xref: /openbmc/linux/fs/ubifs/super.c (revision 95e9fd10)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.shrink = ubifs_shrinker,
53 	.seeks = DEFAULT_SEEKS,
54 };
55 
56 /**
57  * validate_inode - validate inode.
58  * @c: UBIFS file-system description object
59  * @inode: the inode to validate
60  *
61  * This is a helper function for 'ubifs_iget()' which validates various fields
62  * of a newly built inode to make sure they contain sane values and prevent
63  * possible vulnerabilities. Returns zero if the inode is all right and
64  * a non-zero error code if not.
65  */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 	int err;
69 	const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71 	if (inode->i_size > c->max_inode_sz) {
72 		ubifs_err("inode is too large (%lld)",
73 			  (long long)inode->i_size);
74 		return 1;
75 	}
76 
77 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 		ubifs_err("unknown compression type %d", ui->compr_type);
79 		return 2;
80 	}
81 
82 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 		return 3;
84 
85 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 		return 4;
87 
88 	if (ui->xattr && !S_ISREG(inode->i_mode))
89 		return 5;
90 
91 	if (!ubifs_compr_present(ui->compr_type)) {
92 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 			   "compiled in", inode->i_ino,
94 			   ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	set_nlink(inode, le32_to_cpu(ino->nlink));
133 	inode->i_uid   = le32_to_cpu(ino->uid);
134 	inode->i_gid   = le32_to_cpu(ino->gid);
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	/* Disable read-ahead */
160 	inode->i_mapping->backing_dev_info = &c->bdi;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kmem_cache_free(ubifs_inode_slab, ui);
280 }
281 
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289 
290 /*
291  * Note, Linux write-back code calls this without 'i_mutex'.
292  */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	int err = 0;
296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
297 	struct ubifs_inode *ui = ubifs_inode(inode);
298 
299 	ubifs_assert(!ui->xattr);
300 	if (is_bad_inode(inode))
301 		return 0;
302 
303 	mutex_lock(&ui->ui_mutex);
304 	/*
305 	 * Due to races between write-back forced by budgeting
306 	 * (see 'sync_some_inodes()') and background write-back, the inode may
307 	 * have already been synchronized, do not do this again. This might
308 	 * also happen if it was synchronized in an VFS operation, e.g.
309 	 * 'ubifs_link()'.
310 	 */
311 	if (!ui->dirty) {
312 		mutex_unlock(&ui->ui_mutex);
313 		return 0;
314 	}
315 
316 	/*
317 	 * As an optimization, do not write orphan inodes to the media just
318 	 * because this is not needed.
319 	 */
320 	dbg_gen("inode %lu, mode %#x, nlink %u",
321 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 	if (inode->i_nlink) {
323 		err = ubifs_jnl_write_inode(c, inode);
324 		if (err)
325 			ubifs_err("can't write inode %lu, error %d",
326 				  inode->i_ino, err);
327 		else
328 			err = dbg_check_inode_size(c, inode, ui->ui_size);
329 	}
330 
331 	ui->dirty = 0;
332 	mutex_unlock(&ui->ui_mutex);
333 	ubifs_release_dirty_inode_budget(c, ui);
334 	return err;
335 }
336 
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 	int err;
340 	struct ubifs_info *c = inode->i_sb->s_fs_info;
341 	struct ubifs_inode *ui = ubifs_inode(inode);
342 
343 	if (ui->xattr)
344 		/*
345 		 * Extended attribute inode deletions are fully handled in
346 		 * 'ubifs_removexattr()'. These inodes are special and have
347 		 * limited usage, so there is nothing to do here.
348 		 */
349 		goto out;
350 
351 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 	ubifs_assert(!atomic_read(&inode->i_count));
353 
354 	truncate_inode_pages(&inode->i_data, 0);
355 
356 	if (inode->i_nlink)
357 		goto done;
358 
359 	if (is_bad_inode(inode))
360 		goto out;
361 
362 	ui->ui_size = inode->i_size = 0;
363 	err = ubifs_jnl_delete_inode(c, inode);
364 	if (err)
365 		/*
366 		 * Worst case we have a lost orphan inode wasting space, so a
367 		 * simple error message is OK here.
368 		 */
369 		ubifs_err("can't delete inode %lu, error %d",
370 			  inode->i_ino, err);
371 
372 out:
373 	if (ui->dirty)
374 		ubifs_release_dirty_inode_budget(c, ui);
375 	else {
376 		/* We've deleted something - clean the "no space" flags */
377 		c->bi.nospace = c->bi.nospace_rp = 0;
378 		smp_wmb();
379 	}
380 done:
381 	clear_inode(inode);
382 }
383 
384 static void ubifs_dirty_inode(struct inode *inode, int flags)
385 {
386 	struct ubifs_inode *ui = ubifs_inode(inode);
387 
388 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
389 	if (!ui->dirty) {
390 		ui->dirty = 1;
391 		dbg_gen("inode %lu",  inode->i_ino);
392 	}
393 }
394 
395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
396 {
397 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
398 	unsigned long long free;
399 	__le32 *uuid = (__le32 *)c->uuid;
400 
401 	free = ubifs_get_free_space(c);
402 	dbg_gen("free space %lld bytes (%lld blocks)",
403 		free, free >> UBIFS_BLOCK_SHIFT);
404 
405 	buf->f_type = UBIFS_SUPER_MAGIC;
406 	buf->f_bsize = UBIFS_BLOCK_SIZE;
407 	buf->f_blocks = c->block_cnt;
408 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
409 	if (free > c->report_rp_size)
410 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
411 	else
412 		buf->f_bavail = 0;
413 	buf->f_files = 0;
414 	buf->f_ffree = 0;
415 	buf->f_namelen = UBIFS_MAX_NLEN;
416 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
417 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
418 	ubifs_assert(buf->f_bfree <= c->block_cnt);
419 	return 0;
420 }
421 
422 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
423 {
424 	struct ubifs_info *c = root->d_sb->s_fs_info;
425 
426 	if (c->mount_opts.unmount_mode == 2)
427 		seq_printf(s, ",fast_unmount");
428 	else if (c->mount_opts.unmount_mode == 1)
429 		seq_printf(s, ",norm_unmount");
430 
431 	if (c->mount_opts.bulk_read == 2)
432 		seq_printf(s, ",bulk_read");
433 	else if (c->mount_opts.bulk_read == 1)
434 		seq_printf(s, ",no_bulk_read");
435 
436 	if (c->mount_opts.chk_data_crc == 2)
437 		seq_printf(s, ",chk_data_crc");
438 	else if (c->mount_opts.chk_data_crc == 1)
439 		seq_printf(s, ",no_chk_data_crc");
440 
441 	if (c->mount_opts.override_compr) {
442 		seq_printf(s, ",compr=%s",
443 			   ubifs_compr_name(c->mount_opts.compr_type));
444 	}
445 
446 	return 0;
447 }
448 
449 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 {
451 	int i, err;
452 	struct ubifs_info *c = sb->s_fs_info;
453 
454 	/*
455 	 * Zero @wait is just an advisory thing to help the file system shove
456 	 * lots of data into the queues, and there will be the second
457 	 * '->sync_fs()' call, with non-zero @wait.
458 	 */
459 	if (!wait)
460 		return 0;
461 
462 	/*
463 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 	 * do this if it waits for an already running commit.
465 	 */
466 	for (i = 0; i < c->jhead_cnt; i++) {
467 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 		if (err)
469 			return err;
470 	}
471 
472 	/*
473 	 * Strictly speaking, it is not necessary to commit the journal here,
474 	 * synchronizing write-buffers would be enough. But committing makes
475 	 * UBIFS free space predictions much more accurate, so we want to let
476 	 * the user be able to get more accurate results of 'statfs()' after
477 	 * they synchronize the file system.
478 	 */
479 	err = ubifs_run_commit(c);
480 	if (err)
481 		return err;
482 
483 	return ubi_sync(c->vi.ubi_num);
484 }
485 
486 /**
487  * init_constants_early - initialize UBIFS constants.
488  * @c: UBIFS file-system description object
489  *
490  * This function initialize UBIFS constants which do not need the superblock to
491  * be read. It also checks that the UBI volume satisfies basic UBIFS
492  * requirements. Returns zero in case of success and a negative error code in
493  * case of failure.
494  */
495 static int init_constants_early(struct ubifs_info *c)
496 {
497 	if (c->vi.corrupted) {
498 		ubifs_warn("UBI volume is corrupted - read-only mode");
499 		c->ro_media = 1;
500 	}
501 
502 	if (c->di.ro_mode) {
503 		ubifs_msg("read-only UBI device");
504 		c->ro_media = 1;
505 	}
506 
507 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 		ubifs_msg("static UBI volume - read-only mode");
509 		c->ro_media = 1;
510 	}
511 
512 	c->leb_cnt = c->vi.size;
513 	c->leb_size = c->vi.usable_leb_size;
514 	c->leb_start = c->di.leb_start;
515 	c->half_leb_size = c->leb_size / 2;
516 	c->min_io_size = c->di.min_io_size;
517 	c->min_io_shift = fls(c->min_io_size) - 1;
518 	c->max_write_size = c->di.max_write_size;
519 	c->max_write_shift = fls(c->max_write_size) - 1;
520 
521 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
523 			  c->leb_size, UBIFS_MIN_LEB_SZ);
524 		return -EINVAL;
525 	}
526 
527 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 		ubifs_err("too few LEBs (%d), min. is %d",
529 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 		return -EINVAL;
531 	}
532 
533 	if (!is_power_of_2(c->min_io_size)) {
534 		ubifs_err("bad min. I/O size %d", c->min_io_size);
535 		return -EINVAL;
536 	}
537 
538 	/*
539 	 * Maximum write size has to be greater or equivalent to min. I/O
540 	 * size, and be multiple of min. I/O size.
541 	 */
542 	if (c->max_write_size < c->min_io_size ||
543 	    c->max_write_size % c->min_io_size ||
544 	    !is_power_of_2(c->max_write_size)) {
545 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
546 			  c->max_write_size, c->min_io_size);
547 		return -EINVAL;
548 	}
549 
550 	/*
551 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 	 * less than 8.
554 	 */
555 	if (c->min_io_size < 8) {
556 		c->min_io_size = 8;
557 		c->min_io_shift = 3;
558 		if (c->max_write_size < c->min_io_size) {
559 			c->max_write_size = c->min_io_size;
560 			c->max_write_shift = c->min_io_shift;
561 		}
562 	}
563 
564 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566 
567 	/*
568 	 * Initialize node length ranges which are mostly needed for node
569 	 * length validation.
570 	 */
571 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
572 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
573 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
574 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
575 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
577 
578 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
579 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
580 	c->ranges[UBIFS_ORPH_NODE].min_len =
581 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
582 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
583 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
584 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
585 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
586 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
587 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
588 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
589 	/*
590 	 * Minimum indexing node size is amended later when superblock is
591 	 * read and the key length is known.
592 	 */
593 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
594 	/*
595 	 * Maximum indexing node size is amended later when superblock is
596 	 * read and the fanout is known.
597 	 */
598 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
599 
600 	/*
601 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
602 	 * about these values.
603 	 */
604 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
605 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
606 
607 	/*
608 	 * Calculate how many bytes would be wasted at the end of LEB if it was
609 	 * fully filled with data nodes of maximum size. This is used in
610 	 * calculations when reporting free space.
611 	 */
612 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
613 
614 	/* Buffer size for bulk-reads */
615 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
616 	if (c->max_bu_buf_len > c->leb_size)
617 		c->max_bu_buf_len = c->leb_size;
618 	return 0;
619 }
620 
621 /**
622  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
623  * @c: UBIFS file-system description object
624  * @lnum: LEB the write-buffer was synchronized to
625  * @free: how many free bytes left in this LEB
626  * @pad: how many bytes were padded
627  *
628  * This is a callback function which is called by the I/O unit when the
629  * write-buffer is synchronized. We need this to correctly maintain space
630  * accounting in bud logical eraseblocks. This function returns zero in case of
631  * success and a negative error code in case of failure.
632  *
633  * This function actually belongs to the journal, but we keep it here because
634  * we want to keep it static.
635  */
636 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
637 {
638 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
639 }
640 
641 /*
642  * init_constants_sb - initialize UBIFS constants.
643  * @c: UBIFS file-system description object
644  *
645  * This is a helper function which initializes various UBIFS constants after
646  * the superblock has been read. It also checks various UBIFS parameters and
647  * makes sure they are all right. Returns zero in case of success and a
648  * negative error code in case of failure.
649  */
650 static int init_constants_sb(struct ubifs_info *c)
651 {
652 	int tmp, err;
653 	long long tmp64;
654 
655 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
656 	c->max_znode_sz = sizeof(struct ubifs_znode) +
657 				c->fanout * sizeof(struct ubifs_zbranch);
658 
659 	tmp = ubifs_idx_node_sz(c, 1);
660 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
661 	c->min_idx_node_sz = ALIGN(tmp, 8);
662 
663 	tmp = ubifs_idx_node_sz(c, c->fanout);
664 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
665 	c->max_idx_node_sz = ALIGN(tmp, 8);
666 
667 	/* Make sure LEB size is large enough to fit full commit */
668 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
669 	tmp = ALIGN(tmp, c->min_io_size);
670 	if (tmp > c->leb_size) {
671 		ubifs_err("too small LEB size %d, at least %d needed",
672 			  c->leb_size, tmp);
673 		return -EINVAL;
674 	}
675 
676 	/*
677 	 * Make sure that the log is large enough to fit reference nodes for
678 	 * all buds plus one reserved LEB.
679 	 */
680 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
681 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
682 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
683 	tmp /= c->leb_size;
684 	tmp += 1;
685 	if (c->log_lebs < tmp) {
686 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
687 			  c->log_lebs, tmp);
688 		return -EINVAL;
689 	}
690 
691 	/*
692 	 * When budgeting we assume worst-case scenarios when the pages are not
693 	 * be compressed and direntries are of the maximum size.
694 	 *
695 	 * Note, data, which may be stored in inodes is budgeted separately, so
696 	 * it is not included into 'c->bi.inode_budget'.
697 	 */
698 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
699 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
700 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
701 
702 	/*
703 	 * When the amount of flash space used by buds becomes
704 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
705 	 * The writers are unblocked when the commit is finished. To avoid
706 	 * writers to be blocked UBIFS initiates background commit in advance,
707 	 * when number of bud bytes becomes above the limit defined below.
708 	 */
709 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
710 
711 	/*
712 	 * Ensure minimum journal size. All the bytes in the journal heads are
713 	 * considered to be used, when calculating the current journal usage.
714 	 * Consequently, if the journal is too small, UBIFS will treat it as
715 	 * always full.
716 	 */
717 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
718 	if (c->bg_bud_bytes < tmp64)
719 		c->bg_bud_bytes = tmp64;
720 	if (c->max_bud_bytes < tmp64 + c->leb_size)
721 		c->max_bud_bytes = tmp64 + c->leb_size;
722 
723 	err = ubifs_calc_lpt_geom(c);
724 	if (err)
725 		return err;
726 
727 	/* Initialize effective LEB size used in budgeting calculations */
728 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
729 	return 0;
730 }
731 
732 /*
733  * init_constants_master - initialize UBIFS constants.
734  * @c: UBIFS file-system description object
735  *
736  * This is a helper function which initializes various UBIFS constants after
737  * the master node has been read. It also checks various UBIFS parameters and
738  * makes sure they are all right.
739  */
740 static void init_constants_master(struct ubifs_info *c)
741 {
742 	long long tmp64;
743 
744 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
745 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
746 
747 	/*
748 	 * Calculate total amount of FS blocks. This number is not used
749 	 * internally because it does not make much sense for UBIFS, but it is
750 	 * necessary to report something for the 'statfs()' call.
751 	 *
752 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
753 	 * deletions, minimum LEBs for the index, and assume only one journal
754 	 * head is available.
755 	 */
756 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
757 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
758 	tmp64 = ubifs_reported_space(c, tmp64);
759 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
760 }
761 
762 /**
763  * take_gc_lnum - reserve GC LEB.
764  * @c: UBIFS file-system description object
765  *
766  * This function ensures that the LEB reserved for garbage collection is marked
767  * as "taken" in lprops. We also have to set free space to LEB size and dirty
768  * space to zero, because lprops may contain out-of-date information if the
769  * file-system was un-mounted before it has been committed. This function
770  * returns zero in case of success and a negative error code in case of
771  * failure.
772  */
773 static int take_gc_lnum(struct ubifs_info *c)
774 {
775 	int err;
776 
777 	if (c->gc_lnum == -1) {
778 		ubifs_err("no LEB for GC");
779 		return -EINVAL;
780 	}
781 
782 	/* And we have to tell lprops that this LEB is taken */
783 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
784 				  LPROPS_TAKEN, 0, 0);
785 	return err;
786 }
787 
788 /**
789  * alloc_wbufs - allocate write-buffers.
790  * @c: UBIFS file-system description object
791  *
792  * This helper function allocates and initializes UBIFS write-buffers. Returns
793  * zero in case of success and %-ENOMEM in case of failure.
794  */
795 static int alloc_wbufs(struct ubifs_info *c)
796 {
797 	int i, err;
798 
799 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
800 			   GFP_KERNEL);
801 	if (!c->jheads)
802 		return -ENOMEM;
803 
804 	/* Initialize journal heads */
805 	for (i = 0; i < c->jhead_cnt; i++) {
806 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
807 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
808 		if (err)
809 			return err;
810 
811 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
812 		c->jheads[i].wbuf.jhead = i;
813 		c->jheads[i].grouped = 1;
814 	}
815 
816 	/*
817 	 * Garbage Collector head does not need to be synchronized by timer.
818 	 * Also GC head nodes are not grouped.
819 	 */
820 	c->jheads[GCHD].wbuf.no_timer = 1;
821 	c->jheads[GCHD].grouped = 0;
822 
823 	return 0;
824 }
825 
826 /**
827  * free_wbufs - free write-buffers.
828  * @c: UBIFS file-system description object
829  */
830 static void free_wbufs(struct ubifs_info *c)
831 {
832 	int i;
833 
834 	if (c->jheads) {
835 		for (i = 0; i < c->jhead_cnt; i++) {
836 			kfree(c->jheads[i].wbuf.buf);
837 			kfree(c->jheads[i].wbuf.inodes);
838 		}
839 		kfree(c->jheads);
840 		c->jheads = NULL;
841 	}
842 }
843 
844 /**
845  * free_orphans - free orphans.
846  * @c: UBIFS file-system description object
847  */
848 static void free_orphans(struct ubifs_info *c)
849 {
850 	struct ubifs_orphan *orph;
851 
852 	while (c->orph_dnext) {
853 		orph = c->orph_dnext;
854 		c->orph_dnext = orph->dnext;
855 		list_del(&orph->list);
856 		kfree(orph);
857 	}
858 
859 	while (!list_empty(&c->orph_list)) {
860 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
861 		list_del(&orph->list);
862 		kfree(orph);
863 		ubifs_err("orphan list not empty at unmount");
864 	}
865 
866 	vfree(c->orph_buf);
867 	c->orph_buf = NULL;
868 }
869 
870 /**
871  * free_buds - free per-bud objects.
872  * @c: UBIFS file-system description object
873  */
874 static void free_buds(struct ubifs_info *c)
875 {
876 	struct rb_node *this = c->buds.rb_node;
877 	struct ubifs_bud *bud;
878 
879 	while (this) {
880 		if (this->rb_left)
881 			this = this->rb_left;
882 		else if (this->rb_right)
883 			this = this->rb_right;
884 		else {
885 			bud = rb_entry(this, struct ubifs_bud, rb);
886 			this = rb_parent(this);
887 			if (this) {
888 				if (this->rb_left == &bud->rb)
889 					this->rb_left = NULL;
890 				else
891 					this->rb_right = NULL;
892 			}
893 			kfree(bud);
894 		}
895 	}
896 }
897 
898 /**
899  * check_volume_empty - check if the UBI volume is empty.
900  * @c: UBIFS file-system description object
901  *
902  * This function checks if the UBIFS volume is empty by looking if its LEBs are
903  * mapped or not. The result of checking is stored in the @c->empty variable.
904  * Returns zero in case of success and a negative error code in case of
905  * failure.
906  */
907 static int check_volume_empty(struct ubifs_info *c)
908 {
909 	int lnum, err;
910 
911 	c->empty = 1;
912 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
913 		err = ubifs_is_mapped(c, lnum);
914 		if (unlikely(err < 0))
915 			return err;
916 		if (err == 1) {
917 			c->empty = 0;
918 			break;
919 		}
920 
921 		cond_resched();
922 	}
923 
924 	return 0;
925 }
926 
927 /*
928  * UBIFS mount options.
929  *
930  * Opt_fast_unmount: do not run a journal commit before un-mounting
931  * Opt_norm_unmount: run a journal commit before un-mounting
932  * Opt_bulk_read: enable bulk-reads
933  * Opt_no_bulk_read: disable bulk-reads
934  * Opt_chk_data_crc: check CRCs when reading data nodes
935  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
936  * Opt_override_compr: override default compressor
937  * Opt_err: just end of array marker
938  */
939 enum {
940 	Opt_fast_unmount,
941 	Opt_norm_unmount,
942 	Opt_bulk_read,
943 	Opt_no_bulk_read,
944 	Opt_chk_data_crc,
945 	Opt_no_chk_data_crc,
946 	Opt_override_compr,
947 	Opt_err,
948 };
949 
950 static const match_table_t tokens = {
951 	{Opt_fast_unmount, "fast_unmount"},
952 	{Opt_norm_unmount, "norm_unmount"},
953 	{Opt_bulk_read, "bulk_read"},
954 	{Opt_no_bulk_read, "no_bulk_read"},
955 	{Opt_chk_data_crc, "chk_data_crc"},
956 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
957 	{Opt_override_compr, "compr=%s"},
958 	{Opt_err, NULL},
959 };
960 
961 /**
962  * parse_standard_option - parse a standard mount option.
963  * @option: the option to parse
964  *
965  * Normally, standard mount options like "sync" are passed to file-systems as
966  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
967  * be present in the options string. This function tries to deal with this
968  * situation and parse standard options. Returns 0 if the option was not
969  * recognized, and the corresponding integer flag if it was.
970  *
971  * UBIFS is only interested in the "sync" option, so do not check for anything
972  * else.
973  */
974 static int parse_standard_option(const char *option)
975 {
976 	ubifs_msg("parse %s", option);
977 	if (!strcmp(option, "sync"))
978 		return MS_SYNCHRONOUS;
979 	return 0;
980 }
981 
982 /**
983  * ubifs_parse_options - parse mount parameters.
984  * @c: UBIFS file-system description object
985  * @options: parameters to parse
986  * @is_remount: non-zero if this is FS re-mount
987  *
988  * This function parses UBIFS mount options and returns zero in case success
989  * and a negative error code in case of failure.
990  */
991 static int ubifs_parse_options(struct ubifs_info *c, char *options,
992 			       int is_remount)
993 {
994 	char *p;
995 	substring_t args[MAX_OPT_ARGS];
996 
997 	if (!options)
998 		return 0;
999 
1000 	while ((p = strsep(&options, ","))) {
1001 		int token;
1002 
1003 		if (!*p)
1004 			continue;
1005 
1006 		token = match_token(p, tokens, args);
1007 		switch (token) {
1008 		/*
1009 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1010 		 * We accept them in order to be backward-compatible. But this
1011 		 * should be removed at some point.
1012 		 */
1013 		case Opt_fast_unmount:
1014 			c->mount_opts.unmount_mode = 2;
1015 			break;
1016 		case Opt_norm_unmount:
1017 			c->mount_opts.unmount_mode = 1;
1018 			break;
1019 		case Opt_bulk_read:
1020 			c->mount_opts.bulk_read = 2;
1021 			c->bulk_read = 1;
1022 			break;
1023 		case Opt_no_bulk_read:
1024 			c->mount_opts.bulk_read = 1;
1025 			c->bulk_read = 0;
1026 			break;
1027 		case Opt_chk_data_crc:
1028 			c->mount_opts.chk_data_crc = 2;
1029 			c->no_chk_data_crc = 0;
1030 			break;
1031 		case Opt_no_chk_data_crc:
1032 			c->mount_opts.chk_data_crc = 1;
1033 			c->no_chk_data_crc = 1;
1034 			break;
1035 		case Opt_override_compr:
1036 		{
1037 			char *name = match_strdup(&args[0]);
1038 
1039 			if (!name)
1040 				return -ENOMEM;
1041 			if (!strcmp(name, "none"))
1042 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1043 			else if (!strcmp(name, "lzo"))
1044 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1045 			else if (!strcmp(name, "zlib"))
1046 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1047 			else {
1048 				ubifs_err("unknown compressor \"%s\"", name);
1049 				kfree(name);
1050 				return -EINVAL;
1051 			}
1052 			kfree(name);
1053 			c->mount_opts.override_compr = 1;
1054 			c->default_compr = c->mount_opts.compr_type;
1055 			break;
1056 		}
1057 		default:
1058 		{
1059 			unsigned long flag;
1060 			struct super_block *sb = c->vfs_sb;
1061 
1062 			flag = parse_standard_option(p);
1063 			if (!flag) {
1064 				ubifs_err("unrecognized mount option \"%s\" "
1065 					  "or missing value", p);
1066 				return -EINVAL;
1067 			}
1068 			sb->s_flags |= flag;
1069 			break;
1070 		}
1071 		}
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  * destroy_journal - destroy journal data structures.
1079  * @c: UBIFS file-system description object
1080  *
1081  * This function destroys journal data structures including those that may have
1082  * been created by recovery functions.
1083  */
1084 static void destroy_journal(struct ubifs_info *c)
1085 {
1086 	while (!list_empty(&c->unclean_leb_list)) {
1087 		struct ubifs_unclean_leb *ucleb;
1088 
1089 		ucleb = list_entry(c->unclean_leb_list.next,
1090 				   struct ubifs_unclean_leb, list);
1091 		list_del(&ucleb->list);
1092 		kfree(ucleb);
1093 	}
1094 	while (!list_empty(&c->old_buds)) {
1095 		struct ubifs_bud *bud;
1096 
1097 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1098 		list_del(&bud->list);
1099 		kfree(bud);
1100 	}
1101 	ubifs_destroy_idx_gc(c);
1102 	ubifs_destroy_size_tree(c);
1103 	ubifs_tnc_close(c);
1104 	free_buds(c);
1105 }
1106 
1107 /**
1108  * bu_init - initialize bulk-read information.
1109  * @c: UBIFS file-system description object
1110  */
1111 static void bu_init(struct ubifs_info *c)
1112 {
1113 	ubifs_assert(c->bulk_read == 1);
1114 
1115 	if (c->bu.buf)
1116 		return; /* Already initialized */
1117 
1118 again:
1119 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1120 	if (!c->bu.buf) {
1121 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1122 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1123 			goto again;
1124 		}
1125 
1126 		/* Just disable bulk-read */
1127 		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1128 			   "disabling it", c->max_bu_buf_len);
1129 		c->mount_opts.bulk_read = 1;
1130 		c->bulk_read = 0;
1131 		return;
1132 	}
1133 }
1134 
1135 /**
1136  * check_free_space - check if there is enough free space to mount.
1137  * @c: UBIFS file-system description object
1138  *
1139  * This function makes sure UBIFS has enough free space to be mounted in
1140  * read/write mode. UBIFS must always have some free space to allow deletions.
1141  */
1142 static int check_free_space(struct ubifs_info *c)
1143 {
1144 	ubifs_assert(c->dark_wm > 0);
1145 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1146 		ubifs_err("insufficient free space to mount in R/W mode");
1147 		ubifs_dump_budg(c, &c->bi);
1148 		ubifs_dump_lprops(c);
1149 		return -ENOSPC;
1150 	}
1151 	return 0;
1152 }
1153 
1154 /**
1155  * mount_ubifs - mount UBIFS file-system.
1156  * @c: UBIFS file-system description object
1157  *
1158  * This function mounts UBIFS file system. Returns zero in case of success and
1159  * a negative error code in case of failure.
1160  */
1161 static int mount_ubifs(struct ubifs_info *c)
1162 {
1163 	int err;
1164 	long long x;
1165 	size_t sz;
1166 
1167 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1168 	err = init_constants_early(c);
1169 	if (err)
1170 		return err;
1171 
1172 	err = ubifs_debugging_init(c);
1173 	if (err)
1174 		return err;
1175 
1176 	err = check_volume_empty(c);
1177 	if (err)
1178 		goto out_free;
1179 
1180 	if (c->empty && (c->ro_mount || c->ro_media)) {
1181 		/*
1182 		 * This UBI volume is empty, and read-only, or the file system
1183 		 * is mounted read-only - we cannot format it.
1184 		 */
1185 		ubifs_err("can't format empty UBI volume: read-only %s",
1186 			  c->ro_media ? "UBI volume" : "mount");
1187 		err = -EROFS;
1188 		goto out_free;
1189 	}
1190 
1191 	if (c->ro_media && !c->ro_mount) {
1192 		ubifs_err("cannot mount read-write - read-only media");
1193 		err = -EROFS;
1194 		goto out_free;
1195 	}
1196 
1197 	/*
1198 	 * The requirement for the buffer is that it should fit indexing B-tree
1199 	 * height amount of integers. We assume the height if the TNC tree will
1200 	 * never exceed 64.
1201 	 */
1202 	err = -ENOMEM;
1203 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1204 	if (!c->bottom_up_buf)
1205 		goto out_free;
1206 
1207 	c->sbuf = vmalloc(c->leb_size);
1208 	if (!c->sbuf)
1209 		goto out_free;
1210 
1211 	if (!c->ro_mount) {
1212 		c->ileb_buf = vmalloc(c->leb_size);
1213 		if (!c->ileb_buf)
1214 			goto out_free;
1215 	}
1216 
1217 	if (c->bulk_read == 1)
1218 		bu_init(c);
1219 
1220 	if (!c->ro_mount) {
1221 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1222 					       GFP_KERNEL);
1223 		if (!c->write_reserve_buf)
1224 			goto out_free;
1225 	}
1226 
1227 	c->mounting = 1;
1228 
1229 	err = ubifs_read_superblock(c);
1230 	if (err)
1231 		goto out_free;
1232 
1233 	/*
1234 	 * Make sure the compressor which is set as default in the superblock
1235 	 * or overridden by mount options is actually compiled in.
1236 	 */
1237 	if (!ubifs_compr_present(c->default_compr)) {
1238 		ubifs_err("'compressor \"%s\" is not compiled in",
1239 			  ubifs_compr_name(c->default_compr));
1240 		err = -ENOTSUPP;
1241 		goto out_free;
1242 	}
1243 
1244 	err = init_constants_sb(c);
1245 	if (err)
1246 		goto out_free;
1247 
1248 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1249 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1250 	c->cbuf = kmalloc(sz, GFP_NOFS);
1251 	if (!c->cbuf) {
1252 		err = -ENOMEM;
1253 		goto out_free;
1254 	}
1255 
1256 	err = alloc_wbufs(c);
1257 	if (err)
1258 		goto out_cbuf;
1259 
1260 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1261 	if (!c->ro_mount) {
1262 		/* Create background thread */
1263 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1264 		if (IS_ERR(c->bgt)) {
1265 			err = PTR_ERR(c->bgt);
1266 			c->bgt = NULL;
1267 			ubifs_err("cannot spawn \"%s\", error %d",
1268 				  c->bgt_name, err);
1269 			goto out_wbufs;
1270 		}
1271 		wake_up_process(c->bgt);
1272 	}
1273 
1274 	err = ubifs_read_master(c);
1275 	if (err)
1276 		goto out_master;
1277 
1278 	init_constants_master(c);
1279 
1280 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1281 		ubifs_msg("recovery needed");
1282 		c->need_recovery = 1;
1283 	}
1284 
1285 	if (c->need_recovery && !c->ro_mount) {
1286 		err = ubifs_recover_inl_heads(c, c->sbuf);
1287 		if (err)
1288 			goto out_master;
1289 	}
1290 
1291 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1292 	if (err)
1293 		goto out_master;
1294 
1295 	if (!c->ro_mount && c->space_fixup) {
1296 		err = ubifs_fixup_free_space(c);
1297 		if (err)
1298 			goto out_lpt;
1299 	}
1300 
1301 	if (!c->ro_mount) {
1302 		/*
1303 		 * Set the "dirty" flag so that if we reboot uncleanly we
1304 		 * will notice this immediately on the next mount.
1305 		 */
1306 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1307 		err = ubifs_write_master(c);
1308 		if (err)
1309 			goto out_lpt;
1310 	}
1311 
1312 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1313 	if (err)
1314 		goto out_lpt;
1315 
1316 	err = ubifs_replay_journal(c);
1317 	if (err)
1318 		goto out_journal;
1319 
1320 	/* Calculate 'min_idx_lebs' after journal replay */
1321 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1322 
1323 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1324 	if (err)
1325 		goto out_orphans;
1326 
1327 	if (!c->ro_mount) {
1328 		int lnum;
1329 
1330 		err = check_free_space(c);
1331 		if (err)
1332 			goto out_orphans;
1333 
1334 		/* Check for enough log space */
1335 		lnum = c->lhead_lnum + 1;
1336 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1337 			lnum = UBIFS_LOG_LNUM;
1338 		if (lnum == c->ltail_lnum) {
1339 			err = ubifs_consolidate_log(c);
1340 			if (err)
1341 				goto out_orphans;
1342 		}
1343 
1344 		if (c->need_recovery) {
1345 			err = ubifs_recover_size(c);
1346 			if (err)
1347 				goto out_orphans;
1348 			err = ubifs_rcvry_gc_commit(c);
1349 			if (err)
1350 				goto out_orphans;
1351 		} else {
1352 			err = take_gc_lnum(c);
1353 			if (err)
1354 				goto out_orphans;
1355 
1356 			/*
1357 			 * GC LEB may contain garbage if there was an unclean
1358 			 * reboot, and it should be un-mapped.
1359 			 */
1360 			err = ubifs_leb_unmap(c, c->gc_lnum);
1361 			if (err)
1362 				goto out_orphans;
1363 		}
1364 
1365 		err = dbg_check_lprops(c);
1366 		if (err)
1367 			goto out_orphans;
1368 	} else if (c->need_recovery) {
1369 		err = ubifs_recover_size(c);
1370 		if (err)
1371 			goto out_orphans;
1372 	} else {
1373 		/*
1374 		 * Even if we mount read-only, we have to set space in GC LEB
1375 		 * to proper value because this affects UBIFS free space
1376 		 * reporting. We do not want to have a situation when
1377 		 * re-mounting from R/O to R/W changes amount of free space.
1378 		 */
1379 		err = take_gc_lnum(c);
1380 		if (err)
1381 			goto out_orphans;
1382 	}
1383 
1384 	spin_lock(&ubifs_infos_lock);
1385 	list_add_tail(&c->infos_list, &ubifs_infos);
1386 	spin_unlock(&ubifs_infos_lock);
1387 
1388 	if (c->need_recovery) {
1389 		if (c->ro_mount)
1390 			ubifs_msg("recovery deferred");
1391 		else {
1392 			c->need_recovery = 0;
1393 			ubifs_msg("recovery completed");
1394 			/*
1395 			 * GC LEB has to be empty and taken at this point. But
1396 			 * the journal head LEBs may also be accounted as
1397 			 * "empty taken" if they are empty.
1398 			 */
1399 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1400 		}
1401 	} else
1402 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1403 
1404 	err = dbg_check_filesystem(c);
1405 	if (err)
1406 		goto out_infos;
1407 
1408 	err = dbg_debugfs_init_fs(c);
1409 	if (err)
1410 		goto out_infos;
1411 
1412 	c->mounting = 0;
1413 
1414 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1415 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1416 	if (c->ro_mount)
1417 		ubifs_msg("mounted read-only");
1418 	x = (long long)c->main_lebs * c->leb_size;
1419 	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1420 		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1421 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1422 	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1423 		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1424 	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1425 		  c->fmt_version, c->ro_compat_version,
1426 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1427 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1428 	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1429 		c->report_rp_size, c->report_rp_size >> 10);
1430 
1431 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1432 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1433 	dbg_msg("max. write size:     %d bytes", c->max_write_size);
1434 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1435 		c->leb_size, c->leb_size >> 10);
1436 	dbg_msg("data journal heads:  %d",
1437 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1438 	dbg_msg("UUID:                %pUB", c->uuid);
1439 	dbg_msg("big_lpt              %d", c->big_lpt);
1440 	dbg_msg("log LEBs:            %d (%d - %d)",
1441 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1442 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1443 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1444 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1445 		c->orph_lebs, c->orph_first, c->orph_last);
1446 	dbg_msg("main area LEBs:      %d (%d - %d)",
1447 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1448 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1449 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1450 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1451 		c->bi.old_idx_sz >> 20);
1452 	dbg_msg("key hash type:       %d", c->key_hash_type);
1453 	dbg_msg("tree fanout:         %d", c->fanout);
1454 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1455 	dbg_msg("first main LEB:      %d", c->main_first);
1456 	dbg_msg("max. znode size      %d", c->max_znode_sz);
1457 	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1458 	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1459 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1460 	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1461 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1462 	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1463 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1464 	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1465 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1466 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1467 	dbg_msg("dead watermark:      %d", c->dead_wm);
1468 	dbg_msg("dark watermark:      %d", c->dark_wm);
1469 	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1470 	x = (long long)c->main_lebs * c->dark_wm;
1471 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1472 		x, x >> 10, x >> 20);
1473 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1474 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1475 		c->max_bud_bytes >> 20);
1476 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1477 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1478 		c->bg_bud_bytes >> 20);
1479 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1480 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1481 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1482 	dbg_msg("commit number:       %llu", c->cmt_no);
1483 
1484 	return 0;
1485 
1486 out_infos:
1487 	spin_lock(&ubifs_infos_lock);
1488 	list_del(&c->infos_list);
1489 	spin_unlock(&ubifs_infos_lock);
1490 out_orphans:
1491 	free_orphans(c);
1492 out_journal:
1493 	destroy_journal(c);
1494 out_lpt:
1495 	ubifs_lpt_free(c, 0);
1496 out_master:
1497 	kfree(c->mst_node);
1498 	kfree(c->rcvrd_mst_node);
1499 	if (c->bgt)
1500 		kthread_stop(c->bgt);
1501 out_wbufs:
1502 	free_wbufs(c);
1503 out_cbuf:
1504 	kfree(c->cbuf);
1505 out_free:
1506 	kfree(c->write_reserve_buf);
1507 	kfree(c->bu.buf);
1508 	vfree(c->ileb_buf);
1509 	vfree(c->sbuf);
1510 	kfree(c->bottom_up_buf);
1511 	ubifs_debugging_exit(c);
1512 	return err;
1513 }
1514 
1515 /**
1516  * ubifs_umount - un-mount UBIFS file-system.
1517  * @c: UBIFS file-system description object
1518  *
1519  * Note, this function is called to free allocated resourced when un-mounting,
1520  * as well as free resources when an error occurred while we were half way
1521  * through mounting (error path cleanup function). So it has to make sure the
1522  * resource was actually allocated before freeing it.
1523  */
1524 static void ubifs_umount(struct ubifs_info *c)
1525 {
1526 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1527 		c->vi.vol_id);
1528 
1529 	dbg_debugfs_exit_fs(c);
1530 	spin_lock(&ubifs_infos_lock);
1531 	list_del(&c->infos_list);
1532 	spin_unlock(&ubifs_infos_lock);
1533 
1534 	if (c->bgt)
1535 		kthread_stop(c->bgt);
1536 
1537 	destroy_journal(c);
1538 	free_wbufs(c);
1539 	free_orphans(c);
1540 	ubifs_lpt_free(c, 0);
1541 
1542 	kfree(c->cbuf);
1543 	kfree(c->rcvrd_mst_node);
1544 	kfree(c->mst_node);
1545 	kfree(c->write_reserve_buf);
1546 	kfree(c->bu.buf);
1547 	vfree(c->ileb_buf);
1548 	vfree(c->sbuf);
1549 	kfree(c->bottom_up_buf);
1550 	ubifs_debugging_exit(c);
1551 }
1552 
1553 /**
1554  * ubifs_remount_rw - re-mount in read-write mode.
1555  * @c: UBIFS file-system description object
1556  *
1557  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1558  * mode. This function allocates the needed resources and re-mounts UBIFS in
1559  * read-write mode.
1560  */
1561 static int ubifs_remount_rw(struct ubifs_info *c)
1562 {
1563 	int err, lnum;
1564 
1565 	if (c->rw_incompat) {
1566 		ubifs_err("the file-system is not R/W-compatible");
1567 		ubifs_msg("on-flash format version is w%d/r%d, but software "
1568 			  "only supports up to version w%d/r%d", c->fmt_version,
1569 			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1570 			  UBIFS_RO_COMPAT_VERSION);
1571 		return -EROFS;
1572 	}
1573 
1574 	mutex_lock(&c->umount_mutex);
1575 	dbg_save_space_info(c);
1576 	c->remounting_rw = 1;
1577 	c->ro_mount = 0;
1578 
1579 	err = check_free_space(c);
1580 	if (err)
1581 		goto out;
1582 
1583 	if (c->old_leb_cnt != c->leb_cnt) {
1584 		struct ubifs_sb_node *sup;
1585 
1586 		sup = ubifs_read_sb_node(c);
1587 		if (IS_ERR(sup)) {
1588 			err = PTR_ERR(sup);
1589 			goto out;
1590 		}
1591 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1592 		err = ubifs_write_sb_node(c, sup);
1593 		kfree(sup);
1594 		if (err)
1595 			goto out;
1596 	}
1597 
1598 	if (c->need_recovery) {
1599 		ubifs_msg("completing deferred recovery");
1600 		err = ubifs_write_rcvrd_mst_node(c);
1601 		if (err)
1602 			goto out;
1603 		err = ubifs_recover_size(c);
1604 		if (err)
1605 			goto out;
1606 		err = ubifs_clean_lebs(c, c->sbuf);
1607 		if (err)
1608 			goto out;
1609 		err = ubifs_recover_inl_heads(c, c->sbuf);
1610 		if (err)
1611 			goto out;
1612 	} else {
1613 		/* A readonly mount is not allowed to have orphans */
1614 		ubifs_assert(c->tot_orphans == 0);
1615 		err = ubifs_clear_orphans(c);
1616 		if (err)
1617 			goto out;
1618 	}
1619 
1620 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1621 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1622 		err = ubifs_write_master(c);
1623 		if (err)
1624 			goto out;
1625 	}
1626 
1627 	c->ileb_buf = vmalloc(c->leb_size);
1628 	if (!c->ileb_buf) {
1629 		err = -ENOMEM;
1630 		goto out;
1631 	}
1632 
1633 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1634 	if (!c->write_reserve_buf)
1635 		goto out;
1636 
1637 	err = ubifs_lpt_init(c, 0, 1);
1638 	if (err)
1639 		goto out;
1640 
1641 	/* Create background thread */
1642 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1643 	if (IS_ERR(c->bgt)) {
1644 		err = PTR_ERR(c->bgt);
1645 		c->bgt = NULL;
1646 		ubifs_err("cannot spawn \"%s\", error %d",
1647 			  c->bgt_name, err);
1648 		goto out;
1649 	}
1650 	wake_up_process(c->bgt);
1651 
1652 	c->orph_buf = vmalloc(c->leb_size);
1653 	if (!c->orph_buf) {
1654 		err = -ENOMEM;
1655 		goto out;
1656 	}
1657 
1658 	/* Check for enough log space */
1659 	lnum = c->lhead_lnum + 1;
1660 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1661 		lnum = UBIFS_LOG_LNUM;
1662 	if (lnum == c->ltail_lnum) {
1663 		err = ubifs_consolidate_log(c);
1664 		if (err)
1665 			goto out;
1666 	}
1667 
1668 	if (c->need_recovery)
1669 		err = ubifs_rcvry_gc_commit(c);
1670 	else
1671 		err = ubifs_leb_unmap(c, c->gc_lnum);
1672 	if (err)
1673 		goto out;
1674 
1675 	dbg_gen("re-mounted read-write");
1676 	c->remounting_rw = 0;
1677 
1678 	if (c->need_recovery) {
1679 		c->need_recovery = 0;
1680 		ubifs_msg("deferred recovery completed");
1681 	} else {
1682 		/*
1683 		 * Do not run the debugging space check if the were doing
1684 		 * recovery, because when we saved the information we had the
1685 		 * file-system in a state where the TNC and lprops has been
1686 		 * modified in memory, but all the I/O operations (including a
1687 		 * commit) were deferred. So the file-system was in
1688 		 * "non-committed" state. Now the file-system is in committed
1689 		 * state, and of course the amount of free space will change
1690 		 * because, for example, the old index size was imprecise.
1691 		 */
1692 		err = dbg_check_space_info(c);
1693 	}
1694 
1695 	if (c->space_fixup) {
1696 		err = ubifs_fixup_free_space(c);
1697 		if (err)
1698 			goto out;
1699 	}
1700 
1701 	mutex_unlock(&c->umount_mutex);
1702 	return err;
1703 
1704 out:
1705 	c->ro_mount = 1;
1706 	vfree(c->orph_buf);
1707 	c->orph_buf = NULL;
1708 	if (c->bgt) {
1709 		kthread_stop(c->bgt);
1710 		c->bgt = NULL;
1711 	}
1712 	free_wbufs(c);
1713 	kfree(c->write_reserve_buf);
1714 	c->write_reserve_buf = NULL;
1715 	vfree(c->ileb_buf);
1716 	c->ileb_buf = NULL;
1717 	ubifs_lpt_free(c, 1);
1718 	c->remounting_rw = 0;
1719 	mutex_unlock(&c->umount_mutex);
1720 	return err;
1721 }
1722 
1723 /**
1724  * ubifs_remount_ro - re-mount in read-only mode.
1725  * @c: UBIFS file-system description object
1726  *
1727  * We assume VFS has stopped writing. Possibly the background thread could be
1728  * running a commit, however kthread_stop will wait in that case.
1729  */
1730 static void ubifs_remount_ro(struct ubifs_info *c)
1731 {
1732 	int i, err;
1733 
1734 	ubifs_assert(!c->need_recovery);
1735 	ubifs_assert(!c->ro_mount);
1736 
1737 	mutex_lock(&c->umount_mutex);
1738 	if (c->bgt) {
1739 		kthread_stop(c->bgt);
1740 		c->bgt = NULL;
1741 	}
1742 
1743 	dbg_save_space_info(c);
1744 
1745 	for (i = 0; i < c->jhead_cnt; i++)
1746 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1747 
1748 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1749 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1750 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1751 	err = ubifs_write_master(c);
1752 	if (err)
1753 		ubifs_ro_mode(c, err);
1754 
1755 	vfree(c->orph_buf);
1756 	c->orph_buf = NULL;
1757 	kfree(c->write_reserve_buf);
1758 	c->write_reserve_buf = NULL;
1759 	vfree(c->ileb_buf);
1760 	c->ileb_buf = NULL;
1761 	ubifs_lpt_free(c, 1);
1762 	c->ro_mount = 1;
1763 	err = dbg_check_space_info(c);
1764 	if (err)
1765 		ubifs_ro_mode(c, err);
1766 	mutex_unlock(&c->umount_mutex);
1767 }
1768 
1769 static void ubifs_put_super(struct super_block *sb)
1770 {
1771 	int i;
1772 	struct ubifs_info *c = sb->s_fs_info;
1773 
1774 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1775 		  c->vi.vol_id);
1776 
1777 	/*
1778 	 * The following asserts are only valid if there has not been a failure
1779 	 * of the media. For example, there will be dirty inodes if we failed
1780 	 * to write them back because of I/O errors.
1781 	 */
1782 	if (!c->ro_error) {
1783 		ubifs_assert(c->bi.idx_growth == 0);
1784 		ubifs_assert(c->bi.dd_growth == 0);
1785 		ubifs_assert(c->bi.data_growth == 0);
1786 	}
1787 
1788 	/*
1789 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1790 	 * and file system un-mount. Namely, it prevents the shrinker from
1791 	 * picking this superblock for shrinking - it will be just skipped if
1792 	 * the mutex is locked.
1793 	 */
1794 	mutex_lock(&c->umount_mutex);
1795 	if (!c->ro_mount) {
1796 		/*
1797 		 * First of all kill the background thread to make sure it does
1798 		 * not interfere with un-mounting and freeing resources.
1799 		 */
1800 		if (c->bgt) {
1801 			kthread_stop(c->bgt);
1802 			c->bgt = NULL;
1803 		}
1804 
1805 		/*
1806 		 * On fatal errors c->ro_error is set to 1, in which case we do
1807 		 * not write the master node.
1808 		 */
1809 		if (!c->ro_error) {
1810 			int err;
1811 
1812 			/* Synchronize write-buffers */
1813 			for (i = 0; i < c->jhead_cnt; i++)
1814 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1815 
1816 			/*
1817 			 * We are being cleanly unmounted which means the
1818 			 * orphans were killed - indicate this in the master
1819 			 * node. Also save the reserved GC LEB number.
1820 			 */
1821 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1822 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1823 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1824 			err = ubifs_write_master(c);
1825 			if (err)
1826 				/*
1827 				 * Recovery will attempt to fix the master area
1828 				 * next mount, so we just print a message and
1829 				 * continue to unmount normally.
1830 				 */
1831 				ubifs_err("failed to write master node, "
1832 					  "error %d", err);
1833 		} else {
1834 			for (i = 0; i < c->jhead_cnt; i++)
1835 				/* Make sure write-buffer timers are canceled */
1836 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1837 		}
1838 	}
1839 
1840 	ubifs_umount(c);
1841 	bdi_destroy(&c->bdi);
1842 	ubi_close_volume(c->ubi);
1843 	mutex_unlock(&c->umount_mutex);
1844 }
1845 
1846 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1847 {
1848 	int err;
1849 	struct ubifs_info *c = sb->s_fs_info;
1850 
1851 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1852 
1853 	err = ubifs_parse_options(c, data, 1);
1854 	if (err) {
1855 		ubifs_err("invalid or unknown remount parameter");
1856 		return err;
1857 	}
1858 
1859 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1860 		if (c->ro_error) {
1861 			ubifs_msg("cannot re-mount R/W due to prior errors");
1862 			return -EROFS;
1863 		}
1864 		if (c->ro_media) {
1865 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1866 			return -EROFS;
1867 		}
1868 		err = ubifs_remount_rw(c);
1869 		if (err)
1870 			return err;
1871 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1872 		if (c->ro_error) {
1873 			ubifs_msg("cannot re-mount R/O due to prior errors");
1874 			return -EROFS;
1875 		}
1876 		ubifs_remount_ro(c);
1877 	}
1878 
1879 	if (c->bulk_read == 1)
1880 		bu_init(c);
1881 	else {
1882 		dbg_gen("disable bulk-read");
1883 		kfree(c->bu.buf);
1884 		c->bu.buf = NULL;
1885 	}
1886 
1887 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1888 	return 0;
1889 }
1890 
1891 const struct super_operations ubifs_super_operations = {
1892 	.alloc_inode   = ubifs_alloc_inode,
1893 	.destroy_inode = ubifs_destroy_inode,
1894 	.put_super     = ubifs_put_super,
1895 	.write_inode   = ubifs_write_inode,
1896 	.evict_inode   = ubifs_evict_inode,
1897 	.statfs        = ubifs_statfs,
1898 	.dirty_inode   = ubifs_dirty_inode,
1899 	.remount_fs    = ubifs_remount_fs,
1900 	.show_options  = ubifs_show_options,
1901 	.sync_fs       = ubifs_sync_fs,
1902 };
1903 
1904 /**
1905  * open_ubi - parse UBI device name string and open the UBI device.
1906  * @name: UBI volume name
1907  * @mode: UBI volume open mode
1908  *
1909  * The primary method of mounting UBIFS is by specifying the UBI volume
1910  * character device node path. However, UBIFS may also be mounted withoug any
1911  * character device node using one of the following methods:
1912  *
1913  * o ubiX_Y    - mount UBI device number X, volume Y;
1914  * o ubiY      - mount UBI device number 0, volume Y;
1915  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1916  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1917  *
1918  * Alternative '!' separator may be used instead of ':' (because some shells
1919  * like busybox may interpret ':' as an NFS host name separator). This function
1920  * returns UBI volume description object in case of success and a negative
1921  * error code in case of failure.
1922  */
1923 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1924 {
1925 	struct ubi_volume_desc *ubi;
1926 	int dev, vol;
1927 	char *endptr;
1928 
1929 	/* First, try to open using the device node path method */
1930 	ubi = ubi_open_volume_path(name, mode);
1931 	if (!IS_ERR(ubi))
1932 		return ubi;
1933 
1934 	/* Try the "nodev" method */
1935 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1936 		return ERR_PTR(-EINVAL);
1937 
1938 	/* ubi:NAME method */
1939 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1940 		return ubi_open_volume_nm(0, name + 4, mode);
1941 
1942 	if (!isdigit(name[3]))
1943 		return ERR_PTR(-EINVAL);
1944 
1945 	dev = simple_strtoul(name + 3, &endptr, 0);
1946 
1947 	/* ubiY method */
1948 	if (*endptr == '\0')
1949 		return ubi_open_volume(0, dev, mode);
1950 
1951 	/* ubiX_Y method */
1952 	if (*endptr == '_' && isdigit(endptr[1])) {
1953 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1954 		if (*endptr != '\0')
1955 			return ERR_PTR(-EINVAL);
1956 		return ubi_open_volume(dev, vol, mode);
1957 	}
1958 
1959 	/* ubiX:NAME method */
1960 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1961 		return ubi_open_volume_nm(dev, ++endptr, mode);
1962 
1963 	return ERR_PTR(-EINVAL);
1964 }
1965 
1966 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1967 {
1968 	struct ubifs_info *c;
1969 
1970 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1971 	if (c) {
1972 		spin_lock_init(&c->cnt_lock);
1973 		spin_lock_init(&c->cs_lock);
1974 		spin_lock_init(&c->buds_lock);
1975 		spin_lock_init(&c->space_lock);
1976 		spin_lock_init(&c->orphan_lock);
1977 		init_rwsem(&c->commit_sem);
1978 		mutex_init(&c->lp_mutex);
1979 		mutex_init(&c->tnc_mutex);
1980 		mutex_init(&c->log_mutex);
1981 		mutex_init(&c->mst_mutex);
1982 		mutex_init(&c->umount_mutex);
1983 		mutex_init(&c->bu_mutex);
1984 		mutex_init(&c->write_reserve_mutex);
1985 		init_waitqueue_head(&c->cmt_wq);
1986 		c->buds = RB_ROOT;
1987 		c->old_idx = RB_ROOT;
1988 		c->size_tree = RB_ROOT;
1989 		c->orph_tree = RB_ROOT;
1990 		INIT_LIST_HEAD(&c->infos_list);
1991 		INIT_LIST_HEAD(&c->idx_gc);
1992 		INIT_LIST_HEAD(&c->replay_list);
1993 		INIT_LIST_HEAD(&c->replay_buds);
1994 		INIT_LIST_HEAD(&c->uncat_list);
1995 		INIT_LIST_HEAD(&c->empty_list);
1996 		INIT_LIST_HEAD(&c->freeable_list);
1997 		INIT_LIST_HEAD(&c->frdi_idx_list);
1998 		INIT_LIST_HEAD(&c->unclean_leb_list);
1999 		INIT_LIST_HEAD(&c->old_buds);
2000 		INIT_LIST_HEAD(&c->orph_list);
2001 		INIT_LIST_HEAD(&c->orph_new);
2002 		c->no_chk_data_crc = 1;
2003 
2004 		c->highest_inum = UBIFS_FIRST_INO;
2005 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2006 
2007 		ubi_get_volume_info(ubi, &c->vi);
2008 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2009 	}
2010 	return c;
2011 }
2012 
2013 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2014 {
2015 	struct ubifs_info *c = sb->s_fs_info;
2016 	struct inode *root;
2017 	int err;
2018 
2019 	c->vfs_sb = sb;
2020 	/* Re-open the UBI device in read-write mode */
2021 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2022 	if (IS_ERR(c->ubi)) {
2023 		err = PTR_ERR(c->ubi);
2024 		goto out;
2025 	}
2026 
2027 	/*
2028 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2029 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2030 	 * which means the user would have to wait not just for their own I/O
2031 	 * but the read-ahead I/O as well i.e. completely pointless.
2032 	 *
2033 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2034 	 */
2035 	c->bdi.name = "ubifs",
2036 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2037 	err  = bdi_init(&c->bdi);
2038 	if (err)
2039 		goto out_close;
2040 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2041 			   c->vi.ubi_num, c->vi.vol_id);
2042 	if (err)
2043 		goto out_bdi;
2044 
2045 	err = ubifs_parse_options(c, data, 0);
2046 	if (err)
2047 		goto out_bdi;
2048 
2049 	sb->s_bdi = &c->bdi;
2050 	sb->s_fs_info = c;
2051 	sb->s_magic = UBIFS_SUPER_MAGIC;
2052 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2053 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2054 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2055 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2056 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2057 	sb->s_op = &ubifs_super_operations;
2058 
2059 	mutex_lock(&c->umount_mutex);
2060 	err = mount_ubifs(c);
2061 	if (err) {
2062 		ubifs_assert(err < 0);
2063 		goto out_unlock;
2064 	}
2065 
2066 	/* Read the root inode */
2067 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2068 	if (IS_ERR(root)) {
2069 		err = PTR_ERR(root);
2070 		goto out_umount;
2071 	}
2072 
2073 	sb->s_root = d_make_root(root);
2074 	if (!sb->s_root)
2075 		goto out_umount;
2076 
2077 	mutex_unlock(&c->umount_mutex);
2078 	return 0;
2079 
2080 out_umount:
2081 	ubifs_umount(c);
2082 out_unlock:
2083 	mutex_unlock(&c->umount_mutex);
2084 out_bdi:
2085 	bdi_destroy(&c->bdi);
2086 out_close:
2087 	ubi_close_volume(c->ubi);
2088 out:
2089 	return err;
2090 }
2091 
2092 static int sb_test(struct super_block *sb, void *data)
2093 {
2094 	struct ubifs_info *c1 = data;
2095 	struct ubifs_info *c = sb->s_fs_info;
2096 
2097 	return c->vi.cdev == c1->vi.cdev;
2098 }
2099 
2100 static int sb_set(struct super_block *sb, void *data)
2101 {
2102 	sb->s_fs_info = data;
2103 	return set_anon_super(sb, NULL);
2104 }
2105 
2106 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2107 			const char *name, void *data)
2108 {
2109 	struct ubi_volume_desc *ubi;
2110 	struct ubifs_info *c;
2111 	struct super_block *sb;
2112 	int err;
2113 
2114 	dbg_gen("name %s, flags %#x", name, flags);
2115 
2116 	/*
2117 	 * Get UBI device number and volume ID. Mount it read-only so far
2118 	 * because this might be a new mount point, and UBI allows only one
2119 	 * read-write user at a time.
2120 	 */
2121 	ubi = open_ubi(name, UBI_READONLY);
2122 	if (IS_ERR(ubi)) {
2123 		ubifs_err("cannot open \"%s\", error %d",
2124 			  name, (int)PTR_ERR(ubi));
2125 		return ERR_CAST(ubi);
2126 	}
2127 
2128 	c = alloc_ubifs_info(ubi);
2129 	if (!c) {
2130 		err = -ENOMEM;
2131 		goto out_close;
2132 	}
2133 
2134 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2135 
2136 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2137 	if (IS_ERR(sb)) {
2138 		err = PTR_ERR(sb);
2139 		kfree(c);
2140 		goto out_close;
2141 	}
2142 
2143 	if (sb->s_root) {
2144 		struct ubifs_info *c1 = sb->s_fs_info;
2145 		kfree(c);
2146 		/* A new mount point for already mounted UBIFS */
2147 		dbg_gen("this ubi volume is already mounted");
2148 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2149 			err = -EBUSY;
2150 			goto out_deact;
2151 		}
2152 	} else {
2153 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2154 		if (err)
2155 			goto out_deact;
2156 		/* We do not support atime */
2157 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2158 	}
2159 
2160 	/* 'fill_super()' opens ubi again so we must close it here */
2161 	ubi_close_volume(ubi);
2162 
2163 	return dget(sb->s_root);
2164 
2165 out_deact:
2166 	deactivate_locked_super(sb);
2167 out_close:
2168 	ubi_close_volume(ubi);
2169 	return ERR_PTR(err);
2170 }
2171 
2172 static void kill_ubifs_super(struct super_block *s)
2173 {
2174 	struct ubifs_info *c = s->s_fs_info;
2175 	kill_anon_super(s);
2176 	kfree(c);
2177 }
2178 
2179 static struct file_system_type ubifs_fs_type = {
2180 	.name    = "ubifs",
2181 	.owner   = THIS_MODULE,
2182 	.mount   = ubifs_mount,
2183 	.kill_sb = kill_ubifs_super,
2184 };
2185 
2186 /*
2187  * Inode slab cache constructor.
2188  */
2189 static void inode_slab_ctor(void *obj)
2190 {
2191 	struct ubifs_inode *ui = obj;
2192 	inode_init_once(&ui->vfs_inode);
2193 }
2194 
2195 static int __init ubifs_init(void)
2196 {
2197 	int err;
2198 
2199 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2200 
2201 	/* Make sure node sizes are 8-byte aligned */
2202 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2203 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2204 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2205 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2206 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2207 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2208 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2209 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2210 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2211 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2212 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2213 
2214 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2215 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2216 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2217 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2218 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2219 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2220 
2221 	/* Check min. node size */
2222 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2223 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2224 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2225 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2226 
2227 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2228 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2229 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2230 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2231 
2232 	/* Defined node sizes */
2233 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2234 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2235 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2236 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2237 
2238 	/*
2239 	 * We use 2 bit wide bit-fields to store compression type, which should
2240 	 * be amended if more compressors are added. The bit-fields are:
2241 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2242 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2243 	 */
2244 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2245 
2246 	/*
2247 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2248 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2249 	 */
2250 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2251 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2252 			  " at least 4096 bytes",
2253 			  (unsigned int)PAGE_CACHE_SIZE);
2254 		return -EINVAL;
2255 	}
2256 
2257 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2258 				sizeof(struct ubifs_inode), 0,
2259 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2260 				&inode_slab_ctor);
2261 	if (!ubifs_inode_slab)
2262 		return -ENOMEM;
2263 
2264 	register_shrinker(&ubifs_shrinker_info);
2265 
2266 	err = ubifs_compressors_init();
2267 	if (err)
2268 		goto out_shrinker;
2269 
2270 	err = dbg_debugfs_init();
2271 	if (err)
2272 		goto out_compr;
2273 
2274 	err = register_filesystem(&ubifs_fs_type);
2275 	if (err) {
2276 		ubifs_err("cannot register file system, error %d", err);
2277 		goto out_dbg;
2278 	}
2279 	return 0;
2280 
2281 out_dbg:
2282 	dbg_debugfs_exit();
2283 out_compr:
2284 	ubifs_compressors_exit();
2285 out_shrinker:
2286 	unregister_shrinker(&ubifs_shrinker_info);
2287 	kmem_cache_destroy(ubifs_inode_slab);
2288 	return err;
2289 }
2290 /* late_initcall to let compressors initialize first */
2291 late_initcall(ubifs_init);
2292 
2293 static void __exit ubifs_exit(void)
2294 {
2295 	ubifs_assert(list_empty(&ubifs_infos));
2296 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2297 
2298 	dbg_debugfs_exit();
2299 	ubifs_compressors_exit();
2300 	unregister_shrinker(&ubifs_shrinker_info);
2301 	kmem_cache_destroy(ubifs_inode_slab);
2302 	unregister_filesystem(&ubifs_fs_type);
2303 }
2304 module_exit(ubifs_exit);
2305 
2306 MODULE_LICENSE("GPL");
2307 MODULE_VERSION(__stringify(UBIFS_VERSION));
2308 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2309 MODULE_DESCRIPTION("UBIFS - UBI File System");
2310