xref: /openbmc/linux/fs/ubifs/super.c (revision 8c0b9ee8)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err("inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err("unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	set_nlink(inode, le32_to_cpu(ino->nlink));
133 	i_uid_write(inode, le32_to_cpu(ino->uid));
134 	i_gid_write(inode, le32_to_cpu(ino->gid));
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	switch (inode->i_mode & S_IFMT) {
160 	case S_IFREG:
161 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
162 		inode->i_op = &ubifs_file_inode_operations;
163 		inode->i_fop = &ubifs_file_operations;
164 		if (ui->xattr) {
165 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
166 			if (!ui->data) {
167 				err = -ENOMEM;
168 				goto out_ino;
169 			}
170 			memcpy(ui->data, ino->data, ui->data_len);
171 			((char *)ui->data)[ui->data_len] = '\0';
172 		} else if (ui->data_len != 0) {
173 			err = 10;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFDIR:
178 		inode->i_op  = &ubifs_dir_inode_operations;
179 		inode->i_fop = &ubifs_dir_operations;
180 		if (ui->data_len != 0) {
181 			err = 11;
182 			goto out_invalid;
183 		}
184 		break;
185 	case S_IFLNK:
186 		inode->i_op = &ubifs_symlink_inode_operations;
187 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
188 			err = 12;
189 			goto out_invalid;
190 		}
191 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
192 		if (!ui->data) {
193 			err = -ENOMEM;
194 			goto out_ino;
195 		}
196 		memcpy(ui->data, ino->data, ui->data_len);
197 		((char *)ui->data)[ui->data_len] = '\0';
198 		break;
199 	case S_IFBLK:
200 	case S_IFCHR:
201 	{
202 		dev_t rdev;
203 		union ubifs_dev_desc *dev;
204 
205 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
206 		if (!ui->data) {
207 			err = -ENOMEM;
208 			goto out_ino;
209 		}
210 
211 		dev = (union ubifs_dev_desc *)ino->data;
212 		if (ui->data_len == sizeof(dev->new))
213 			rdev = new_decode_dev(le32_to_cpu(dev->new));
214 		else if (ui->data_len == sizeof(dev->huge))
215 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
216 		else {
217 			err = 13;
218 			goto out_invalid;
219 		}
220 		memcpy(ui->data, ino->data, ui->data_len);
221 		inode->i_op = &ubifs_file_inode_operations;
222 		init_special_inode(inode, inode->i_mode, rdev);
223 		break;
224 	}
225 	case S_IFSOCK:
226 	case S_IFIFO:
227 		inode->i_op = &ubifs_file_inode_operations;
228 		init_special_inode(inode, inode->i_mode, 0);
229 		if (ui->data_len != 0) {
230 			err = 14;
231 			goto out_invalid;
232 		}
233 		break;
234 	default:
235 		err = 15;
236 		goto out_invalid;
237 	}
238 
239 	kfree(ino);
240 	ubifs_set_inode_flags(inode);
241 	unlock_new_inode(inode);
242 	return inode;
243 
244 out_invalid:
245 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
246 	ubifs_dump_node(c, ino);
247 	ubifs_dump_inode(c, inode);
248 	err = -EINVAL;
249 out_ino:
250 	kfree(ino);
251 out:
252 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
253 	iget_failed(inode);
254 	return ERR_PTR(err);
255 }
256 
257 static struct inode *ubifs_alloc_inode(struct super_block *sb)
258 {
259 	struct ubifs_inode *ui;
260 
261 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
262 	if (!ui)
263 		return NULL;
264 
265 	memset((void *)ui + sizeof(struct inode), 0,
266 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
267 	mutex_init(&ui->ui_mutex);
268 	spin_lock_init(&ui->ui_lock);
269 	return &ui->vfs_inode;
270 };
271 
272 static void ubifs_i_callback(struct rcu_head *head)
273 {
274 	struct inode *inode = container_of(head, struct inode, i_rcu);
275 	struct ubifs_inode *ui = ubifs_inode(inode);
276 	kmem_cache_free(ubifs_inode_slab, ui);
277 }
278 
279 static void ubifs_destroy_inode(struct inode *inode)
280 {
281 	struct ubifs_inode *ui = ubifs_inode(inode);
282 
283 	kfree(ui->data);
284 	call_rcu(&inode->i_rcu, ubifs_i_callback);
285 }
286 
287 /*
288  * Note, Linux write-back code calls this without 'i_mutex'.
289  */
290 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
291 {
292 	int err = 0;
293 	struct ubifs_info *c = inode->i_sb->s_fs_info;
294 	struct ubifs_inode *ui = ubifs_inode(inode);
295 
296 	ubifs_assert(!ui->xattr);
297 	if (is_bad_inode(inode))
298 		return 0;
299 
300 	mutex_lock(&ui->ui_mutex);
301 	/*
302 	 * Due to races between write-back forced by budgeting
303 	 * (see 'sync_some_inodes()') and background write-back, the inode may
304 	 * have already been synchronized, do not do this again. This might
305 	 * also happen if it was synchronized in an VFS operation, e.g.
306 	 * 'ubifs_link()'.
307 	 */
308 	if (!ui->dirty) {
309 		mutex_unlock(&ui->ui_mutex);
310 		return 0;
311 	}
312 
313 	/*
314 	 * As an optimization, do not write orphan inodes to the media just
315 	 * because this is not needed.
316 	 */
317 	dbg_gen("inode %lu, mode %#x, nlink %u",
318 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
319 	if (inode->i_nlink) {
320 		err = ubifs_jnl_write_inode(c, inode);
321 		if (err)
322 			ubifs_err("can't write inode %lu, error %d",
323 				  inode->i_ino, err);
324 		else
325 			err = dbg_check_inode_size(c, inode, ui->ui_size);
326 	}
327 
328 	ui->dirty = 0;
329 	mutex_unlock(&ui->ui_mutex);
330 	ubifs_release_dirty_inode_budget(c, ui);
331 	return err;
332 }
333 
334 static void ubifs_evict_inode(struct inode *inode)
335 {
336 	int err;
337 	struct ubifs_info *c = inode->i_sb->s_fs_info;
338 	struct ubifs_inode *ui = ubifs_inode(inode);
339 
340 	if (ui->xattr)
341 		/*
342 		 * Extended attribute inode deletions are fully handled in
343 		 * 'ubifs_removexattr()'. These inodes are special and have
344 		 * limited usage, so there is nothing to do here.
345 		 */
346 		goto out;
347 
348 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
349 	ubifs_assert(!atomic_read(&inode->i_count));
350 
351 	truncate_inode_pages_final(&inode->i_data);
352 
353 	if (inode->i_nlink)
354 		goto done;
355 
356 	if (is_bad_inode(inode))
357 		goto out;
358 
359 	ui->ui_size = inode->i_size = 0;
360 	err = ubifs_jnl_delete_inode(c, inode);
361 	if (err)
362 		/*
363 		 * Worst case we have a lost orphan inode wasting space, so a
364 		 * simple error message is OK here.
365 		 */
366 		ubifs_err("can't delete inode %lu, error %d",
367 			  inode->i_ino, err);
368 
369 out:
370 	if (ui->dirty)
371 		ubifs_release_dirty_inode_budget(c, ui);
372 	else {
373 		/* We've deleted something - clean the "no space" flags */
374 		c->bi.nospace = c->bi.nospace_rp = 0;
375 		smp_wmb();
376 	}
377 done:
378 	clear_inode(inode);
379 }
380 
381 static void ubifs_dirty_inode(struct inode *inode, int flags)
382 {
383 	struct ubifs_inode *ui = ubifs_inode(inode);
384 
385 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
386 	if (!ui->dirty) {
387 		ui->dirty = 1;
388 		dbg_gen("inode %lu",  inode->i_ino);
389 	}
390 }
391 
392 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
393 {
394 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
395 	unsigned long long free;
396 	__le32 *uuid = (__le32 *)c->uuid;
397 
398 	free = ubifs_get_free_space(c);
399 	dbg_gen("free space %lld bytes (%lld blocks)",
400 		free, free >> UBIFS_BLOCK_SHIFT);
401 
402 	buf->f_type = UBIFS_SUPER_MAGIC;
403 	buf->f_bsize = UBIFS_BLOCK_SIZE;
404 	buf->f_blocks = c->block_cnt;
405 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
406 	if (free > c->report_rp_size)
407 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
408 	else
409 		buf->f_bavail = 0;
410 	buf->f_files = 0;
411 	buf->f_ffree = 0;
412 	buf->f_namelen = UBIFS_MAX_NLEN;
413 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
414 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
415 	ubifs_assert(buf->f_bfree <= c->block_cnt);
416 	return 0;
417 }
418 
419 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
420 {
421 	struct ubifs_info *c = root->d_sb->s_fs_info;
422 
423 	if (c->mount_opts.unmount_mode == 2)
424 		seq_puts(s, ",fast_unmount");
425 	else if (c->mount_opts.unmount_mode == 1)
426 		seq_puts(s, ",norm_unmount");
427 
428 	if (c->mount_opts.bulk_read == 2)
429 		seq_puts(s, ",bulk_read");
430 	else if (c->mount_opts.bulk_read == 1)
431 		seq_puts(s, ",no_bulk_read");
432 
433 	if (c->mount_opts.chk_data_crc == 2)
434 		seq_puts(s, ",chk_data_crc");
435 	else if (c->mount_opts.chk_data_crc == 1)
436 		seq_puts(s, ",no_chk_data_crc");
437 
438 	if (c->mount_opts.override_compr) {
439 		seq_printf(s, ",compr=%s",
440 			   ubifs_compr_name(c->mount_opts.compr_type));
441 	}
442 
443 	return 0;
444 }
445 
446 static int ubifs_sync_fs(struct super_block *sb, int wait)
447 {
448 	int i, err;
449 	struct ubifs_info *c = sb->s_fs_info;
450 
451 	/*
452 	 * Zero @wait is just an advisory thing to help the file system shove
453 	 * lots of data into the queues, and there will be the second
454 	 * '->sync_fs()' call, with non-zero @wait.
455 	 */
456 	if (!wait)
457 		return 0;
458 
459 	/*
460 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
461 	 * do this if it waits for an already running commit.
462 	 */
463 	for (i = 0; i < c->jhead_cnt; i++) {
464 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
465 		if (err)
466 			return err;
467 	}
468 
469 	/*
470 	 * Strictly speaking, it is not necessary to commit the journal here,
471 	 * synchronizing write-buffers would be enough. But committing makes
472 	 * UBIFS free space predictions much more accurate, so we want to let
473 	 * the user be able to get more accurate results of 'statfs()' after
474 	 * they synchronize the file system.
475 	 */
476 	err = ubifs_run_commit(c);
477 	if (err)
478 		return err;
479 
480 	return ubi_sync(c->vi.ubi_num);
481 }
482 
483 /**
484  * init_constants_early - initialize UBIFS constants.
485  * @c: UBIFS file-system description object
486  *
487  * This function initialize UBIFS constants which do not need the superblock to
488  * be read. It also checks that the UBI volume satisfies basic UBIFS
489  * requirements. Returns zero in case of success and a negative error code in
490  * case of failure.
491  */
492 static int init_constants_early(struct ubifs_info *c)
493 {
494 	if (c->vi.corrupted) {
495 		ubifs_warn("UBI volume is corrupted - read-only mode");
496 		c->ro_media = 1;
497 	}
498 
499 	if (c->di.ro_mode) {
500 		ubifs_msg("read-only UBI device");
501 		c->ro_media = 1;
502 	}
503 
504 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
505 		ubifs_msg("static UBI volume - read-only mode");
506 		c->ro_media = 1;
507 	}
508 
509 	c->leb_cnt = c->vi.size;
510 	c->leb_size = c->vi.usable_leb_size;
511 	c->leb_start = c->di.leb_start;
512 	c->half_leb_size = c->leb_size / 2;
513 	c->min_io_size = c->di.min_io_size;
514 	c->min_io_shift = fls(c->min_io_size) - 1;
515 	c->max_write_size = c->di.max_write_size;
516 	c->max_write_shift = fls(c->max_write_size) - 1;
517 
518 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
519 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
520 			  c->leb_size, UBIFS_MIN_LEB_SZ);
521 		return -EINVAL;
522 	}
523 
524 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
525 		ubifs_err("too few LEBs (%d), min. is %d",
526 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
527 		return -EINVAL;
528 	}
529 
530 	if (!is_power_of_2(c->min_io_size)) {
531 		ubifs_err("bad min. I/O size %d", c->min_io_size);
532 		return -EINVAL;
533 	}
534 
535 	/*
536 	 * Maximum write size has to be greater or equivalent to min. I/O
537 	 * size, and be multiple of min. I/O size.
538 	 */
539 	if (c->max_write_size < c->min_io_size ||
540 	    c->max_write_size % c->min_io_size ||
541 	    !is_power_of_2(c->max_write_size)) {
542 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
543 			  c->max_write_size, c->min_io_size);
544 		return -EINVAL;
545 	}
546 
547 	/*
548 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
549 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
550 	 * less than 8.
551 	 */
552 	if (c->min_io_size < 8) {
553 		c->min_io_size = 8;
554 		c->min_io_shift = 3;
555 		if (c->max_write_size < c->min_io_size) {
556 			c->max_write_size = c->min_io_size;
557 			c->max_write_shift = c->min_io_shift;
558 		}
559 	}
560 
561 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
562 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
563 
564 	/*
565 	 * Initialize node length ranges which are mostly needed for node
566 	 * length validation.
567 	 */
568 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
569 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
570 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
571 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
572 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
573 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
574 
575 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
576 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
577 	c->ranges[UBIFS_ORPH_NODE].min_len =
578 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
579 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
580 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
581 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
582 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
583 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
584 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
585 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
586 	/*
587 	 * Minimum indexing node size is amended later when superblock is
588 	 * read and the key length is known.
589 	 */
590 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
591 	/*
592 	 * Maximum indexing node size is amended later when superblock is
593 	 * read and the fanout is known.
594 	 */
595 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
596 
597 	/*
598 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
599 	 * about these values.
600 	 */
601 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
602 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
603 
604 	/*
605 	 * Calculate how many bytes would be wasted at the end of LEB if it was
606 	 * fully filled with data nodes of maximum size. This is used in
607 	 * calculations when reporting free space.
608 	 */
609 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
610 
611 	/* Buffer size for bulk-reads */
612 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
613 	if (c->max_bu_buf_len > c->leb_size)
614 		c->max_bu_buf_len = c->leb_size;
615 	return 0;
616 }
617 
618 /**
619  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
620  * @c: UBIFS file-system description object
621  * @lnum: LEB the write-buffer was synchronized to
622  * @free: how many free bytes left in this LEB
623  * @pad: how many bytes were padded
624  *
625  * This is a callback function which is called by the I/O unit when the
626  * write-buffer is synchronized. We need this to correctly maintain space
627  * accounting in bud logical eraseblocks. This function returns zero in case of
628  * success and a negative error code in case of failure.
629  *
630  * This function actually belongs to the journal, but we keep it here because
631  * we want to keep it static.
632  */
633 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
634 {
635 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
636 }
637 
638 /*
639  * init_constants_sb - initialize UBIFS constants.
640  * @c: UBIFS file-system description object
641  *
642  * This is a helper function which initializes various UBIFS constants after
643  * the superblock has been read. It also checks various UBIFS parameters and
644  * makes sure they are all right. Returns zero in case of success and a
645  * negative error code in case of failure.
646  */
647 static int init_constants_sb(struct ubifs_info *c)
648 {
649 	int tmp, err;
650 	long long tmp64;
651 
652 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
653 	c->max_znode_sz = sizeof(struct ubifs_znode) +
654 				c->fanout * sizeof(struct ubifs_zbranch);
655 
656 	tmp = ubifs_idx_node_sz(c, 1);
657 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
658 	c->min_idx_node_sz = ALIGN(tmp, 8);
659 
660 	tmp = ubifs_idx_node_sz(c, c->fanout);
661 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
662 	c->max_idx_node_sz = ALIGN(tmp, 8);
663 
664 	/* Make sure LEB size is large enough to fit full commit */
665 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
666 	tmp = ALIGN(tmp, c->min_io_size);
667 	if (tmp > c->leb_size) {
668 		ubifs_err("too small LEB size %d, at least %d needed",
669 			  c->leb_size, tmp);
670 		return -EINVAL;
671 	}
672 
673 	/*
674 	 * Make sure that the log is large enough to fit reference nodes for
675 	 * all buds plus one reserved LEB.
676 	 */
677 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
678 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
679 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
680 	tmp /= c->leb_size;
681 	tmp += 1;
682 	if (c->log_lebs < tmp) {
683 		ubifs_err("too small log %d LEBs, required min. %d LEBs",
684 			  c->log_lebs, tmp);
685 		return -EINVAL;
686 	}
687 
688 	/*
689 	 * When budgeting we assume worst-case scenarios when the pages are not
690 	 * be compressed and direntries are of the maximum size.
691 	 *
692 	 * Note, data, which may be stored in inodes is budgeted separately, so
693 	 * it is not included into 'c->bi.inode_budget'.
694 	 */
695 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
696 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
697 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
698 
699 	/*
700 	 * When the amount of flash space used by buds becomes
701 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
702 	 * The writers are unblocked when the commit is finished. To avoid
703 	 * writers to be blocked UBIFS initiates background commit in advance,
704 	 * when number of bud bytes becomes above the limit defined below.
705 	 */
706 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
707 
708 	/*
709 	 * Ensure minimum journal size. All the bytes in the journal heads are
710 	 * considered to be used, when calculating the current journal usage.
711 	 * Consequently, if the journal is too small, UBIFS will treat it as
712 	 * always full.
713 	 */
714 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
715 	if (c->bg_bud_bytes < tmp64)
716 		c->bg_bud_bytes = tmp64;
717 	if (c->max_bud_bytes < tmp64 + c->leb_size)
718 		c->max_bud_bytes = tmp64 + c->leb_size;
719 
720 	err = ubifs_calc_lpt_geom(c);
721 	if (err)
722 		return err;
723 
724 	/* Initialize effective LEB size used in budgeting calculations */
725 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
726 	return 0;
727 }
728 
729 /*
730  * init_constants_master - initialize UBIFS constants.
731  * @c: UBIFS file-system description object
732  *
733  * This is a helper function which initializes various UBIFS constants after
734  * the master node has been read. It also checks various UBIFS parameters and
735  * makes sure they are all right.
736  */
737 static void init_constants_master(struct ubifs_info *c)
738 {
739 	long long tmp64;
740 
741 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
742 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
743 
744 	/*
745 	 * Calculate total amount of FS blocks. This number is not used
746 	 * internally because it does not make much sense for UBIFS, but it is
747 	 * necessary to report something for the 'statfs()' call.
748 	 *
749 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
750 	 * deletions, minimum LEBs for the index, and assume only one journal
751 	 * head is available.
752 	 */
753 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
754 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
755 	tmp64 = ubifs_reported_space(c, tmp64);
756 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
757 }
758 
759 /**
760  * take_gc_lnum - reserve GC LEB.
761  * @c: UBIFS file-system description object
762  *
763  * This function ensures that the LEB reserved for garbage collection is marked
764  * as "taken" in lprops. We also have to set free space to LEB size and dirty
765  * space to zero, because lprops may contain out-of-date information if the
766  * file-system was un-mounted before it has been committed. This function
767  * returns zero in case of success and a negative error code in case of
768  * failure.
769  */
770 static int take_gc_lnum(struct ubifs_info *c)
771 {
772 	int err;
773 
774 	if (c->gc_lnum == -1) {
775 		ubifs_err("no LEB for GC");
776 		return -EINVAL;
777 	}
778 
779 	/* And we have to tell lprops that this LEB is taken */
780 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
781 				  LPROPS_TAKEN, 0, 0);
782 	return err;
783 }
784 
785 /**
786  * alloc_wbufs - allocate write-buffers.
787  * @c: UBIFS file-system description object
788  *
789  * This helper function allocates and initializes UBIFS write-buffers. Returns
790  * zero in case of success and %-ENOMEM in case of failure.
791  */
792 static int alloc_wbufs(struct ubifs_info *c)
793 {
794 	int i, err;
795 
796 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
797 			    GFP_KERNEL);
798 	if (!c->jheads)
799 		return -ENOMEM;
800 
801 	/* Initialize journal heads */
802 	for (i = 0; i < c->jhead_cnt; i++) {
803 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
804 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
805 		if (err)
806 			return err;
807 
808 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
809 		c->jheads[i].wbuf.jhead = i;
810 		c->jheads[i].grouped = 1;
811 	}
812 
813 	/*
814 	 * Garbage Collector head does not need to be synchronized by timer.
815 	 * Also GC head nodes are not grouped.
816 	 */
817 	c->jheads[GCHD].wbuf.no_timer = 1;
818 	c->jheads[GCHD].grouped = 0;
819 
820 	return 0;
821 }
822 
823 /**
824  * free_wbufs - free write-buffers.
825  * @c: UBIFS file-system description object
826  */
827 static void free_wbufs(struct ubifs_info *c)
828 {
829 	int i;
830 
831 	if (c->jheads) {
832 		for (i = 0; i < c->jhead_cnt; i++) {
833 			kfree(c->jheads[i].wbuf.buf);
834 			kfree(c->jheads[i].wbuf.inodes);
835 		}
836 		kfree(c->jheads);
837 		c->jheads = NULL;
838 	}
839 }
840 
841 /**
842  * free_orphans - free orphans.
843  * @c: UBIFS file-system description object
844  */
845 static void free_orphans(struct ubifs_info *c)
846 {
847 	struct ubifs_orphan *orph;
848 
849 	while (c->orph_dnext) {
850 		orph = c->orph_dnext;
851 		c->orph_dnext = orph->dnext;
852 		list_del(&orph->list);
853 		kfree(orph);
854 	}
855 
856 	while (!list_empty(&c->orph_list)) {
857 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
858 		list_del(&orph->list);
859 		kfree(orph);
860 		ubifs_err("orphan list not empty at unmount");
861 	}
862 
863 	vfree(c->orph_buf);
864 	c->orph_buf = NULL;
865 }
866 
867 /**
868  * free_buds - free per-bud objects.
869  * @c: UBIFS file-system description object
870  */
871 static void free_buds(struct ubifs_info *c)
872 {
873 	struct ubifs_bud *bud, *n;
874 
875 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
876 		kfree(bud);
877 }
878 
879 /**
880  * check_volume_empty - check if the UBI volume is empty.
881  * @c: UBIFS file-system description object
882  *
883  * This function checks if the UBIFS volume is empty by looking if its LEBs are
884  * mapped or not. The result of checking is stored in the @c->empty variable.
885  * Returns zero in case of success and a negative error code in case of
886  * failure.
887  */
888 static int check_volume_empty(struct ubifs_info *c)
889 {
890 	int lnum, err;
891 
892 	c->empty = 1;
893 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
894 		err = ubifs_is_mapped(c, lnum);
895 		if (unlikely(err < 0))
896 			return err;
897 		if (err == 1) {
898 			c->empty = 0;
899 			break;
900 		}
901 
902 		cond_resched();
903 	}
904 
905 	return 0;
906 }
907 
908 /*
909  * UBIFS mount options.
910  *
911  * Opt_fast_unmount: do not run a journal commit before un-mounting
912  * Opt_norm_unmount: run a journal commit before un-mounting
913  * Opt_bulk_read: enable bulk-reads
914  * Opt_no_bulk_read: disable bulk-reads
915  * Opt_chk_data_crc: check CRCs when reading data nodes
916  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
917  * Opt_override_compr: override default compressor
918  * Opt_err: just end of array marker
919  */
920 enum {
921 	Opt_fast_unmount,
922 	Opt_norm_unmount,
923 	Opt_bulk_read,
924 	Opt_no_bulk_read,
925 	Opt_chk_data_crc,
926 	Opt_no_chk_data_crc,
927 	Opt_override_compr,
928 	Opt_err,
929 };
930 
931 static const match_table_t tokens = {
932 	{Opt_fast_unmount, "fast_unmount"},
933 	{Opt_norm_unmount, "norm_unmount"},
934 	{Opt_bulk_read, "bulk_read"},
935 	{Opt_no_bulk_read, "no_bulk_read"},
936 	{Opt_chk_data_crc, "chk_data_crc"},
937 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
938 	{Opt_override_compr, "compr=%s"},
939 	{Opt_err, NULL},
940 };
941 
942 /**
943  * parse_standard_option - parse a standard mount option.
944  * @option: the option to parse
945  *
946  * Normally, standard mount options like "sync" are passed to file-systems as
947  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
948  * be present in the options string. This function tries to deal with this
949  * situation and parse standard options. Returns 0 if the option was not
950  * recognized, and the corresponding integer flag if it was.
951  *
952  * UBIFS is only interested in the "sync" option, so do not check for anything
953  * else.
954  */
955 static int parse_standard_option(const char *option)
956 {
957 	ubifs_msg("parse %s", option);
958 	if (!strcmp(option, "sync"))
959 		return MS_SYNCHRONOUS;
960 	return 0;
961 }
962 
963 /**
964  * ubifs_parse_options - parse mount parameters.
965  * @c: UBIFS file-system description object
966  * @options: parameters to parse
967  * @is_remount: non-zero if this is FS re-mount
968  *
969  * This function parses UBIFS mount options and returns zero in case success
970  * and a negative error code in case of failure.
971  */
972 static int ubifs_parse_options(struct ubifs_info *c, char *options,
973 			       int is_remount)
974 {
975 	char *p;
976 	substring_t args[MAX_OPT_ARGS];
977 
978 	if (!options)
979 		return 0;
980 
981 	while ((p = strsep(&options, ","))) {
982 		int token;
983 
984 		if (!*p)
985 			continue;
986 
987 		token = match_token(p, tokens, args);
988 		switch (token) {
989 		/*
990 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
991 		 * We accept them in order to be backward-compatible. But this
992 		 * should be removed at some point.
993 		 */
994 		case Opt_fast_unmount:
995 			c->mount_opts.unmount_mode = 2;
996 			break;
997 		case Opt_norm_unmount:
998 			c->mount_opts.unmount_mode = 1;
999 			break;
1000 		case Opt_bulk_read:
1001 			c->mount_opts.bulk_read = 2;
1002 			c->bulk_read = 1;
1003 			break;
1004 		case Opt_no_bulk_read:
1005 			c->mount_opts.bulk_read = 1;
1006 			c->bulk_read = 0;
1007 			break;
1008 		case Opt_chk_data_crc:
1009 			c->mount_opts.chk_data_crc = 2;
1010 			c->no_chk_data_crc = 0;
1011 			break;
1012 		case Opt_no_chk_data_crc:
1013 			c->mount_opts.chk_data_crc = 1;
1014 			c->no_chk_data_crc = 1;
1015 			break;
1016 		case Opt_override_compr:
1017 		{
1018 			char *name = match_strdup(&args[0]);
1019 
1020 			if (!name)
1021 				return -ENOMEM;
1022 			if (!strcmp(name, "none"))
1023 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1024 			else if (!strcmp(name, "lzo"))
1025 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1026 			else if (!strcmp(name, "zlib"))
1027 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1028 			else {
1029 				ubifs_err("unknown compressor \"%s\"", name);
1030 				kfree(name);
1031 				return -EINVAL;
1032 			}
1033 			kfree(name);
1034 			c->mount_opts.override_compr = 1;
1035 			c->default_compr = c->mount_opts.compr_type;
1036 			break;
1037 		}
1038 		default:
1039 		{
1040 			unsigned long flag;
1041 			struct super_block *sb = c->vfs_sb;
1042 
1043 			flag = parse_standard_option(p);
1044 			if (!flag) {
1045 				ubifs_err("unrecognized mount option \"%s\" or missing value",
1046 					  p);
1047 				return -EINVAL;
1048 			}
1049 			sb->s_flags |= flag;
1050 			break;
1051 		}
1052 		}
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * destroy_journal - destroy journal data structures.
1060  * @c: UBIFS file-system description object
1061  *
1062  * This function destroys journal data structures including those that may have
1063  * been created by recovery functions.
1064  */
1065 static void destroy_journal(struct ubifs_info *c)
1066 {
1067 	while (!list_empty(&c->unclean_leb_list)) {
1068 		struct ubifs_unclean_leb *ucleb;
1069 
1070 		ucleb = list_entry(c->unclean_leb_list.next,
1071 				   struct ubifs_unclean_leb, list);
1072 		list_del(&ucleb->list);
1073 		kfree(ucleb);
1074 	}
1075 	while (!list_empty(&c->old_buds)) {
1076 		struct ubifs_bud *bud;
1077 
1078 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1079 		list_del(&bud->list);
1080 		kfree(bud);
1081 	}
1082 	ubifs_destroy_idx_gc(c);
1083 	ubifs_destroy_size_tree(c);
1084 	ubifs_tnc_close(c);
1085 	free_buds(c);
1086 }
1087 
1088 /**
1089  * bu_init - initialize bulk-read information.
1090  * @c: UBIFS file-system description object
1091  */
1092 static void bu_init(struct ubifs_info *c)
1093 {
1094 	ubifs_assert(c->bulk_read == 1);
1095 
1096 	if (c->bu.buf)
1097 		return; /* Already initialized */
1098 
1099 again:
1100 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1101 	if (!c->bu.buf) {
1102 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1103 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1104 			goto again;
1105 		}
1106 
1107 		/* Just disable bulk-read */
1108 		ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
1109 			   c->max_bu_buf_len);
1110 		c->mount_opts.bulk_read = 1;
1111 		c->bulk_read = 0;
1112 		return;
1113 	}
1114 }
1115 
1116 /**
1117  * check_free_space - check if there is enough free space to mount.
1118  * @c: UBIFS file-system description object
1119  *
1120  * This function makes sure UBIFS has enough free space to be mounted in
1121  * read/write mode. UBIFS must always have some free space to allow deletions.
1122  */
1123 static int check_free_space(struct ubifs_info *c)
1124 {
1125 	ubifs_assert(c->dark_wm > 0);
1126 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1127 		ubifs_err("insufficient free space to mount in R/W mode");
1128 		ubifs_dump_budg(c, &c->bi);
1129 		ubifs_dump_lprops(c);
1130 		return -ENOSPC;
1131 	}
1132 	return 0;
1133 }
1134 
1135 /**
1136  * mount_ubifs - mount UBIFS file-system.
1137  * @c: UBIFS file-system description object
1138  *
1139  * This function mounts UBIFS file system. Returns zero in case of success and
1140  * a negative error code in case of failure.
1141  */
1142 static int mount_ubifs(struct ubifs_info *c)
1143 {
1144 	int err;
1145 	long long x, y;
1146 	size_t sz;
1147 
1148 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1149 	/* Suppress error messages while probing if MS_SILENT is set */
1150 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1151 
1152 	err = init_constants_early(c);
1153 	if (err)
1154 		return err;
1155 
1156 	err = ubifs_debugging_init(c);
1157 	if (err)
1158 		return err;
1159 
1160 	err = check_volume_empty(c);
1161 	if (err)
1162 		goto out_free;
1163 
1164 	if (c->empty && (c->ro_mount || c->ro_media)) {
1165 		/*
1166 		 * This UBI volume is empty, and read-only, or the file system
1167 		 * is mounted read-only - we cannot format it.
1168 		 */
1169 		ubifs_err("can't format empty UBI volume: read-only %s",
1170 			  c->ro_media ? "UBI volume" : "mount");
1171 		err = -EROFS;
1172 		goto out_free;
1173 	}
1174 
1175 	if (c->ro_media && !c->ro_mount) {
1176 		ubifs_err("cannot mount read-write - read-only media");
1177 		err = -EROFS;
1178 		goto out_free;
1179 	}
1180 
1181 	/*
1182 	 * The requirement for the buffer is that it should fit indexing B-tree
1183 	 * height amount of integers. We assume the height if the TNC tree will
1184 	 * never exceed 64.
1185 	 */
1186 	err = -ENOMEM;
1187 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1188 	if (!c->bottom_up_buf)
1189 		goto out_free;
1190 
1191 	c->sbuf = vmalloc(c->leb_size);
1192 	if (!c->sbuf)
1193 		goto out_free;
1194 
1195 	if (!c->ro_mount) {
1196 		c->ileb_buf = vmalloc(c->leb_size);
1197 		if (!c->ileb_buf)
1198 			goto out_free;
1199 	}
1200 
1201 	if (c->bulk_read == 1)
1202 		bu_init(c);
1203 
1204 	if (!c->ro_mount) {
1205 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1206 					       GFP_KERNEL);
1207 		if (!c->write_reserve_buf)
1208 			goto out_free;
1209 	}
1210 
1211 	c->mounting = 1;
1212 
1213 	err = ubifs_read_superblock(c);
1214 	if (err)
1215 		goto out_free;
1216 
1217 	c->probing = 0;
1218 
1219 	/*
1220 	 * Make sure the compressor which is set as default in the superblock
1221 	 * or overridden by mount options is actually compiled in.
1222 	 */
1223 	if (!ubifs_compr_present(c->default_compr)) {
1224 		ubifs_err("'compressor \"%s\" is not compiled in",
1225 			  ubifs_compr_name(c->default_compr));
1226 		err = -ENOTSUPP;
1227 		goto out_free;
1228 	}
1229 
1230 	err = init_constants_sb(c);
1231 	if (err)
1232 		goto out_free;
1233 
1234 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1235 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1236 	c->cbuf = kmalloc(sz, GFP_NOFS);
1237 	if (!c->cbuf) {
1238 		err = -ENOMEM;
1239 		goto out_free;
1240 	}
1241 
1242 	err = alloc_wbufs(c);
1243 	if (err)
1244 		goto out_cbuf;
1245 
1246 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1247 	if (!c->ro_mount) {
1248 		/* Create background thread */
1249 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1250 		if (IS_ERR(c->bgt)) {
1251 			err = PTR_ERR(c->bgt);
1252 			c->bgt = NULL;
1253 			ubifs_err("cannot spawn \"%s\", error %d",
1254 				  c->bgt_name, err);
1255 			goto out_wbufs;
1256 		}
1257 		wake_up_process(c->bgt);
1258 	}
1259 
1260 	err = ubifs_read_master(c);
1261 	if (err)
1262 		goto out_master;
1263 
1264 	init_constants_master(c);
1265 
1266 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1267 		ubifs_msg("recovery needed");
1268 		c->need_recovery = 1;
1269 	}
1270 
1271 	if (c->need_recovery && !c->ro_mount) {
1272 		err = ubifs_recover_inl_heads(c, c->sbuf);
1273 		if (err)
1274 			goto out_master;
1275 	}
1276 
1277 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1278 	if (err)
1279 		goto out_master;
1280 
1281 	if (!c->ro_mount && c->space_fixup) {
1282 		err = ubifs_fixup_free_space(c);
1283 		if (err)
1284 			goto out_lpt;
1285 	}
1286 
1287 	if (!c->ro_mount) {
1288 		/*
1289 		 * Set the "dirty" flag so that if we reboot uncleanly we
1290 		 * will notice this immediately on the next mount.
1291 		 */
1292 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1293 		err = ubifs_write_master(c);
1294 		if (err)
1295 			goto out_lpt;
1296 	}
1297 
1298 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1299 	if (err)
1300 		goto out_lpt;
1301 
1302 	err = ubifs_replay_journal(c);
1303 	if (err)
1304 		goto out_journal;
1305 
1306 	/* Calculate 'min_idx_lebs' after journal replay */
1307 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1308 
1309 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1310 	if (err)
1311 		goto out_orphans;
1312 
1313 	if (!c->ro_mount) {
1314 		int lnum;
1315 
1316 		err = check_free_space(c);
1317 		if (err)
1318 			goto out_orphans;
1319 
1320 		/* Check for enough log space */
1321 		lnum = c->lhead_lnum + 1;
1322 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1323 			lnum = UBIFS_LOG_LNUM;
1324 		if (lnum == c->ltail_lnum) {
1325 			err = ubifs_consolidate_log(c);
1326 			if (err)
1327 				goto out_orphans;
1328 		}
1329 
1330 		if (c->need_recovery) {
1331 			err = ubifs_recover_size(c);
1332 			if (err)
1333 				goto out_orphans;
1334 			err = ubifs_rcvry_gc_commit(c);
1335 			if (err)
1336 				goto out_orphans;
1337 		} else {
1338 			err = take_gc_lnum(c);
1339 			if (err)
1340 				goto out_orphans;
1341 
1342 			/*
1343 			 * GC LEB may contain garbage if there was an unclean
1344 			 * reboot, and it should be un-mapped.
1345 			 */
1346 			err = ubifs_leb_unmap(c, c->gc_lnum);
1347 			if (err)
1348 				goto out_orphans;
1349 		}
1350 
1351 		err = dbg_check_lprops(c);
1352 		if (err)
1353 			goto out_orphans;
1354 	} else if (c->need_recovery) {
1355 		err = ubifs_recover_size(c);
1356 		if (err)
1357 			goto out_orphans;
1358 	} else {
1359 		/*
1360 		 * Even if we mount read-only, we have to set space in GC LEB
1361 		 * to proper value because this affects UBIFS free space
1362 		 * reporting. We do not want to have a situation when
1363 		 * re-mounting from R/O to R/W changes amount of free space.
1364 		 */
1365 		err = take_gc_lnum(c);
1366 		if (err)
1367 			goto out_orphans;
1368 	}
1369 
1370 	spin_lock(&ubifs_infos_lock);
1371 	list_add_tail(&c->infos_list, &ubifs_infos);
1372 	spin_unlock(&ubifs_infos_lock);
1373 
1374 	if (c->need_recovery) {
1375 		if (c->ro_mount)
1376 			ubifs_msg("recovery deferred");
1377 		else {
1378 			c->need_recovery = 0;
1379 			ubifs_msg("recovery completed");
1380 			/*
1381 			 * GC LEB has to be empty and taken at this point. But
1382 			 * the journal head LEBs may also be accounted as
1383 			 * "empty taken" if they are empty.
1384 			 */
1385 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1386 		}
1387 	} else
1388 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1389 
1390 	err = dbg_check_filesystem(c);
1391 	if (err)
1392 		goto out_infos;
1393 
1394 	err = dbg_debugfs_init_fs(c);
1395 	if (err)
1396 		goto out_infos;
1397 
1398 	c->mounting = 0;
1399 
1400 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
1401 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1402 		  c->ro_mount ? ", R/O mode" : "");
1403 	x = (long long)c->main_lebs * c->leb_size;
1404 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1405 	ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1406 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1407 		  c->max_write_size);
1408 	ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1409 		  x, x >> 20, c->main_lebs,
1410 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1411 	ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1412 		  c->report_rp_size, c->report_rp_size >> 10);
1413 	ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1414 		  c->fmt_version, c->ro_compat_version,
1415 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1416 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1417 
1418 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1419 	dbg_gen("data journal heads:  %d",
1420 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1421 	dbg_gen("log LEBs:            %d (%d - %d)",
1422 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1423 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1424 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1425 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1426 		c->orph_lebs, c->orph_first, c->orph_last);
1427 	dbg_gen("main area LEBs:      %d (%d - %d)",
1428 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1429 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1430 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1431 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1432 		c->bi.old_idx_sz >> 20);
1433 	dbg_gen("key hash type:       %d", c->key_hash_type);
1434 	dbg_gen("tree fanout:         %d", c->fanout);
1435 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1436 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1437 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1438 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1439 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1440 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1441 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1442 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1443 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1444 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1445 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1446 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1447 	dbg_gen("dead watermark:      %d", c->dead_wm);
1448 	dbg_gen("dark watermark:      %d", c->dark_wm);
1449 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1450 	x = (long long)c->main_lebs * c->dark_wm;
1451 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1452 		x, x >> 10, x >> 20);
1453 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1454 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1455 		c->max_bud_bytes >> 20);
1456 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1457 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1458 		c->bg_bud_bytes >> 20);
1459 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1460 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1461 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1462 	dbg_gen("commit number:       %llu", c->cmt_no);
1463 
1464 	return 0;
1465 
1466 out_infos:
1467 	spin_lock(&ubifs_infos_lock);
1468 	list_del(&c->infos_list);
1469 	spin_unlock(&ubifs_infos_lock);
1470 out_orphans:
1471 	free_orphans(c);
1472 out_journal:
1473 	destroy_journal(c);
1474 out_lpt:
1475 	ubifs_lpt_free(c, 0);
1476 out_master:
1477 	kfree(c->mst_node);
1478 	kfree(c->rcvrd_mst_node);
1479 	if (c->bgt)
1480 		kthread_stop(c->bgt);
1481 out_wbufs:
1482 	free_wbufs(c);
1483 out_cbuf:
1484 	kfree(c->cbuf);
1485 out_free:
1486 	kfree(c->write_reserve_buf);
1487 	kfree(c->bu.buf);
1488 	vfree(c->ileb_buf);
1489 	vfree(c->sbuf);
1490 	kfree(c->bottom_up_buf);
1491 	ubifs_debugging_exit(c);
1492 	return err;
1493 }
1494 
1495 /**
1496  * ubifs_umount - un-mount UBIFS file-system.
1497  * @c: UBIFS file-system description object
1498  *
1499  * Note, this function is called to free allocated resourced when un-mounting,
1500  * as well as free resources when an error occurred while we were half way
1501  * through mounting (error path cleanup function). So it has to make sure the
1502  * resource was actually allocated before freeing it.
1503  */
1504 static void ubifs_umount(struct ubifs_info *c)
1505 {
1506 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1507 		c->vi.vol_id);
1508 
1509 	dbg_debugfs_exit_fs(c);
1510 	spin_lock(&ubifs_infos_lock);
1511 	list_del(&c->infos_list);
1512 	spin_unlock(&ubifs_infos_lock);
1513 
1514 	if (c->bgt)
1515 		kthread_stop(c->bgt);
1516 
1517 	destroy_journal(c);
1518 	free_wbufs(c);
1519 	free_orphans(c);
1520 	ubifs_lpt_free(c, 0);
1521 
1522 	kfree(c->cbuf);
1523 	kfree(c->rcvrd_mst_node);
1524 	kfree(c->mst_node);
1525 	kfree(c->write_reserve_buf);
1526 	kfree(c->bu.buf);
1527 	vfree(c->ileb_buf);
1528 	vfree(c->sbuf);
1529 	kfree(c->bottom_up_buf);
1530 	ubifs_debugging_exit(c);
1531 }
1532 
1533 /**
1534  * ubifs_remount_rw - re-mount in read-write mode.
1535  * @c: UBIFS file-system description object
1536  *
1537  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1538  * mode. This function allocates the needed resources and re-mounts UBIFS in
1539  * read-write mode.
1540  */
1541 static int ubifs_remount_rw(struct ubifs_info *c)
1542 {
1543 	int err, lnum;
1544 
1545 	if (c->rw_incompat) {
1546 		ubifs_err("the file-system is not R/W-compatible");
1547 		ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1548 			  c->fmt_version, c->ro_compat_version,
1549 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1550 		return -EROFS;
1551 	}
1552 
1553 	mutex_lock(&c->umount_mutex);
1554 	dbg_save_space_info(c);
1555 	c->remounting_rw = 1;
1556 	c->ro_mount = 0;
1557 
1558 	if (c->space_fixup) {
1559 		err = ubifs_fixup_free_space(c);
1560 		if (err)
1561 			goto out;
1562 	}
1563 
1564 	err = check_free_space(c);
1565 	if (err)
1566 		goto out;
1567 
1568 	if (c->old_leb_cnt != c->leb_cnt) {
1569 		struct ubifs_sb_node *sup;
1570 
1571 		sup = ubifs_read_sb_node(c);
1572 		if (IS_ERR(sup)) {
1573 			err = PTR_ERR(sup);
1574 			goto out;
1575 		}
1576 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1577 		err = ubifs_write_sb_node(c, sup);
1578 		kfree(sup);
1579 		if (err)
1580 			goto out;
1581 	}
1582 
1583 	if (c->need_recovery) {
1584 		ubifs_msg("completing deferred recovery");
1585 		err = ubifs_write_rcvrd_mst_node(c);
1586 		if (err)
1587 			goto out;
1588 		err = ubifs_recover_size(c);
1589 		if (err)
1590 			goto out;
1591 		err = ubifs_clean_lebs(c, c->sbuf);
1592 		if (err)
1593 			goto out;
1594 		err = ubifs_recover_inl_heads(c, c->sbuf);
1595 		if (err)
1596 			goto out;
1597 	} else {
1598 		/* A readonly mount is not allowed to have orphans */
1599 		ubifs_assert(c->tot_orphans == 0);
1600 		err = ubifs_clear_orphans(c);
1601 		if (err)
1602 			goto out;
1603 	}
1604 
1605 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1606 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1607 		err = ubifs_write_master(c);
1608 		if (err)
1609 			goto out;
1610 	}
1611 
1612 	c->ileb_buf = vmalloc(c->leb_size);
1613 	if (!c->ileb_buf) {
1614 		err = -ENOMEM;
1615 		goto out;
1616 	}
1617 
1618 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1619 	if (!c->write_reserve_buf) {
1620 		err = -ENOMEM;
1621 		goto out;
1622 	}
1623 
1624 	err = ubifs_lpt_init(c, 0, 1);
1625 	if (err)
1626 		goto out;
1627 
1628 	/* Create background thread */
1629 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1630 	if (IS_ERR(c->bgt)) {
1631 		err = PTR_ERR(c->bgt);
1632 		c->bgt = NULL;
1633 		ubifs_err("cannot spawn \"%s\", error %d",
1634 			  c->bgt_name, err);
1635 		goto out;
1636 	}
1637 	wake_up_process(c->bgt);
1638 
1639 	c->orph_buf = vmalloc(c->leb_size);
1640 	if (!c->orph_buf) {
1641 		err = -ENOMEM;
1642 		goto out;
1643 	}
1644 
1645 	/* Check for enough log space */
1646 	lnum = c->lhead_lnum + 1;
1647 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1648 		lnum = UBIFS_LOG_LNUM;
1649 	if (lnum == c->ltail_lnum) {
1650 		err = ubifs_consolidate_log(c);
1651 		if (err)
1652 			goto out;
1653 	}
1654 
1655 	if (c->need_recovery)
1656 		err = ubifs_rcvry_gc_commit(c);
1657 	else
1658 		err = ubifs_leb_unmap(c, c->gc_lnum);
1659 	if (err)
1660 		goto out;
1661 
1662 	dbg_gen("re-mounted read-write");
1663 	c->remounting_rw = 0;
1664 
1665 	if (c->need_recovery) {
1666 		c->need_recovery = 0;
1667 		ubifs_msg("deferred recovery completed");
1668 	} else {
1669 		/*
1670 		 * Do not run the debugging space check if the were doing
1671 		 * recovery, because when we saved the information we had the
1672 		 * file-system in a state where the TNC and lprops has been
1673 		 * modified in memory, but all the I/O operations (including a
1674 		 * commit) were deferred. So the file-system was in
1675 		 * "non-committed" state. Now the file-system is in committed
1676 		 * state, and of course the amount of free space will change
1677 		 * because, for example, the old index size was imprecise.
1678 		 */
1679 		err = dbg_check_space_info(c);
1680 	}
1681 
1682 	mutex_unlock(&c->umount_mutex);
1683 	return err;
1684 
1685 out:
1686 	c->ro_mount = 1;
1687 	vfree(c->orph_buf);
1688 	c->orph_buf = NULL;
1689 	if (c->bgt) {
1690 		kthread_stop(c->bgt);
1691 		c->bgt = NULL;
1692 	}
1693 	free_wbufs(c);
1694 	kfree(c->write_reserve_buf);
1695 	c->write_reserve_buf = NULL;
1696 	vfree(c->ileb_buf);
1697 	c->ileb_buf = NULL;
1698 	ubifs_lpt_free(c, 1);
1699 	c->remounting_rw = 0;
1700 	mutex_unlock(&c->umount_mutex);
1701 	return err;
1702 }
1703 
1704 /**
1705  * ubifs_remount_ro - re-mount in read-only mode.
1706  * @c: UBIFS file-system description object
1707  *
1708  * We assume VFS has stopped writing. Possibly the background thread could be
1709  * running a commit, however kthread_stop will wait in that case.
1710  */
1711 static void ubifs_remount_ro(struct ubifs_info *c)
1712 {
1713 	int i, err;
1714 
1715 	ubifs_assert(!c->need_recovery);
1716 	ubifs_assert(!c->ro_mount);
1717 
1718 	mutex_lock(&c->umount_mutex);
1719 	if (c->bgt) {
1720 		kthread_stop(c->bgt);
1721 		c->bgt = NULL;
1722 	}
1723 
1724 	dbg_save_space_info(c);
1725 
1726 	for (i = 0; i < c->jhead_cnt; i++)
1727 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1728 
1729 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1730 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1731 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1732 	err = ubifs_write_master(c);
1733 	if (err)
1734 		ubifs_ro_mode(c, err);
1735 
1736 	vfree(c->orph_buf);
1737 	c->orph_buf = NULL;
1738 	kfree(c->write_reserve_buf);
1739 	c->write_reserve_buf = NULL;
1740 	vfree(c->ileb_buf);
1741 	c->ileb_buf = NULL;
1742 	ubifs_lpt_free(c, 1);
1743 	c->ro_mount = 1;
1744 	err = dbg_check_space_info(c);
1745 	if (err)
1746 		ubifs_ro_mode(c, err);
1747 	mutex_unlock(&c->umount_mutex);
1748 }
1749 
1750 static void ubifs_put_super(struct super_block *sb)
1751 {
1752 	int i;
1753 	struct ubifs_info *c = sb->s_fs_info;
1754 
1755 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1756 		  c->vi.vol_id);
1757 
1758 	/*
1759 	 * The following asserts are only valid if there has not been a failure
1760 	 * of the media. For example, there will be dirty inodes if we failed
1761 	 * to write them back because of I/O errors.
1762 	 */
1763 	if (!c->ro_error) {
1764 		ubifs_assert(c->bi.idx_growth == 0);
1765 		ubifs_assert(c->bi.dd_growth == 0);
1766 		ubifs_assert(c->bi.data_growth == 0);
1767 	}
1768 
1769 	/*
1770 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1771 	 * and file system un-mount. Namely, it prevents the shrinker from
1772 	 * picking this superblock for shrinking - it will be just skipped if
1773 	 * the mutex is locked.
1774 	 */
1775 	mutex_lock(&c->umount_mutex);
1776 	if (!c->ro_mount) {
1777 		/*
1778 		 * First of all kill the background thread to make sure it does
1779 		 * not interfere with un-mounting and freeing resources.
1780 		 */
1781 		if (c->bgt) {
1782 			kthread_stop(c->bgt);
1783 			c->bgt = NULL;
1784 		}
1785 
1786 		/*
1787 		 * On fatal errors c->ro_error is set to 1, in which case we do
1788 		 * not write the master node.
1789 		 */
1790 		if (!c->ro_error) {
1791 			int err;
1792 
1793 			/* Synchronize write-buffers */
1794 			for (i = 0; i < c->jhead_cnt; i++)
1795 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1796 
1797 			/*
1798 			 * We are being cleanly unmounted which means the
1799 			 * orphans were killed - indicate this in the master
1800 			 * node. Also save the reserved GC LEB number.
1801 			 */
1802 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1803 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1804 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1805 			err = ubifs_write_master(c);
1806 			if (err)
1807 				/*
1808 				 * Recovery will attempt to fix the master area
1809 				 * next mount, so we just print a message and
1810 				 * continue to unmount normally.
1811 				 */
1812 				ubifs_err("failed to write master node, error %d",
1813 					  err);
1814 		} else {
1815 			for (i = 0; i < c->jhead_cnt; i++)
1816 				/* Make sure write-buffer timers are canceled */
1817 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1818 		}
1819 	}
1820 
1821 	ubifs_umount(c);
1822 	bdi_destroy(&c->bdi);
1823 	ubi_close_volume(c->ubi);
1824 	mutex_unlock(&c->umount_mutex);
1825 }
1826 
1827 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1828 {
1829 	int err;
1830 	struct ubifs_info *c = sb->s_fs_info;
1831 
1832 	sync_filesystem(sb);
1833 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1834 
1835 	err = ubifs_parse_options(c, data, 1);
1836 	if (err) {
1837 		ubifs_err("invalid or unknown remount parameter");
1838 		return err;
1839 	}
1840 
1841 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1842 		if (c->ro_error) {
1843 			ubifs_msg("cannot re-mount R/W due to prior errors");
1844 			return -EROFS;
1845 		}
1846 		if (c->ro_media) {
1847 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1848 			return -EROFS;
1849 		}
1850 		err = ubifs_remount_rw(c);
1851 		if (err)
1852 			return err;
1853 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1854 		if (c->ro_error) {
1855 			ubifs_msg("cannot re-mount R/O due to prior errors");
1856 			return -EROFS;
1857 		}
1858 		ubifs_remount_ro(c);
1859 	}
1860 
1861 	if (c->bulk_read == 1)
1862 		bu_init(c);
1863 	else {
1864 		dbg_gen("disable bulk-read");
1865 		kfree(c->bu.buf);
1866 		c->bu.buf = NULL;
1867 	}
1868 
1869 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1870 	return 0;
1871 }
1872 
1873 const struct super_operations ubifs_super_operations = {
1874 	.alloc_inode   = ubifs_alloc_inode,
1875 	.destroy_inode = ubifs_destroy_inode,
1876 	.put_super     = ubifs_put_super,
1877 	.write_inode   = ubifs_write_inode,
1878 	.evict_inode   = ubifs_evict_inode,
1879 	.statfs        = ubifs_statfs,
1880 	.dirty_inode   = ubifs_dirty_inode,
1881 	.remount_fs    = ubifs_remount_fs,
1882 	.show_options  = ubifs_show_options,
1883 	.sync_fs       = ubifs_sync_fs,
1884 };
1885 
1886 /**
1887  * open_ubi - parse UBI device name string and open the UBI device.
1888  * @name: UBI volume name
1889  * @mode: UBI volume open mode
1890  *
1891  * The primary method of mounting UBIFS is by specifying the UBI volume
1892  * character device node path. However, UBIFS may also be mounted withoug any
1893  * character device node using one of the following methods:
1894  *
1895  * o ubiX_Y    - mount UBI device number X, volume Y;
1896  * o ubiY      - mount UBI device number 0, volume Y;
1897  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1898  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1899  *
1900  * Alternative '!' separator may be used instead of ':' (because some shells
1901  * like busybox may interpret ':' as an NFS host name separator). This function
1902  * returns UBI volume description object in case of success and a negative
1903  * error code in case of failure.
1904  */
1905 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1906 {
1907 	struct ubi_volume_desc *ubi;
1908 	int dev, vol;
1909 	char *endptr;
1910 
1911 	/* First, try to open using the device node path method */
1912 	ubi = ubi_open_volume_path(name, mode);
1913 	if (!IS_ERR(ubi))
1914 		return ubi;
1915 
1916 	/* Try the "nodev" method */
1917 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1918 		return ERR_PTR(-EINVAL);
1919 
1920 	/* ubi:NAME method */
1921 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1922 		return ubi_open_volume_nm(0, name + 4, mode);
1923 
1924 	if (!isdigit(name[3]))
1925 		return ERR_PTR(-EINVAL);
1926 
1927 	dev = simple_strtoul(name + 3, &endptr, 0);
1928 
1929 	/* ubiY method */
1930 	if (*endptr == '\0')
1931 		return ubi_open_volume(0, dev, mode);
1932 
1933 	/* ubiX_Y method */
1934 	if (*endptr == '_' && isdigit(endptr[1])) {
1935 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1936 		if (*endptr != '\0')
1937 			return ERR_PTR(-EINVAL);
1938 		return ubi_open_volume(dev, vol, mode);
1939 	}
1940 
1941 	/* ubiX:NAME method */
1942 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1943 		return ubi_open_volume_nm(dev, ++endptr, mode);
1944 
1945 	return ERR_PTR(-EINVAL);
1946 }
1947 
1948 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1949 {
1950 	struct ubifs_info *c;
1951 
1952 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1953 	if (c) {
1954 		spin_lock_init(&c->cnt_lock);
1955 		spin_lock_init(&c->cs_lock);
1956 		spin_lock_init(&c->buds_lock);
1957 		spin_lock_init(&c->space_lock);
1958 		spin_lock_init(&c->orphan_lock);
1959 		init_rwsem(&c->commit_sem);
1960 		mutex_init(&c->lp_mutex);
1961 		mutex_init(&c->tnc_mutex);
1962 		mutex_init(&c->log_mutex);
1963 		mutex_init(&c->umount_mutex);
1964 		mutex_init(&c->bu_mutex);
1965 		mutex_init(&c->write_reserve_mutex);
1966 		init_waitqueue_head(&c->cmt_wq);
1967 		c->buds = RB_ROOT;
1968 		c->old_idx = RB_ROOT;
1969 		c->size_tree = RB_ROOT;
1970 		c->orph_tree = RB_ROOT;
1971 		INIT_LIST_HEAD(&c->infos_list);
1972 		INIT_LIST_HEAD(&c->idx_gc);
1973 		INIT_LIST_HEAD(&c->replay_list);
1974 		INIT_LIST_HEAD(&c->replay_buds);
1975 		INIT_LIST_HEAD(&c->uncat_list);
1976 		INIT_LIST_HEAD(&c->empty_list);
1977 		INIT_LIST_HEAD(&c->freeable_list);
1978 		INIT_LIST_HEAD(&c->frdi_idx_list);
1979 		INIT_LIST_HEAD(&c->unclean_leb_list);
1980 		INIT_LIST_HEAD(&c->old_buds);
1981 		INIT_LIST_HEAD(&c->orph_list);
1982 		INIT_LIST_HEAD(&c->orph_new);
1983 		c->no_chk_data_crc = 1;
1984 
1985 		c->highest_inum = UBIFS_FIRST_INO;
1986 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1987 
1988 		ubi_get_volume_info(ubi, &c->vi);
1989 		ubi_get_device_info(c->vi.ubi_num, &c->di);
1990 	}
1991 	return c;
1992 }
1993 
1994 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1995 {
1996 	struct ubifs_info *c = sb->s_fs_info;
1997 	struct inode *root;
1998 	int err;
1999 
2000 	c->vfs_sb = sb;
2001 	/* Re-open the UBI device in read-write mode */
2002 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2003 	if (IS_ERR(c->ubi)) {
2004 		err = PTR_ERR(c->ubi);
2005 		goto out;
2006 	}
2007 
2008 	/*
2009 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2010 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2011 	 * which means the user would have to wait not just for their own I/O
2012 	 * but the read-ahead I/O as well i.e. completely pointless.
2013 	 *
2014 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2015 	 */
2016 	c->bdi.name = "ubifs",
2017 	c->bdi.capabilities = 0;
2018 	err  = bdi_init(&c->bdi);
2019 	if (err)
2020 		goto out_close;
2021 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2022 			   c->vi.ubi_num, c->vi.vol_id);
2023 	if (err)
2024 		goto out_bdi;
2025 
2026 	err = ubifs_parse_options(c, data, 0);
2027 	if (err)
2028 		goto out_bdi;
2029 
2030 	sb->s_bdi = &c->bdi;
2031 	sb->s_fs_info = c;
2032 	sb->s_magic = UBIFS_SUPER_MAGIC;
2033 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2034 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2035 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2036 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2037 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2038 	sb->s_op = &ubifs_super_operations;
2039 	sb->s_xattr = ubifs_xattr_handlers;
2040 
2041 	mutex_lock(&c->umount_mutex);
2042 	err = mount_ubifs(c);
2043 	if (err) {
2044 		ubifs_assert(err < 0);
2045 		goto out_unlock;
2046 	}
2047 
2048 	/* Read the root inode */
2049 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2050 	if (IS_ERR(root)) {
2051 		err = PTR_ERR(root);
2052 		goto out_umount;
2053 	}
2054 
2055 	sb->s_root = d_make_root(root);
2056 	if (!sb->s_root) {
2057 		err = -ENOMEM;
2058 		goto out_umount;
2059 	}
2060 
2061 	mutex_unlock(&c->umount_mutex);
2062 	return 0;
2063 
2064 out_umount:
2065 	ubifs_umount(c);
2066 out_unlock:
2067 	mutex_unlock(&c->umount_mutex);
2068 out_bdi:
2069 	bdi_destroy(&c->bdi);
2070 out_close:
2071 	ubi_close_volume(c->ubi);
2072 out:
2073 	return err;
2074 }
2075 
2076 static int sb_test(struct super_block *sb, void *data)
2077 {
2078 	struct ubifs_info *c1 = data;
2079 	struct ubifs_info *c = sb->s_fs_info;
2080 
2081 	return c->vi.cdev == c1->vi.cdev;
2082 }
2083 
2084 static int sb_set(struct super_block *sb, void *data)
2085 {
2086 	sb->s_fs_info = data;
2087 	return set_anon_super(sb, NULL);
2088 }
2089 
2090 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2091 			const char *name, void *data)
2092 {
2093 	struct ubi_volume_desc *ubi;
2094 	struct ubifs_info *c;
2095 	struct super_block *sb;
2096 	int err;
2097 
2098 	dbg_gen("name %s, flags %#x", name, flags);
2099 
2100 	/*
2101 	 * Get UBI device number and volume ID. Mount it read-only so far
2102 	 * because this might be a new mount point, and UBI allows only one
2103 	 * read-write user at a time.
2104 	 */
2105 	ubi = open_ubi(name, UBI_READONLY);
2106 	if (IS_ERR(ubi)) {
2107 		ubifs_err("cannot open \"%s\", error %d",
2108 			  name, (int)PTR_ERR(ubi));
2109 		return ERR_CAST(ubi);
2110 	}
2111 
2112 	c = alloc_ubifs_info(ubi);
2113 	if (!c) {
2114 		err = -ENOMEM;
2115 		goto out_close;
2116 	}
2117 
2118 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2119 
2120 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2121 	if (IS_ERR(sb)) {
2122 		err = PTR_ERR(sb);
2123 		kfree(c);
2124 		goto out_close;
2125 	}
2126 
2127 	if (sb->s_root) {
2128 		struct ubifs_info *c1 = sb->s_fs_info;
2129 		kfree(c);
2130 		/* A new mount point for already mounted UBIFS */
2131 		dbg_gen("this ubi volume is already mounted");
2132 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2133 			err = -EBUSY;
2134 			goto out_deact;
2135 		}
2136 	} else {
2137 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2138 		if (err)
2139 			goto out_deact;
2140 		/* We do not support atime */
2141 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2142 	}
2143 
2144 	/* 'fill_super()' opens ubi again so we must close it here */
2145 	ubi_close_volume(ubi);
2146 
2147 	return dget(sb->s_root);
2148 
2149 out_deact:
2150 	deactivate_locked_super(sb);
2151 out_close:
2152 	ubi_close_volume(ubi);
2153 	return ERR_PTR(err);
2154 }
2155 
2156 static void kill_ubifs_super(struct super_block *s)
2157 {
2158 	struct ubifs_info *c = s->s_fs_info;
2159 	kill_anon_super(s);
2160 	kfree(c);
2161 }
2162 
2163 static struct file_system_type ubifs_fs_type = {
2164 	.name    = "ubifs",
2165 	.owner   = THIS_MODULE,
2166 	.mount   = ubifs_mount,
2167 	.kill_sb = kill_ubifs_super,
2168 };
2169 MODULE_ALIAS_FS("ubifs");
2170 
2171 /*
2172  * Inode slab cache constructor.
2173  */
2174 static void inode_slab_ctor(void *obj)
2175 {
2176 	struct ubifs_inode *ui = obj;
2177 	inode_init_once(&ui->vfs_inode);
2178 }
2179 
2180 static int __init ubifs_init(void)
2181 {
2182 	int err;
2183 
2184 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2185 
2186 	/* Make sure node sizes are 8-byte aligned */
2187 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2188 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2189 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2190 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2191 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2192 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2193 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2194 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2195 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2196 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2197 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2198 
2199 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2200 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2201 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2202 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2203 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2204 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2205 
2206 	/* Check min. node size */
2207 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2208 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2209 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2210 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2211 
2212 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2213 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2214 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2215 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2216 
2217 	/* Defined node sizes */
2218 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2219 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2220 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2221 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2222 
2223 	/*
2224 	 * We use 2 bit wide bit-fields to store compression type, which should
2225 	 * be amended if more compressors are added. The bit-fields are:
2226 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2227 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2228 	 */
2229 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2230 
2231 	/*
2232 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2233 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2234 	 */
2235 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2236 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2237 			  (unsigned int)PAGE_CACHE_SIZE);
2238 		return -EINVAL;
2239 	}
2240 
2241 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2242 				sizeof(struct ubifs_inode), 0,
2243 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2244 				&inode_slab_ctor);
2245 	if (!ubifs_inode_slab)
2246 		return -ENOMEM;
2247 
2248 	register_shrinker(&ubifs_shrinker_info);
2249 
2250 	err = ubifs_compressors_init();
2251 	if (err)
2252 		goto out_shrinker;
2253 
2254 	err = dbg_debugfs_init();
2255 	if (err)
2256 		goto out_compr;
2257 
2258 	err = register_filesystem(&ubifs_fs_type);
2259 	if (err) {
2260 		ubifs_err("cannot register file system, error %d", err);
2261 		goto out_dbg;
2262 	}
2263 	return 0;
2264 
2265 out_dbg:
2266 	dbg_debugfs_exit();
2267 out_compr:
2268 	ubifs_compressors_exit();
2269 out_shrinker:
2270 	unregister_shrinker(&ubifs_shrinker_info);
2271 	kmem_cache_destroy(ubifs_inode_slab);
2272 	return err;
2273 }
2274 /* late_initcall to let compressors initialize first */
2275 late_initcall(ubifs_init);
2276 
2277 static void __exit ubifs_exit(void)
2278 {
2279 	ubifs_assert(list_empty(&ubifs_infos));
2280 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2281 
2282 	dbg_debugfs_exit();
2283 	ubifs_compressors_exit();
2284 	unregister_shrinker(&ubifs_shrinker_info);
2285 
2286 	/*
2287 	 * Make sure all delayed rcu free inodes are flushed before we
2288 	 * destroy cache.
2289 	 */
2290 	rcu_barrier();
2291 	kmem_cache_destroy(ubifs_inode_slab);
2292 	unregister_filesystem(&ubifs_fs_type);
2293 }
2294 module_exit(ubifs_exit);
2295 
2296 MODULE_LICENSE("GPL");
2297 MODULE_VERSION(__stringify(UBIFS_VERSION));
2298 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2299 MODULE_DESCRIPTION("UBIFS - UBI File System");
2300