1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && !S_ISREG(inode->i_mode)) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not " 93 "compiled in", inode->i_ino, 94 ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 inode->i_nlink = le32_to_cpu(ino->nlink); 133 inode->i_uid = le32_to_cpu(ino->uid); 134 inode->i_gid = le32_to_cpu(ino->gid); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 dbg_dump_node(c, ino); 250 dbg_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 INIT_LIST_HEAD(&inode->i_dentry); 280 kmem_cache_free(ubifs_inode_slab, ui); 281 } 282 283 static void ubifs_destroy_inode(struct inode *inode) 284 { 285 struct ubifs_inode *ui = ubifs_inode(inode); 286 287 kfree(ui->data); 288 call_rcu(&inode->i_rcu, ubifs_i_callback); 289 } 290 291 /* 292 * Note, Linux write-back code calls this without 'i_mutex'. 293 */ 294 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 295 { 296 int err = 0; 297 struct ubifs_info *c = inode->i_sb->s_fs_info; 298 struct ubifs_inode *ui = ubifs_inode(inode); 299 300 ubifs_assert(!ui->xattr); 301 if (is_bad_inode(inode)) 302 return 0; 303 304 mutex_lock(&ui->ui_mutex); 305 /* 306 * Due to races between write-back forced by budgeting 307 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 308 * have already been synchronized, do not do this again. This might 309 * also happen if it was synchronized in an VFS operation, e.g. 310 * 'ubifs_link()'. 311 */ 312 if (!ui->dirty) { 313 mutex_unlock(&ui->ui_mutex); 314 return 0; 315 } 316 317 /* 318 * As an optimization, do not write orphan inodes to the media just 319 * because this is not needed. 320 */ 321 dbg_gen("inode %lu, mode %#x, nlink %u", 322 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 323 if (inode->i_nlink) { 324 err = ubifs_jnl_write_inode(c, inode); 325 if (err) 326 ubifs_err("can't write inode %lu, error %d", 327 inode->i_ino, err); 328 else 329 err = dbg_check_inode_size(c, inode, ui->ui_size); 330 } 331 332 ui->dirty = 0; 333 mutex_unlock(&ui->ui_mutex); 334 ubifs_release_dirty_inode_budget(c, ui); 335 return err; 336 } 337 338 static void ubifs_evict_inode(struct inode *inode) 339 { 340 int err; 341 struct ubifs_info *c = inode->i_sb->s_fs_info; 342 struct ubifs_inode *ui = ubifs_inode(inode); 343 344 if (ui->xattr) 345 /* 346 * Extended attribute inode deletions are fully handled in 347 * 'ubifs_removexattr()'. These inodes are special and have 348 * limited usage, so there is nothing to do here. 349 */ 350 goto out; 351 352 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 353 ubifs_assert(!atomic_read(&inode->i_count)); 354 355 truncate_inode_pages(&inode->i_data, 0); 356 357 if (inode->i_nlink) 358 goto done; 359 360 if (is_bad_inode(inode)) 361 goto out; 362 363 ui->ui_size = inode->i_size = 0; 364 err = ubifs_jnl_delete_inode(c, inode); 365 if (err) 366 /* 367 * Worst case we have a lost orphan inode wasting space, so a 368 * simple error message is OK here. 369 */ 370 ubifs_err("can't delete inode %lu, error %d", 371 inode->i_ino, err); 372 373 out: 374 if (ui->dirty) 375 ubifs_release_dirty_inode_budget(c, ui); 376 else { 377 /* We've deleted something - clean the "no space" flags */ 378 c->bi.nospace = c->bi.nospace_rp = 0; 379 smp_wmb(); 380 } 381 done: 382 end_writeback(inode); 383 } 384 385 static void ubifs_dirty_inode(struct inode *inode, int flags) 386 { 387 struct ubifs_inode *ui = ubifs_inode(inode); 388 389 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 390 if (!ui->dirty) { 391 ui->dirty = 1; 392 dbg_gen("inode %lu", inode->i_ino); 393 } 394 } 395 396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 397 { 398 struct ubifs_info *c = dentry->d_sb->s_fs_info; 399 unsigned long long free; 400 __le32 *uuid = (__le32 *)c->uuid; 401 402 free = ubifs_get_free_space(c); 403 dbg_gen("free space %lld bytes (%lld blocks)", 404 free, free >> UBIFS_BLOCK_SHIFT); 405 406 buf->f_type = UBIFS_SUPER_MAGIC; 407 buf->f_bsize = UBIFS_BLOCK_SIZE; 408 buf->f_blocks = c->block_cnt; 409 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 410 if (free > c->report_rp_size) 411 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 412 else 413 buf->f_bavail = 0; 414 buf->f_files = 0; 415 buf->f_ffree = 0; 416 buf->f_namelen = UBIFS_MAX_NLEN; 417 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 418 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 419 ubifs_assert(buf->f_bfree <= c->block_cnt); 420 return 0; 421 } 422 423 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 424 { 425 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 426 427 if (c->mount_opts.unmount_mode == 2) 428 seq_printf(s, ",fast_unmount"); 429 else if (c->mount_opts.unmount_mode == 1) 430 seq_printf(s, ",norm_unmount"); 431 432 if (c->mount_opts.bulk_read == 2) 433 seq_printf(s, ",bulk_read"); 434 else if (c->mount_opts.bulk_read == 1) 435 seq_printf(s, ",no_bulk_read"); 436 437 if (c->mount_opts.chk_data_crc == 2) 438 seq_printf(s, ",chk_data_crc"); 439 else if (c->mount_opts.chk_data_crc == 1) 440 seq_printf(s, ",no_chk_data_crc"); 441 442 if (c->mount_opts.override_compr) { 443 seq_printf(s, ",compr=%s", 444 ubifs_compr_name(c->mount_opts.compr_type)); 445 } 446 447 return 0; 448 } 449 450 static int ubifs_sync_fs(struct super_block *sb, int wait) 451 { 452 int i, err; 453 struct ubifs_info *c = sb->s_fs_info; 454 455 /* 456 * Zero @wait is just an advisory thing to help the file system shove 457 * lots of data into the queues, and there will be the second 458 * '->sync_fs()' call, with non-zero @wait. 459 */ 460 if (!wait) 461 return 0; 462 463 /* 464 * Synchronize write buffers, because 'ubifs_run_commit()' does not 465 * do this if it waits for an already running commit. 466 */ 467 for (i = 0; i < c->jhead_cnt; i++) { 468 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 469 if (err) 470 return err; 471 } 472 473 /* 474 * Strictly speaking, it is not necessary to commit the journal here, 475 * synchronizing write-buffers would be enough. But committing makes 476 * UBIFS free space predictions much more accurate, so we want to let 477 * the user be able to get more accurate results of 'statfs()' after 478 * they synchronize the file system. 479 */ 480 err = ubifs_run_commit(c); 481 if (err) 482 return err; 483 484 return ubi_sync(c->vi.ubi_num); 485 } 486 487 /** 488 * init_constants_early - initialize UBIFS constants. 489 * @c: UBIFS file-system description object 490 * 491 * This function initialize UBIFS constants which do not need the superblock to 492 * be read. It also checks that the UBI volume satisfies basic UBIFS 493 * requirements. Returns zero in case of success and a negative error code in 494 * case of failure. 495 */ 496 static int init_constants_early(struct ubifs_info *c) 497 { 498 if (c->vi.corrupted) { 499 ubifs_warn("UBI volume is corrupted - read-only mode"); 500 c->ro_media = 1; 501 } 502 503 if (c->di.ro_mode) { 504 ubifs_msg("read-only UBI device"); 505 c->ro_media = 1; 506 } 507 508 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 509 ubifs_msg("static UBI volume - read-only mode"); 510 c->ro_media = 1; 511 } 512 513 c->leb_cnt = c->vi.size; 514 c->leb_size = c->vi.usable_leb_size; 515 c->leb_start = c->di.leb_start; 516 c->half_leb_size = c->leb_size / 2; 517 c->min_io_size = c->di.min_io_size; 518 c->min_io_shift = fls(c->min_io_size) - 1; 519 c->max_write_size = c->di.max_write_size; 520 c->max_write_shift = fls(c->max_write_size) - 1; 521 522 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 523 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 524 c->leb_size, UBIFS_MIN_LEB_SZ); 525 return -EINVAL; 526 } 527 528 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 529 ubifs_err("too few LEBs (%d), min. is %d", 530 c->leb_cnt, UBIFS_MIN_LEB_CNT); 531 return -EINVAL; 532 } 533 534 if (!is_power_of_2(c->min_io_size)) { 535 ubifs_err("bad min. I/O size %d", c->min_io_size); 536 return -EINVAL; 537 } 538 539 /* 540 * Maximum write size has to be greater or equivalent to min. I/O 541 * size, and be multiple of min. I/O size. 542 */ 543 if (c->max_write_size < c->min_io_size || 544 c->max_write_size % c->min_io_size || 545 !is_power_of_2(c->max_write_size)) { 546 ubifs_err("bad write buffer size %d for %d min. I/O unit", 547 c->max_write_size, c->min_io_size); 548 return -EINVAL; 549 } 550 551 /* 552 * UBIFS aligns all node to 8-byte boundary, so to make function in 553 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 554 * less than 8. 555 */ 556 if (c->min_io_size < 8) { 557 c->min_io_size = 8; 558 c->min_io_shift = 3; 559 if (c->max_write_size < c->min_io_size) { 560 c->max_write_size = c->min_io_size; 561 c->max_write_shift = c->min_io_shift; 562 } 563 } 564 565 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 566 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 567 568 /* 569 * Initialize node length ranges which are mostly needed for node 570 * length validation. 571 */ 572 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 573 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 574 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 575 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 576 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 577 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 578 579 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 580 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 581 c->ranges[UBIFS_ORPH_NODE].min_len = 582 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 583 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 584 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 585 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 586 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 587 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 588 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 589 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 590 /* 591 * Minimum indexing node size is amended later when superblock is 592 * read and the key length is known. 593 */ 594 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 595 /* 596 * Maximum indexing node size is amended later when superblock is 597 * read and the fanout is known. 598 */ 599 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 600 601 /* 602 * Initialize dead and dark LEB space watermarks. See gc.c for comments 603 * about these values. 604 */ 605 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 606 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 607 608 /* 609 * Calculate how many bytes would be wasted at the end of LEB if it was 610 * fully filled with data nodes of maximum size. This is used in 611 * calculations when reporting free space. 612 */ 613 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 614 615 /* Buffer size for bulk-reads */ 616 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 617 if (c->max_bu_buf_len > c->leb_size) 618 c->max_bu_buf_len = c->leb_size; 619 return 0; 620 } 621 622 /** 623 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 624 * @c: UBIFS file-system description object 625 * @lnum: LEB the write-buffer was synchronized to 626 * @free: how many free bytes left in this LEB 627 * @pad: how many bytes were padded 628 * 629 * This is a callback function which is called by the I/O unit when the 630 * write-buffer is synchronized. We need this to correctly maintain space 631 * accounting in bud logical eraseblocks. This function returns zero in case of 632 * success and a negative error code in case of failure. 633 * 634 * This function actually belongs to the journal, but we keep it here because 635 * we want to keep it static. 636 */ 637 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 638 { 639 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 640 } 641 642 /* 643 * init_constants_sb - initialize UBIFS constants. 644 * @c: UBIFS file-system description object 645 * 646 * This is a helper function which initializes various UBIFS constants after 647 * the superblock has been read. It also checks various UBIFS parameters and 648 * makes sure they are all right. Returns zero in case of success and a 649 * negative error code in case of failure. 650 */ 651 static int init_constants_sb(struct ubifs_info *c) 652 { 653 int tmp, err; 654 long long tmp64; 655 656 c->main_bytes = (long long)c->main_lebs * c->leb_size; 657 c->max_znode_sz = sizeof(struct ubifs_znode) + 658 c->fanout * sizeof(struct ubifs_zbranch); 659 660 tmp = ubifs_idx_node_sz(c, 1); 661 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 662 c->min_idx_node_sz = ALIGN(tmp, 8); 663 664 tmp = ubifs_idx_node_sz(c, c->fanout); 665 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 666 c->max_idx_node_sz = ALIGN(tmp, 8); 667 668 /* Make sure LEB size is large enough to fit full commit */ 669 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 670 tmp = ALIGN(tmp, c->min_io_size); 671 if (tmp > c->leb_size) { 672 dbg_err("too small LEB size %d, at least %d needed", 673 c->leb_size, tmp); 674 return -EINVAL; 675 } 676 677 /* 678 * Make sure that the log is large enough to fit reference nodes for 679 * all buds plus one reserved LEB. 680 */ 681 tmp64 = c->max_bud_bytes + c->leb_size - 1; 682 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 683 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 684 tmp /= c->leb_size; 685 tmp += 1; 686 if (c->log_lebs < tmp) { 687 dbg_err("too small log %d LEBs, required min. %d LEBs", 688 c->log_lebs, tmp); 689 return -EINVAL; 690 } 691 692 /* 693 * When budgeting we assume worst-case scenarios when the pages are not 694 * be compressed and direntries are of the maximum size. 695 * 696 * Note, data, which may be stored in inodes is budgeted separately, so 697 * it is not included into 'c->bi.inode_budget'. 698 */ 699 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 700 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 701 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 702 703 /* 704 * When the amount of flash space used by buds becomes 705 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 706 * The writers are unblocked when the commit is finished. To avoid 707 * writers to be blocked UBIFS initiates background commit in advance, 708 * when number of bud bytes becomes above the limit defined below. 709 */ 710 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 711 712 /* 713 * Ensure minimum journal size. All the bytes in the journal heads are 714 * considered to be used, when calculating the current journal usage. 715 * Consequently, if the journal is too small, UBIFS will treat it as 716 * always full. 717 */ 718 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 719 if (c->bg_bud_bytes < tmp64) 720 c->bg_bud_bytes = tmp64; 721 if (c->max_bud_bytes < tmp64 + c->leb_size) 722 c->max_bud_bytes = tmp64 + c->leb_size; 723 724 err = ubifs_calc_lpt_geom(c); 725 if (err) 726 return err; 727 728 /* Initialize effective LEB size used in budgeting calculations */ 729 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 730 return 0; 731 } 732 733 /* 734 * init_constants_master - initialize UBIFS constants. 735 * @c: UBIFS file-system description object 736 * 737 * This is a helper function which initializes various UBIFS constants after 738 * the master node has been read. It also checks various UBIFS parameters and 739 * makes sure they are all right. 740 */ 741 static void init_constants_master(struct ubifs_info *c) 742 { 743 long long tmp64; 744 745 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 746 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 747 748 /* 749 * Calculate total amount of FS blocks. This number is not used 750 * internally because it does not make much sense for UBIFS, but it is 751 * necessary to report something for the 'statfs()' call. 752 * 753 * Subtract the LEB reserved for GC, the LEB which is reserved for 754 * deletions, minimum LEBs for the index, and assume only one journal 755 * head is available. 756 */ 757 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 758 tmp64 *= (long long)c->leb_size - c->leb_overhead; 759 tmp64 = ubifs_reported_space(c, tmp64); 760 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 761 } 762 763 /** 764 * take_gc_lnum - reserve GC LEB. 765 * @c: UBIFS file-system description object 766 * 767 * This function ensures that the LEB reserved for garbage collection is marked 768 * as "taken" in lprops. We also have to set free space to LEB size and dirty 769 * space to zero, because lprops may contain out-of-date information if the 770 * file-system was un-mounted before it has been committed. This function 771 * returns zero in case of success and a negative error code in case of 772 * failure. 773 */ 774 static int take_gc_lnum(struct ubifs_info *c) 775 { 776 int err; 777 778 if (c->gc_lnum == -1) { 779 ubifs_err("no LEB for GC"); 780 return -EINVAL; 781 } 782 783 /* And we have to tell lprops that this LEB is taken */ 784 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 785 LPROPS_TAKEN, 0, 0); 786 return err; 787 } 788 789 /** 790 * alloc_wbufs - allocate write-buffers. 791 * @c: UBIFS file-system description object 792 * 793 * This helper function allocates and initializes UBIFS write-buffers. Returns 794 * zero in case of success and %-ENOMEM in case of failure. 795 */ 796 static int alloc_wbufs(struct ubifs_info *c) 797 { 798 int i, err; 799 800 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 801 GFP_KERNEL); 802 if (!c->jheads) 803 return -ENOMEM; 804 805 /* Initialize journal heads */ 806 for (i = 0; i < c->jhead_cnt; i++) { 807 INIT_LIST_HEAD(&c->jheads[i].buds_list); 808 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 809 if (err) 810 return err; 811 812 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 813 c->jheads[i].wbuf.jhead = i; 814 c->jheads[i].grouped = 1; 815 } 816 817 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 818 /* 819 * Garbage Collector head likely contains long-term data and 820 * does not need to be synchronized by timer. Also GC head nodes are 821 * not grouped. 822 */ 823 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 824 c->jheads[GCHD].wbuf.no_timer = 1; 825 c->jheads[GCHD].grouped = 0; 826 827 return 0; 828 } 829 830 /** 831 * free_wbufs - free write-buffers. 832 * @c: UBIFS file-system description object 833 */ 834 static void free_wbufs(struct ubifs_info *c) 835 { 836 int i; 837 838 if (c->jheads) { 839 for (i = 0; i < c->jhead_cnt; i++) { 840 kfree(c->jheads[i].wbuf.buf); 841 kfree(c->jheads[i].wbuf.inodes); 842 } 843 kfree(c->jheads); 844 c->jheads = NULL; 845 } 846 } 847 848 /** 849 * free_orphans - free orphans. 850 * @c: UBIFS file-system description object 851 */ 852 static void free_orphans(struct ubifs_info *c) 853 { 854 struct ubifs_orphan *orph; 855 856 while (c->orph_dnext) { 857 orph = c->orph_dnext; 858 c->orph_dnext = orph->dnext; 859 list_del(&orph->list); 860 kfree(orph); 861 } 862 863 while (!list_empty(&c->orph_list)) { 864 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 865 list_del(&orph->list); 866 kfree(orph); 867 dbg_err("orphan list not empty at unmount"); 868 } 869 870 vfree(c->orph_buf); 871 c->orph_buf = NULL; 872 } 873 874 /** 875 * free_buds - free per-bud objects. 876 * @c: UBIFS file-system description object 877 */ 878 static void free_buds(struct ubifs_info *c) 879 { 880 struct rb_node *this = c->buds.rb_node; 881 struct ubifs_bud *bud; 882 883 while (this) { 884 if (this->rb_left) 885 this = this->rb_left; 886 else if (this->rb_right) 887 this = this->rb_right; 888 else { 889 bud = rb_entry(this, struct ubifs_bud, rb); 890 this = rb_parent(this); 891 if (this) { 892 if (this->rb_left == &bud->rb) 893 this->rb_left = NULL; 894 else 895 this->rb_right = NULL; 896 } 897 kfree(bud); 898 } 899 } 900 } 901 902 /** 903 * check_volume_empty - check if the UBI volume is empty. 904 * @c: UBIFS file-system description object 905 * 906 * This function checks if the UBIFS volume is empty by looking if its LEBs are 907 * mapped or not. The result of checking is stored in the @c->empty variable. 908 * Returns zero in case of success and a negative error code in case of 909 * failure. 910 */ 911 static int check_volume_empty(struct ubifs_info *c) 912 { 913 int lnum, err; 914 915 c->empty = 1; 916 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 917 err = ubifs_is_mapped(c, lnum); 918 if (unlikely(err < 0)) 919 return err; 920 if (err == 1) { 921 c->empty = 0; 922 break; 923 } 924 925 cond_resched(); 926 } 927 928 return 0; 929 } 930 931 /* 932 * UBIFS mount options. 933 * 934 * Opt_fast_unmount: do not run a journal commit before un-mounting 935 * Opt_norm_unmount: run a journal commit before un-mounting 936 * Opt_bulk_read: enable bulk-reads 937 * Opt_no_bulk_read: disable bulk-reads 938 * Opt_chk_data_crc: check CRCs when reading data nodes 939 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 940 * Opt_override_compr: override default compressor 941 * Opt_err: just end of array marker 942 */ 943 enum { 944 Opt_fast_unmount, 945 Opt_norm_unmount, 946 Opt_bulk_read, 947 Opt_no_bulk_read, 948 Opt_chk_data_crc, 949 Opt_no_chk_data_crc, 950 Opt_override_compr, 951 Opt_err, 952 }; 953 954 static const match_table_t tokens = { 955 {Opt_fast_unmount, "fast_unmount"}, 956 {Opt_norm_unmount, "norm_unmount"}, 957 {Opt_bulk_read, "bulk_read"}, 958 {Opt_no_bulk_read, "no_bulk_read"}, 959 {Opt_chk_data_crc, "chk_data_crc"}, 960 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 961 {Opt_override_compr, "compr=%s"}, 962 {Opt_err, NULL}, 963 }; 964 965 /** 966 * parse_standard_option - parse a standard mount option. 967 * @option: the option to parse 968 * 969 * Normally, standard mount options like "sync" are passed to file-systems as 970 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 971 * be present in the options string. This function tries to deal with this 972 * situation and parse standard options. Returns 0 if the option was not 973 * recognized, and the corresponding integer flag if it was. 974 * 975 * UBIFS is only interested in the "sync" option, so do not check for anything 976 * else. 977 */ 978 static int parse_standard_option(const char *option) 979 { 980 ubifs_msg("parse %s", option); 981 if (!strcmp(option, "sync")) 982 return MS_SYNCHRONOUS; 983 return 0; 984 } 985 986 /** 987 * ubifs_parse_options - parse mount parameters. 988 * @c: UBIFS file-system description object 989 * @options: parameters to parse 990 * @is_remount: non-zero if this is FS re-mount 991 * 992 * This function parses UBIFS mount options and returns zero in case success 993 * and a negative error code in case of failure. 994 */ 995 static int ubifs_parse_options(struct ubifs_info *c, char *options, 996 int is_remount) 997 { 998 char *p; 999 substring_t args[MAX_OPT_ARGS]; 1000 1001 if (!options) 1002 return 0; 1003 1004 while ((p = strsep(&options, ","))) { 1005 int token; 1006 1007 if (!*p) 1008 continue; 1009 1010 token = match_token(p, tokens, args); 1011 switch (token) { 1012 /* 1013 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1014 * We accept them in order to be backward-compatible. But this 1015 * should be removed at some point. 1016 */ 1017 case Opt_fast_unmount: 1018 c->mount_opts.unmount_mode = 2; 1019 break; 1020 case Opt_norm_unmount: 1021 c->mount_opts.unmount_mode = 1; 1022 break; 1023 case Opt_bulk_read: 1024 c->mount_opts.bulk_read = 2; 1025 c->bulk_read = 1; 1026 break; 1027 case Opt_no_bulk_read: 1028 c->mount_opts.bulk_read = 1; 1029 c->bulk_read = 0; 1030 break; 1031 case Opt_chk_data_crc: 1032 c->mount_opts.chk_data_crc = 2; 1033 c->no_chk_data_crc = 0; 1034 break; 1035 case Opt_no_chk_data_crc: 1036 c->mount_opts.chk_data_crc = 1; 1037 c->no_chk_data_crc = 1; 1038 break; 1039 case Opt_override_compr: 1040 { 1041 char *name = match_strdup(&args[0]); 1042 1043 if (!name) 1044 return -ENOMEM; 1045 if (!strcmp(name, "none")) 1046 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1047 else if (!strcmp(name, "lzo")) 1048 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1049 else if (!strcmp(name, "zlib")) 1050 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1051 else { 1052 ubifs_err("unknown compressor \"%s\"", name); 1053 kfree(name); 1054 return -EINVAL; 1055 } 1056 kfree(name); 1057 c->mount_opts.override_compr = 1; 1058 c->default_compr = c->mount_opts.compr_type; 1059 break; 1060 } 1061 default: 1062 { 1063 unsigned long flag; 1064 struct super_block *sb = c->vfs_sb; 1065 1066 flag = parse_standard_option(p); 1067 if (!flag) { 1068 ubifs_err("unrecognized mount option \"%s\" " 1069 "or missing value", p); 1070 return -EINVAL; 1071 } 1072 sb->s_flags |= flag; 1073 break; 1074 } 1075 } 1076 } 1077 1078 return 0; 1079 } 1080 1081 /** 1082 * destroy_journal - destroy journal data structures. 1083 * @c: UBIFS file-system description object 1084 * 1085 * This function destroys journal data structures including those that may have 1086 * been created by recovery functions. 1087 */ 1088 static void destroy_journal(struct ubifs_info *c) 1089 { 1090 while (!list_empty(&c->unclean_leb_list)) { 1091 struct ubifs_unclean_leb *ucleb; 1092 1093 ucleb = list_entry(c->unclean_leb_list.next, 1094 struct ubifs_unclean_leb, list); 1095 list_del(&ucleb->list); 1096 kfree(ucleb); 1097 } 1098 while (!list_empty(&c->old_buds)) { 1099 struct ubifs_bud *bud; 1100 1101 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1102 list_del(&bud->list); 1103 kfree(bud); 1104 } 1105 ubifs_destroy_idx_gc(c); 1106 ubifs_destroy_size_tree(c); 1107 ubifs_tnc_close(c); 1108 free_buds(c); 1109 } 1110 1111 /** 1112 * bu_init - initialize bulk-read information. 1113 * @c: UBIFS file-system description object 1114 */ 1115 static void bu_init(struct ubifs_info *c) 1116 { 1117 ubifs_assert(c->bulk_read == 1); 1118 1119 if (c->bu.buf) 1120 return; /* Already initialized */ 1121 1122 again: 1123 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1124 if (!c->bu.buf) { 1125 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1126 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1127 goto again; 1128 } 1129 1130 /* Just disable bulk-read */ 1131 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1132 "disabling it", c->max_bu_buf_len); 1133 c->mount_opts.bulk_read = 1; 1134 c->bulk_read = 0; 1135 return; 1136 } 1137 } 1138 1139 /** 1140 * check_free_space - check if there is enough free space to mount. 1141 * @c: UBIFS file-system description object 1142 * 1143 * This function makes sure UBIFS has enough free space to be mounted in 1144 * read/write mode. UBIFS must always have some free space to allow deletions. 1145 */ 1146 static int check_free_space(struct ubifs_info *c) 1147 { 1148 ubifs_assert(c->dark_wm > 0); 1149 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1150 ubifs_err("insufficient free space to mount in R/W mode"); 1151 dbg_dump_budg(c, &c->bi); 1152 dbg_dump_lprops(c); 1153 return -ENOSPC; 1154 } 1155 return 0; 1156 } 1157 1158 /** 1159 * mount_ubifs - mount UBIFS file-system. 1160 * @c: UBIFS file-system description object 1161 * 1162 * This function mounts UBIFS file system. Returns zero in case of success and 1163 * a negative error code in case of failure. 1164 * 1165 * Note, the function does not de-allocate resources it it fails half way 1166 * through, and the caller has to do this instead. 1167 */ 1168 static int mount_ubifs(struct ubifs_info *c) 1169 { 1170 int err; 1171 long long x; 1172 size_t sz; 1173 1174 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1175 err = init_constants_early(c); 1176 if (err) 1177 return err; 1178 1179 err = ubifs_debugging_init(c); 1180 if (err) 1181 return err; 1182 1183 err = check_volume_empty(c); 1184 if (err) 1185 goto out_free; 1186 1187 if (c->empty && (c->ro_mount || c->ro_media)) { 1188 /* 1189 * This UBI volume is empty, and read-only, or the file system 1190 * is mounted read-only - we cannot format it. 1191 */ 1192 ubifs_err("can't format empty UBI volume: read-only %s", 1193 c->ro_media ? "UBI volume" : "mount"); 1194 err = -EROFS; 1195 goto out_free; 1196 } 1197 1198 if (c->ro_media && !c->ro_mount) { 1199 ubifs_err("cannot mount read-write - read-only media"); 1200 err = -EROFS; 1201 goto out_free; 1202 } 1203 1204 /* 1205 * The requirement for the buffer is that it should fit indexing B-tree 1206 * height amount of integers. We assume the height if the TNC tree will 1207 * never exceed 64. 1208 */ 1209 err = -ENOMEM; 1210 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1211 if (!c->bottom_up_buf) 1212 goto out_free; 1213 1214 c->sbuf = vmalloc(c->leb_size); 1215 if (!c->sbuf) 1216 goto out_free; 1217 1218 if (!c->ro_mount) { 1219 c->ileb_buf = vmalloc(c->leb_size); 1220 if (!c->ileb_buf) 1221 goto out_free; 1222 } 1223 1224 if (c->bulk_read == 1) 1225 bu_init(c); 1226 1227 if (!c->ro_mount) { 1228 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1229 GFP_KERNEL); 1230 if (!c->write_reserve_buf) 1231 goto out_free; 1232 } 1233 1234 c->mounting = 1; 1235 1236 err = ubifs_read_superblock(c); 1237 if (err) 1238 goto out_free; 1239 1240 /* 1241 * Make sure the compressor which is set as default in the superblock 1242 * or overridden by mount options is actually compiled in. 1243 */ 1244 if (!ubifs_compr_present(c->default_compr)) { 1245 ubifs_err("'compressor \"%s\" is not compiled in", 1246 ubifs_compr_name(c->default_compr)); 1247 err = -ENOTSUPP; 1248 goto out_free; 1249 } 1250 1251 err = init_constants_sb(c); 1252 if (err) 1253 goto out_free; 1254 1255 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1256 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1257 c->cbuf = kmalloc(sz, GFP_NOFS); 1258 if (!c->cbuf) { 1259 err = -ENOMEM; 1260 goto out_free; 1261 } 1262 1263 err = alloc_wbufs(c); 1264 if (err) 1265 goto out_cbuf; 1266 1267 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1268 if (!c->ro_mount) { 1269 /* Create background thread */ 1270 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1271 if (IS_ERR(c->bgt)) { 1272 err = PTR_ERR(c->bgt); 1273 c->bgt = NULL; 1274 ubifs_err("cannot spawn \"%s\", error %d", 1275 c->bgt_name, err); 1276 goto out_wbufs; 1277 } 1278 wake_up_process(c->bgt); 1279 } 1280 1281 err = ubifs_read_master(c); 1282 if (err) 1283 goto out_master; 1284 1285 init_constants_master(c); 1286 1287 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1288 ubifs_msg("recovery needed"); 1289 c->need_recovery = 1; 1290 } 1291 1292 if (c->need_recovery && !c->ro_mount) { 1293 err = ubifs_recover_inl_heads(c, c->sbuf); 1294 if (err) 1295 goto out_master; 1296 } 1297 1298 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1299 if (err) 1300 goto out_master; 1301 1302 if (!c->ro_mount && c->space_fixup) { 1303 err = ubifs_fixup_free_space(c); 1304 if (err) 1305 goto out_master; 1306 } 1307 1308 if (!c->ro_mount) { 1309 /* 1310 * Set the "dirty" flag so that if we reboot uncleanly we 1311 * will notice this immediately on the next mount. 1312 */ 1313 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1314 err = ubifs_write_master(c); 1315 if (err) 1316 goto out_lpt; 1317 } 1318 1319 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1320 if (err) 1321 goto out_lpt; 1322 1323 err = ubifs_replay_journal(c); 1324 if (err) 1325 goto out_journal; 1326 1327 /* Calculate 'min_idx_lebs' after journal replay */ 1328 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1329 1330 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1331 if (err) 1332 goto out_orphans; 1333 1334 if (!c->ro_mount) { 1335 int lnum; 1336 1337 err = check_free_space(c); 1338 if (err) 1339 goto out_orphans; 1340 1341 /* Check for enough log space */ 1342 lnum = c->lhead_lnum + 1; 1343 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1344 lnum = UBIFS_LOG_LNUM; 1345 if (lnum == c->ltail_lnum) { 1346 err = ubifs_consolidate_log(c); 1347 if (err) 1348 goto out_orphans; 1349 } 1350 1351 if (c->need_recovery) { 1352 err = ubifs_recover_size(c); 1353 if (err) 1354 goto out_orphans; 1355 err = ubifs_rcvry_gc_commit(c); 1356 if (err) 1357 goto out_orphans; 1358 } else { 1359 err = take_gc_lnum(c); 1360 if (err) 1361 goto out_orphans; 1362 1363 /* 1364 * GC LEB may contain garbage if there was an unclean 1365 * reboot, and it should be un-mapped. 1366 */ 1367 err = ubifs_leb_unmap(c, c->gc_lnum); 1368 if (err) 1369 goto out_orphans; 1370 } 1371 1372 err = dbg_check_lprops(c); 1373 if (err) 1374 goto out_orphans; 1375 } else if (c->need_recovery) { 1376 err = ubifs_recover_size(c); 1377 if (err) 1378 goto out_orphans; 1379 } else { 1380 /* 1381 * Even if we mount read-only, we have to set space in GC LEB 1382 * to proper value because this affects UBIFS free space 1383 * reporting. We do not want to have a situation when 1384 * re-mounting from R/O to R/W changes amount of free space. 1385 */ 1386 err = take_gc_lnum(c); 1387 if (err) 1388 goto out_orphans; 1389 } 1390 1391 spin_lock(&ubifs_infos_lock); 1392 list_add_tail(&c->infos_list, &ubifs_infos); 1393 spin_unlock(&ubifs_infos_lock); 1394 1395 if (c->need_recovery) { 1396 if (c->ro_mount) 1397 ubifs_msg("recovery deferred"); 1398 else { 1399 c->need_recovery = 0; 1400 ubifs_msg("recovery completed"); 1401 /* 1402 * GC LEB has to be empty and taken at this point. But 1403 * the journal head LEBs may also be accounted as 1404 * "empty taken" if they are empty. 1405 */ 1406 ubifs_assert(c->lst.taken_empty_lebs > 0); 1407 } 1408 } else 1409 ubifs_assert(c->lst.taken_empty_lebs > 0); 1410 1411 err = dbg_check_filesystem(c); 1412 if (err) 1413 goto out_infos; 1414 1415 err = dbg_debugfs_init_fs(c); 1416 if (err) 1417 goto out_infos; 1418 1419 c->mounting = 0; 1420 1421 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1422 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1423 if (c->ro_mount) 1424 ubifs_msg("mounted read-only"); 1425 x = (long long)c->main_lebs * c->leb_size; 1426 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1427 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1428 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1429 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1430 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1431 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", 1432 c->fmt_version, c->ro_compat_version, 1433 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1434 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1435 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1436 c->report_rp_size, c->report_rp_size >> 10); 1437 1438 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1439 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1440 dbg_msg("max. write size: %d bytes", c->max_write_size); 1441 dbg_msg("LEB size: %d bytes (%d KiB)", 1442 c->leb_size, c->leb_size >> 10); 1443 dbg_msg("data journal heads: %d", 1444 c->jhead_cnt - NONDATA_JHEADS_CNT); 1445 dbg_msg("UUID: %pUB", c->uuid); 1446 dbg_msg("big_lpt %d", c->big_lpt); 1447 dbg_msg("log LEBs: %d (%d - %d)", 1448 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1449 dbg_msg("LPT area LEBs: %d (%d - %d)", 1450 c->lpt_lebs, c->lpt_first, c->lpt_last); 1451 dbg_msg("orphan area LEBs: %d (%d - %d)", 1452 c->orph_lebs, c->orph_first, c->orph_last); 1453 dbg_msg("main area LEBs: %d (%d - %d)", 1454 c->main_lebs, c->main_first, c->leb_cnt - 1); 1455 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1456 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1457 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1458 c->bi.old_idx_sz >> 20); 1459 dbg_msg("key hash type: %d", c->key_hash_type); 1460 dbg_msg("tree fanout: %d", c->fanout); 1461 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1462 dbg_msg("first main LEB: %d", c->main_first); 1463 dbg_msg("max. znode size %d", c->max_znode_sz); 1464 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1465 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1466 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1467 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1468 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1469 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1470 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1471 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1472 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1473 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1474 dbg_msg("dead watermark: %d", c->dead_wm); 1475 dbg_msg("dark watermark: %d", c->dark_wm); 1476 dbg_msg("LEB overhead: %d", c->leb_overhead); 1477 x = (long long)c->main_lebs * c->dark_wm; 1478 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1479 x, x >> 10, x >> 20); 1480 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1481 c->max_bud_bytes, c->max_bud_bytes >> 10, 1482 c->max_bud_bytes >> 20); 1483 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1484 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1485 c->bg_bud_bytes >> 20); 1486 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1487 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1488 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1489 dbg_msg("commit number: %llu", c->cmt_no); 1490 1491 return 0; 1492 1493 out_infos: 1494 spin_lock(&ubifs_infos_lock); 1495 list_del(&c->infos_list); 1496 spin_unlock(&ubifs_infos_lock); 1497 out_orphans: 1498 free_orphans(c); 1499 out_journal: 1500 destroy_journal(c); 1501 out_lpt: 1502 ubifs_lpt_free(c, 0); 1503 out_master: 1504 kfree(c->mst_node); 1505 kfree(c->rcvrd_mst_node); 1506 if (c->bgt) 1507 kthread_stop(c->bgt); 1508 out_wbufs: 1509 free_wbufs(c); 1510 out_cbuf: 1511 kfree(c->cbuf); 1512 out_free: 1513 kfree(c->write_reserve_buf); 1514 kfree(c->bu.buf); 1515 vfree(c->ileb_buf); 1516 vfree(c->sbuf); 1517 kfree(c->bottom_up_buf); 1518 ubifs_debugging_exit(c); 1519 return err; 1520 } 1521 1522 /** 1523 * ubifs_umount - un-mount UBIFS file-system. 1524 * @c: UBIFS file-system description object 1525 * 1526 * Note, this function is called to free allocated resourced when un-mounting, 1527 * as well as free resources when an error occurred while we were half way 1528 * through mounting (error path cleanup function). So it has to make sure the 1529 * resource was actually allocated before freeing it. 1530 */ 1531 static void ubifs_umount(struct ubifs_info *c) 1532 { 1533 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1534 c->vi.vol_id); 1535 1536 dbg_debugfs_exit_fs(c); 1537 spin_lock(&ubifs_infos_lock); 1538 list_del(&c->infos_list); 1539 spin_unlock(&ubifs_infos_lock); 1540 1541 if (c->bgt) 1542 kthread_stop(c->bgt); 1543 1544 destroy_journal(c); 1545 free_wbufs(c); 1546 free_orphans(c); 1547 ubifs_lpt_free(c, 0); 1548 1549 kfree(c->cbuf); 1550 kfree(c->rcvrd_mst_node); 1551 kfree(c->mst_node); 1552 kfree(c->write_reserve_buf); 1553 kfree(c->bu.buf); 1554 vfree(c->ileb_buf); 1555 vfree(c->sbuf); 1556 kfree(c->bottom_up_buf); 1557 ubifs_debugging_exit(c); 1558 } 1559 1560 /** 1561 * ubifs_remount_rw - re-mount in read-write mode. 1562 * @c: UBIFS file-system description object 1563 * 1564 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1565 * mode. This function allocates the needed resources and re-mounts UBIFS in 1566 * read-write mode. 1567 */ 1568 static int ubifs_remount_rw(struct ubifs_info *c) 1569 { 1570 int err, lnum; 1571 1572 if (c->rw_incompat) { 1573 ubifs_err("the file-system is not R/W-compatible"); 1574 ubifs_msg("on-flash format version is w%d/r%d, but software " 1575 "only supports up to version w%d/r%d", c->fmt_version, 1576 c->ro_compat_version, UBIFS_FORMAT_VERSION, 1577 UBIFS_RO_COMPAT_VERSION); 1578 return -EROFS; 1579 } 1580 1581 mutex_lock(&c->umount_mutex); 1582 dbg_save_space_info(c); 1583 c->remounting_rw = 1; 1584 c->ro_mount = 0; 1585 1586 err = check_free_space(c); 1587 if (err) 1588 goto out; 1589 1590 if (c->old_leb_cnt != c->leb_cnt) { 1591 struct ubifs_sb_node *sup; 1592 1593 sup = ubifs_read_sb_node(c); 1594 if (IS_ERR(sup)) { 1595 err = PTR_ERR(sup); 1596 goto out; 1597 } 1598 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1599 err = ubifs_write_sb_node(c, sup); 1600 kfree(sup); 1601 if (err) 1602 goto out; 1603 } 1604 1605 if (c->need_recovery) { 1606 ubifs_msg("completing deferred recovery"); 1607 err = ubifs_write_rcvrd_mst_node(c); 1608 if (err) 1609 goto out; 1610 err = ubifs_recover_size(c); 1611 if (err) 1612 goto out; 1613 err = ubifs_clean_lebs(c, c->sbuf); 1614 if (err) 1615 goto out; 1616 err = ubifs_recover_inl_heads(c, c->sbuf); 1617 if (err) 1618 goto out; 1619 } else { 1620 /* A readonly mount is not allowed to have orphans */ 1621 ubifs_assert(c->tot_orphans == 0); 1622 err = ubifs_clear_orphans(c); 1623 if (err) 1624 goto out; 1625 } 1626 1627 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1628 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1629 err = ubifs_write_master(c); 1630 if (err) 1631 goto out; 1632 } 1633 1634 c->ileb_buf = vmalloc(c->leb_size); 1635 if (!c->ileb_buf) { 1636 err = -ENOMEM; 1637 goto out; 1638 } 1639 1640 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1641 if (!c->write_reserve_buf) 1642 goto out; 1643 1644 err = ubifs_lpt_init(c, 0, 1); 1645 if (err) 1646 goto out; 1647 1648 /* Create background thread */ 1649 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1650 if (IS_ERR(c->bgt)) { 1651 err = PTR_ERR(c->bgt); 1652 c->bgt = NULL; 1653 ubifs_err("cannot spawn \"%s\", error %d", 1654 c->bgt_name, err); 1655 goto out; 1656 } 1657 wake_up_process(c->bgt); 1658 1659 c->orph_buf = vmalloc(c->leb_size); 1660 if (!c->orph_buf) { 1661 err = -ENOMEM; 1662 goto out; 1663 } 1664 1665 /* Check for enough log space */ 1666 lnum = c->lhead_lnum + 1; 1667 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1668 lnum = UBIFS_LOG_LNUM; 1669 if (lnum == c->ltail_lnum) { 1670 err = ubifs_consolidate_log(c); 1671 if (err) 1672 goto out; 1673 } 1674 1675 if (c->need_recovery) 1676 err = ubifs_rcvry_gc_commit(c); 1677 else 1678 err = ubifs_leb_unmap(c, c->gc_lnum); 1679 if (err) 1680 goto out; 1681 1682 dbg_gen("re-mounted read-write"); 1683 c->remounting_rw = 0; 1684 1685 if (c->need_recovery) { 1686 c->need_recovery = 0; 1687 ubifs_msg("deferred recovery completed"); 1688 } else { 1689 /* 1690 * Do not run the debugging space check if the were doing 1691 * recovery, because when we saved the information we had the 1692 * file-system in a state where the TNC and lprops has been 1693 * modified in memory, but all the I/O operations (including a 1694 * commit) were deferred. So the file-system was in 1695 * "non-committed" state. Now the file-system is in committed 1696 * state, and of course the amount of free space will change 1697 * because, for example, the old index size was imprecise. 1698 */ 1699 err = dbg_check_space_info(c); 1700 } 1701 1702 if (c->space_fixup) { 1703 err = ubifs_fixup_free_space(c); 1704 if (err) 1705 goto out; 1706 } 1707 1708 mutex_unlock(&c->umount_mutex); 1709 return err; 1710 1711 out: 1712 c->ro_mount = 1; 1713 vfree(c->orph_buf); 1714 c->orph_buf = NULL; 1715 if (c->bgt) { 1716 kthread_stop(c->bgt); 1717 c->bgt = NULL; 1718 } 1719 free_wbufs(c); 1720 kfree(c->write_reserve_buf); 1721 c->write_reserve_buf = NULL; 1722 vfree(c->ileb_buf); 1723 c->ileb_buf = NULL; 1724 ubifs_lpt_free(c, 1); 1725 c->remounting_rw = 0; 1726 mutex_unlock(&c->umount_mutex); 1727 return err; 1728 } 1729 1730 /** 1731 * ubifs_remount_ro - re-mount in read-only mode. 1732 * @c: UBIFS file-system description object 1733 * 1734 * We assume VFS has stopped writing. Possibly the background thread could be 1735 * running a commit, however kthread_stop will wait in that case. 1736 */ 1737 static void ubifs_remount_ro(struct ubifs_info *c) 1738 { 1739 int i, err; 1740 1741 ubifs_assert(!c->need_recovery); 1742 ubifs_assert(!c->ro_mount); 1743 1744 mutex_lock(&c->umount_mutex); 1745 if (c->bgt) { 1746 kthread_stop(c->bgt); 1747 c->bgt = NULL; 1748 } 1749 1750 dbg_save_space_info(c); 1751 1752 for (i = 0; i < c->jhead_cnt; i++) 1753 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1754 1755 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1756 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1757 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1758 err = ubifs_write_master(c); 1759 if (err) 1760 ubifs_ro_mode(c, err); 1761 1762 vfree(c->orph_buf); 1763 c->orph_buf = NULL; 1764 kfree(c->write_reserve_buf); 1765 c->write_reserve_buf = NULL; 1766 vfree(c->ileb_buf); 1767 c->ileb_buf = NULL; 1768 ubifs_lpt_free(c, 1); 1769 c->ro_mount = 1; 1770 err = dbg_check_space_info(c); 1771 if (err) 1772 ubifs_ro_mode(c, err); 1773 mutex_unlock(&c->umount_mutex); 1774 } 1775 1776 static void ubifs_put_super(struct super_block *sb) 1777 { 1778 int i; 1779 struct ubifs_info *c = sb->s_fs_info; 1780 1781 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1782 c->vi.vol_id); 1783 1784 /* 1785 * The following asserts are only valid if there has not been a failure 1786 * of the media. For example, there will be dirty inodes if we failed 1787 * to write them back because of I/O errors. 1788 */ 1789 if (!c->ro_error) { 1790 ubifs_assert(c->bi.idx_growth == 0); 1791 ubifs_assert(c->bi.dd_growth == 0); 1792 ubifs_assert(c->bi.data_growth == 0); 1793 } 1794 1795 /* 1796 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1797 * and file system un-mount. Namely, it prevents the shrinker from 1798 * picking this superblock for shrinking - it will be just skipped if 1799 * the mutex is locked. 1800 */ 1801 mutex_lock(&c->umount_mutex); 1802 if (!c->ro_mount) { 1803 /* 1804 * First of all kill the background thread to make sure it does 1805 * not interfere with un-mounting and freeing resources. 1806 */ 1807 if (c->bgt) { 1808 kthread_stop(c->bgt); 1809 c->bgt = NULL; 1810 } 1811 1812 /* 1813 * On fatal errors c->ro_error is set to 1, in which case we do 1814 * not write the master node. 1815 */ 1816 if (!c->ro_error) { 1817 int err; 1818 1819 /* Synchronize write-buffers */ 1820 for (i = 0; i < c->jhead_cnt; i++) 1821 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1822 1823 /* 1824 * We are being cleanly unmounted which means the 1825 * orphans were killed - indicate this in the master 1826 * node. Also save the reserved GC LEB number. 1827 */ 1828 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1829 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1830 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1831 err = ubifs_write_master(c); 1832 if (err) 1833 /* 1834 * Recovery will attempt to fix the master area 1835 * next mount, so we just print a message and 1836 * continue to unmount normally. 1837 */ 1838 ubifs_err("failed to write master node, " 1839 "error %d", err); 1840 } else { 1841 for (i = 0; i < c->jhead_cnt; i++) 1842 /* Make sure write-buffer timers are canceled */ 1843 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1844 } 1845 } 1846 1847 ubifs_umount(c); 1848 bdi_destroy(&c->bdi); 1849 ubi_close_volume(c->ubi); 1850 mutex_unlock(&c->umount_mutex); 1851 } 1852 1853 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1854 { 1855 int err; 1856 struct ubifs_info *c = sb->s_fs_info; 1857 1858 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1859 1860 err = ubifs_parse_options(c, data, 1); 1861 if (err) { 1862 ubifs_err("invalid or unknown remount parameter"); 1863 return err; 1864 } 1865 1866 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1867 if (c->ro_error) { 1868 ubifs_msg("cannot re-mount R/W due to prior errors"); 1869 return -EROFS; 1870 } 1871 if (c->ro_media) { 1872 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 1873 return -EROFS; 1874 } 1875 err = ubifs_remount_rw(c); 1876 if (err) 1877 return err; 1878 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1879 if (c->ro_error) { 1880 ubifs_msg("cannot re-mount R/O due to prior errors"); 1881 return -EROFS; 1882 } 1883 ubifs_remount_ro(c); 1884 } 1885 1886 if (c->bulk_read == 1) 1887 bu_init(c); 1888 else { 1889 dbg_gen("disable bulk-read"); 1890 kfree(c->bu.buf); 1891 c->bu.buf = NULL; 1892 } 1893 1894 ubifs_assert(c->lst.taken_empty_lebs > 0); 1895 return 0; 1896 } 1897 1898 const struct super_operations ubifs_super_operations = { 1899 .alloc_inode = ubifs_alloc_inode, 1900 .destroy_inode = ubifs_destroy_inode, 1901 .put_super = ubifs_put_super, 1902 .write_inode = ubifs_write_inode, 1903 .evict_inode = ubifs_evict_inode, 1904 .statfs = ubifs_statfs, 1905 .dirty_inode = ubifs_dirty_inode, 1906 .remount_fs = ubifs_remount_fs, 1907 .show_options = ubifs_show_options, 1908 .sync_fs = ubifs_sync_fs, 1909 }; 1910 1911 /** 1912 * open_ubi - parse UBI device name string and open the UBI device. 1913 * @name: UBI volume name 1914 * @mode: UBI volume open mode 1915 * 1916 * The primary method of mounting UBIFS is by specifying the UBI volume 1917 * character device node path. However, UBIFS may also be mounted withoug any 1918 * character device node using one of the following methods: 1919 * 1920 * o ubiX_Y - mount UBI device number X, volume Y; 1921 * o ubiY - mount UBI device number 0, volume Y; 1922 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1923 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1924 * 1925 * Alternative '!' separator may be used instead of ':' (because some shells 1926 * like busybox may interpret ':' as an NFS host name separator). This function 1927 * returns UBI volume description object in case of success and a negative 1928 * error code in case of failure. 1929 */ 1930 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1931 { 1932 struct ubi_volume_desc *ubi; 1933 int dev, vol; 1934 char *endptr; 1935 1936 /* First, try to open using the device node path method */ 1937 ubi = ubi_open_volume_path(name, mode); 1938 if (!IS_ERR(ubi)) 1939 return ubi; 1940 1941 /* Try the "nodev" method */ 1942 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1943 return ERR_PTR(-EINVAL); 1944 1945 /* ubi:NAME method */ 1946 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1947 return ubi_open_volume_nm(0, name + 4, mode); 1948 1949 if (!isdigit(name[3])) 1950 return ERR_PTR(-EINVAL); 1951 1952 dev = simple_strtoul(name + 3, &endptr, 0); 1953 1954 /* ubiY method */ 1955 if (*endptr == '\0') 1956 return ubi_open_volume(0, dev, mode); 1957 1958 /* ubiX_Y method */ 1959 if (*endptr == '_' && isdigit(endptr[1])) { 1960 vol = simple_strtoul(endptr + 1, &endptr, 0); 1961 if (*endptr != '\0') 1962 return ERR_PTR(-EINVAL); 1963 return ubi_open_volume(dev, vol, mode); 1964 } 1965 1966 /* ubiX:NAME method */ 1967 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1968 return ubi_open_volume_nm(dev, ++endptr, mode); 1969 1970 return ERR_PTR(-EINVAL); 1971 } 1972 1973 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1974 { 1975 struct ubifs_info *c; 1976 1977 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1978 if (c) { 1979 spin_lock_init(&c->cnt_lock); 1980 spin_lock_init(&c->cs_lock); 1981 spin_lock_init(&c->buds_lock); 1982 spin_lock_init(&c->space_lock); 1983 spin_lock_init(&c->orphan_lock); 1984 init_rwsem(&c->commit_sem); 1985 mutex_init(&c->lp_mutex); 1986 mutex_init(&c->tnc_mutex); 1987 mutex_init(&c->log_mutex); 1988 mutex_init(&c->mst_mutex); 1989 mutex_init(&c->umount_mutex); 1990 mutex_init(&c->bu_mutex); 1991 mutex_init(&c->write_reserve_mutex); 1992 init_waitqueue_head(&c->cmt_wq); 1993 c->buds = RB_ROOT; 1994 c->old_idx = RB_ROOT; 1995 c->size_tree = RB_ROOT; 1996 c->orph_tree = RB_ROOT; 1997 INIT_LIST_HEAD(&c->infos_list); 1998 INIT_LIST_HEAD(&c->idx_gc); 1999 INIT_LIST_HEAD(&c->replay_list); 2000 INIT_LIST_HEAD(&c->replay_buds); 2001 INIT_LIST_HEAD(&c->uncat_list); 2002 INIT_LIST_HEAD(&c->empty_list); 2003 INIT_LIST_HEAD(&c->freeable_list); 2004 INIT_LIST_HEAD(&c->frdi_idx_list); 2005 INIT_LIST_HEAD(&c->unclean_leb_list); 2006 INIT_LIST_HEAD(&c->old_buds); 2007 INIT_LIST_HEAD(&c->orph_list); 2008 INIT_LIST_HEAD(&c->orph_new); 2009 c->no_chk_data_crc = 1; 2010 2011 c->highest_inum = UBIFS_FIRST_INO; 2012 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2013 2014 ubi_get_volume_info(ubi, &c->vi); 2015 ubi_get_device_info(c->vi.ubi_num, &c->di); 2016 } 2017 return c; 2018 } 2019 2020 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2021 { 2022 struct ubifs_info *c = sb->s_fs_info; 2023 struct inode *root; 2024 int err; 2025 2026 c->vfs_sb = sb; 2027 /* Re-open the UBI device in read-write mode */ 2028 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2029 if (IS_ERR(c->ubi)) { 2030 err = PTR_ERR(c->ubi); 2031 goto out; 2032 } 2033 2034 /* 2035 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2036 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2037 * which means the user would have to wait not just for their own I/O 2038 * but the read-ahead I/O as well i.e. completely pointless. 2039 * 2040 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2041 */ 2042 c->bdi.name = "ubifs", 2043 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2044 err = bdi_init(&c->bdi); 2045 if (err) 2046 goto out_close; 2047 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2048 c->vi.ubi_num, c->vi.vol_id); 2049 if (err) 2050 goto out_bdi; 2051 2052 err = ubifs_parse_options(c, data, 0); 2053 if (err) 2054 goto out_bdi; 2055 2056 sb->s_bdi = &c->bdi; 2057 sb->s_fs_info = c; 2058 sb->s_magic = UBIFS_SUPER_MAGIC; 2059 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2060 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2061 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2062 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2063 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2064 sb->s_op = &ubifs_super_operations; 2065 2066 mutex_lock(&c->umount_mutex); 2067 err = mount_ubifs(c); 2068 if (err) { 2069 ubifs_assert(err < 0); 2070 goto out_unlock; 2071 } 2072 2073 /* Read the root inode */ 2074 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2075 if (IS_ERR(root)) { 2076 err = PTR_ERR(root); 2077 goto out_umount; 2078 } 2079 2080 sb->s_root = d_alloc_root(root); 2081 if (!sb->s_root) 2082 goto out_iput; 2083 2084 mutex_unlock(&c->umount_mutex); 2085 return 0; 2086 2087 out_iput: 2088 iput(root); 2089 out_umount: 2090 ubifs_umount(c); 2091 out_unlock: 2092 mutex_unlock(&c->umount_mutex); 2093 out_bdi: 2094 bdi_destroy(&c->bdi); 2095 out_close: 2096 ubi_close_volume(c->ubi); 2097 out: 2098 return err; 2099 } 2100 2101 static int sb_test(struct super_block *sb, void *data) 2102 { 2103 struct ubifs_info *c1 = data; 2104 struct ubifs_info *c = sb->s_fs_info; 2105 2106 return c->vi.cdev == c1->vi.cdev; 2107 } 2108 2109 static int sb_set(struct super_block *sb, void *data) 2110 { 2111 sb->s_fs_info = data; 2112 return set_anon_super(sb, NULL); 2113 } 2114 2115 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2116 const char *name, void *data) 2117 { 2118 struct ubi_volume_desc *ubi; 2119 struct ubifs_info *c; 2120 struct super_block *sb; 2121 int err; 2122 2123 dbg_gen("name %s, flags %#x", name, flags); 2124 2125 /* 2126 * Get UBI device number and volume ID. Mount it read-only so far 2127 * because this might be a new mount point, and UBI allows only one 2128 * read-write user at a time. 2129 */ 2130 ubi = open_ubi(name, UBI_READONLY); 2131 if (IS_ERR(ubi)) { 2132 dbg_err("cannot open \"%s\", error %d", 2133 name, (int)PTR_ERR(ubi)); 2134 return ERR_CAST(ubi); 2135 } 2136 2137 c = alloc_ubifs_info(ubi); 2138 if (!c) { 2139 err = -ENOMEM; 2140 goto out_close; 2141 } 2142 2143 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2144 2145 sb = sget(fs_type, sb_test, sb_set, c); 2146 if (IS_ERR(sb)) { 2147 err = PTR_ERR(sb); 2148 kfree(c); 2149 goto out_close; 2150 } 2151 2152 if (sb->s_root) { 2153 struct ubifs_info *c1 = sb->s_fs_info; 2154 kfree(c); 2155 /* A new mount point for already mounted UBIFS */ 2156 dbg_gen("this ubi volume is already mounted"); 2157 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2158 err = -EBUSY; 2159 goto out_deact; 2160 } 2161 } else { 2162 sb->s_flags = flags; 2163 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2164 if (err) 2165 goto out_deact; 2166 /* We do not support atime */ 2167 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2168 } 2169 2170 /* 'fill_super()' opens ubi again so we must close it here */ 2171 ubi_close_volume(ubi); 2172 2173 return dget(sb->s_root); 2174 2175 out_deact: 2176 deactivate_locked_super(sb); 2177 out_close: 2178 ubi_close_volume(ubi); 2179 return ERR_PTR(err); 2180 } 2181 2182 static void kill_ubifs_super(struct super_block *s) 2183 { 2184 struct ubifs_info *c = s->s_fs_info; 2185 kill_anon_super(s); 2186 kfree(c); 2187 } 2188 2189 static struct file_system_type ubifs_fs_type = { 2190 .name = "ubifs", 2191 .owner = THIS_MODULE, 2192 .mount = ubifs_mount, 2193 .kill_sb = kill_ubifs_super, 2194 }; 2195 2196 /* 2197 * Inode slab cache constructor. 2198 */ 2199 static void inode_slab_ctor(void *obj) 2200 { 2201 struct ubifs_inode *ui = obj; 2202 inode_init_once(&ui->vfs_inode); 2203 } 2204 2205 static int __init ubifs_init(void) 2206 { 2207 int err; 2208 2209 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2210 2211 /* Make sure node sizes are 8-byte aligned */ 2212 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2213 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2214 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2215 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2216 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2217 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2218 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2219 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2220 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2221 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2222 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2223 2224 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2225 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2226 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2227 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2228 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2229 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2230 2231 /* Check min. node size */ 2232 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2233 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2234 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2235 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2236 2237 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2238 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2239 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2240 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2241 2242 /* Defined node sizes */ 2243 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2244 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2245 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2246 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2247 2248 /* 2249 * We use 2 bit wide bit-fields to store compression type, which should 2250 * be amended if more compressors are added. The bit-fields are: 2251 * @compr_type in 'struct ubifs_inode', @default_compr in 2252 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2253 */ 2254 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2255 2256 /* 2257 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2258 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2259 */ 2260 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2261 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2262 " at least 4096 bytes", 2263 (unsigned int)PAGE_CACHE_SIZE); 2264 return -EINVAL; 2265 } 2266 2267 err = register_filesystem(&ubifs_fs_type); 2268 if (err) { 2269 ubifs_err("cannot register file system, error %d", err); 2270 return err; 2271 } 2272 2273 err = -ENOMEM; 2274 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2275 sizeof(struct ubifs_inode), 0, 2276 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2277 &inode_slab_ctor); 2278 if (!ubifs_inode_slab) 2279 goto out_reg; 2280 2281 register_shrinker(&ubifs_shrinker_info); 2282 2283 err = ubifs_compressors_init(); 2284 if (err) 2285 goto out_shrinker; 2286 2287 err = dbg_debugfs_init(); 2288 if (err) 2289 goto out_compr; 2290 2291 return 0; 2292 2293 out_compr: 2294 ubifs_compressors_exit(); 2295 out_shrinker: 2296 unregister_shrinker(&ubifs_shrinker_info); 2297 kmem_cache_destroy(ubifs_inode_slab); 2298 out_reg: 2299 unregister_filesystem(&ubifs_fs_type); 2300 return err; 2301 } 2302 /* late_initcall to let compressors initialize first */ 2303 late_initcall(ubifs_init); 2304 2305 static void __exit ubifs_exit(void) 2306 { 2307 ubifs_assert(list_empty(&ubifs_infos)); 2308 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2309 2310 dbg_debugfs_exit(); 2311 ubifs_compressors_exit(); 2312 unregister_shrinker(&ubifs_shrinker_info); 2313 kmem_cache_destroy(ubifs_inode_slab); 2314 unregister_filesystem(&ubifs_fs_type); 2315 } 2316 module_exit(ubifs_exit); 2317 2318 MODULE_LICENSE("GPL"); 2319 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2320 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2321 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2322