xref: /openbmc/linux/fs/ubifs/super.c (revision 96ac6d43)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(c, ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 
133 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
134 		inode->i_flags |= S_NOATIME;
135 
136 	set_nlink(inode, le32_to_cpu(ino->nlink));
137 	i_uid_write(inode, le32_to_cpu(ino->uid));
138 	i_gid_write(inode, le32_to_cpu(ino->gid));
139 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
140 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
141 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
142 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
143 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
144 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
145 	inode->i_mode = le32_to_cpu(ino->mode);
146 	inode->i_size = le64_to_cpu(ino->size);
147 
148 	ui->data_len    = le32_to_cpu(ino->data_len);
149 	ui->flags       = le32_to_cpu(ino->flags);
150 	ui->compr_type  = le16_to_cpu(ino->compr_type);
151 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
152 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
153 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
154 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
155 	ui->synced_i_size = ui->ui_size = inode->i_size;
156 
157 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
158 
159 	err = validate_inode(c, inode);
160 	if (err)
161 		goto out_invalid;
162 
163 	switch (inode->i_mode & S_IFMT) {
164 	case S_IFREG:
165 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
166 		inode->i_op = &ubifs_file_inode_operations;
167 		inode->i_fop = &ubifs_file_operations;
168 		if (ui->xattr) {
169 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
170 			if (!ui->data) {
171 				err = -ENOMEM;
172 				goto out_ino;
173 			}
174 			memcpy(ui->data, ino->data, ui->data_len);
175 			((char *)ui->data)[ui->data_len] = '\0';
176 		} else if (ui->data_len != 0) {
177 			err = 10;
178 			goto out_invalid;
179 		}
180 		break;
181 	case S_IFDIR:
182 		inode->i_op  = &ubifs_dir_inode_operations;
183 		inode->i_fop = &ubifs_dir_operations;
184 		if (ui->data_len != 0) {
185 			err = 11;
186 			goto out_invalid;
187 		}
188 		break;
189 	case S_IFLNK:
190 		inode->i_op = &ubifs_symlink_inode_operations;
191 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
192 			err = 12;
193 			goto out_invalid;
194 		}
195 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
196 		if (!ui->data) {
197 			err = -ENOMEM;
198 			goto out_ino;
199 		}
200 		memcpy(ui->data, ino->data, ui->data_len);
201 		((char *)ui->data)[ui->data_len] = '\0';
202 		break;
203 	case S_IFBLK:
204 	case S_IFCHR:
205 	{
206 		dev_t rdev;
207 		union ubifs_dev_desc *dev;
208 
209 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
210 		if (!ui->data) {
211 			err = -ENOMEM;
212 			goto out_ino;
213 		}
214 
215 		dev = (union ubifs_dev_desc *)ino->data;
216 		if (ui->data_len == sizeof(dev->new))
217 			rdev = new_decode_dev(le32_to_cpu(dev->new));
218 		else if (ui->data_len == sizeof(dev->huge))
219 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
220 		else {
221 			err = 13;
222 			goto out_invalid;
223 		}
224 		memcpy(ui->data, ino->data, ui->data_len);
225 		inode->i_op = &ubifs_file_inode_operations;
226 		init_special_inode(inode, inode->i_mode, rdev);
227 		break;
228 	}
229 	case S_IFSOCK:
230 	case S_IFIFO:
231 		inode->i_op = &ubifs_file_inode_operations;
232 		init_special_inode(inode, inode->i_mode, 0);
233 		if (ui->data_len != 0) {
234 			err = 14;
235 			goto out_invalid;
236 		}
237 		break;
238 	default:
239 		err = 15;
240 		goto out_invalid;
241 	}
242 
243 	kfree(ino);
244 	ubifs_set_inode_flags(inode);
245 	unlock_new_inode(inode);
246 	return inode;
247 
248 out_invalid:
249 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
250 	ubifs_dump_node(c, ino);
251 	ubifs_dump_inode(c, inode);
252 	err = -EINVAL;
253 out_ino:
254 	kfree(ino);
255 out:
256 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
257 	iget_failed(inode);
258 	return ERR_PTR(err);
259 }
260 
261 static struct inode *ubifs_alloc_inode(struct super_block *sb)
262 {
263 	struct ubifs_inode *ui;
264 
265 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
266 	if (!ui)
267 		return NULL;
268 
269 	memset((void *)ui + sizeof(struct inode), 0,
270 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
271 	mutex_init(&ui->ui_mutex);
272 	spin_lock_init(&ui->ui_lock);
273 	return &ui->vfs_inode;
274 };
275 
276 static void ubifs_free_inode(struct inode *inode)
277 {
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 
280 	kfree(ui->data);
281 	fscrypt_free_inode(inode);
282 
283 	kmem_cache_free(ubifs_inode_slab, ui);
284 }
285 
286 /*
287  * Note, Linux write-back code calls this without 'i_mutex'.
288  */
289 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
290 {
291 	int err = 0;
292 	struct ubifs_info *c = inode->i_sb->s_fs_info;
293 	struct ubifs_inode *ui = ubifs_inode(inode);
294 
295 	ubifs_assert(c, !ui->xattr);
296 	if (is_bad_inode(inode))
297 		return 0;
298 
299 	mutex_lock(&ui->ui_mutex);
300 	/*
301 	 * Due to races between write-back forced by budgeting
302 	 * (see 'sync_some_inodes()') and background write-back, the inode may
303 	 * have already been synchronized, do not do this again. This might
304 	 * also happen if it was synchronized in an VFS operation, e.g.
305 	 * 'ubifs_link()'.
306 	 */
307 	if (!ui->dirty) {
308 		mutex_unlock(&ui->ui_mutex);
309 		return 0;
310 	}
311 
312 	/*
313 	 * As an optimization, do not write orphan inodes to the media just
314 	 * because this is not needed.
315 	 */
316 	dbg_gen("inode %lu, mode %#x, nlink %u",
317 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
318 	if (inode->i_nlink) {
319 		err = ubifs_jnl_write_inode(c, inode);
320 		if (err)
321 			ubifs_err(c, "can't write inode %lu, error %d",
322 				  inode->i_ino, err);
323 		else
324 			err = dbg_check_inode_size(c, inode, ui->ui_size);
325 	}
326 
327 	ui->dirty = 0;
328 	mutex_unlock(&ui->ui_mutex);
329 	ubifs_release_dirty_inode_budget(c, ui);
330 	return err;
331 }
332 
333 static void ubifs_evict_inode(struct inode *inode)
334 {
335 	int err;
336 	struct ubifs_info *c = inode->i_sb->s_fs_info;
337 	struct ubifs_inode *ui = ubifs_inode(inode);
338 
339 	if (ui->xattr)
340 		/*
341 		 * Extended attribute inode deletions are fully handled in
342 		 * 'ubifs_removexattr()'. These inodes are special and have
343 		 * limited usage, so there is nothing to do here.
344 		 */
345 		goto out;
346 
347 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
348 	ubifs_assert(c, !atomic_read(&inode->i_count));
349 
350 	truncate_inode_pages_final(&inode->i_data);
351 
352 	if (inode->i_nlink)
353 		goto done;
354 
355 	if (is_bad_inode(inode))
356 		goto out;
357 
358 	ui->ui_size = inode->i_size = 0;
359 	err = ubifs_jnl_delete_inode(c, inode);
360 	if (err)
361 		/*
362 		 * Worst case we have a lost orphan inode wasting space, so a
363 		 * simple error message is OK here.
364 		 */
365 		ubifs_err(c, "can't delete inode %lu, error %d",
366 			  inode->i_ino, err);
367 
368 out:
369 	if (ui->dirty)
370 		ubifs_release_dirty_inode_budget(c, ui);
371 	else {
372 		/* We've deleted something - clean the "no space" flags */
373 		c->bi.nospace = c->bi.nospace_rp = 0;
374 		smp_wmb();
375 	}
376 done:
377 	clear_inode(inode);
378 	fscrypt_put_encryption_info(inode);
379 }
380 
381 static void ubifs_dirty_inode(struct inode *inode, int flags)
382 {
383 	struct ubifs_info *c = inode->i_sb->s_fs_info;
384 	struct ubifs_inode *ui = ubifs_inode(inode);
385 
386 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
387 	if (!ui->dirty) {
388 		ui->dirty = 1;
389 		dbg_gen("inode %lu",  inode->i_ino);
390 	}
391 }
392 
393 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
394 {
395 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
396 	unsigned long long free;
397 	__le32 *uuid = (__le32 *)c->uuid;
398 
399 	free = ubifs_get_free_space(c);
400 	dbg_gen("free space %lld bytes (%lld blocks)",
401 		free, free >> UBIFS_BLOCK_SHIFT);
402 
403 	buf->f_type = UBIFS_SUPER_MAGIC;
404 	buf->f_bsize = UBIFS_BLOCK_SIZE;
405 	buf->f_blocks = c->block_cnt;
406 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
407 	if (free > c->report_rp_size)
408 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
409 	else
410 		buf->f_bavail = 0;
411 	buf->f_files = 0;
412 	buf->f_ffree = 0;
413 	buf->f_namelen = UBIFS_MAX_NLEN;
414 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
415 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
416 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
417 	return 0;
418 }
419 
420 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
421 {
422 	struct ubifs_info *c = root->d_sb->s_fs_info;
423 
424 	if (c->mount_opts.unmount_mode == 2)
425 		seq_puts(s, ",fast_unmount");
426 	else if (c->mount_opts.unmount_mode == 1)
427 		seq_puts(s, ",norm_unmount");
428 
429 	if (c->mount_opts.bulk_read == 2)
430 		seq_puts(s, ",bulk_read");
431 	else if (c->mount_opts.bulk_read == 1)
432 		seq_puts(s, ",no_bulk_read");
433 
434 	if (c->mount_opts.chk_data_crc == 2)
435 		seq_puts(s, ",chk_data_crc");
436 	else if (c->mount_opts.chk_data_crc == 1)
437 		seq_puts(s, ",no_chk_data_crc");
438 
439 	if (c->mount_opts.override_compr) {
440 		seq_printf(s, ",compr=%s",
441 			   ubifs_compr_name(c, c->mount_opts.compr_type));
442 	}
443 
444 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
445 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
446 
447 	return 0;
448 }
449 
450 static int ubifs_sync_fs(struct super_block *sb, int wait)
451 {
452 	int i, err;
453 	struct ubifs_info *c = sb->s_fs_info;
454 
455 	/*
456 	 * Zero @wait is just an advisory thing to help the file system shove
457 	 * lots of data into the queues, and there will be the second
458 	 * '->sync_fs()' call, with non-zero @wait.
459 	 */
460 	if (!wait)
461 		return 0;
462 
463 	/*
464 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
465 	 * do this if it waits for an already running commit.
466 	 */
467 	for (i = 0; i < c->jhead_cnt; i++) {
468 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
469 		if (err)
470 			return err;
471 	}
472 
473 	/*
474 	 * Strictly speaking, it is not necessary to commit the journal here,
475 	 * synchronizing write-buffers would be enough. But committing makes
476 	 * UBIFS free space predictions much more accurate, so we want to let
477 	 * the user be able to get more accurate results of 'statfs()' after
478 	 * they synchronize the file system.
479 	 */
480 	err = ubifs_run_commit(c);
481 	if (err)
482 		return err;
483 
484 	return ubi_sync(c->vi.ubi_num);
485 }
486 
487 /**
488  * init_constants_early - initialize UBIFS constants.
489  * @c: UBIFS file-system description object
490  *
491  * This function initialize UBIFS constants which do not need the superblock to
492  * be read. It also checks that the UBI volume satisfies basic UBIFS
493  * requirements. Returns zero in case of success and a negative error code in
494  * case of failure.
495  */
496 static int init_constants_early(struct ubifs_info *c)
497 {
498 	if (c->vi.corrupted) {
499 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
500 		c->ro_media = 1;
501 	}
502 
503 	if (c->di.ro_mode) {
504 		ubifs_msg(c, "read-only UBI device");
505 		c->ro_media = 1;
506 	}
507 
508 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
509 		ubifs_msg(c, "static UBI volume - read-only mode");
510 		c->ro_media = 1;
511 	}
512 
513 	c->leb_cnt = c->vi.size;
514 	c->leb_size = c->vi.usable_leb_size;
515 	c->leb_start = c->di.leb_start;
516 	c->half_leb_size = c->leb_size / 2;
517 	c->min_io_size = c->di.min_io_size;
518 	c->min_io_shift = fls(c->min_io_size) - 1;
519 	c->max_write_size = c->di.max_write_size;
520 	c->max_write_shift = fls(c->max_write_size) - 1;
521 
522 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
523 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
524 			   c->leb_size, UBIFS_MIN_LEB_SZ);
525 		return -EINVAL;
526 	}
527 
528 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
529 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
530 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
531 		return -EINVAL;
532 	}
533 
534 	if (!is_power_of_2(c->min_io_size)) {
535 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * Maximum write size has to be greater or equivalent to min. I/O
541 	 * size, and be multiple of min. I/O size.
542 	 */
543 	if (c->max_write_size < c->min_io_size ||
544 	    c->max_write_size % c->min_io_size ||
545 	    !is_power_of_2(c->max_write_size)) {
546 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
547 			   c->max_write_size, c->min_io_size);
548 		return -EINVAL;
549 	}
550 
551 	/*
552 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
553 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
554 	 * less than 8.
555 	 */
556 	if (c->min_io_size < 8) {
557 		c->min_io_size = 8;
558 		c->min_io_shift = 3;
559 		if (c->max_write_size < c->min_io_size) {
560 			c->max_write_size = c->min_io_size;
561 			c->max_write_shift = c->min_io_shift;
562 		}
563 	}
564 
565 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
566 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
567 
568 	/*
569 	 * Initialize node length ranges which are mostly needed for node
570 	 * length validation.
571 	 */
572 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
573 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
574 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
575 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
576 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
577 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
578 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
579 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
580 				UBIFS_MAX_HMAC_LEN;
581 
582 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
583 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
584 	c->ranges[UBIFS_ORPH_NODE].min_len =
585 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
586 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
587 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
588 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
589 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
590 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
591 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
592 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
593 	/*
594 	 * Minimum indexing node size is amended later when superblock is
595 	 * read and the key length is known.
596 	 */
597 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
598 	/*
599 	 * Maximum indexing node size is amended later when superblock is
600 	 * read and the fanout is known.
601 	 */
602 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
603 
604 	/*
605 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
606 	 * about these values.
607 	 */
608 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
609 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
610 
611 	/*
612 	 * Calculate how many bytes would be wasted at the end of LEB if it was
613 	 * fully filled with data nodes of maximum size. This is used in
614 	 * calculations when reporting free space.
615 	 */
616 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
617 
618 	/* Buffer size for bulk-reads */
619 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
620 	if (c->max_bu_buf_len > c->leb_size)
621 		c->max_bu_buf_len = c->leb_size;
622 	return 0;
623 }
624 
625 /**
626  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
627  * @c: UBIFS file-system description object
628  * @lnum: LEB the write-buffer was synchronized to
629  * @free: how many free bytes left in this LEB
630  * @pad: how many bytes were padded
631  *
632  * This is a callback function which is called by the I/O unit when the
633  * write-buffer is synchronized. We need this to correctly maintain space
634  * accounting in bud logical eraseblocks. This function returns zero in case of
635  * success and a negative error code in case of failure.
636  *
637  * This function actually belongs to the journal, but we keep it here because
638  * we want to keep it static.
639  */
640 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
641 {
642 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
643 }
644 
645 /*
646  * init_constants_sb - initialize UBIFS constants.
647  * @c: UBIFS file-system description object
648  *
649  * This is a helper function which initializes various UBIFS constants after
650  * the superblock has been read. It also checks various UBIFS parameters and
651  * makes sure they are all right. Returns zero in case of success and a
652  * negative error code in case of failure.
653  */
654 static int init_constants_sb(struct ubifs_info *c)
655 {
656 	int tmp, err;
657 	long long tmp64;
658 
659 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
660 	c->max_znode_sz = sizeof(struct ubifs_znode) +
661 				c->fanout * sizeof(struct ubifs_zbranch);
662 
663 	tmp = ubifs_idx_node_sz(c, 1);
664 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
665 	c->min_idx_node_sz = ALIGN(tmp, 8);
666 
667 	tmp = ubifs_idx_node_sz(c, c->fanout);
668 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
669 	c->max_idx_node_sz = ALIGN(tmp, 8);
670 
671 	/* Make sure LEB size is large enough to fit full commit */
672 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
673 	tmp = ALIGN(tmp, c->min_io_size);
674 	if (tmp > c->leb_size) {
675 		ubifs_err(c, "too small LEB size %d, at least %d needed",
676 			  c->leb_size, tmp);
677 		return -EINVAL;
678 	}
679 
680 	/*
681 	 * Make sure that the log is large enough to fit reference nodes for
682 	 * all buds plus one reserved LEB.
683 	 */
684 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
685 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
686 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
687 	tmp /= c->leb_size;
688 	tmp += 1;
689 	if (c->log_lebs < tmp) {
690 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
691 			  c->log_lebs, tmp);
692 		return -EINVAL;
693 	}
694 
695 	/*
696 	 * When budgeting we assume worst-case scenarios when the pages are not
697 	 * be compressed and direntries are of the maximum size.
698 	 *
699 	 * Note, data, which may be stored in inodes is budgeted separately, so
700 	 * it is not included into 'c->bi.inode_budget'.
701 	 */
702 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
703 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
704 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
705 
706 	/*
707 	 * When the amount of flash space used by buds becomes
708 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
709 	 * The writers are unblocked when the commit is finished. To avoid
710 	 * writers to be blocked UBIFS initiates background commit in advance,
711 	 * when number of bud bytes becomes above the limit defined below.
712 	 */
713 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
714 
715 	/*
716 	 * Ensure minimum journal size. All the bytes in the journal heads are
717 	 * considered to be used, when calculating the current journal usage.
718 	 * Consequently, if the journal is too small, UBIFS will treat it as
719 	 * always full.
720 	 */
721 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
722 	if (c->bg_bud_bytes < tmp64)
723 		c->bg_bud_bytes = tmp64;
724 	if (c->max_bud_bytes < tmp64 + c->leb_size)
725 		c->max_bud_bytes = tmp64 + c->leb_size;
726 
727 	err = ubifs_calc_lpt_geom(c);
728 	if (err)
729 		return err;
730 
731 	/* Initialize effective LEB size used in budgeting calculations */
732 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
733 	return 0;
734 }
735 
736 /*
737  * init_constants_master - initialize UBIFS constants.
738  * @c: UBIFS file-system description object
739  *
740  * This is a helper function which initializes various UBIFS constants after
741  * the master node has been read. It also checks various UBIFS parameters and
742  * makes sure they are all right.
743  */
744 static void init_constants_master(struct ubifs_info *c)
745 {
746 	long long tmp64;
747 
748 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
749 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
750 
751 	/*
752 	 * Calculate total amount of FS blocks. This number is not used
753 	 * internally because it does not make much sense for UBIFS, but it is
754 	 * necessary to report something for the 'statfs()' call.
755 	 *
756 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
757 	 * deletions, minimum LEBs for the index, and assume only one journal
758 	 * head is available.
759 	 */
760 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
761 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
762 	tmp64 = ubifs_reported_space(c, tmp64);
763 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
764 }
765 
766 /**
767  * take_gc_lnum - reserve GC LEB.
768  * @c: UBIFS file-system description object
769  *
770  * This function ensures that the LEB reserved for garbage collection is marked
771  * as "taken" in lprops. We also have to set free space to LEB size and dirty
772  * space to zero, because lprops may contain out-of-date information if the
773  * file-system was un-mounted before it has been committed. This function
774  * returns zero in case of success and a negative error code in case of
775  * failure.
776  */
777 static int take_gc_lnum(struct ubifs_info *c)
778 {
779 	int err;
780 
781 	if (c->gc_lnum == -1) {
782 		ubifs_err(c, "no LEB for GC");
783 		return -EINVAL;
784 	}
785 
786 	/* And we have to tell lprops that this LEB is taken */
787 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
788 				  LPROPS_TAKEN, 0, 0);
789 	return err;
790 }
791 
792 /**
793  * alloc_wbufs - allocate write-buffers.
794  * @c: UBIFS file-system description object
795  *
796  * This helper function allocates and initializes UBIFS write-buffers. Returns
797  * zero in case of success and %-ENOMEM in case of failure.
798  */
799 static int alloc_wbufs(struct ubifs_info *c)
800 {
801 	int i, err;
802 
803 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
804 			    GFP_KERNEL);
805 	if (!c->jheads)
806 		return -ENOMEM;
807 
808 	/* Initialize journal heads */
809 	for (i = 0; i < c->jhead_cnt; i++) {
810 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
811 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
812 		if (err)
813 			return err;
814 
815 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
816 		c->jheads[i].wbuf.jhead = i;
817 		c->jheads[i].grouped = 1;
818 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
819 		if (IS_ERR(c->jheads[i].log_hash))
820 			goto out;
821 	}
822 
823 	/*
824 	 * Garbage Collector head does not need to be synchronized by timer.
825 	 * Also GC head nodes are not grouped.
826 	 */
827 	c->jheads[GCHD].wbuf.no_timer = 1;
828 	c->jheads[GCHD].grouped = 0;
829 
830 	return 0;
831 
832 out:
833 	while (i--)
834 		kfree(c->jheads[i].log_hash);
835 
836 	return err;
837 }
838 
839 /**
840  * free_wbufs - free write-buffers.
841  * @c: UBIFS file-system description object
842  */
843 static void free_wbufs(struct ubifs_info *c)
844 {
845 	int i;
846 
847 	if (c->jheads) {
848 		for (i = 0; i < c->jhead_cnt; i++) {
849 			kfree(c->jheads[i].wbuf.buf);
850 			kfree(c->jheads[i].wbuf.inodes);
851 			kfree(c->jheads[i].log_hash);
852 		}
853 		kfree(c->jheads);
854 		c->jheads = NULL;
855 	}
856 }
857 
858 /**
859  * free_orphans - free orphans.
860  * @c: UBIFS file-system description object
861  */
862 static void free_orphans(struct ubifs_info *c)
863 {
864 	struct ubifs_orphan *orph;
865 
866 	while (c->orph_dnext) {
867 		orph = c->orph_dnext;
868 		c->orph_dnext = orph->dnext;
869 		list_del(&orph->list);
870 		kfree(orph);
871 	}
872 
873 	while (!list_empty(&c->orph_list)) {
874 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
875 		list_del(&orph->list);
876 		kfree(orph);
877 		ubifs_err(c, "orphan list not empty at unmount");
878 	}
879 
880 	vfree(c->orph_buf);
881 	c->orph_buf = NULL;
882 }
883 
884 /**
885  * free_buds - free per-bud objects.
886  * @c: UBIFS file-system description object
887  */
888 static void free_buds(struct ubifs_info *c)
889 {
890 	struct ubifs_bud *bud, *n;
891 
892 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
893 		kfree(bud);
894 }
895 
896 /**
897  * check_volume_empty - check if the UBI volume is empty.
898  * @c: UBIFS file-system description object
899  *
900  * This function checks if the UBIFS volume is empty by looking if its LEBs are
901  * mapped or not. The result of checking is stored in the @c->empty variable.
902  * Returns zero in case of success and a negative error code in case of
903  * failure.
904  */
905 static int check_volume_empty(struct ubifs_info *c)
906 {
907 	int lnum, err;
908 
909 	c->empty = 1;
910 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
911 		err = ubifs_is_mapped(c, lnum);
912 		if (unlikely(err < 0))
913 			return err;
914 		if (err == 1) {
915 			c->empty = 0;
916 			break;
917 		}
918 
919 		cond_resched();
920 	}
921 
922 	return 0;
923 }
924 
925 /*
926  * UBIFS mount options.
927  *
928  * Opt_fast_unmount: do not run a journal commit before un-mounting
929  * Opt_norm_unmount: run a journal commit before un-mounting
930  * Opt_bulk_read: enable bulk-reads
931  * Opt_no_bulk_read: disable bulk-reads
932  * Opt_chk_data_crc: check CRCs when reading data nodes
933  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
934  * Opt_override_compr: override default compressor
935  * Opt_assert: set ubifs_assert() action
936  * Opt_auth_key: The key name used for authentication
937  * Opt_auth_hash_name: The hash type used for authentication
938  * Opt_err: just end of array marker
939  */
940 enum {
941 	Opt_fast_unmount,
942 	Opt_norm_unmount,
943 	Opt_bulk_read,
944 	Opt_no_bulk_read,
945 	Opt_chk_data_crc,
946 	Opt_no_chk_data_crc,
947 	Opt_override_compr,
948 	Opt_assert,
949 	Opt_auth_key,
950 	Opt_auth_hash_name,
951 	Opt_ignore,
952 	Opt_err,
953 };
954 
955 static const match_table_t tokens = {
956 	{Opt_fast_unmount, "fast_unmount"},
957 	{Opt_norm_unmount, "norm_unmount"},
958 	{Opt_bulk_read, "bulk_read"},
959 	{Opt_no_bulk_read, "no_bulk_read"},
960 	{Opt_chk_data_crc, "chk_data_crc"},
961 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
962 	{Opt_override_compr, "compr=%s"},
963 	{Opt_auth_key, "auth_key=%s"},
964 	{Opt_auth_hash_name, "auth_hash_name=%s"},
965 	{Opt_ignore, "ubi=%s"},
966 	{Opt_ignore, "vol=%s"},
967 	{Opt_assert, "assert=%s"},
968 	{Opt_err, NULL},
969 };
970 
971 /**
972  * parse_standard_option - parse a standard mount option.
973  * @option: the option to parse
974  *
975  * Normally, standard mount options like "sync" are passed to file-systems as
976  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
977  * be present in the options string. This function tries to deal with this
978  * situation and parse standard options. Returns 0 if the option was not
979  * recognized, and the corresponding integer flag if it was.
980  *
981  * UBIFS is only interested in the "sync" option, so do not check for anything
982  * else.
983  */
984 static int parse_standard_option(const char *option)
985 {
986 
987 	pr_notice("UBIFS: parse %s\n", option);
988 	if (!strcmp(option, "sync"))
989 		return SB_SYNCHRONOUS;
990 	return 0;
991 }
992 
993 /**
994  * ubifs_parse_options - parse mount parameters.
995  * @c: UBIFS file-system description object
996  * @options: parameters to parse
997  * @is_remount: non-zero if this is FS re-mount
998  *
999  * This function parses UBIFS mount options and returns zero in case success
1000  * and a negative error code in case of failure.
1001  */
1002 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1003 			       int is_remount)
1004 {
1005 	char *p;
1006 	substring_t args[MAX_OPT_ARGS];
1007 
1008 	if (!options)
1009 		return 0;
1010 
1011 	while ((p = strsep(&options, ","))) {
1012 		int token;
1013 
1014 		if (!*p)
1015 			continue;
1016 
1017 		token = match_token(p, tokens, args);
1018 		switch (token) {
1019 		/*
1020 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1021 		 * We accept them in order to be backward-compatible. But this
1022 		 * should be removed at some point.
1023 		 */
1024 		case Opt_fast_unmount:
1025 			c->mount_opts.unmount_mode = 2;
1026 			break;
1027 		case Opt_norm_unmount:
1028 			c->mount_opts.unmount_mode = 1;
1029 			break;
1030 		case Opt_bulk_read:
1031 			c->mount_opts.bulk_read = 2;
1032 			c->bulk_read = 1;
1033 			break;
1034 		case Opt_no_bulk_read:
1035 			c->mount_opts.bulk_read = 1;
1036 			c->bulk_read = 0;
1037 			break;
1038 		case Opt_chk_data_crc:
1039 			c->mount_opts.chk_data_crc = 2;
1040 			c->no_chk_data_crc = 0;
1041 			break;
1042 		case Opt_no_chk_data_crc:
1043 			c->mount_opts.chk_data_crc = 1;
1044 			c->no_chk_data_crc = 1;
1045 			break;
1046 		case Opt_override_compr:
1047 		{
1048 			char *name = match_strdup(&args[0]);
1049 
1050 			if (!name)
1051 				return -ENOMEM;
1052 			if (!strcmp(name, "none"))
1053 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1054 			else if (!strcmp(name, "lzo"))
1055 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1056 			else if (!strcmp(name, "zlib"))
1057 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1058 			else {
1059 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1060 				kfree(name);
1061 				return -EINVAL;
1062 			}
1063 			kfree(name);
1064 			c->mount_opts.override_compr = 1;
1065 			c->default_compr = c->mount_opts.compr_type;
1066 			break;
1067 		}
1068 		case Opt_assert:
1069 		{
1070 			char *act = match_strdup(&args[0]);
1071 
1072 			if (!act)
1073 				return -ENOMEM;
1074 			if (!strcmp(act, "report"))
1075 				c->assert_action = ASSACT_REPORT;
1076 			else if (!strcmp(act, "read-only"))
1077 				c->assert_action = ASSACT_RO;
1078 			else if (!strcmp(act, "panic"))
1079 				c->assert_action = ASSACT_PANIC;
1080 			else {
1081 				ubifs_err(c, "unknown assert action \"%s\"", act);
1082 				kfree(act);
1083 				return -EINVAL;
1084 			}
1085 			kfree(act);
1086 			break;
1087 		}
1088 		case Opt_auth_key:
1089 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1090 			if (!c->auth_key_name)
1091 				return -ENOMEM;
1092 			break;
1093 		case Opt_auth_hash_name:
1094 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1095 			if (!c->auth_hash_name)
1096 				return -ENOMEM;
1097 			break;
1098 		case Opt_ignore:
1099 			break;
1100 		default:
1101 		{
1102 			unsigned long flag;
1103 			struct super_block *sb = c->vfs_sb;
1104 
1105 			flag = parse_standard_option(p);
1106 			if (!flag) {
1107 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1108 					  p);
1109 				return -EINVAL;
1110 			}
1111 			sb->s_flags |= flag;
1112 			break;
1113 		}
1114 		}
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * destroy_journal - destroy journal data structures.
1122  * @c: UBIFS file-system description object
1123  *
1124  * This function destroys journal data structures including those that may have
1125  * been created by recovery functions.
1126  */
1127 static void destroy_journal(struct ubifs_info *c)
1128 {
1129 	while (!list_empty(&c->unclean_leb_list)) {
1130 		struct ubifs_unclean_leb *ucleb;
1131 
1132 		ucleb = list_entry(c->unclean_leb_list.next,
1133 				   struct ubifs_unclean_leb, list);
1134 		list_del(&ucleb->list);
1135 		kfree(ucleb);
1136 	}
1137 	while (!list_empty(&c->old_buds)) {
1138 		struct ubifs_bud *bud;
1139 
1140 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1141 		list_del(&bud->list);
1142 		kfree(bud);
1143 	}
1144 	ubifs_destroy_idx_gc(c);
1145 	ubifs_destroy_size_tree(c);
1146 	ubifs_tnc_close(c);
1147 	free_buds(c);
1148 }
1149 
1150 /**
1151  * bu_init - initialize bulk-read information.
1152  * @c: UBIFS file-system description object
1153  */
1154 static void bu_init(struct ubifs_info *c)
1155 {
1156 	ubifs_assert(c, c->bulk_read == 1);
1157 
1158 	if (c->bu.buf)
1159 		return; /* Already initialized */
1160 
1161 again:
1162 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1163 	if (!c->bu.buf) {
1164 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1165 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1166 			goto again;
1167 		}
1168 
1169 		/* Just disable bulk-read */
1170 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1171 			   c->max_bu_buf_len);
1172 		c->mount_opts.bulk_read = 1;
1173 		c->bulk_read = 0;
1174 		return;
1175 	}
1176 }
1177 
1178 /**
1179  * check_free_space - check if there is enough free space to mount.
1180  * @c: UBIFS file-system description object
1181  *
1182  * This function makes sure UBIFS has enough free space to be mounted in
1183  * read/write mode. UBIFS must always have some free space to allow deletions.
1184  */
1185 static int check_free_space(struct ubifs_info *c)
1186 {
1187 	ubifs_assert(c, c->dark_wm > 0);
1188 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1189 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1190 		ubifs_dump_budg(c, &c->bi);
1191 		ubifs_dump_lprops(c);
1192 		return -ENOSPC;
1193 	}
1194 	return 0;
1195 }
1196 
1197 /**
1198  * mount_ubifs - mount UBIFS file-system.
1199  * @c: UBIFS file-system description object
1200  *
1201  * This function mounts UBIFS file system. Returns zero in case of success and
1202  * a negative error code in case of failure.
1203  */
1204 static int mount_ubifs(struct ubifs_info *c)
1205 {
1206 	int err;
1207 	long long x, y;
1208 	size_t sz;
1209 
1210 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1211 	/* Suppress error messages while probing if SB_SILENT is set */
1212 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1213 
1214 	err = init_constants_early(c);
1215 	if (err)
1216 		return err;
1217 
1218 	err = ubifs_debugging_init(c);
1219 	if (err)
1220 		return err;
1221 
1222 	err = check_volume_empty(c);
1223 	if (err)
1224 		goto out_free;
1225 
1226 	if (c->empty && (c->ro_mount || c->ro_media)) {
1227 		/*
1228 		 * This UBI volume is empty, and read-only, or the file system
1229 		 * is mounted read-only - we cannot format it.
1230 		 */
1231 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1232 			  c->ro_media ? "UBI volume" : "mount");
1233 		err = -EROFS;
1234 		goto out_free;
1235 	}
1236 
1237 	if (c->ro_media && !c->ro_mount) {
1238 		ubifs_err(c, "cannot mount read-write - read-only media");
1239 		err = -EROFS;
1240 		goto out_free;
1241 	}
1242 
1243 	/*
1244 	 * The requirement for the buffer is that it should fit indexing B-tree
1245 	 * height amount of integers. We assume the height if the TNC tree will
1246 	 * never exceed 64.
1247 	 */
1248 	err = -ENOMEM;
1249 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1250 					 GFP_KERNEL);
1251 	if (!c->bottom_up_buf)
1252 		goto out_free;
1253 
1254 	c->sbuf = vmalloc(c->leb_size);
1255 	if (!c->sbuf)
1256 		goto out_free;
1257 
1258 	if (!c->ro_mount) {
1259 		c->ileb_buf = vmalloc(c->leb_size);
1260 		if (!c->ileb_buf)
1261 			goto out_free;
1262 	}
1263 
1264 	if (c->bulk_read == 1)
1265 		bu_init(c);
1266 
1267 	if (!c->ro_mount) {
1268 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1269 					       UBIFS_CIPHER_BLOCK_SIZE,
1270 					       GFP_KERNEL);
1271 		if (!c->write_reserve_buf)
1272 			goto out_free;
1273 	}
1274 
1275 	c->mounting = 1;
1276 
1277 	if (c->auth_key_name) {
1278 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1279 			err = ubifs_init_authentication(c);
1280 			if (err)
1281 				goto out_free;
1282 		} else {
1283 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1284 				  " authentication support");
1285 			err = -EINVAL;
1286 			goto out_free;
1287 		}
1288 	}
1289 
1290 	err = ubifs_read_superblock(c);
1291 	if (err)
1292 		goto out_free;
1293 
1294 	c->probing = 0;
1295 
1296 	/*
1297 	 * Make sure the compressor which is set as default in the superblock
1298 	 * or overridden by mount options is actually compiled in.
1299 	 */
1300 	if (!ubifs_compr_present(c, c->default_compr)) {
1301 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1302 			  ubifs_compr_name(c, c->default_compr));
1303 		err = -ENOTSUPP;
1304 		goto out_free;
1305 	}
1306 
1307 	err = init_constants_sb(c);
1308 	if (err)
1309 		goto out_free;
1310 
1311 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1312 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1313 	c->cbuf = kmalloc(sz, GFP_NOFS);
1314 	if (!c->cbuf) {
1315 		err = -ENOMEM;
1316 		goto out_free;
1317 	}
1318 
1319 	err = alloc_wbufs(c);
1320 	if (err)
1321 		goto out_cbuf;
1322 
1323 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1324 	if (!c->ro_mount) {
1325 		/* Create background thread */
1326 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1327 		if (IS_ERR(c->bgt)) {
1328 			err = PTR_ERR(c->bgt);
1329 			c->bgt = NULL;
1330 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1331 				  c->bgt_name, err);
1332 			goto out_wbufs;
1333 		}
1334 		wake_up_process(c->bgt);
1335 	}
1336 
1337 	err = ubifs_read_master(c);
1338 	if (err)
1339 		goto out_master;
1340 
1341 	init_constants_master(c);
1342 
1343 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1344 		ubifs_msg(c, "recovery needed");
1345 		c->need_recovery = 1;
1346 	}
1347 
1348 	if (c->need_recovery && !c->ro_mount) {
1349 		err = ubifs_recover_inl_heads(c, c->sbuf);
1350 		if (err)
1351 			goto out_master;
1352 	}
1353 
1354 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1355 	if (err)
1356 		goto out_master;
1357 
1358 	if (!c->ro_mount && c->space_fixup) {
1359 		err = ubifs_fixup_free_space(c);
1360 		if (err)
1361 			goto out_lpt;
1362 	}
1363 
1364 	if (!c->ro_mount && !c->need_recovery) {
1365 		/*
1366 		 * Set the "dirty" flag so that if we reboot uncleanly we
1367 		 * will notice this immediately on the next mount.
1368 		 */
1369 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1370 		err = ubifs_write_master(c);
1371 		if (err)
1372 			goto out_lpt;
1373 	}
1374 
1375 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1376 	if (err)
1377 		goto out_lpt;
1378 
1379 	err = ubifs_replay_journal(c);
1380 	if (err)
1381 		goto out_journal;
1382 
1383 	/* Calculate 'min_idx_lebs' after journal replay */
1384 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1385 
1386 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1387 	if (err)
1388 		goto out_orphans;
1389 
1390 	if (!c->ro_mount) {
1391 		int lnum;
1392 
1393 		err = check_free_space(c);
1394 		if (err)
1395 			goto out_orphans;
1396 
1397 		/* Check for enough log space */
1398 		lnum = c->lhead_lnum + 1;
1399 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1400 			lnum = UBIFS_LOG_LNUM;
1401 		if (lnum == c->ltail_lnum) {
1402 			err = ubifs_consolidate_log(c);
1403 			if (err)
1404 				goto out_orphans;
1405 		}
1406 
1407 		if (c->need_recovery) {
1408 			if (!ubifs_authenticated(c)) {
1409 				err = ubifs_recover_size(c, true);
1410 				if (err)
1411 					goto out_orphans;
1412 			}
1413 
1414 			err = ubifs_rcvry_gc_commit(c);
1415 			if (err)
1416 				goto out_orphans;
1417 
1418 			if (ubifs_authenticated(c)) {
1419 				err = ubifs_recover_size(c, false);
1420 				if (err)
1421 					goto out_orphans;
1422 			}
1423 		} else {
1424 			err = take_gc_lnum(c);
1425 			if (err)
1426 				goto out_orphans;
1427 
1428 			/*
1429 			 * GC LEB may contain garbage if there was an unclean
1430 			 * reboot, and it should be un-mapped.
1431 			 */
1432 			err = ubifs_leb_unmap(c, c->gc_lnum);
1433 			if (err)
1434 				goto out_orphans;
1435 		}
1436 
1437 		err = dbg_check_lprops(c);
1438 		if (err)
1439 			goto out_orphans;
1440 	} else if (c->need_recovery) {
1441 		err = ubifs_recover_size(c, false);
1442 		if (err)
1443 			goto out_orphans;
1444 	} else {
1445 		/*
1446 		 * Even if we mount read-only, we have to set space in GC LEB
1447 		 * to proper value because this affects UBIFS free space
1448 		 * reporting. We do not want to have a situation when
1449 		 * re-mounting from R/O to R/W changes amount of free space.
1450 		 */
1451 		err = take_gc_lnum(c);
1452 		if (err)
1453 			goto out_orphans;
1454 	}
1455 
1456 	spin_lock(&ubifs_infos_lock);
1457 	list_add_tail(&c->infos_list, &ubifs_infos);
1458 	spin_unlock(&ubifs_infos_lock);
1459 
1460 	if (c->need_recovery) {
1461 		if (c->ro_mount)
1462 			ubifs_msg(c, "recovery deferred");
1463 		else {
1464 			c->need_recovery = 0;
1465 			ubifs_msg(c, "recovery completed");
1466 			/*
1467 			 * GC LEB has to be empty and taken at this point. But
1468 			 * the journal head LEBs may also be accounted as
1469 			 * "empty taken" if they are empty.
1470 			 */
1471 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1472 		}
1473 	} else
1474 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1475 
1476 	err = dbg_check_filesystem(c);
1477 	if (err)
1478 		goto out_infos;
1479 
1480 	err = dbg_debugfs_init_fs(c);
1481 	if (err)
1482 		goto out_infos;
1483 
1484 	c->mounting = 0;
1485 
1486 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1487 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1488 		  c->ro_mount ? ", R/O mode" : "");
1489 	x = (long long)c->main_lebs * c->leb_size;
1490 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1491 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1492 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1493 		  c->max_write_size);
1494 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1495 		  x, x >> 20, c->main_lebs,
1496 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1497 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1498 		  c->report_rp_size, c->report_rp_size >> 10);
1499 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1500 		  c->fmt_version, c->ro_compat_version,
1501 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1502 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1503 
1504 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1505 	dbg_gen("data journal heads:  %d",
1506 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1507 	dbg_gen("log LEBs:            %d (%d - %d)",
1508 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1509 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1510 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1511 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1512 		c->orph_lebs, c->orph_first, c->orph_last);
1513 	dbg_gen("main area LEBs:      %d (%d - %d)",
1514 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1515 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1516 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1517 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1518 		c->bi.old_idx_sz >> 20);
1519 	dbg_gen("key hash type:       %d", c->key_hash_type);
1520 	dbg_gen("tree fanout:         %d", c->fanout);
1521 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1522 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1523 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1524 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1525 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1526 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1527 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1528 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1529 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1530 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1531 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1532 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1533 	dbg_gen("dead watermark:      %d", c->dead_wm);
1534 	dbg_gen("dark watermark:      %d", c->dark_wm);
1535 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1536 	x = (long long)c->main_lebs * c->dark_wm;
1537 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1538 		x, x >> 10, x >> 20);
1539 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1540 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1541 		c->max_bud_bytes >> 20);
1542 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1543 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1544 		c->bg_bud_bytes >> 20);
1545 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1546 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1547 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1548 	dbg_gen("commit number:       %llu", c->cmt_no);
1549 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1550 	dbg_gen("max orphans:           %d", c->max_orphans);
1551 
1552 	return 0;
1553 
1554 out_infos:
1555 	spin_lock(&ubifs_infos_lock);
1556 	list_del(&c->infos_list);
1557 	spin_unlock(&ubifs_infos_lock);
1558 out_orphans:
1559 	free_orphans(c);
1560 out_journal:
1561 	destroy_journal(c);
1562 out_lpt:
1563 	ubifs_lpt_free(c, 0);
1564 out_master:
1565 	kfree(c->mst_node);
1566 	kfree(c->rcvrd_mst_node);
1567 	if (c->bgt)
1568 		kthread_stop(c->bgt);
1569 out_wbufs:
1570 	free_wbufs(c);
1571 out_cbuf:
1572 	kfree(c->cbuf);
1573 out_free:
1574 	kfree(c->write_reserve_buf);
1575 	kfree(c->bu.buf);
1576 	vfree(c->ileb_buf);
1577 	vfree(c->sbuf);
1578 	kfree(c->bottom_up_buf);
1579 	ubifs_debugging_exit(c);
1580 	return err;
1581 }
1582 
1583 /**
1584  * ubifs_umount - un-mount UBIFS file-system.
1585  * @c: UBIFS file-system description object
1586  *
1587  * Note, this function is called to free allocated resourced when un-mounting,
1588  * as well as free resources when an error occurred while we were half way
1589  * through mounting (error path cleanup function). So it has to make sure the
1590  * resource was actually allocated before freeing it.
1591  */
1592 static void ubifs_umount(struct ubifs_info *c)
1593 {
1594 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1595 		c->vi.vol_id);
1596 
1597 	dbg_debugfs_exit_fs(c);
1598 	spin_lock(&ubifs_infos_lock);
1599 	list_del(&c->infos_list);
1600 	spin_unlock(&ubifs_infos_lock);
1601 
1602 	if (c->bgt)
1603 		kthread_stop(c->bgt);
1604 
1605 	destroy_journal(c);
1606 	free_wbufs(c);
1607 	free_orphans(c);
1608 	ubifs_lpt_free(c, 0);
1609 	ubifs_exit_authentication(c);
1610 
1611 	kfree(c->auth_key_name);
1612 	kfree(c->auth_hash_name);
1613 	kfree(c->cbuf);
1614 	kfree(c->rcvrd_mst_node);
1615 	kfree(c->mst_node);
1616 	kfree(c->write_reserve_buf);
1617 	kfree(c->bu.buf);
1618 	vfree(c->ileb_buf);
1619 	vfree(c->sbuf);
1620 	kfree(c->bottom_up_buf);
1621 	ubifs_debugging_exit(c);
1622 }
1623 
1624 /**
1625  * ubifs_remount_rw - re-mount in read-write mode.
1626  * @c: UBIFS file-system description object
1627  *
1628  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1629  * mode. This function allocates the needed resources and re-mounts UBIFS in
1630  * read-write mode.
1631  */
1632 static int ubifs_remount_rw(struct ubifs_info *c)
1633 {
1634 	int err, lnum;
1635 
1636 	if (c->rw_incompat) {
1637 		ubifs_err(c, "the file-system is not R/W-compatible");
1638 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1639 			  c->fmt_version, c->ro_compat_version,
1640 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1641 		return -EROFS;
1642 	}
1643 
1644 	mutex_lock(&c->umount_mutex);
1645 	dbg_save_space_info(c);
1646 	c->remounting_rw = 1;
1647 	c->ro_mount = 0;
1648 
1649 	if (c->space_fixup) {
1650 		err = ubifs_fixup_free_space(c);
1651 		if (err)
1652 			goto out;
1653 	}
1654 
1655 	err = check_free_space(c);
1656 	if (err)
1657 		goto out;
1658 
1659 	if (c->old_leb_cnt != c->leb_cnt) {
1660 		struct ubifs_sb_node *sup = c->sup_node;
1661 
1662 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1663 		err = ubifs_write_sb_node(c, sup);
1664 		if (err)
1665 			goto out;
1666 	}
1667 
1668 	if (c->need_recovery) {
1669 		ubifs_msg(c, "completing deferred recovery");
1670 		err = ubifs_write_rcvrd_mst_node(c);
1671 		if (err)
1672 			goto out;
1673 		if (!ubifs_authenticated(c)) {
1674 			err = ubifs_recover_size(c, true);
1675 			if (err)
1676 				goto out;
1677 		}
1678 		err = ubifs_clean_lebs(c, c->sbuf);
1679 		if (err)
1680 			goto out;
1681 		err = ubifs_recover_inl_heads(c, c->sbuf);
1682 		if (err)
1683 			goto out;
1684 	} else {
1685 		/* A readonly mount is not allowed to have orphans */
1686 		ubifs_assert(c, c->tot_orphans == 0);
1687 		err = ubifs_clear_orphans(c);
1688 		if (err)
1689 			goto out;
1690 	}
1691 
1692 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1693 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1694 		err = ubifs_write_master(c);
1695 		if (err)
1696 			goto out;
1697 	}
1698 
1699 	c->ileb_buf = vmalloc(c->leb_size);
1700 	if (!c->ileb_buf) {
1701 		err = -ENOMEM;
1702 		goto out;
1703 	}
1704 
1705 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1706 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1707 	if (!c->write_reserve_buf) {
1708 		err = -ENOMEM;
1709 		goto out;
1710 	}
1711 
1712 	err = ubifs_lpt_init(c, 0, 1);
1713 	if (err)
1714 		goto out;
1715 
1716 	/* Create background thread */
1717 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1718 	if (IS_ERR(c->bgt)) {
1719 		err = PTR_ERR(c->bgt);
1720 		c->bgt = NULL;
1721 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1722 			  c->bgt_name, err);
1723 		goto out;
1724 	}
1725 	wake_up_process(c->bgt);
1726 
1727 	c->orph_buf = vmalloc(c->leb_size);
1728 	if (!c->orph_buf) {
1729 		err = -ENOMEM;
1730 		goto out;
1731 	}
1732 
1733 	/* Check for enough log space */
1734 	lnum = c->lhead_lnum + 1;
1735 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1736 		lnum = UBIFS_LOG_LNUM;
1737 	if (lnum == c->ltail_lnum) {
1738 		err = ubifs_consolidate_log(c);
1739 		if (err)
1740 			goto out;
1741 	}
1742 
1743 	if (c->need_recovery) {
1744 		err = ubifs_rcvry_gc_commit(c);
1745 		if (err)
1746 			goto out;
1747 
1748 		if (ubifs_authenticated(c)) {
1749 			err = ubifs_recover_size(c, false);
1750 			if (err)
1751 				goto out;
1752 		}
1753 	} else {
1754 		err = ubifs_leb_unmap(c, c->gc_lnum);
1755 	}
1756 	if (err)
1757 		goto out;
1758 
1759 	dbg_gen("re-mounted read-write");
1760 	c->remounting_rw = 0;
1761 
1762 	if (c->need_recovery) {
1763 		c->need_recovery = 0;
1764 		ubifs_msg(c, "deferred recovery completed");
1765 	} else {
1766 		/*
1767 		 * Do not run the debugging space check if the were doing
1768 		 * recovery, because when we saved the information we had the
1769 		 * file-system in a state where the TNC and lprops has been
1770 		 * modified in memory, but all the I/O operations (including a
1771 		 * commit) were deferred. So the file-system was in
1772 		 * "non-committed" state. Now the file-system is in committed
1773 		 * state, and of course the amount of free space will change
1774 		 * because, for example, the old index size was imprecise.
1775 		 */
1776 		err = dbg_check_space_info(c);
1777 	}
1778 
1779 	mutex_unlock(&c->umount_mutex);
1780 	return err;
1781 
1782 out:
1783 	c->ro_mount = 1;
1784 	vfree(c->orph_buf);
1785 	c->orph_buf = NULL;
1786 	if (c->bgt) {
1787 		kthread_stop(c->bgt);
1788 		c->bgt = NULL;
1789 	}
1790 	free_wbufs(c);
1791 	kfree(c->write_reserve_buf);
1792 	c->write_reserve_buf = NULL;
1793 	vfree(c->ileb_buf);
1794 	c->ileb_buf = NULL;
1795 	ubifs_lpt_free(c, 1);
1796 	c->remounting_rw = 0;
1797 	mutex_unlock(&c->umount_mutex);
1798 	return err;
1799 }
1800 
1801 /**
1802  * ubifs_remount_ro - re-mount in read-only mode.
1803  * @c: UBIFS file-system description object
1804  *
1805  * We assume VFS has stopped writing. Possibly the background thread could be
1806  * running a commit, however kthread_stop will wait in that case.
1807  */
1808 static void ubifs_remount_ro(struct ubifs_info *c)
1809 {
1810 	int i, err;
1811 
1812 	ubifs_assert(c, !c->need_recovery);
1813 	ubifs_assert(c, !c->ro_mount);
1814 
1815 	mutex_lock(&c->umount_mutex);
1816 	if (c->bgt) {
1817 		kthread_stop(c->bgt);
1818 		c->bgt = NULL;
1819 	}
1820 
1821 	dbg_save_space_info(c);
1822 
1823 	for (i = 0; i < c->jhead_cnt; i++) {
1824 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1825 		if (err)
1826 			ubifs_ro_mode(c, err);
1827 	}
1828 
1829 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1830 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1831 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1832 	err = ubifs_write_master(c);
1833 	if (err)
1834 		ubifs_ro_mode(c, err);
1835 
1836 	vfree(c->orph_buf);
1837 	c->orph_buf = NULL;
1838 	kfree(c->write_reserve_buf);
1839 	c->write_reserve_buf = NULL;
1840 	vfree(c->ileb_buf);
1841 	c->ileb_buf = NULL;
1842 	ubifs_lpt_free(c, 1);
1843 	c->ro_mount = 1;
1844 	err = dbg_check_space_info(c);
1845 	if (err)
1846 		ubifs_ro_mode(c, err);
1847 	mutex_unlock(&c->umount_mutex);
1848 }
1849 
1850 static void ubifs_put_super(struct super_block *sb)
1851 {
1852 	int i;
1853 	struct ubifs_info *c = sb->s_fs_info;
1854 
1855 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1856 
1857 	/*
1858 	 * The following asserts are only valid if there has not been a failure
1859 	 * of the media. For example, there will be dirty inodes if we failed
1860 	 * to write them back because of I/O errors.
1861 	 */
1862 	if (!c->ro_error) {
1863 		ubifs_assert(c, c->bi.idx_growth == 0);
1864 		ubifs_assert(c, c->bi.dd_growth == 0);
1865 		ubifs_assert(c, c->bi.data_growth == 0);
1866 	}
1867 
1868 	/*
1869 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1870 	 * and file system un-mount. Namely, it prevents the shrinker from
1871 	 * picking this superblock for shrinking - it will be just skipped if
1872 	 * the mutex is locked.
1873 	 */
1874 	mutex_lock(&c->umount_mutex);
1875 	if (!c->ro_mount) {
1876 		/*
1877 		 * First of all kill the background thread to make sure it does
1878 		 * not interfere with un-mounting and freeing resources.
1879 		 */
1880 		if (c->bgt) {
1881 			kthread_stop(c->bgt);
1882 			c->bgt = NULL;
1883 		}
1884 
1885 		/*
1886 		 * On fatal errors c->ro_error is set to 1, in which case we do
1887 		 * not write the master node.
1888 		 */
1889 		if (!c->ro_error) {
1890 			int err;
1891 
1892 			/* Synchronize write-buffers */
1893 			for (i = 0; i < c->jhead_cnt; i++) {
1894 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1895 				if (err)
1896 					ubifs_ro_mode(c, err);
1897 			}
1898 
1899 			/*
1900 			 * We are being cleanly unmounted which means the
1901 			 * orphans were killed - indicate this in the master
1902 			 * node. Also save the reserved GC LEB number.
1903 			 */
1904 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1905 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1906 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1907 			err = ubifs_write_master(c);
1908 			if (err)
1909 				/*
1910 				 * Recovery will attempt to fix the master area
1911 				 * next mount, so we just print a message and
1912 				 * continue to unmount normally.
1913 				 */
1914 				ubifs_err(c, "failed to write master node, error %d",
1915 					  err);
1916 		} else {
1917 			for (i = 0; i < c->jhead_cnt; i++)
1918 				/* Make sure write-buffer timers are canceled */
1919 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1920 		}
1921 	}
1922 
1923 	ubifs_umount(c);
1924 	ubi_close_volume(c->ubi);
1925 	mutex_unlock(&c->umount_mutex);
1926 }
1927 
1928 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1929 {
1930 	int err;
1931 	struct ubifs_info *c = sb->s_fs_info;
1932 
1933 	sync_filesystem(sb);
1934 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1935 
1936 	err = ubifs_parse_options(c, data, 1);
1937 	if (err) {
1938 		ubifs_err(c, "invalid or unknown remount parameter");
1939 		return err;
1940 	}
1941 
1942 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1943 		if (c->ro_error) {
1944 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1945 			return -EROFS;
1946 		}
1947 		if (c->ro_media) {
1948 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1949 			return -EROFS;
1950 		}
1951 		err = ubifs_remount_rw(c);
1952 		if (err)
1953 			return err;
1954 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1955 		if (c->ro_error) {
1956 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1957 			return -EROFS;
1958 		}
1959 		ubifs_remount_ro(c);
1960 	}
1961 
1962 	if (c->bulk_read == 1)
1963 		bu_init(c);
1964 	else {
1965 		dbg_gen("disable bulk-read");
1966 		mutex_lock(&c->bu_mutex);
1967 		kfree(c->bu.buf);
1968 		c->bu.buf = NULL;
1969 		mutex_unlock(&c->bu_mutex);
1970 	}
1971 
1972 	if (!c->need_recovery)
1973 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1974 
1975 	return 0;
1976 }
1977 
1978 const struct super_operations ubifs_super_operations = {
1979 	.alloc_inode   = ubifs_alloc_inode,
1980 	.free_inode    = ubifs_free_inode,
1981 	.put_super     = ubifs_put_super,
1982 	.write_inode   = ubifs_write_inode,
1983 	.evict_inode   = ubifs_evict_inode,
1984 	.statfs        = ubifs_statfs,
1985 	.dirty_inode   = ubifs_dirty_inode,
1986 	.remount_fs    = ubifs_remount_fs,
1987 	.show_options  = ubifs_show_options,
1988 	.sync_fs       = ubifs_sync_fs,
1989 };
1990 
1991 /**
1992  * open_ubi - parse UBI device name string and open the UBI device.
1993  * @name: UBI volume name
1994  * @mode: UBI volume open mode
1995  *
1996  * The primary method of mounting UBIFS is by specifying the UBI volume
1997  * character device node path. However, UBIFS may also be mounted withoug any
1998  * character device node using one of the following methods:
1999  *
2000  * o ubiX_Y    - mount UBI device number X, volume Y;
2001  * o ubiY      - mount UBI device number 0, volume Y;
2002  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2003  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2004  *
2005  * Alternative '!' separator may be used instead of ':' (because some shells
2006  * like busybox may interpret ':' as an NFS host name separator). This function
2007  * returns UBI volume description object in case of success and a negative
2008  * error code in case of failure.
2009  */
2010 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2011 {
2012 	struct ubi_volume_desc *ubi;
2013 	int dev, vol;
2014 	char *endptr;
2015 
2016 	if (!name || !*name)
2017 		return ERR_PTR(-EINVAL);
2018 
2019 	/* First, try to open using the device node path method */
2020 	ubi = ubi_open_volume_path(name, mode);
2021 	if (!IS_ERR(ubi))
2022 		return ubi;
2023 
2024 	/* Try the "nodev" method */
2025 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2026 		return ERR_PTR(-EINVAL);
2027 
2028 	/* ubi:NAME method */
2029 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2030 		return ubi_open_volume_nm(0, name + 4, mode);
2031 
2032 	if (!isdigit(name[3]))
2033 		return ERR_PTR(-EINVAL);
2034 
2035 	dev = simple_strtoul(name + 3, &endptr, 0);
2036 
2037 	/* ubiY method */
2038 	if (*endptr == '\0')
2039 		return ubi_open_volume(0, dev, mode);
2040 
2041 	/* ubiX_Y method */
2042 	if (*endptr == '_' && isdigit(endptr[1])) {
2043 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2044 		if (*endptr != '\0')
2045 			return ERR_PTR(-EINVAL);
2046 		return ubi_open_volume(dev, vol, mode);
2047 	}
2048 
2049 	/* ubiX:NAME method */
2050 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2051 		return ubi_open_volume_nm(dev, ++endptr, mode);
2052 
2053 	return ERR_PTR(-EINVAL);
2054 }
2055 
2056 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2057 {
2058 	struct ubifs_info *c;
2059 
2060 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2061 	if (c) {
2062 		spin_lock_init(&c->cnt_lock);
2063 		spin_lock_init(&c->cs_lock);
2064 		spin_lock_init(&c->buds_lock);
2065 		spin_lock_init(&c->space_lock);
2066 		spin_lock_init(&c->orphan_lock);
2067 		init_rwsem(&c->commit_sem);
2068 		mutex_init(&c->lp_mutex);
2069 		mutex_init(&c->tnc_mutex);
2070 		mutex_init(&c->log_mutex);
2071 		mutex_init(&c->umount_mutex);
2072 		mutex_init(&c->bu_mutex);
2073 		mutex_init(&c->write_reserve_mutex);
2074 		init_waitqueue_head(&c->cmt_wq);
2075 		c->buds = RB_ROOT;
2076 		c->old_idx = RB_ROOT;
2077 		c->size_tree = RB_ROOT;
2078 		c->orph_tree = RB_ROOT;
2079 		INIT_LIST_HEAD(&c->infos_list);
2080 		INIT_LIST_HEAD(&c->idx_gc);
2081 		INIT_LIST_HEAD(&c->replay_list);
2082 		INIT_LIST_HEAD(&c->replay_buds);
2083 		INIT_LIST_HEAD(&c->uncat_list);
2084 		INIT_LIST_HEAD(&c->empty_list);
2085 		INIT_LIST_HEAD(&c->freeable_list);
2086 		INIT_LIST_HEAD(&c->frdi_idx_list);
2087 		INIT_LIST_HEAD(&c->unclean_leb_list);
2088 		INIT_LIST_HEAD(&c->old_buds);
2089 		INIT_LIST_HEAD(&c->orph_list);
2090 		INIT_LIST_HEAD(&c->orph_new);
2091 		c->no_chk_data_crc = 1;
2092 		c->assert_action = ASSACT_RO;
2093 
2094 		c->highest_inum = UBIFS_FIRST_INO;
2095 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2096 
2097 		ubi_get_volume_info(ubi, &c->vi);
2098 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2099 	}
2100 	return c;
2101 }
2102 
2103 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2104 {
2105 	struct ubifs_info *c = sb->s_fs_info;
2106 	struct inode *root;
2107 	int err;
2108 
2109 	c->vfs_sb = sb;
2110 	/* Re-open the UBI device in read-write mode */
2111 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2112 	if (IS_ERR(c->ubi)) {
2113 		err = PTR_ERR(c->ubi);
2114 		goto out;
2115 	}
2116 
2117 	err = ubifs_parse_options(c, data, 0);
2118 	if (err)
2119 		goto out_close;
2120 
2121 	/*
2122 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2123 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2124 	 * which means the user would have to wait not just for their own I/O
2125 	 * but the read-ahead I/O as well i.e. completely pointless.
2126 	 *
2127 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2128 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2129 	 * writeback happening.
2130 	 */
2131 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2132 				   c->vi.vol_id);
2133 	if (err)
2134 		goto out_close;
2135 
2136 	sb->s_fs_info = c;
2137 	sb->s_magic = UBIFS_SUPER_MAGIC;
2138 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2139 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2140 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2141 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2142 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2143 	sb->s_op = &ubifs_super_operations;
2144 #ifdef CONFIG_UBIFS_FS_XATTR
2145 	sb->s_xattr = ubifs_xattr_handlers;
2146 #endif
2147 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2148 
2149 	mutex_lock(&c->umount_mutex);
2150 	err = mount_ubifs(c);
2151 	if (err) {
2152 		ubifs_assert(c, err < 0);
2153 		goto out_unlock;
2154 	}
2155 
2156 	/* Read the root inode */
2157 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2158 	if (IS_ERR(root)) {
2159 		err = PTR_ERR(root);
2160 		goto out_umount;
2161 	}
2162 
2163 	sb->s_root = d_make_root(root);
2164 	if (!sb->s_root) {
2165 		err = -ENOMEM;
2166 		goto out_umount;
2167 	}
2168 
2169 	mutex_unlock(&c->umount_mutex);
2170 	return 0;
2171 
2172 out_umount:
2173 	ubifs_umount(c);
2174 out_unlock:
2175 	mutex_unlock(&c->umount_mutex);
2176 out_close:
2177 	ubi_close_volume(c->ubi);
2178 out:
2179 	return err;
2180 }
2181 
2182 static int sb_test(struct super_block *sb, void *data)
2183 {
2184 	struct ubifs_info *c1 = data;
2185 	struct ubifs_info *c = sb->s_fs_info;
2186 
2187 	return c->vi.cdev == c1->vi.cdev;
2188 }
2189 
2190 static int sb_set(struct super_block *sb, void *data)
2191 {
2192 	sb->s_fs_info = data;
2193 	return set_anon_super(sb, NULL);
2194 }
2195 
2196 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2197 			const char *name, void *data)
2198 {
2199 	struct ubi_volume_desc *ubi;
2200 	struct ubifs_info *c;
2201 	struct super_block *sb;
2202 	int err;
2203 
2204 	dbg_gen("name %s, flags %#x", name, flags);
2205 
2206 	/*
2207 	 * Get UBI device number and volume ID. Mount it read-only so far
2208 	 * because this might be a new mount point, and UBI allows only one
2209 	 * read-write user at a time.
2210 	 */
2211 	ubi = open_ubi(name, UBI_READONLY);
2212 	if (IS_ERR(ubi)) {
2213 		if (!(flags & SB_SILENT))
2214 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2215 			       current->pid, name, (int)PTR_ERR(ubi));
2216 		return ERR_CAST(ubi);
2217 	}
2218 
2219 	c = alloc_ubifs_info(ubi);
2220 	if (!c) {
2221 		err = -ENOMEM;
2222 		goto out_close;
2223 	}
2224 
2225 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2226 
2227 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2228 	if (IS_ERR(sb)) {
2229 		err = PTR_ERR(sb);
2230 		kfree(c);
2231 		goto out_close;
2232 	}
2233 
2234 	if (sb->s_root) {
2235 		struct ubifs_info *c1 = sb->s_fs_info;
2236 		kfree(c);
2237 		/* A new mount point for already mounted UBIFS */
2238 		dbg_gen("this ubi volume is already mounted");
2239 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2240 			err = -EBUSY;
2241 			goto out_deact;
2242 		}
2243 	} else {
2244 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2245 		if (err)
2246 			goto out_deact;
2247 		/* We do not support atime */
2248 		sb->s_flags |= SB_ACTIVE;
2249 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2250 			ubifs_msg(c, "full atime support is enabled.");
2251 		else
2252 			sb->s_flags |= SB_NOATIME;
2253 	}
2254 
2255 	/* 'fill_super()' opens ubi again so we must close it here */
2256 	ubi_close_volume(ubi);
2257 
2258 	return dget(sb->s_root);
2259 
2260 out_deact:
2261 	deactivate_locked_super(sb);
2262 out_close:
2263 	ubi_close_volume(ubi);
2264 	return ERR_PTR(err);
2265 }
2266 
2267 static void kill_ubifs_super(struct super_block *s)
2268 {
2269 	struct ubifs_info *c = s->s_fs_info;
2270 	kill_anon_super(s);
2271 	kfree(c);
2272 }
2273 
2274 static struct file_system_type ubifs_fs_type = {
2275 	.name    = "ubifs",
2276 	.owner   = THIS_MODULE,
2277 	.mount   = ubifs_mount,
2278 	.kill_sb = kill_ubifs_super,
2279 };
2280 MODULE_ALIAS_FS("ubifs");
2281 
2282 /*
2283  * Inode slab cache constructor.
2284  */
2285 static void inode_slab_ctor(void *obj)
2286 {
2287 	struct ubifs_inode *ui = obj;
2288 	inode_init_once(&ui->vfs_inode);
2289 }
2290 
2291 static int __init ubifs_init(void)
2292 {
2293 	int err;
2294 
2295 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2296 
2297 	/* Make sure node sizes are 8-byte aligned */
2298 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2299 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2300 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2301 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2302 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2303 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2304 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2305 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2306 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2307 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2308 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2309 
2310 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2311 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2312 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2313 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2314 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2315 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2316 
2317 	/* Check min. node size */
2318 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2319 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2320 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2321 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2322 
2323 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2324 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2325 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2326 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2327 
2328 	/* Defined node sizes */
2329 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2330 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2331 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2332 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2333 
2334 	/*
2335 	 * We use 2 bit wide bit-fields to store compression type, which should
2336 	 * be amended if more compressors are added. The bit-fields are:
2337 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2338 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2339 	 */
2340 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2341 
2342 	/*
2343 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2344 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2345 	 */
2346 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2347 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2348 		       current->pid, (unsigned int)PAGE_SIZE);
2349 		return -EINVAL;
2350 	}
2351 
2352 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2353 				sizeof(struct ubifs_inode), 0,
2354 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2355 				SLAB_ACCOUNT, &inode_slab_ctor);
2356 	if (!ubifs_inode_slab)
2357 		return -ENOMEM;
2358 
2359 	err = register_shrinker(&ubifs_shrinker_info);
2360 	if (err)
2361 		goto out_slab;
2362 
2363 	err = ubifs_compressors_init();
2364 	if (err)
2365 		goto out_shrinker;
2366 
2367 	err = dbg_debugfs_init();
2368 	if (err)
2369 		goto out_compr;
2370 
2371 	err = register_filesystem(&ubifs_fs_type);
2372 	if (err) {
2373 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2374 		       current->pid, err);
2375 		goto out_dbg;
2376 	}
2377 	return 0;
2378 
2379 out_dbg:
2380 	dbg_debugfs_exit();
2381 out_compr:
2382 	ubifs_compressors_exit();
2383 out_shrinker:
2384 	unregister_shrinker(&ubifs_shrinker_info);
2385 out_slab:
2386 	kmem_cache_destroy(ubifs_inode_slab);
2387 	return err;
2388 }
2389 /* late_initcall to let compressors initialize first */
2390 late_initcall(ubifs_init);
2391 
2392 static void __exit ubifs_exit(void)
2393 {
2394 	WARN_ON(!list_empty(&ubifs_infos));
2395 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2396 
2397 	dbg_debugfs_exit();
2398 	ubifs_compressors_exit();
2399 	unregister_shrinker(&ubifs_shrinker_info);
2400 
2401 	/*
2402 	 * Make sure all delayed rcu free inodes are flushed before we
2403 	 * destroy cache.
2404 	 */
2405 	rcu_barrier();
2406 	kmem_cache_destroy(ubifs_inode_slab);
2407 	unregister_filesystem(&ubifs_fs_type);
2408 }
2409 module_exit(ubifs_exit);
2410 
2411 MODULE_LICENSE("GPL");
2412 MODULE_VERSION(__stringify(UBIFS_VERSION));
2413 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2414 MODULE_DESCRIPTION("UBIFS - UBI File System");
2415