xref: /openbmc/linux/fs/ubifs/super.c (revision 828ff2ad)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(c, ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 	inode->i_flags |= S_NOATIME;
134 #endif
135 	set_nlink(inode, le32_to_cpu(ino->nlink));
136 	i_uid_write(inode, le32_to_cpu(ino->uid));
137 	i_gid_write(inode, le32_to_cpu(ino->gid));
138 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
139 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
141 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
143 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 	inode->i_mode = le32_to_cpu(ino->mode);
145 	inode->i_size = le64_to_cpu(ino->size);
146 
147 	ui->data_len    = le32_to_cpu(ino->data_len);
148 	ui->flags       = le32_to_cpu(ino->flags);
149 	ui->compr_type  = le16_to_cpu(ino->compr_type);
150 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
152 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
153 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 	ui->synced_i_size = ui->ui_size = inode->i_size;
155 
156 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157 
158 	err = validate_inode(c, inode);
159 	if (err)
160 		goto out_invalid;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kmem_cache_free(ubifs_inode_slab, ui);
280 }
281 
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289 
290 /*
291  * Note, Linux write-back code calls this without 'i_mutex'.
292  */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	int err = 0;
296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
297 	struct ubifs_inode *ui = ubifs_inode(inode);
298 
299 	ubifs_assert(c, !ui->xattr);
300 	if (is_bad_inode(inode))
301 		return 0;
302 
303 	mutex_lock(&ui->ui_mutex);
304 	/*
305 	 * Due to races between write-back forced by budgeting
306 	 * (see 'sync_some_inodes()') and background write-back, the inode may
307 	 * have already been synchronized, do not do this again. This might
308 	 * also happen if it was synchronized in an VFS operation, e.g.
309 	 * 'ubifs_link()'.
310 	 */
311 	if (!ui->dirty) {
312 		mutex_unlock(&ui->ui_mutex);
313 		return 0;
314 	}
315 
316 	/*
317 	 * As an optimization, do not write orphan inodes to the media just
318 	 * because this is not needed.
319 	 */
320 	dbg_gen("inode %lu, mode %#x, nlink %u",
321 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 	if (inode->i_nlink) {
323 		err = ubifs_jnl_write_inode(c, inode);
324 		if (err)
325 			ubifs_err(c, "can't write inode %lu, error %d",
326 				  inode->i_ino, err);
327 		else
328 			err = dbg_check_inode_size(c, inode, ui->ui_size);
329 	}
330 
331 	ui->dirty = 0;
332 	mutex_unlock(&ui->ui_mutex);
333 	ubifs_release_dirty_inode_budget(c, ui);
334 	return err;
335 }
336 
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 	int err;
340 	struct ubifs_info *c = inode->i_sb->s_fs_info;
341 	struct ubifs_inode *ui = ubifs_inode(inode);
342 
343 	if (ui->xattr)
344 		/*
345 		 * Extended attribute inode deletions are fully handled in
346 		 * 'ubifs_removexattr()'. These inodes are special and have
347 		 * limited usage, so there is nothing to do here.
348 		 */
349 		goto out;
350 
351 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 	ubifs_assert(c, !atomic_read(&inode->i_count));
353 
354 	truncate_inode_pages_final(&inode->i_data);
355 
356 	if (inode->i_nlink)
357 		goto done;
358 
359 	if (is_bad_inode(inode))
360 		goto out;
361 
362 	ui->ui_size = inode->i_size = 0;
363 	err = ubifs_jnl_delete_inode(c, inode);
364 	if (err)
365 		/*
366 		 * Worst case we have a lost orphan inode wasting space, so a
367 		 * simple error message is OK here.
368 		 */
369 		ubifs_err(c, "can't delete inode %lu, error %d",
370 			  inode->i_ino, err);
371 
372 out:
373 	if (ui->dirty)
374 		ubifs_release_dirty_inode_budget(c, ui);
375 	else {
376 		/* We've deleted something - clean the "no space" flags */
377 		c->bi.nospace = c->bi.nospace_rp = 0;
378 		smp_wmb();
379 	}
380 done:
381 	clear_inode(inode);
382 	fscrypt_put_encryption_info(inode);
383 }
384 
385 static void ubifs_dirty_inode(struct inode *inode, int flags)
386 {
387 	struct ubifs_info *c = inode->i_sb->s_fs_info;
388 	struct ubifs_inode *ui = ubifs_inode(inode);
389 
390 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
391 	if (!ui->dirty) {
392 		ui->dirty = 1;
393 		dbg_gen("inode %lu",  inode->i_ino);
394 	}
395 }
396 
397 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
398 {
399 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
400 	unsigned long long free;
401 	__le32 *uuid = (__le32 *)c->uuid;
402 
403 	free = ubifs_get_free_space(c);
404 	dbg_gen("free space %lld bytes (%lld blocks)",
405 		free, free >> UBIFS_BLOCK_SHIFT);
406 
407 	buf->f_type = UBIFS_SUPER_MAGIC;
408 	buf->f_bsize = UBIFS_BLOCK_SIZE;
409 	buf->f_blocks = c->block_cnt;
410 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
411 	if (free > c->report_rp_size)
412 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
413 	else
414 		buf->f_bavail = 0;
415 	buf->f_files = 0;
416 	buf->f_ffree = 0;
417 	buf->f_namelen = UBIFS_MAX_NLEN;
418 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
419 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
420 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
421 	return 0;
422 }
423 
424 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
425 {
426 	struct ubifs_info *c = root->d_sb->s_fs_info;
427 
428 	if (c->mount_opts.unmount_mode == 2)
429 		seq_puts(s, ",fast_unmount");
430 	else if (c->mount_opts.unmount_mode == 1)
431 		seq_puts(s, ",norm_unmount");
432 
433 	if (c->mount_opts.bulk_read == 2)
434 		seq_puts(s, ",bulk_read");
435 	else if (c->mount_opts.bulk_read == 1)
436 		seq_puts(s, ",no_bulk_read");
437 
438 	if (c->mount_opts.chk_data_crc == 2)
439 		seq_puts(s, ",chk_data_crc");
440 	else if (c->mount_opts.chk_data_crc == 1)
441 		seq_puts(s, ",no_chk_data_crc");
442 
443 	if (c->mount_opts.override_compr) {
444 		seq_printf(s, ",compr=%s",
445 			   ubifs_compr_name(c, c->mount_opts.compr_type));
446 	}
447 
448 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
449 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
450 
451 	return 0;
452 }
453 
454 static int ubifs_sync_fs(struct super_block *sb, int wait)
455 {
456 	int i, err;
457 	struct ubifs_info *c = sb->s_fs_info;
458 
459 	/*
460 	 * Zero @wait is just an advisory thing to help the file system shove
461 	 * lots of data into the queues, and there will be the second
462 	 * '->sync_fs()' call, with non-zero @wait.
463 	 */
464 	if (!wait)
465 		return 0;
466 
467 	/*
468 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 	 * do this if it waits for an already running commit.
470 	 */
471 	for (i = 0; i < c->jhead_cnt; i++) {
472 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
473 		if (err)
474 			return err;
475 	}
476 
477 	/*
478 	 * Strictly speaking, it is not necessary to commit the journal here,
479 	 * synchronizing write-buffers would be enough. But committing makes
480 	 * UBIFS free space predictions much more accurate, so we want to let
481 	 * the user be able to get more accurate results of 'statfs()' after
482 	 * they synchronize the file system.
483 	 */
484 	err = ubifs_run_commit(c);
485 	if (err)
486 		return err;
487 
488 	return ubi_sync(c->vi.ubi_num);
489 }
490 
491 /**
492  * init_constants_early - initialize UBIFS constants.
493  * @c: UBIFS file-system description object
494  *
495  * This function initialize UBIFS constants which do not need the superblock to
496  * be read. It also checks that the UBI volume satisfies basic UBIFS
497  * requirements. Returns zero in case of success and a negative error code in
498  * case of failure.
499  */
500 static int init_constants_early(struct ubifs_info *c)
501 {
502 	if (c->vi.corrupted) {
503 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
504 		c->ro_media = 1;
505 	}
506 
507 	if (c->di.ro_mode) {
508 		ubifs_msg(c, "read-only UBI device");
509 		c->ro_media = 1;
510 	}
511 
512 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
513 		ubifs_msg(c, "static UBI volume - read-only mode");
514 		c->ro_media = 1;
515 	}
516 
517 	c->leb_cnt = c->vi.size;
518 	c->leb_size = c->vi.usable_leb_size;
519 	c->leb_start = c->di.leb_start;
520 	c->half_leb_size = c->leb_size / 2;
521 	c->min_io_size = c->di.min_io_size;
522 	c->min_io_shift = fls(c->min_io_size) - 1;
523 	c->max_write_size = c->di.max_write_size;
524 	c->max_write_shift = fls(c->max_write_size) - 1;
525 
526 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
527 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
528 			   c->leb_size, UBIFS_MIN_LEB_SZ);
529 		return -EINVAL;
530 	}
531 
532 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
533 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
534 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
535 		return -EINVAL;
536 	}
537 
538 	if (!is_power_of_2(c->min_io_size)) {
539 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
540 		return -EINVAL;
541 	}
542 
543 	/*
544 	 * Maximum write size has to be greater or equivalent to min. I/O
545 	 * size, and be multiple of min. I/O size.
546 	 */
547 	if (c->max_write_size < c->min_io_size ||
548 	    c->max_write_size % c->min_io_size ||
549 	    !is_power_of_2(c->max_write_size)) {
550 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
551 			   c->max_write_size, c->min_io_size);
552 		return -EINVAL;
553 	}
554 
555 	/*
556 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
557 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
558 	 * less than 8.
559 	 */
560 	if (c->min_io_size < 8) {
561 		c->min_io_size = 8;
562 		c->min_io_shift = 3;
563 		if (c->max_write_size < c->min_io_size) {
564 			c->max_write_size = c->min_io_size;
565 			c->max_write_shift = c->min_io_shift;
566 		}
567 	}
568 
569 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
570 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
571 
572 	/*
573 	 * Initialize node length ranges which are mostly needed for node
574 	 * length validation.
575 	 */
576 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
577 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
578 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
579 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
580 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
581 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
582 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
583 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
584 				UBIFS_MAX_HMAC_LEN;
585 
586 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
587 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
588 	c->ranges[UBIFS_ORPH_NODE].min_len =
589 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
590 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
591 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
592 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
593 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
594 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
595 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
596 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
597 	/*
598 	 * Minimum indexing node size is amended later when superblock is
599 	 * read and the key length is known.
600 	 */
601 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
602 	/*
603 	 * Maximum indexing node size is amended later when superblock is
604 	 * read and the fanout is known.
605 	 */
606 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
607 
608 	/*
609 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
610 	 * about these values.
611 	 */
612 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
613 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
614 
615 	/*
616 	 * Calculate how many bytes would be wasted at the end of LEB if it was
617 	 * fully filled with data nodes of maximum size. This is used in
618 	 * calculations when reporting free space.
619 	 */
620 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
621 
622 	/* Buffer size for bulk-reads */
623 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
624 	if (c->max_bu_buf_len > c->leb_size)
625 		c->max_bu_buf_len = c->leb_size;
626 	return 0;
627 }
628 
629 /**
630  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
631  * @c: UBIFS file-system description object
632  * @lnum: LEB the write-buffer was synchronized to
633  * @free: how many free bytes left in this LEB
634  * @pad: how many bytes were padded
635  *
636  * This is a callback function which is called by the I/O unit when the
637  * write-buffer is synchronized. We need this to correctly maintain space
638  * accounting in bud logical eraseblocks. This function returns zero in case of
639  * success and a negative error code in case of failure.
640  *
641  * This function actually belongs to the journal, but we keep it here because
642  * we want to keep it static.
643  */
644 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
645 {
646 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
647 }
648 
649 /*
650  * init_constants_sb - initialize UBIFS constants.
651  * @c: UBIFS file-system description object
652  *
653  * This is a helper function which initializes various UBIFS constants after
654  * the superblock has been read. It also checks various UBIFS parameters and
655  * makes sure they are all right. Returns zero in case of success and a
656  * negative error code in case of failure.
657  */
658 static int init_constants_sb(struct ubifs_info *c)
659 {
660 	int tmp, err;
661 	long long tmp64;
662 
663 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
664 	c->max_znode_sz = sizeof(struct ubifs_znode) +
665 				c->fanout * sizeof(struct ubifs_zbranch);
666 
667 	tmp = ubifs_idx_node_sz(c, 1);
668 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
669 	c->min_idx_node_sz = ALIGN(tmp, 8);
670 
671 	tmp = ubifs_idx_node_sz(c, c->fanout);
672 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
673 	c->max_idx_node_sz = ALIGN(tmp, 8);
674 
675 	/* Make sure LEB size is large enough to fit full commit */
676 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
677 	tmp = ALIGN(tmp, c->min_io_size);
678 	if (tmp > c->leb_size) {
679 		ubifs_err(c, "too small LEB size %d, at least %d needed",
680 			  c->leb_size, tmp);
681 		return -EINVAL;
682 	}
683 
684 	/*
685 	 * Make sure that the log is large enough to fit reference nodes for
686 	 * all buds plus one reserved LEB.
687 	 */
688 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
689 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
690 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
691 	tmp /= c->leb_size;
692 	tmp += 1;
693 	if (c->log_lebs < tmp) {
694 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
695 			  c->log_lebs, tmp);
696 		return -EINVAL;
697 	}
698 
699 	/*
700 	 * When budgeting we assume worst-case scenarios when the pages are not
701 	 * be compressed and direntries are of the maximum size.
702 	 *
703 	 * Note, data, which may be stored in inodes is budgeted separately, so
704 	 * it is not included into 'c->bi.inode_budget'.
705 	 */
706 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
707 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
708 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
709 
710 	/*
711 	 * When the amount of flash space used by buds becomes
712 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
713 	 * The writers are unblocked when the commit is finished. To avoid
714 	 * writers to be blocked UBIFS initiates background commit in advance,
715 	 * when number of bud bytes becomes above the limit defined below.
716 	 */
717 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
718 
719 	/*
720 	 * Ensure minimum journal size. All the bytes in the journal heads are
721 	 * considered to be used, when calculating the current journal usage.
722 	 * Consequently, if the journal is too small, UBIFS will treat it as
723 	 * always full.
724 	 */
725 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
726 	if (c->bg_bud_bytes < tmp64)
727 		c->bg_bud_bytes = tmp64;
728 	if (c->max_bud_bytes < tmp64 + c->leb_size)
729 		c->max_bud_bytes = tmp64 + c->leb_size;
730 
731 	err = ubifs_calc_lpt_geom(c);
732 	if (err)
733 		return err;
734 
735 	/* Initialize effective LEB size used in budgeting calculations */
736 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
737 	return 0;
738 }
739 
740 /*
741  * init_constants_master - initialize UBIFS constants.
742  * @c: UBIFS file-system description object
743  *
744  * This is a helper function which initializes various UBIFS constants after
745  * the master node has been read. It also checks various UBIFS parameters and
746  * makes sure they are all right.
747  */
748 static void init_constants_master(struct ubifs_info *c)
749 {
750 	long long tmp64;
751 
752 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
753 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
754 
755 	/*
756 	 * Calculate total amount of FS blocks. This number is not used
757 	 * internally because it does not make much sense for UBIFS, but it is
758 	 * necessary to report something for the 'statfs()' call.
759 	 *
760 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
761 	 * deletions, minimum LEBs for the index, and assume only one journal
762 	 * head is available.
763 	 */
764 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
765 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
766 	tmp64 = ubifs_reported_space(c, tmp64);
767 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
768 }
769 
770 /**
771  * take_gc_lnum - reserve GC LEB.
772  * @c: UBIFS file-system description object
773  *
774  * This function ensures that the LEB reserved for garbage collection is marked
775  * as "taken" in lprops. We also have to set free space to LEB size and dirty
776  * space to zero, because lprops may contain out-of-date information if the
777  * file-system was un-mounted before it has been committed. This function
778  * returns zero in case of success and a negative error code in case of
779  * failure.
780  */
781 static int take_gc_lnum(struct ubifs_info *c)
782 {
783 	int err;
784 
785 	if (c->gc_lnum == -1) {
786 		ubifs_err(c, "no LEB for GC");
787 		return -EINVAL;
788 	}
789 
790 	/* And we have to tell lprops that this LEB is taken */
791 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
792 				  LPROPS_TAKEN, 0, 0);
793 	return err;
794 }
795 
796 /**
797  * alloc_wbufs - allocate write-buffers.
798  * @c: UBIFS file-system description object
799  *
800  * This helper function allocates and initializes UBIFS write-buffers. Returns
801  * zero in case of success and %-ENOMEM in case of failure.
802  */
803 static int alloc_wbufs(struct ubifs_info *c)
804 {
805 	int i, err;
806 
807 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
808 			    GFP_KERNEL);
809 	if (!c->jheads)
810 		return -ENOMEM;
811 
812 	/* Initialize journal heads */
813 	for (i = 0; i < c->jhead_cnt; i++) {
814 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
815 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
816 		if (err)
817 			return err;
818 
819 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
820 		c->jheads[i].wbuf.jhead = i;
821 		c->jheads[i].grouped = 1;
822 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
823 		if (IS_ERR(c->jheads[i].log_hash))
824 			goto out;
825 	}
826 
827 	/*
828 	 * Garbage Collector head does not need to be synchronized by timer.
829 	 * Also GC head nodes are not grouped.
830 	 */
831 	c->jheads[GCHD].wbuf.no_timer = 1;
832 	c->jheads[GCHD].grouped = 0;
833 
834 	return 0;
835 
836 out:
837 	while (i--)
838 		kfree(c->jheads[i].log_hash);
839 
840 	return err;
841 }
842 
843 /**
844  * free_wbufs - free write-buffers.
845  * @c: UBIFS file-system description object
846  */
847 static void free_wbufs(struct ubifs_info *c)
848 {
849 	int i;
850 
851 	if (c->jheads) {
852 		for (i = 0; i < c->jhead_cnt; i++) {
853 			kfree(c->jheads[i].wbuf.buf);
854 			kfree(c->jheads[i].wbuf.inodes);
855 			kfree(c->jheads[i].log_hash);
856 		}
857 		kfree(c->jheads);
858 		c->jheads = NULL;
859 	}
860 }
861 
862 /**
863  * free_orphans - free orphans.
864  * @c: UBIFS file-system description object
865  */
866 static void free_orphans(struct ubifs_info *c)
867 {
868 	struct ubifs_orphan *orph;
869 
870 	while (c->orph_dnext) {
871 		orph = c->orph_dnext;
872 		c->orph_dnext = orph->dnext;
873 		list_del(&orph->list);
874 		kfree(orph);
875 	}
876 
877 	while (!list_empty(&c->orph_list)) {
878 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
879 		list_del(&orph->list);
880 		kfree(orph);
881 		ubifs_err(c, "orphan list not empty at unmount");
882 	}
883 
884 	vfree(c->orph_buf);
885 	c->orph_buf = NULL;
886 }
887 
888 /**
889  * free_buds - free per-bud objects.
890  * @c: UBIFS file-system description object
891  */
892 static void free_buds(struct ubifs_info *c)
893 {
894 	struct ubifs_bud *bud, *n;
895 
896 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
897 		kfree(bud);
898 }
899 
900 /**
901  * check_volume_empty - check if the UBI volume is empty.
902  * @c: UBIFS file-system description object
903  *
904  * This function checks if the UBIFS volume is empty by looking if its LEBs are
905  * mapped or not. The result of checking is stored in the @c->empty variable.
906  * Returns zero in case of success and a negative error code in case of
907  * failure.
908  */
909 static int check_volume_empty(struct ubifs_info *c)
910 {
911 	int lnum, err;
912 
913 	c->empty = 1;
914 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
915 		err = ubifs_is_mapped(c, lnum);
916 		if (unlikely(err < 0))
917 			return err;
918 		if (err == 1) {
919 			c->empty = 0;
920 			break;
921 		}
922 
923 		cond_resched();
924 	}
925 
926 	return 0;
927 }
928 
929 /*
930  * UBIFS mount options.
931  *
932  * Opt_fast_unmount: do not run a journal commit before un-mounting
933  * Opt_norm_unmount: run a journal commit before un-mounting
934  * Opt_bulk_read: enable bulk-reads
935  * Opt_no_bulk_read: disable bulk-reads
936  * Opt_chk_data_crc: check CRCs when reading data nodes
937  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
938  * Opt_override_compr: override default compressor
939  * Opt_assert: set ubifs_assert() action
940  * Opt_auth_key: The key name used for authentication
941  * Opt_auth_hash_name: The hash type used for authentication
942  * Opt_err: just end of array marker
943  */
944 enum {
945 	Opt_fast_unmount,
946 	Opt_norm_unmount,
947 	Opt_bulk_read,
948 	Opt_no_bulk_read,
949 	Opt_chk_data_crc,
950 	Opt_no_chk_data_crc,
951 	Opt_override_compr,
952 	Opt_assert,
953 	Opt_auth_key,
954 	Opt_auth_hash_name,
955 	Opt_ignore,
956 	Opt_err,
957 };
958 
959 static const match_table_t tokens = {
960 	{Opt_fast_unmount, "fast_unmount"},
961 	{Opt_norm_unmount, "norm_unmount"},
962 	{Opt_bulk_read, "bulk_read"},
963 	{Opt_no_bulk_read, "no_bulk_read"},
964 	{Opt_chk_data_crc, "chk_data_crc"},
965 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
966 	{Opt_override_compr, "compr=%s"},
967 	{Opt_auth_key, "auth_key=%s"},
968 	{Opt_auth_hash_name, "auth_hash_name=%s"},
969 	{Opt_ignore, "ubi=%s"},
970 	{Opt_ignore, "vol=%s"},
971 	{Opt_assert, "assert=%s"},
972 	{Opt_err, NULL},
973 };
974 
975 /**
976  * parse_standard_option - parse a standard mount option.
977  * @option: the option to parse
978  *
979  * Normally, standard mount options like "sync" are passed to file-systems as
980  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
981  * be present in the options string. This function tries to deal with this
982  * situation and parse standard options. Returns 0 if the option was not
983  * recognized, and the corresponding integer flag if it was.
984  *
985  * UBIFS is only interested in the "sync" option, so do not check for anything
986  * else.
987  */
988 static int parse_standard_option(const char *option)
989 {
990 
991 	pr_notice("UBIFS: parse %s\n", option);
992 	if (!strcmp(option, "sync"))
993 		return SB_SYNCHRONOUS;
994 	return 0;
995 }
996 
997 /**
998  * ubifs_parse_options - parse mount parameters.
999  * @c: UBIFS file-system description object
1000  * @options: parameters to parse
1001  * @is_remount: non-zero if this is FS re-mount
1002  *
1003  * This function parses UBIFS mount options and returns zero in case success
1004  * and a negative error code in case of failure.
1005  */
1006 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1007 			       int is_remount)
1008 {
1009 	char *p;
1010 	substring_t args[MAX_OPT_ARGS];
1011 
1012 	if (!options)
1013 		return 0;
1014 
1015 	while ((p = strsep(&options, ","))) {
1016 		int token;
1017 
1018 		if (!*p)
1019 			continue;
1020 
1021 		token = match_token(p, tokens, args);
1022 		switch (token) {
1023 		/*
1024 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025 		 * We accept them in order to be backward-compatible. But this
1026 		 * should be removed at some point.
1027 		 */
1028 		case Opt_fast_unmount:
1029 			c->mount_opts.unmount_mode = 2;
1030 			break;
1031 		case Opt_norm_unmount:
1032 			c->mount_opts.unmount_mode = 1;
1033 			break;
1034 		case Opt_bulk_read:
1035 			c->mount_opts.bulk_read = 2;
1036 			c->bulk_read = 1;
1037 			break;
1038 		case Opt_no_bulk_read:
1039 			c->mount_opts.bulk_read = 1;
1040 			c->bulk_read = 0;
1041 			break;
1042 		case Opt_chk_data_crc:
1043 			c->mount_opts.chk_data_crc = 2;
1044 			c->no_chk_data_crc = 0;
1045 			break;
1046 		case Opt_no_chk_data_crc:
1047 			c->mount_opts.chk_data_crc = 1;
1048 			c->no_chk_data_crc = 1;
1049 			break;
1050 		case Opt_override_compr:
1051 		{
1052 			char *name = match_strdup(&args[0]);
1053 
1054 			if (!name)
1055 				return -ENOMEM;
1056 			if (!strcmp(name, "none"))
1057 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1058 			else if (!strcmp(name, "lzo"))
1059 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1060 			else if (!strcmp(name, "zlib"))
1061 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1062 			else {
1063 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1064 				kfree(name);
1065 				return -EINVAL;
1066 			}
1067 			kfree(name);
1068 			c->mount_opts.override_compr = 1;
1069 			c->default_compr = c->mount_opts.compr_type;
1070 			break;
1071 		}
1072 		case Opt_assert:
1073 		{
1074 			char *act = match_strdup(&args[0]);
1075 
1076 			if (!act)
1077 				return -ENOMEM;
1078 			if (!strcmp(act, "report"))
1079 				c->assert_action = ASSACT_REPORT;
1080 			else if (!strcmp(act, "read-only"))
1081 				c->assert_action = ASSACT_RO;
1082 			else if (!strcmp(act, "panic"))
1083 				c->assert_action = ASSACT_PANIC;
1084 			else {
1085 				ubifs_err(c, "unknown assert action \"%s\"", act);
1086 				kfree(act);
1087 				return -EINVAL;
1088 			}
1089 			kfree(act);
1090 			break;
1091 		}
1092 		case Opt_auth_key:
1093 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1094 			if (!c->auth_key_name)
1095 				return -ENOMEM;
1096 			break;
1097 		case Opt_auth_hash_name:
1098 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1099 			if (!c->auth_hash_name)
1100 				return -ENOMEM;
1101 			break;
1102 		case Opt_ignore:
1103 			break;
1104 		default:
1105 		{
1106 			unsigned long flag;
1107 			struct super_block *sb = c->vfs_sb;
1108 
1109 			flag = parse_standard_option(p);
1110 			if (!flag) {
1111 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1112 					  p);
1113 				return -EINVAL;
1114 			}
1115 			sb->s_flags |= flag;
1116 			break;
1117 		}
1118 		}
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * destroy_journal - destroy journal data structures.
1126  * @c: UBIFS file-system description object
1127  *
1128  * This function destroys journal data structures including those that may have
1129  * been created by recovery functions.
1130  */
1131 static void destroy_journal(struct ubifs_info *c)
1132 {
1133 	while (!list_empty(&c->unclean_leb_list)) {
1134 		struct ubifs_unclean_leb *ucleb;
1135 
1136 		ucleb = list_entry(c->unclean_leb_list.next,
1137 				   struct ubifs_unclean_leb, list);
1138 		list_del(&ucleb->list);
1139 		kfree(ucleb);
1140 	}
1141 	while (!list_empty(&c->old_buds)) {
1142 		struct ubifs_bud *bud;
1143 
1144 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1145 		list_del(&bud->list);
1146 		kfree(bud);
1147 	}
1148 	ubifs_destroy_idx_gc(c);
1149 	ubifs_destroy_size_tree(c);
1150 	ubifs_tnc_close(c);
1151 	free_buds(c);
1152 }
1153 
1154 /**
1155  * bu_init - initialize bulk-read information.
1156  * @c: UBIFS file-system description object
1157  */
1158 static void bu_init(struct ubifs_info *c)
1159 {
1160 	ubifs_assert(c, c->bulk_read == 1);
1161 
1162 	if (c->bu.buf)
1163 		return; /* Already initialized */
1164 
1165 again:
1166 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1167 	if (!c->bu.buf) {
1168 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1169 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1170 			goto again;
1171 		}
1172 
1173 		/* Just disable bulk-read */
1174 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1175 			   c->max_bu_buf_len);
1176 		c->mount_opts.bulk_read = 1;
1177 		c->bulk_read = 0;
1178 		return;
1179 	}
1180 }
1181 
1182 /**
1183  * check_free_space - check if there is enough free space to mount.
1184  * @c: UBIFS file-system description object
1185  *
1186  * This function makes sure UBIFS has enough free space to be mounted in
1187  * read/write mode. UBIFS must always have some free space to allow deletions.
1188  */
1189 static int check_free_space(struct ubifs_info *c)
1190 {
1191 	ubifs_assert(c, c->dark_wm > 0);
1192 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1193 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1194 		ubifs_dump_budg(c, &c->bi);
1195 		ubifs_dump_lprops(c);
1196 		return -ENOSPC;
1197 	}
1198 	return 0;
1199 }
1200 
1201 /**
1202  * mount_ubifs - mount UBIFS file-system.
1203  * @c: UBIFS file-system description object
1204  *
1205  * This function mounts UBIFS file system. Returns zero in case of success and
1206  * a negative error code in case of failure.
1207  */
1208 static int mount_ubifs(struct ubifs_info *c)
1209 {
1210 	int err;
1211 	long long x, y;
1212 	size_t sz;
1213 
1214 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1215 	/* Suppress error messages while probing if SB_SILENT is set */
1216 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1217 
1218 	err = init_constants_early(c);
1219 	if (err)
1220 		return err;
1221 
1222 	err = ubifs_debugging_init(c);
1223 	if (err)
1224 		return err;
1225 
1226 	err = check_volume_empty(c);
1227 	if (err)
1228 		goto out_free;
1229 
1230 	if (c->empty && (c->ro_mount || c->ro_media)) {
1231 		/*
1232 		 * This UBI volume is empty, and read-only, or the file system
1233 		 * is mounted read-only - we cannot format it.
1234 		 */
1235 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1236 			  c->ro_media ? "UBI volume" : "mount");
1237 		err = -EROFS;
1238 		goto out_free;
1239 	}
1240 
1241 	if (c->ro_media && !c->ro_mount) {
1242 		ubifs_err(c, "cannot mount read-write - read-only media");
1243 		err = -EROFS;
1244 		goto out_free;
1245 	}
1246 
1247 	/*
1248 	 * The requirement for the buffer is that it should fit indexing B-tree
1249 	 * height amount of integers. We assume the height if the TNC tree will
1250 	 * never exceed 64.
1251 	 */
1252 	err = -ENOMEM;
1253 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1254 					 GFP_KERNEL);
1255 	if (!c->bottom_up_buf)
1256 		goto out_free;
1257 
1258 	c->sbuf = vmalloc(c->leb_size);
1259 	if (!c->sbuf)
1260 		goto out_free;
1261 
1262 	if (!c->ro_mount) {
1263 		c->ileb_buf = vmalloc(c->leb_size);
1264 		if (!c->ileb_buf)
1265 			goto out_free;
1266 	}
1267 
1268 	if (c->bulk_read == 1)
1269 		bu_init(c);
1270 
1271 	if (!c->ro_mount) {
1272 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1273 					       UBIFS_CIPHER_BLOCK_SIZE,
1274 					       GFP_KERNEL);
1275 		if (!c->write_reserve_buf)
1276 			goto out_free;
1277 	}
1278 
1279 	c->mounting = 1;
1280 
1281 	if (c->auth_key_name) {
1282 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1283 			err = ubifs_init_authentication(c);
1284 			if (err)
1285 				goto out_free;
1286 		} else {
1287 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1288 				  " authentication support");
1289 			err = -EINVAL;
1290 			goto out_free;
1291 		}
1292 	}
1293 
1294 	err = ubifs_read_superblock(c);
1295 	if (err)
1296 		goto out_free;
1297 
1298 	c->probing = 0;
1299 
1300 	/*
1301 	 * Make sure the compressor which is set as default in the superblock
1302 	 * or overridden by mount options is actually compiled in.
1303 	 */
1304 	if (!ubifs_compr_present(c, c->default_compr)) {
1305 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1306 			  ubifs_compr_name(c, c->default_compr));
1307 		err = -ENOTSUPP;
1308 		goto out_free;
1309 	}
1310 
1311 	err = init_constants_sb(c);
1312 	if (err)
1313 		goto out_free;
1314 
1315 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1316 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1317 	c->cbuf = kmalloc(sz, GFP_NOFS);
1318 	if (!c->cbuf) {
1319 		err = -ENOMEM;
1320 		goto out_free;
1321 	}
1322 
1323 	err = alloc_wbufs(c);
1324 	if (err)
1325 		goto out_cbuf;
1326 
1327 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1328 	if (!c->ro_mount) {
1329 		/* Create background thread */
1330 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1331 		if (IS_ERR(c->bgt)) {
1332 			err = PTR_ERR(c->bgt);
1333 			c->bgt = NULL;
1334 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1335 				  c->bgt_name, err);
1336 			goto out_wbufs;
1337 		}
1338 		wake_up_process(c->bgt);
1339 	}
1340 
1341 	err = ubifs_read_master(c);
1342 	if (err)
1343 		goto out_master;
1344 
1345 	init_constants_master(c);
1346 
1347 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1348 		ubifs_msg(c, "recovery needed");
1349 		c->need_recovery = 1;
1350 	}
1351 
1352 	if (c->need_recovery && !c->ro_mount) {
1353 		err = ubifs_recover_inl_heads(c, c->sbuf);
1354 		if (err)
1355 			goto out_master;
1356 	}
1357 
1358 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1359 	if (err)
1360 		goto out_master;
1361 
1362 	if (!c->ro_mount && c->space_fixup) {
1363 		err = ubifs_fixup_free_space(c);
1364 		if (err)
1365 			goto out_lpt;
1366 	}
1367 
1368 	if (!c->ro_mount && !c->need_recovery) {
1369 		/*
1370 		 * Set the "dirty" flag so that if we reboot uncleanly we
1371 		 * will notice this immediately on the next mount.
1372 		 */
1373 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1374 		err = ubifs_write_master(c);
1375 		if (err)
1376 			goto out_lpt;
1377 	}
1378 
1379 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1380 	if (err)
1381 		goto out_lpt;
1382 
1383 	err = ubifs_replay_journal(c);
1384 	if (err)
1385 		goto out_journal;
1386 
1387 	/* Calculate 'min_idx_lebs' after journal replay */
1388 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1389 
1390 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1391 	if (err)
1392 		goto out_orphans;
1393 
1394 	if (!c->ro_mount) {
1395 		int lnum;
1396 
1397 		err = check_free_space(c);
1398 		if (err)
1399 			goto out_orphans;
1400 
1401 		/* Check for enough log space */
1402 		lnum = c->lhead_lnum + 1;
1403 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1404 			lnum = UBIFS_LOG_LNUM;
1405 		if (lnum == c->ltail_lnum) {
1406 			err = ubifs_consolidate_log(c);
1407 			if (err)
1408 				goto out_orphans;
1409 		}
1410 
1411 		if (c->need_recovery) {
1412 			if (!ubifs_authenticated(c)) {
1413 				err = ubifs_recover_size(c, true);
1414 				if (err)
1415 					goto out_orphans;
1416 			}
1417 
1418 			err = ubifs_rcvry_gc_commit(c);
1419 			if (err)
1420 				goto out_orphans;
1421 
1422 			if (ubifs_authenticated(c)) {
1423 				err = ubifs_recover_size(c, false);
1424 				if (err)
1425 					goto out_orphans;
1426 			}
1427 		} else {
1428 			err = take_gc_lnum(c);
1429 			if (err)
1430 				goto out_orphans;
1431 
1432 			/*
1433 			 * GC LEB may contain garbage if there was an unclean
1434 			 * reboot, and it should be un-mapped.
1435 			 */
1436 			err = ubifs_leb_unmap(c, c->gc_lnum);
1437 			if (err)
1438 				goto out_orphans;
1439 		}
1440 
1441 		err = dbg_check_lprops(c);
1442 		if (err)
1443 			goto out_orphans;
1444 	} else if (c->need_recovery) {
1445 		err = ubifs_recover_size(c, false);
1446 		if (err)
1447 			goto out_orphans;
1448 	} else {
1449 		/*
1450 		 * Even if we mount read-only, we have to set space in GC LEB
1451 		 * to proper value because this affects UBIFS free space
1452 		 * reporting. We do not want to have a situation when
1453 		 * re-mounting from R/O to R/W changes amount of free space.
1454 		 */
1455 		err = take_gc_lnum(c);
1456 		if (err)
1457 			goto out_orphans;
1458 	}
1459 
1460 	spin_lock(&ubifs_infos_lock);
1461 	list_add_tail(&c->infos_list, &ubifs_infos);
1462 	spin_unlock(&ubifs_infos_lock);
1463 
1464 	if (c->need_recovery) {
1465 		if (c->ro_mount)
1466 			ubifs_msg(c, "recovery deferred");
1467 		else {
1468 			c->need_recovery = 0;
1469 			ubifs_msg(c, "recovery completed");
1470 			/*
1471 			 * GC LEB has to be empty and taken at this point. But
1472 			 * the journal head LEBs may also be accounted as
1473 			 * "empty taken" if they are empty.
1474 			 */
1475 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1476 		}
1477 	} else
1478 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1479 
1480 	err = dbg_check_filesystem(c);
1481 	if (err)
1482 		goto out_infos;
1483 
1484 	err = dbg_debugfs_init_fs(c);
1485 	if (err)
1486 		goto out_infos;
1487 
1488 	c->mounting = 0;
1489 
1490 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1491 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1492 		  c->ro_mount ? ", R/O mode" : "");
1493 	x = (long long)c->main_lebs * c->leb_size;
1494 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1495 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1496 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1497 		  c->max_write_size);
1498 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1499 		  x, x >> 20, c->main_lebs,
1500 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1501 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1502 		  c->report_rp_size, c->report_rp_size >> 10);
1503 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1504 		  c->fmt_version, c->ro_compat_version,
1505 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1506 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1507 
1508 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1509 	dbg_gen("data journal heads:  %d",
1510 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1511 	dbg_gen("log LEBs:            %d (%d - %d)",
1512 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1513 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1514 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1515 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1516 		c->orph_lebs, c->orph_first, c->orph_last);
1517 	dbg_gen("main area LEBs:      %d (%d - %d)",
1518 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1519 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1520 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1521 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1522 		c->bi.old_idx_sz >> 20);
1523 	dbg_gen("key hash type:       %d", c->key_hash_type);
1524 	dbg_gen("tree fanout:         %d", c->fanout);
1525 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1526 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1527 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1528 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1529 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1530 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1531 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1532 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1533 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1534 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1535 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1536 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1537 	dbg_gen("dead watermark:      %d", c->dead_wm);
1538 	dbg_gen("dark watermark:      %d", c->dark_wm);
1539 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1540 	x = (long long)c->main_lebs * c->dark_wm;
1541 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1542 		x, x >> 10, x >> 20);
1543 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1544 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1545 		c->max_bud_bytes >> 20);
1546 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1547 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1548 		c->bg_bud_bytes >> 20);
1549 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1550 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1551 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1552 	dbg_gen("commit number:       %llu", c->cmt_no);
1553 
1554 	return 0;
1555 
1556 out_infos:
1557 	spin_lock(&ubifs_infos_lock);
1558 	list_del(&c->infos_list);
1559 	spin_unlock(&ubifs_infos_lock);
1560 out_orphans:
1561 	free_orphans(c);
1562 out_journal:
1563 	destroy_journal(c);
1564 out_lpt:
1565 	ubifs_lpt_free(c, 0);
1566 out_master:
1567 	kfree(c->mst_node);
1568 	kfree(c->rcvrd_mst_node);
1569 	if (c->bgt)
1570 		kthread_stop(c->bgt);
1571 out_wbufs:
1572 	free_wbufs(c);
1573 out_cbuf:
1574 	kfree(c->cbuf);
1575 out_free:
1576 	kfree(c->write_reserve_buf);
1577 	kfree(c->bu.buf);
1578 	vfree(c->ileb_buf);
1579 	vfree(c->sbuf);
1580 	kfree(c->bottom_up_buf);
1581 	ubifs_debugging_exit(c);
1582 	return err;
1583 }
1584 
1585 /**
1586  * ubifs_umount - un-mount UBIFS file-system.
1587  * @c: UBIFS file-system description object
1588  *
1589  * Note, this function is called to free allocated resourced when un-mounting,
1590  * as well as free resources when an error occurred while we were half way
1591  * through mounting (error path cleanup function). So it has to make sure the
1592  * resource was actually allocated before freeing it.
1593  */
1594 static void ubifs_umount(struct ubifs_info *c)
1595 {
1596 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1597 		c->vi.vol_id);
1598 
1599 	dbg_debugfs_exit_fs(c);
1600 	spin_lock(&ubifs_infos_lock);
1601 	list_del(&c->infos_list);
1602 	spin_unlock(&ubifs_infos_lock);
1603 
1604 	if (c->bgt)
1605 		kthread_stop(c->bgt);
1606 
1607 	destroy_journal(c);
1608 	free_wbufs(c);
1609 	free_orphans(c);
1610 	ubifs_lpt_free(c, 0);
1611 	ubifs_exit_authentication(c);
1612 
1613 	kfree(c->auth_key_name);
1614 	kfree(c->auth_hash_name);
1615 	kfree(c->cbuf);
1616 	kfree(c->rcvrd_mst_node);
1617 	kfree(c->mst_node);
1618 	kfree(c->write_reserve_buf);
1619 	kfree(c->bu.buf);
1620 	vfree(c->ileb_buf);
1621 	vfree(c->sbuf);
1622 	kfree(c->bottom_up_buf);
1623 	ubifs_debugging_exit(c);
1624 }
1625 
1626 /**
1627  * ubifs_remount_rw - re-mount in read-write mode.
1628  * @c: UBIFS file-system description object
1629  *
1630  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1631  * mode. This function allocates the needed resources and re-mounts UBIFS in
1632  * read-write mode.
1633  */
1634 static int ubifs_remount_rw(struct ubifs_info *c)
1635 {
1636 	int err, lnum;
1637 
1638 	if (c->rw_incompat) {
1639 		ubifs_err(c, "the file-system is not R/W-compatible");
1640 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1641 			  c->fmt_version, c->ro_compat_version,
1642 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1643 		return -EROFS;
1644 	}
1645 
1646 	mutex_lock(&c->umount_mutex);
1647 	dbg_save_space_info(c);
1648 	c->remounting_rw = 1;
1649 	c->ro_mount = 0;
1650 
1651 	if (c->space_fixup) {
1652 		err = ubifs_fixup_free_space(c);
1653 		if (err)
1654 			goto out;
1655 	}
1656 
1657 	err = check_free_space(c);
1658 	if (err)
1659 		goto out;
1660 
1661 	if (c->old_leb_cnt != c->leb_cnt) {
1662 		struct ubifs_sb_node *sup = c->sup_node;
1663 
1664 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1665 		err = ubifs_write_sb_node(c, sup);
1666 		if (err)
1667 			goto out;
1668 	}
1669 
1670 	if (c->need_recovery) {
1671 		ubifs_msg(c, "completing deferred recovery");
1672 		err = ubifs_write_rcvrd_mst_node(c);
1673 		if (err)
1674 			goto out;
1675 		if (!ubifs_authenticated(c)) {
1676 			err = ubifs_recover_size(c, true);
1677 			if (err)
1678 				goto out;
1679 		}
1680 		err = ubifs_clean_lebs(c, c->sbuf);
1681 		if (err)
1682 			goto out;
1683 		err = ubifs_recover_inl_heads(c, c->sbuf);
1684 		if (err)
1685 			goto out;
1686 	} else {
1687 		/* A readonly mount is not allowed to have orphans */
1688 		ubifs_assert(c, c->tot_orphans == 0);
1689 		err = ubifs_clear_orphans(c);
1690 		if (err)
1691 			goto out;
1692 	}
1693 
1694 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1695 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1696 		err = ubifs_write_master(c);
1697 		if (err)
1698 			goto out;
1699 	}
1700 
1701 	c->ileb_buf = vmalloc(c->leb_size);
1702 	if (!c->ileb_buf) {
1703 		err = -ENOMEM;
1704 		goto out;
1705 	}
1706 
1707 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1708 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1709 	if (!c->write_reserve_buf) {
1710 		err = -ENOMEM;
1711 		goto out;
1712 	}
1713 
1714 	err = ubifs_lpt_init(c, 0, 1);
1715 	if (err)
1716 		goto out;
1717 
1718 	/* Create background thread */
1719 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1720 	if (IS_ERR(c->bgt)) {
1721 		err = PTR_ERR(c->bgt);
1722 		c->bgt = NULL;
1723 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1724 			  c->bgt_name, err);
1725 		goto out;
1726 	}
1727 	wake_up_process(c->bgt);
1728 
1729 	c->orph_buf = vmalloc(c->leb_size);
1730 	if (!c->orph_buf) {
1731 		err = -ENOMEM;
1732 		goto out;
1733 	}
1734 
1735 	/* Check for enough log space */
1736 	lnum = c->lhead_lnum + 1;
1737 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1738 		lnum = UBIFS_LOG_LNUM;
1739 	if (lnum == c->ltail_lnum) {
1740 		err = ubifs_consolidate_log(c);
1741 		if (err)
1742 			goto out;
1743 	}
1744 
1745 	if (c->need_recovery) {
1746 		err = ubifs_rcvry_gc_commit(c);
1747 		if (err)
1748 			goto out;
1749 
1750 		if (ubifs_authenticated(c)) {
1751 			err = ubifs_recover_size(c, false);
1752 			if (err)
1753 				goto out;
1754 		}
1755 	} else {
1756 		err = ubifs_leb_unmap(c, c->gc_lnum);
1757 	}
1758 	if (err)
1759 		goto out;
1760 
1761 	dbg_gen("re-mounted read-write");
1762 	c->remounting_rw = 0;
1763 
1764 	if (c->need_recovery) {
1765 		c->need_recovery = 0;
1766 		ubifs_msg(c, "deferred recovery completed");
1767 	} else {
1768 		/*
1769 		 * Do not run the debugging space check if the were doing
1770 		 * recovery, because when we saved the information we had the
1771 		 * file-system in a state where the TNC and lprops has been
1772 		 * modified in memory, but all the I/O operations (including a
1773 		 * commit) were deferred. So the file-system was in
1774 		 * "non-committed" state. Now the file-system is in committed
1775 		 * state, and of course the amount of free space will change
1776 		 * because, for example, the old index size was imprecise.
1777 		 */
1778 		err = dbg_check_space_info(c);
1779 	}
1780 
1781 	mutex_unlock(&c->umount_mutex);
1782 	return err;
1783 
1784 out:
1785 	c->ro_mount = 1;
1786 	vfree(c->orph_buf);
1787 	c->orph_buf = NULL;
1788 	if (c->bgt) {
1789 		kthread_stop(c->bgt);
1790 		c->bgt = NULL;
1791 	}
1792 	free_wbufs(c);
1793 	kfree(c->write_reserve_buf);
1794 	c->write_reserve_buf = NULL;
1795 	vfree(c->ileb_buf);
1796 	c->ileb_buf = NULL;
1797 	ubifs_lpt_free(c, 1);
1798 	c->remounting_rw = 0;
1799 	mutex_unlock(&c->umount_mutex);
1800 	return err;
1801 }
1802 
1803 /**
1804  * ubifs_remount_ro - re-mount in read-only mode.
1805  * @c: UBIFS file-system description object
1806  *
1807  * We assume VFS has stopped writing. Possibly the background thread could be
1808  * running a commit, however kthread_stop will wait in that case.
1809  */
1810 static void ubifs_remount_ro(struct ubifs_info *c)
1811 {
1812 	int i, err;
1813 
1814 	ubifs_assert(c, !c->need_recovery);
1815 	ubifs_assert(c, !c->ro_mount);
1816 
1817 	mutex_lock(&c->umount_mutex);
1818 	if (c->bgt) {
1819 		kthread_stop(c->bgt);
1820 		c->bgt = NULL;
1821 	}
1822 
1823 	dbg_save_space_info(c);
1824 
1825 	for (i = 0; i < c->jhead_cnt; i++) {
1826 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1827 		if (err)
1828 			ubifs_ro_mode(c, err);
1829 	}
1830 
1831 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1832 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1833 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1834 	err = ubifs_write_master(c);
1835 	if (err)
1836 		ubifs_ro_mode(c, err);
1837 
1838 	vfree(c->orph_buf);
1839 	c->orph_buf = NULL;
1840 	kfree(c->write_reserve_buf);
1841 	c->write_reserve_buf = NULL;
1842 	vfree(c->ileb_buf);
1843 	c->ileb_buf = NULL;
1844 	ubifs_lpt_free(c, 1);
1845 	c->ro_mount = 1;
1846 	err = dbg_check_space_info(c);
1847 	if (err)
1848 		ubifs_ro_mode(c, err);
1849 	mutex_unlock(&c->umount_mutex);
1850 }
1851 
1852 static void ubifs_put_super(struct super_block *sb)
1853 {
1854 	int i;
1855 	struct ubifs_info *c = sb->s_fs_info;
1856 
1857 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1858 
1859 	/*
1860 	 * The following asserts are only valid if there has not been a failure
1861 	 * of the media. For example, there will be dirty inodes if we failed
1862 	 * to write them back because of I/O errors.
1863 	 */
1864 	if (!c->ro_error) {
1865 		ubifs_assert(c, c->bi.idx_growth == 0);
1866 		ubifs_assert(c, c->bi.dd_growth == 0);
1867 		ubifs_assert(c, c->bi.data_growth == 0);
1868 	}
1869 
1870 	/*
1871 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1872 	 * and file system un-mount. Namely, it prevents the shrinker from
1873 	 * picking this superblock for shrinking - it will be just skipped if
1874 	 * the mutex is locked.
1875 	 */
1876 	mutex_lock(&c->umount_mutex);
1877 	if (!c->ro_mount) {
1878 		/*
1879 		 * First of all kill the background thread to make sure it does
1880 		 * not interfere with un-mounting and freeing resources.
1881 		 */
1882 		if (c->bgt) {
1883 			kthread_stop(c->bgt);
1884 			c->bgt = NULL;
1885 		}
1886 
1887 		/*
1888 		 * On fatal errors c->ro_error is set to 1, in which case we do
1889 		 * not write the master node.
1890 		 */
1891 		if (!c->ro_error) {
1892 			int err;
1893 
1894 			/* Synchronize write-buffers */
1895 			for (i = 0; i < c->jhead_cnt; i++) {
1896 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1897 				if (err)
1898 					ubifs_ro_mode(c, err);
1899 			}
1900 
1901 			/*
1902 			 * We are being cleanly unmounted which means the
1903 			 * orphans were killed - indicate this in the master
1904 			 * node. Also save the reserved GC LEB number.
1905 			 */
1906 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1907 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1908 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1909 			err = ubifs_write_master(c);
1910 			if (err)
1911 				/*
1912 				 * Recovery will attempt to fix the master area
1913 				 * next mount, so we just print a message and
1914 				 * continue to unmount normally.
1915 				 */
1916 				ubifs_err(c, "failed to write master node, error %d",
1917 					  err);
1918 		} else {
1919 			for (i = 0; i < c->jhead_cnt; i++)
1920 				/* Make sure write-buffer timers are canceled */
1921 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1922 		}
1923 	}
1924 
1925 	ubifs_umount(c);
1926 	ubi_close_volume(c->ubi);
1927 	mutex_unlock(&c->umount_mutex);
1928 }
1929 
1930 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1931 {
1932 	int err;
1933 	struct ubifs_info *c = sb->s_fs_info;
1934 
1935 	sync_filesystem(sb);
1936 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1937 
1938 	err = ubifs_parse_options(c, data, 1);
1939 	if (err) {
1940 		ubifs_err(c, "invalid or unknown remount parameter");
1941 		return err;
1942 	}
1943 
1944 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1945 		if (c->ro_error) {
1946 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1947 			return -EROFS;
1948 		}
1949 		if (c->ro_media) {
1950 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1951 			return -EROFS;
1952 		}
1953 		err = ubifs_remount_rw(c);
1954 		if (err)
1955 			return err;
1956 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1957 		if (c->ro_error) {
1958 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1959 			return -EROFS;
1960 		}
1961 		ubifs_remount_ro(c);
1962 	}
1963 
1964 	if (c->bulk_read == 1)
1965 		bu_init(c);
1966 	else {
1967 		dbg_gen("disable bulk-read");
1968 		mutex_lock(&c->bu_mutex);
1969 		kfree(c->bu.buf);
1970 		c->bu.buf = NULL;
1971 		mutex_unlock(&c->bu_mutex);
1972 	}
1973 
1974 	if (!c->need_recovery)
1975 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1976 
1977 	return 0;
1978 }
1979 
1980 const struct super_operations ubifs_super_operations = {
1981 	.alloc_inode   = ubifs_alloc_inode,
1982 	.destroy_inode = ubifs_destroy_inode,
1983 	.put_super     = ubifs_put_super,
1984 	.write_inode   = ubifs_write_inode,
1985 	.evict_inode   = ubifs_evict_inode,
1986 	.statfs        = ubifs_statfs,
1987 	.dirty_inode   = ubifs_dirty_inode,
1988 	.remount_fs    = ubifs_remount_fs,
1989 	.show_options  = ubifs_show_options,
1990 	.sync_fs       = ubifs_sync_fs,
1991 };
1992 
1993 /**
1994  * open_ubi - parse UBI device name string and open the UBI device.
1995  * @name: UBI volume name
1996  * @mode: UBI volume open mode
1997  *
1998  * The primary method of mounting UBIFS is by specifying the UBI volume
1999  * character device node path. However, UBIFS may also be mounted withoug any
2000  * character device node using one of the following methods:
2001  *
2002  * o ubiX_Y    - mount UBI device number X, volume Y;
2003  * o ubiY      - mount UBI device number 0, volume Y;
2004  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2005  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2006  *
2007  * Alternative '!' separator may be used instead of ':' (because some shells
2008  * like busybox may interpret ':' as an NFS host name separator). This function
2009  * returns UBI volume description object in case of success and a negative
2010  * error code in case of failure.
2011  */
2012 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2013 {
2014 	struct ubi_volume_desc *ubi;
2015 	int dev, vol;
2016 	char *endptr;
2017 
2018 	if (!name || !*name)
2019 		return ERR_PTR(-EINVAL);
2020 
2021 	/* First, try to open using the device node path method */
2022 	ubi = ubi_open_volume_path(name, mode);
2023 	if (!IS_ERR(ubi))
2024 		return ubi;
2025 
2026 	/* Try the "nodev" method */
2027 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2028 		return ERR_PTR(-EINVAL);
2029 
2030 	/* ubi:NAME method */
2031 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2032 		return ubi_open_volume_nm(0, name + 4, mode);
2033 
2034 	if (!isdigit(name[3]))
2035 		return ERR_PTR(-EINVAL);
2036 
2037 	dev = simple_strtoul(name + 3, &endptr, 0);
2038 
2039 	/* ubiY method */
2040 	if (*endptr == '\0')
2041 		return ubi_open_volume(0, dev, mode);
2042 
2043 	/* ubiX_Y method */
2044 	if (*endptr == '_' && isdigit(endptr[1])) {
2045 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2046 		if (*endptr != '\0')
2047 			return ERR_PTR(-EINVAL);
2048 		return ubi_open_volume(dev, vol, mode);
2049 	}
2050 
2051 	/* ubiX:NAME method */
2052 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2053 		return ubi_open_volume_nm(dev, ++endptr, mode);
2054 
2055 	return ERR_PTR(-EINVAL);
2056 }
2057 
2058 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2059 {
2060 	struct ubifs_info *c;
2061 
2062 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2063 	if (c) {
2064 		spin_lock_init(&c->cnt_lock);
2065 		spin_lock_init(&c->cs_lock);
2066 		spin_lock_init(&c->buds_lock);
2067 		spin_lock_init(&c->space_lock);
2068 		spin_lock_init(&c->orphan_lock);
2069 		init_rwsem(&c->commit_sem);
2070 		mutex_init(&c->lp_mutex);
2071 		mutex_init(&c->tnc_mutex);
2072 		mutex_init(&c->log_mutex);
2073 		mutex_init(&c->umount_mutex);
2074 		mutex_init(&c->bu_mutex);
2075 		mutex_init(&c->write_reserve_mutex);
2076 		init_waitqueue_head(&c->cmt_wq);
2077 		c->buds = RB_ROOT;
2078 		c->old_idx = RB_ROOT;
2079 		c->size_tree = RB_ROOT;
2080 		c->orph_tree = RB_ROOT;
2081 		INIT_LIST_HEAD(&c->infos_list);
2082 		INIT_LIST_HEAD(&c->idx_gc);
2083 		INIT_LIST_HEAD(&c->replay_list);
2084 		INIT_LIST_HEAD(&c->replay_buds);
2085 		INIT_LIST_HEAD(&c->uncat_list);
2086 		INIT_LIST_HEAD(&c->empty_list);
2087 		INIT_LIST_HEAD(&c->freeable_list);
2088 		INIT_LIST_HEAD(&c->frdi_idx_list);
2089 		INIT_LIST_HEAD(&c->unclean_leb_list);
2090 		INIT_LIST_HEAD(&c->old_buds);
2091 		INIT_LIST_HEAD(&c->orph_list);
2092 		INIT_LIST_HEAD(&c->orph_new);
2093 		c->no_chk_data_crc = 1;
2094 		c->assert_action = ASSACT_RO;
2095 
2096 		c->highest_inum = UBIFS_FIRST_INO;
2097 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2098 
2099 		ubi_get_volume_info(ubi, &c->vi);
2100 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2101 	}
2102 	return c;
2103 }
2104 
2105 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2106 {
2107 	struct ubifs_info *c = sb->s_fs_info;
2108 	struct inode *root;
2109 	int err;
2110 
2111 	c->vfs_sb = sb;
2112 	/* Re-open the UBI device in read-write mode */
2113 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2114 	if (IS_ERR(c->ubi)) {
2115 		err = PTR_ERR(c->ubi);
2116 		goto out;
2117 	}
2118 
2119 	err = ubifs_parse_options(c, data, 0);
2120 	if (err)
2121 		goto out_close;
2122 
2123 	/*
2124 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2125 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2126 	 * which means the user would have to wait not just for their own I/O
2127 	 * but the read-ahead I/O as well i.e. completely pointless.
2128 	 *
2129 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2130 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2131 	 * writeback happening.
2132 	 */
2133 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2134 				   c->vi.vol_id);
2135 	if (err)
2136 		goto out_close;
2137 
2138 	sb->s_fs_info = c;
2139 	sb->s_magic = UBIFS_SUPER_MAGIC;
2140 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2141 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2142 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2143 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2144 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2145 	sb->s_op = &ubifs_super_operations;
2146 #ifdef CONFIG_UBIFS_FS_XATTR
2147 	sb->s_xattr = ubifs_xattr_handlers;
2148 #endif
2149 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
2150 	sb->s_cop = &ubifs_crypt_operations;
2151 #endif
2152 
2153 	mutex_lock(&c->umount_mutex);
2154 	err = mount_ubifs(c);
2155 	if (err) {
2156 		ubifs_assert(c, err < 0);
2157 		goto out_unlock;
2158 	}
2159 
2160 	/* Read the root inode */
2161 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2162 	if (IS_ERR(root)) {
2163 		err = PTR_ERR(root);
2164 		goto out_umount;
2165 	}
2166 
2167 	sb->s_root = d_make_root(root);
2168 	if (!sb->s_root) {
2169 		err = -ENOMEM;
2170 		goto out_umount;
2171 	}
2172 
2173 	mutex_unlock(&c->umount_mutex);
2174 	return 0;
2175 
2176 out_umount:
2177 	ubifs_umount(c);
2178 out_unlock:
2179 	mutex_unlock(&c->umount_mutex);
2180 out_close:
2181 	ubi_close_volume(c->ubi);
2182 out:
2183 	return err;
2184 }
2185 
2186 static int sb_test(struct super_block *sb, void *data)
2187 {
2188 	struct ubifs_info *c1 = data;
2189 	struct ubifs_info *c = sb->s_fs_info;
2190 
2191 	return c->vi.cdev == c1->vi.cdev;
2192 }
2193 
2194 static int sb_set(struct super_block *sb, void *data)
2195 {
2196 	sb->s_fs_info = data;
2197 	return set_anon_super(sb, NULL);
2198 }
2199 
2200 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2201 			const char *name, void *data)
2202 {
2203 	struct ubi_volume_desc *ubi;
2204 	struct ubifs_info *c;
2205 	struct super_block *sb;
2206 	int err;
2207 
2208 	dbg_gen("name %s, flags %#x", name, flags);
2209 
2210 	/*
2211 	 * Get UBI device number and volume ID. Mount it read-only so far
2212 	 * because this might be a new mount point, and UBI allows only one
2213 	 * read-write user at a time.
2214 	 */
2215 	ubi = open_ubi(name, UBI_READONLY);
2216 	if (IS_ERR(ubi)) {
2217 		if (!(flags & SB_SILENT))
2218 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2219 			       current->pid, name, (int)PTR_ERR(ubi));
2220 		return ERR_CAST(ubi);
2221 	}
2222 
2223 	c = alloc_ubifs_info(ubi);
2224 	if (!c) {
2225 		err = -ENOMEM;
2226 		goto out_close;
2227 	}
2228 
2229 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2230 
2231 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2232 	if (IS_ERR(sb)) {
2233 		err = PTR_ERR(sb);
2234 		kfree(c);
2235 		goto out_close;
2236 	}
2237 
2238 	if (sb->s_root) {
2239 		struct ubifs_info *c1 = sb->s_fs_info;
2240 		kfree(c);
2241 		/* A new mount point for already mounted UBIFS */
2242 		dbg_gen("this ubi volume is already mounted");
2243 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2244 			err = -EBUSY;
2245 			goto out_deact;
2246 		}
2247 	} else {
2248 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2249 		if (err)
2250 			goto out_deact;
2251 		/* We do not support atime */
2252 		sb->s_flags |= SB_ACTIVE;
2253 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2254 		sb->s_flags |= SB_NOATIME;
2255 #else
2256 		ubifs_msg(c, "full atime support is enabled.");
2257 #endif
2258 	}
2259 
2260 	/* 'fill_super()' opens ubi again so we must close it here */
2261 	ubi_close_volume(ubi);
2262 
2263 	return dget(sb->s_root);
2264 
2265 out_deact:
2266 	deactivate_locked_super(sb);
2267 out_close:
2268 	ubi_close_volume(ubi);
2269 	return ERR_PTR(err);
2270 }
2271 
2272 static void kill_ubifs_super(struct super_block *s)
2273 {
2274 	struct ubifs_info *c = s->s_fs_info;
2275 	kill_anon_super(s);
2276 	kfree(c);
2277 }
2278 
2279 static struct file_system_type ubifs_fs_type = {
2280 	.name    = "ubifs",
2281 	.owner   = THIS_MODULE,
2282 	.mount   = ubifs_mount,
2283 	.kill_sb = kill_ubifs_super,
2284 };
2285 MODULE_ALIAS_FS("ubifs");
2286 
2287 /*
2288  * Inode slab cache constructor.
2289  */
2290 static void inode_slab_ctor(void *obj)
2291 {
2292 	struct ubifs_inode *ui = obj;
2293 	inode_init_once(&ui->vfs_inode);
2294 }
2295 
2296 static int __init ubifs_init(void)
2297 {
2298 	int err;
2299 
2300 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2301 
2302 	/* Make sure node sizes are 8-byte aligned */
2303 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2304 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2305 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2306 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2307 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2308 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2309 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2310 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2311 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2312 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2313 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2314 
2315 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2316 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2317 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2318 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2319 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2320 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2321 
2322 	/* Check min. node size */
2323 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2324 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2325 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2326 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2327 
2328 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2329 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2330 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2331 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2332 
2333 	/* Defined node sizes */
2334 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2335 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2336 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2337 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2338 
2339 	/*
2340 	 * We use 2 bit wide bit-fields to store compression type, which should
2341 	 * be amended if more compressors are added. The bit-fields are:
2342 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2343 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2344 	 */
2345 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2346 
2347 	/*
2348 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2349 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2350 	 */
2351 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2352 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2353 		       current->pid, (unsigned int)PAGE_SIZE);
2354 		return -EINVAL;
2355 	}
2356 
2357 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2358 				sizeof(struct ubifs_inode), 0,
2359 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2360 				SLAB_ACCOUNT, &inode_slab_ctor);
2361 	if (!ubifs_inode_slab)
2362 		return -ENOMEM;
2363 
2364 	err = register_shrinker(&ubifs_shrinker_info);
2365 	if (err)
2366 		goto out_slab;
2367 
2368 	err = ubifs_compressors_init();
2369 	if (err)
2370 		goto out_shrinker;
2371 
2372 	err = dbg_debugfs_init();
2373 	if (err)
2374 		goto out_compr;
2375 
2376 	err = register_filesystem(&ubifs_fs_type);
2377 	if (err) {
2378 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2379 		       current->pid, err);
2380 		goto out_dbg;
2381 	}
2382 	return 0;
2383 
2384 out_dbg:
2385 	dbg_debugfs_exit();
2386 out_compr:
2387 	ubifs_compressors_exit();
2388 out_shrinker:
2389 	unregister_shrinker(&ubifs_shrinker_info);
2390 out_slab:
2391 	kmem_cache_destroy(ubifs_inode_slab);
2392 	return err;
2393 }
2394 /* late_initcall to let compressors initialize first */
2395 late_initcall(ubifs_init);
2396 
2397 static void __exit ubifs_exit(void)
2398 {
2399 	WARN_ON(!list_empty(&ubifs_infos));
2400 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2401 
2402 	dbg_debugfs_exit();
2403 	ubifs_compressors_exit();
2404 	unregister_shrinker(&ubifs_shrinker_info);
2405 
2406 	/*
2407 	 * Make sure all delayed rcu free inodes are flushed before we
2408 	 * destroy cache.
2409 	 */
2410 	rcu_barrier();
2411 	kmem_cache_destroy(ubifs_inode_slab);
2412 	unregister_filesystem(&ubifs_fs_type);
2413 }
2414 module_exit(ubifs_exit);
2415 
2416 MODULE_LICENSE("GPL");
2417 MODULE_VERSION(__stringify(UBIFS_VERSION));
2418 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2419 MODULE_DESCRIPTION("UBIFS - UBI File System");
2420