crc = 1; 1063 1064 err = ubifs_read_superblock(c); 1065 if (err) 1066 goto out_free; 1067 1068 /* 1069 * Make sure the compressor which is set as the default on in the 1070 * superblock was actually compiled in. 1071 */ 1072 if (!ubifs_compr_present(c->default_compr)) { 1073 ubifs_warn("'%s' compressor is set by superblock, but not " 1074 "compiled in", ubifs_compr_name(c->default_compr)); 1075 c->default_compr = UBIFS_COMPR_NONE; 1076 } 1077 1078 dbg_failure_mode_registration(c); 1079 1080 err = init_constants_late(c); 1081 if (err) 1082 goto out_dereg; 1083 1084 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1085 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1086 c->cbuf = kmalloc(sz, GFP_NOFS); 1087 if (!c->cbuf) { 1088 err = -ENOMEM; 1089 goto out_dereg; 1090 } 1091 1092 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1093 if (!mounted_read_only) { 1094 err = alloc_wbufs(c); 1095 if (err) 1096 goto out_cbuf; 1097 1098 /* Create background thread */ 1099 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1100 if (IS_ERR(c->bgt)) { 1101 err = PTR_ERR(c->bgt); 1102 c->bgt = NULL; 1103 ubifs_err("cannot spawn \"%s\", error %d", 1104 c->bgt_name, err); 1105 goto out_wbufs; 1106 } 1107 wake_up_process(c->bgt); 1108 } 1109 1110 err = ubifs_read_master(c); 1111 if (err) 1112 goto out_master; 1113 1114 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1115 ubifs_msg("recovery needed"); 1116 c->need_recovery = 1; 1117 if (!mounted_read_only) { 1118 err = ubifs_recover_inl_heads(c, c->sbuf); 1119 if (err) 1120 goto out_master; 1121 } 1122 } else if (!mounted_read_only) { 1123 /* 1124 * Set the "dirty" flag so that if we reboot uncleanly we 1125 * will notice this immediately on the next mount. 1126 */ 1127 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1128 err = ubifs_write_master(c); 1129 if (err) 1130 goto out_master; 1131 } 1132 1133 err = ubifs_lpt_init(c, 1, !mounted_read_only); 1134 if (err) 1135 goto out_lpt; 1136 1137 err = dbg_check_idx_size(c, c->old_idx_sz); 1138 if (err) 1139 goto out_lpt; 1140 1141 err = ubifs_replay_journal(c); 1142 if (err) 1143 goto out_journal; 1144 1145 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only); 1146 if (err) 1147 goto out_orphans; 1148 1149 if (!mounted_read_only) { 1150 int lnum; 1151 1152 /* Check for enough free space */ 1153 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) { 1154 ubifs_err("insufficient available space"); 1155 err = -EINVAL; 1156 goto out_orphans; 1157 } 1158 1159 /* Check for enough log space */ 1160 lnum = c->lhead_lnum + 1; 1161 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1162 lnum = UBIFS_LOG_LNUM; 1163 if (lnum == c->ltail_lnum) { 1164 err = ubifs_consolidate_log(c); 1165 if (err) 1166 goto out_orphans; 1167 } 1168 1169 if (c->need_recovery) { 1170 err = ubifs_recover_size(c); 1171 if (err) 1172 goto out_orphans; 1173 err = ubifs_rcvry_gc_commit(c); 1174 } else 1175 err = take_gc_lnum(c); 1176 if (err) 1177 goto out_orphans; 1178 1179 err = dbg_check_lprops(c); 1180 if (err) 1181 goto out_orphans; 1182 } else if (c->need_recovery) { 1183 err = ubifs_recover_size(c); 1184 if (err) 1185 goto out_orphans; 1186 } 1187 1188 spin_lock(&ubifs_infos_lock); 1189 list_add_tail(&c->infos_list, &ubifs_infos); 1190 spin_unlock(&ubifs_infos_lock); 1191 1192 if (c->need_recovery) { 1193 if (mounted_read_only) 1194 ubifs_msg("recovery deferred"); 1195 else { 1196 c->need_recovery = 0; 1197 ubifs_msg("recovery completed"); 1198 } 1199 } 1200 1201 err = dbg_check_filesystem(c); 1202 if (err) 1203 goto out_infos; 1204 1205 c->always_chk_crc = 0; 1206 1207 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1208 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1209 if (mounted_read_only) 1210 ubifs_msg("mounted read-only"); 1211 x = (long long)c->main_lebs * c->leb_size; 1212 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1213 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1214 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1215 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1216 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1217 ubifs_msg("media format: %d (latest is %d)", 1218 c->fmt_version, UBIFS_FORMAT_VERSION); 1219 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1220 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1221 c->report_rp_size, c->report_rp_size >> 10); 1222 1223 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1224 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1225 dbg_msg("LEB size: %d bytes (%d KiB)", 1226 c->leb_size, c->leb_size >> 10); 1227 dbg_msg("data journal heads: %d", 1228 c->jhead_cnt - NONDATA_JHEADS_CNT); 1229 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X" 1230 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 1231 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3], 1232 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1233 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1234 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1235 dbg_msg("fast unmount: %d", c->fast_unmount); 1236 dbg_msg("big_lpt %d", c->big_lpt); 1237 dbg_msg("log LEBs: %d (%d - %d)", 1238 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1239 dbg_msg("LPT area LEBs: %d (%d - %d)", 1240 c->lpt_lebs, c->lpt_first, c->lpt_last); 1241 dbg_msg("orphan area LEBs: %d (%d - %d)", 1242 c->orph_lebs, c->orph_first, c->orph_last); 1243 dbg_msg("main area LEBs: %d (%d - %d)", 1244 c->main_lebs, c->main_first, c->leb_cnt - 1); 1245 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1246 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1247 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1248 dbg_msg("key hash type: %d", c->key_hash_type); 1249 dbg_msg("tree fanout: %d", c->fanout); 1250 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1251 dbg_msg("first main LEB: %d", c->main_first); 1252 dbg_msg("dead watermark: %d", c->dead_wm); 1253 dbg_msg("dark watermark: %d", c->dark_wm); 1254 x = (long long)c->main_lebs * c->dark_wm; 1255 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1256 x, x >> 10, x >> 20); 1257 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1258 c->max_bud_bytes, c->max_bud_bytes >> 10, 1259 c->max_bud_bytes >> 20); 1260 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1261 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1262 c->bg_bud_bytes >> 20); 1263 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1264 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1265 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1266 dbg_msg("commit number: %llu", c->cmt_no); 1267 1268 return 0; 1269 1270 out_infos: 1271 spin_lock(&ubifs_infos_lock); 1272 list_del(&c->infos_list); 1273 spin_unlock(&ubifs_infos_lock); 1274 out_orphans: 1275 free_orphans(c); 1276 out_journal: 1277 destroy_journal(c); 1278 out_lpt: 1279 ubifs_lpt_free(c, 0); 1280 out_master: 1281 kfree(c->mst_node); 1282 kfree(c->rcvrd_mst_node); 1283 if (c->bgt) 1284 kthread_stop(c->bgt); 1285 out_wbufs: 1286 free_wbufs(c); 1287 out_cbuf: 1288 kfree(c->cbuf); 1289 out_dereg: 1290 dbg_failure_mode_deregistration(c); 1291 out_free: 1292 vfree(c->ileb_buf); 1293 vfree(c->sbuf); 1294 kfree(c->bottom_up_buf); 1295 UBIFS_DBG(vfree(c->dbg_buf)); 1296 return err; 1297 } 1298 1299 /** 1300 * ubifs_umount - un-mount UBIFS file-system. 1301 * @c: UBIFS file-system description object 1302 * 1303 * Note, this function is called to free allocated resourced when un-mounting, 1304 * as well as free resources when an error occurred while we were half way 1305 * through mounting (error path cleanup function). So it has to make sure the 1306 * resource was actually allocated before freeing it. 1307 */ 1308 static void ubifs_umount(struct ubifs_info *c) 1309 { 1310 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1311 c->vi.vol_id); 1312 1313 spin_lock(&ubifs_infos_lock); 1314 list_del(&c->infos_list); 1315 spin_unlock(&ubifs_infos_lock); 1316 1317 if (c->bgt) 1318 kthread_stop(c->bgt); 1319 1320 destroy_journal(c); 1321 free_wbufs(c); 1322 free_orphans(c); 1323 ubifs_lpt_free(c, 0); 1324 1325 kfree(c->cbuf); 1326 kfree(c->rcvrd_mst_node); 1327 kfree(c->mst_node); 1328 vfree(c->sbuf); 1329 kfree(c->bottom_up_buf); 1330 UBIFS_DBG(vfree(c->dbg_buf)); 1331 vfree(c->ileb_buf); 1332 dbg_failure_mode_deregistration(c); 1333 } 1334 1335 /** 1336 * ubifs_remount_rw - re-mount in read-write mode. 1337 * @c: UBIFS file-system description object 1338 * 1339 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1340 * mode. This function allocates the needed resources and re-mounts UBIFS in 1341 * read-write mode. 1342 */ 1343 static int ubifs_remount_rw(struct ubifs_info *c) 1344 { 1345 int err, lnum; 1346 1347 if (c->ro_media) 1348 return -EINVAL; 1349 1350 mutex_lock(&c->umount_mutex); 1351 c->remounting_rw = 1; 1352 c->always_chk_crc = 1; 1353 1354 /* Check for enough free space */ 1355 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) { 1356 ubifs_err("insufficient available space"); 1357 err = -EINVAL; 1358 goto out; 1359 } 1360 1361 if (c->old_leb_cnt != c->leb_cnt) { 1362 struct ubifs_sb_node *sup; 1363 1364 sup = ubifs_read_sb_node(c); 1365 if (IS_ERR(sup)) { 1366 err = PTR_ERR(sup); 1367 goto out; 1368 } 1369 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1370 err = ubifs_write_sb_node(c, sup); 1371 if (err) 1372 goto out; 1373 } 1374 1375 if (c->need_recovery) { 1376 ubifs_msg("completing deferred recovery"); 1377 err = ubifs_write_rcvrd_mst_node(c); 1378 if (err) 1379 goto out; 1380 err = ubifs_recover_size(c); 1381 if (err) 1382 goto out; 1383 err = ubifs_clean_lebs(c, c->sbuf); 1384 if (err) 1385 goto out; 1386 err = ubifs_recover_inl_heads(c, c->sbuf); 1387 if (err) 1388 goto out; 1389 } 1390 1391 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1392 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1393 err = ubifs_write_master(c); 1394 if (err) 1395 goto out; 1396 } 1397 1398 c->ileb_buf = vmalloc(c->leb_size); 1399 if (!c->ileb_buf) { 1400 err = -ENOMEM; 1401 goto out; 1402 } 1403 1404 err = ubifs_lpt_init(c, 0, 1); 1405 if (err) 1406 goto out; 1407 1408 err = alloc_wbufs(c); 1409 if (err) 1410 goto out; 1411 1412 ubifs_create_buds_lists(c); 1413 1414 /* Create background thread */ 1415 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name); 1416 if (IS_ERR(c->bgt)) { 1417 err = PTR_ERR(c->bgt); 1418 c->bgt = NULL; 1419 ubifs_err("cannot spawn \"%s\", error %d", 1420 c->bgt_name, err); 1421 goto out; 1422 } 1423 wake_up_process(c->bgt); 1424 1425 c->orph_buf = vmalloc(c->leb_size); 1426 if (!c->orph_buf) { 1427 err = -ENOMEM; 1428 goto out; 1429 } 1430 1431 /* Check for enough log space */ 1432 lnum = c->lhead_lnum + 1; 1433 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1434 lnum = UBIFS_LOG_LNUM; 1435 if (lnum == c->ltail_lnum) { 1436 err = ubifs_consolidate_log(c); 1437 if (err) 1438 goto out; 1439 } 1440 1441 if (c->need_recovery) 1442 err = ubifs_rcvry_gc_commit(c); 1443 else 1444 err = take_gc_lnum(c); 1445 if (err) 1446 goto out; 1447 1448 if (c->need_recovery) { 1449 c->need_recovery = 0; 1450 ubifs_msg("deferred recovery completed"); 1451 } 1452 1453 dbg_gen("re-mounted read-write"); 1454 c->vfs_sb->s_flags &= ~MS_RDONLY; 1455 c->remounting_rw = 0; 1456 c->always_chk_crc = 0; 1457 mutex_unlock(&c->umount_mutex); 1458 return 0; 1459 1460 out: 1461 vfree(c->orph_buf); 1462 c->orph_buf = NULL; 1463 if (c->bgt) { 1464 kthread_stop(c->bgt); 1465 c->bgt = NULL; 1466 } 1467 free_wbufs(c); 1468 vfree(c->ileb_buf); 1469 c->ileb_buf = NULL; 1470 ubifs_lpt_free(c, 1); 1471 c->remounting_rw = 0; 1472 c->always_chk_crc = 0; 1473 mutex_unlock(&c->umount_mutex); 1474 return err; 1475 } 1476 1477 /** 1478 * commit_on_unmount - commit the journal when un-mounting. 1479 * @c: UBIFS file-system description object 1480 * 1481 * This function is called during un-mounting and re-mounting, and it commits 1482 * the journal unless the "fast unmount" mode is enabled. It also avoids 1483 * committing the journal if it contains too few data. 1484 */ 1485 static void commit_on_unmount(struct ubifs_info *c) 1486 { 1487 if (!c->fast_unmount) { 1488 long long bud_bytes; 1489 1490 spin_lock(&c->buds_lock); 1491 bud_bytes = c->bud_bytes; 1492 spin_unlock(&c->buds_lock); 1493 if (bud_bytes > c->leb_size) 1494 ubifs_run_commit(c); 1495 } 1496 } 1497 1498 /** 1499 * ubifs_remount_ro - re-mount in read-only mode. 1500 * @c: UBIFS file-system description object 1501 * 1502 * We rely on VFS to have stopped writing. Possibly the background thread could 1503 * be running a commit, however kthread_stop will wait in that case. 1504 */ 1505 static void ubifs_remount_ro(struct ubifs_info *c) 1506 { 1507 int i, err; 1508 1509 ubifs_assert(!c->need_recovery); 1510 commit_on_unmount(c); 1511 1512 mutex_lock(&c->umount_mutex); 1513 if (c->bgt) { 1514 kthread_stop(c->bgt); 1515 c->bgt = NULL; 1516 } 1517 1518 for (i = 0; i < c->jhead_cnt; i++) { 1519 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1520 del_timer_sync(&c->jheads[i].wbuf.timer); 1521 } 1522 1523 if (!c->ro_media) { 1524 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1525 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1526 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1527 err = ubifs_write_master(c); 1528 if (err) 1529 ubifs_ro_mode(c, err); 1530 } 1531 1532 ubifs_destroy_idx_gc(c); 1533 free_wbufs(c); 1534 vfree(c->orph_buf); 1535 c->orph_buf = NULL; 1536 vfree(c->ileb_buf); 1537 c->ileb_buf = NULL; 1538 ubifs_lpt_free(c, 1); 1539 mutex_unlock(&c->umount_mutex); 1540 } 1541 1542 static void ubifs_put_super(struct super_block *sb) 1543 { 1544 int i; 1545 struct ubifs_info *c = sb->s_fs_info; 1546 1547 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1548 c->vi.vol_id); 1549 /* 1550 * The following asserts are only valid if there has not been a failure 1551 * of the media. For example, there will be dirty inodes if we failed 1552 * to write them back because of I/O errors. 1553 */ 1554 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1555 ubifs_assert(c->budg_idx_growth == 0); 1556 ubifs_assert(c->budg_dd_growth == 0); 1557 ubifs_assert(c->budg_data_growth == 0); 1558 1559 /* 1560 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1561 * and file system un-mount. Namely, it prevents the shrinker from 1562 * picking this superblock for shrinking - it will be just skipped if 1563 * the mutex is locked. 1564 */ 1565 mutex_lock(&c->umount_mutex); 1566 if (!(c->vfs_sb->s_flags & MS_RDONLY)) { 1567 /* 1568 * First of all kill the background thread to make sure it does 1569 * not interfere with un-mounting and freeing resources. 1570 */ 1571 if (c->bgt) { 1572 kthread_stop(c->bgt); 1573 c->bgt = NULL; 1574 } 1575 1576 /* Synchronize write-buffers */ 1577 if (c->jheads) 1578 for (i = 0; i < c->jhead_cnt; i++) { 1579 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1580 del_timer_sync(&c->jheads[i].wbuf.timer); 1581 } 1582 1583 /* 1584 * On fatal errors c->ro_media is set to 1, in which case we do 1585 * not write the master node. 1586 */ 1587 if (!c->ro_media) { 1588 /* 1589 * We are being cleanly unmounted which means the 1590 * orphans were killed - indicate this in the master 1591 * node. Also save the reserved GC LEB number. 1592 */ 1593 int err; 1594 1595 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1596 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1597 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1598 err = ubifs_write_master(c); 1599 if (err) 1600 /* 1601 * Recovery will attempt to fix the master area 1602 * next mount, so we just print a message and 1603 * continue to unmount normally. 1604 */ 1605 ubifs_err("failed to write master node, " 1606 "error %d", err); 1607 } 1608 } 1609 1610 ubifs_umount(c); 1611 bdi_destroy(&c->bdi); 1612 ubi_close_volume(c->ubi); 1613 mutex_unlock(&c->umount_mutex); 1614 kfree(c); 1615 } 1616 1617 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1618 { 1619 int err; 1620 struct ubifs_info *c = sb->s_fs_info; 1621 1622 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1623 1624 err = ubifs_parse_options(c, data, 1); 1625 if (err) { 1626 ubifs_err("invalid or unknown remount parameter"); 1627 return err; 1628 } 1629 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1630 err = ubifs_remount_rw(c); 1631 if (err) 1632 return err; 1633 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 1634 ubifs_remount_ro(c); 1635 1636 return 0; 1637 } 1638 1639 struct super_operations ubifs_super_operations = { 1640 .alloc_inode = ubifs_alloc_inode, 1641 .destroy_inode = ubifs_destroy_inode, 1642 .put_super = ubifs_put_super, 1643 .write_inode = ubifs_write_inode, 1644 .delete_inode = ubifs_delete_inode, 1645 .statfs = ubifs_statfs, 1646 .dirty_inode = ubifs_dirty_inode, 1647 .remount_fs = ubifs_remount_fs, 1648 .show_options = ubifs_show_options, 1649 .sync_fs = ubifs_sync_fs, 1650 }; 1651 1652 /** 1653 * open_ubi - parse UBI device name string and open the UBI device. 1654 * @name: UBI volume name 1655 * @mode: UBI volume open mode 1656 * 1657 * There are several ways to specify UBI volumes when mounting UBIFS: 1658 * o ubiX_Y - UBI device number X, volume Y; 1659 * o ubiY - UBI device number 0, volume Y; 1660 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1661 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1662 * 1663 * Alternative '!' separator may be used instead of ':' (because some shells 1664 * like busybox may interpret ':' as an NFS host name separator). This function 1665 * returns ubi volume object in case of success and a negative error code in 1666 * case of failure. 1667 */ 1668 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1669 { 1670 int dev, vol; 1671 char *endptr; 1672 1673 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1674 return ERR_PTR(-EINVAL); 1675 1676 /* ubi:NAME method */ 1677 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1678 return ubi_open_volume_nm(0, name + 4, mode); 1679 1680 if (!isdigit(name[3])) 1681 return ERR_PTR(-EINVAL); 1682 1683 dev = simple_strtoul(name + 3, &endptr, 0); 1684 1685 /* ubiY method */ 1686 if (*endptr == '\0') 1687 return ubi_open_volume(0, dev, mode); 1688 1689 /* ubiX_Y method */ 1690 if (*endptr == '_' && isdigit(endptr[1])) { 1691 vol = simple_strtoul(endptr + 1, &endptr, 0); 1692 if (*endptr != '\0') 1693 return ERR_PTR(-EINVAL); 1694 return ubi_open_volume(dev, vol, mode); 1695 } 1696 1697 /* ubiX:NAME method */ 1698 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1699 return ubi_open_volume_nm(dev, ++endptr, mode); 1700 1701 return ERR_PTR(-EINVAL); 1702 } 1703 1704 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1705 { 1706 struct ubi_volume_desc *ubi = sb->s_fs_info; 1707 struct ubifs_info *c; 1708 struct inode *root; 1709 int err; 1710 1711 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1712 if (!c) 1713 return -ENOMEM; 1714 1715 spin_lock_init(&c->cnt_lock); 1716 spin_lock_init(&c->cs_lock); 1717 spin_lock_init(&c->buds_lock); 1718 spin_lock_init(&c->space_lock); 1719 spin_lock_init(&c->orphan_lock); 1720 init_rwsem(&c->commit_sem); 1721 mutex_init(&c->lp_mutex); 1722 mutex_init(&c->tnc_mutex); 1723 mutex_init(&c->log_mutex); 1724 mutex_init(&c->mst_mutex); 1725 mutex_init(&c->umount_mutex); 1726 init_waitqueue_head(&c->cmt_wq); 1727 c->buds = RB_ROOT; 1728 c->old_idx = RB_ROOT; 1729 c->size_tree = RB_ROOT; 1730 c->orph_tree = RB_ROOT; 1731 INIT_LIST_HEAD(&c->infos_list); 1732 INIT_LIST_HEAD(&c->idx_gc); 1733 INIT_LIST_HEAD(&c->replay_list); 1734 INIT_LIST_HEAD(&c->replay_buds); 1735 INIT_LIST_HEAD(&c->uncat_list); 1736 INIT_LIST_HEAD(&c->empty_list); 1737 INIT_LIST_HEAD(&c->freeable_list); 1738 INIT_LIST_HEAD(&c->frdi_idx_list); 1739 INIT_LIST_HEAD(&c->unclean_leb_list); 1740 INIT_LIST_HEAD(&c->old_buds); 1741 INIT_LIST_HEAD(&c->orph_list); 1742 INIT_LIST_HEAD(&c->orph_new); 1743 1744 c->highest_inum = UBIFS_FIRST_INO; 1745 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1746 1747 ubi_get_volume_info(ubi, &c->vi); 1748 ubi_get_device_info(c->vi.ubi_num, &c->di); 1749 1750 /* Re-open the UBI device in read-write mode */ 1751 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1752 if (IS_ERR(c->ubi)) { 1753 err = PTR_ERR(c->ubi); 1754 goto out_free; 1755 } 1756 1757 /* 1758 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1759 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1760 * which means the user would have to wait not just for their own I/O 1761 * but the read-ahead I/O as well i.e. completely pointless. 1762 * 1763 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1764 */ 1765 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1766 c->bdi.unplug_io_fn = default_unplug_io_fn; 1767 err = bdi_init(&c->bdi); 1768 if (err) 1769 goto out_close; 1770 1771 err = ubifs_parse_options(c, data, 0); 1772 if (err) 1773 goto out_bdi; 1774 1775 c->vfs_sb = sb; 1776 1777 sb->s_fs_info = c; 1778 sb->s_magic = UBIFS_SUPER_MAGIC; 1779 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1780 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 1781 sb->s_dev = c->vi.cdev; 1782 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 1783 if (c->max_inode_sz > MAX_LFS_FILESIZE) 1784 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 1785 sb->s_op = &ubifs_super_operations; 1786 1787 mutex_lock(&c->umount_mutex); 1788 err = mount_ubifs(c); 1789 if (err) { 1790 ubifs_assert(err < 0); 1791 goto out_unlock; 1792 } 1793 1794 /* Read the root inode */ 1795 root = ubifs_iget(sb, UBIFS_ROOT_INO); 1796 if (IS_ERR(root)) { 1797 err = PTR_ERR(root); 1798 goto out_umount; 1799 } 1800 1801 sb->s_root = d_alloc_root(root); 1802 if (!sb->s_root) 1803 goto out_iput; 1804 1805 mutex_unlock(&c->umount_mutex); 1806 1807 return 0; 1808 1809 out_iput: 1810 iput(root); 1811 out_umount: 1812 ubifs_umount(c); 1813 out_unlock: 1814 mutex_unlock(&c->umount_mutex); 1815 out_bdi: 1816 bdi_destroy(&c->bdi); 1817 out_close: 1818 ubi_close_volume(c->ubi); 1819 out_free: 1820 kfree(c); 1821 return err; 1822 } 1823 1824 static int sb_test(struct super_block *sb, void *data) 1825 { 1826 dev_t *dev = data; 1827 1828 return sb->s_dev == *dev; 1829 } 1830 1831 static int sb_set(struct super_block *sb, void *data) 1832 { 1833 dev_t *dev = data; 1834 1835 sb->s_dev = *dev; 1836 return 0; 1837 } 1838 1839 static int ubifs_get_sb(struct file_system_type *fs_type, int flags, 1840 const char *name, void *data, struct vfsmount *mnt) 1841 { 1842 struct ubi_volume_desc *ubi; 1843 struct ubi_volume_info vi; 1844 struct super_block *sb; 1845 int err; 1846 1847 dbg_gen("name %s, flags %#x", name, flags); 1848 1849 /* 1850 * Get UBI device number and volume ID. Mount it read-only so far 1851 * because this might be a new mount point, and UBI allows only one 1852 * read-write user at a time. 1853 */ 1854 ubi = open_ubi(name, UBI_READONLY); 1855 if (IS_ERR(ubi)) { 1856 ubifs_err("cannot open \"%s\", error %d", 1857 name, (int)PTR_ERR(ubi)); 1858 return PTR_ERR(ubi); 1859 } 1860 ubi_get_volume_info(ubi, &vi); 1861 1862 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 1863 1864 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev); 1865 if (IS_ERR(sb)) { 1866 err = PTR_ERR(sb); 1867 goto out_close; 1868 } 1869 1870 if (sb->s_root) { 1871 /* A new mount point for already mounted UBIFS */ 1872 dbg_gen("this ubi volume is already mounted"); 1873 if ((flags ^ sb->s_flags) & MS_RDONLY) { 1874 err = -EBUSY; 1875 goto out_deact; 1876 } 1877 } else { 1878 sb->s_flags = flags; 1879 /* 1880 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 1881 * replaced by 'c'. 1882 */ 1883 sb->s_fs_info = ubi; 1884 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 1885 if (err) 1886 goto out_deact; 1887 /* We do not support atime */ 1888 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 1889 } 1890 1891 /* 'fill_super()' opens ubi again so we must close it here */ 1892 ubi_close_volume(ubi); 1893 1894 return simple_set_mnt(mnt, sb); 1895 1896 out_deact: 1897 up_write(&sb->s_umount); 1898 deactivate_super(sb); 1899 out_close: 1900 ubi_close_volume(ubi); 1901 return err; 1902 } 1903 1904 static void ubifs_kill_sb(struct super_block *sb) 1905 { 1906 struct ubifs_info *c = sb->s_fs_info; 1907 1908 /* 1909 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()' 1910 * in order to be outside BKL. 1911 */ 1912 if (sb->s_root && !(sb->s_flags & MS_RDONLY)) 1913 commit_on_unmount(c); 1914 /* The un-mount routine is actually done in put_super() */ 1915 generic_shutdown_super(sb); 1916 } 1917 1918 static struct file_system_type ubifs_fs_type = { 1919 .name = "ubifs", 1920 .owner = THIS_MODULE, 1921 .get_sb = ubifs_get_sb, 1922 .kill_sb = ubifs_kill_sb 1923 }; 1924 1925 /* 1926 * Inode slab cache constructor. 1927 */ 1928 static void inode_slab_ctor(void *obj) 1929 { 1930 struct ubifs_inode *ui = obj; 1931 inode_init_once(&ui->vfs_inode); 1932 } 1933 1934 static int __init ubifs_init(void) 1935 { 1936 int err; 1937 1938 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 1939 1940 /* Make sure node sizes are 8-byte aligned */ 1941 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 1942 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 1943 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 1944 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 1945 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 1946 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 1947 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 1948 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 1949 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 1950 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 1951 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 1952 1953 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 1954 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 1955 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 1956 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 1957 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 1958 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 1959 1960 /* Check min. node size */ 1961 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 1962 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 1963 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 1964 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 1965 1966 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 1967 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 1968 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 1969 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 1970 1971 /* Defined node sizes */ 1972 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 1973 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 1974 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 1975 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 1976 1977 /* 1978 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 1979 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 1980 */ 1981 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 1982 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 1983 " at least 4096 bytes", 1984 (unsigned int)PAGE_CACHE_SIZE); 1985 return -EINVAL; 1986 } 1987 1988 err = register_filesystem(&ubifs_fs_type); 1989 if (err) { 1990 ubifs_err("cannot register file system, error %d", err); 1991 return err; 1992 } 1993 1994 err = -ENOMEM; 1995 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 1996 sizeof(struct ubifs_inode), 0, 1997 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 1998 &inode_slab_ctor); 1999 if (!ubifs_inode_slab) 2000 goto out_reg; 2001 2002 register_shrinker(&ubifs_shrinker_info); 2003 2004 err = ubifs_compressors_init(); 2005 if (err) 2006 goto out_compr; 2007 2008 return 0; 2009 2010 out_compr: 2011 unregister_shrinker(&ubifs_shrinker_info); 2012 kmem_cache_destroy(ubifs_inode_slab); 2013 out_reg: 2014 unregister_filesystem(&ubifs_fs_type); 2015 return err; 2016 } 2017 /* late_initcall to let compressors initialize first */ 2018 late_initcall(ubifs_init); 2019 2020 static void __exit ubifs_exit(void) 2021 { 2022 ubifs_assert(list_empty(&ubifs_infos)); 2023 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2024 2025 ubifs_compressors_exit(); 2026 unregister_shrinker(&ubifs_shrinker_info); 2027 kmem_cache_destroy(ubifs_inode_slab); 2028 unregister_filesystem(&ubifs_fs_type); 2029 } 2030 module_exit(ubifs_exit); 2031 2032 MODULE_LICENSE("GPL"); 2033 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2034 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2035 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2036