1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/kthread.h> 22 #include <linux/parser.h> 23 #include <linux/seq_file.h> 24 #include <linux/mount.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include "ubifs.h" 28 29 /* 30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 31 * allocating too much. 32 */ 33 #define UBIFS_KMALLOC_OK (128*1024) 34 35 /* Slab cache for UBIFS inodes */ 36 static struct kmem_cache *ubifs_inode_slab; 37 38 /* UBIFS TNC shrinker description */ 39 static struct shrinker ubifs_shrinker_info = { 40 .scan_objects = ubifs_shrink_scan, 41 .count_objects = ubifs_shrink_count, 42 .seeks = DEFAULT_SEEKS, 43 }; 44 45 /** 46 * validate_inode - validate inode. 47 * @c: UBIFS file-system description object 48 * @inode: the inode to validate 49 * 50 * This is a helper function for 'ubifs_iget()' which validates various fields 51 * of a newly built inode to make sure they contain sane values and prevent 52 * possible vulnerabilities. Returns zero if the inode is all right and 53 * a non-zero error code if not. 54 */ 55 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 56 { 57 int err; 58 const struct ubifs_inode *ui = ubifs_inode(inode); 59 60 if (inode->i_size > c->max_inode_sz) { 61 ubifs_err(c, "inode is too large (%lld)", 62 (long long)inode->i_size); 63 return 1; 64 } 65 66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 67 ubifs_err(c, "unknown compression type %d", ui->compr_type); 68 return 2; 69 } 70 71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 72 return 3; 73 74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 75 return 4; 76 77 if (ui->xattr && !S_ISREG(inode->i_mode)) 78 return 5; 79 80 if (!ubifs_compr_present(c, ui->compr_type)) { 81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 82 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 83 } 84 85 err = dbg_check_dir(c, inode); 86 return err; 87 } 88 89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 90 { 91 int err; 92 union ubifs_key key; 93 struct ubifs_ino_node *ino; 94 struct ubifs_info *c = sb->s_fs_info; 95 struct inode *inode; 96 struct ubifs_inode *ui; 97 98 dbg_gen("inode %lu", inum); 99 100 inode = iget_locked(sb, inum); 101 if (!inode) 102 return ERR_PTR(-ENOMEM); 103 if (!(inode->i_state & I_NEW)) 104 return inode; 105 ui = ubifs_inode(inode); 106 107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 108 if (!ino) { 109 err = -ENOMEM; 110 goto out; 111 } 112 113 ino_key_init(c, &key, inode->i_ino); 114 115 err = ubifs_tnc_lookup(c, &key, ino); 116 if (err) 117 goto out_ino; 118 119 inode->i_flags |= S_NOCMTIME; 120 121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 122 inode->i_flags |= S_NOATIME; 123 124 set_nlink(inode, le32_to_cpu(ino->nlink)); 125 i_uid_write(inode, le32_to_cpu(ino->uid)); 126 i_gid_write(inode, le32_to_cpu(ino->gid)); 127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 133 inode->i_mode = le32_to_cpu(ino->mode); 134 inode->i_size = le64_to_cpu(ino->size); 135 136 ui->data_len = le32_to_cpu(ino->data_len); 137 ui->flags = le32_to_cpu(ino->flags); 138 ui->compr_type = le16_to_cpu(ino->compr_type); 139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 141 ui->xattr_size = le32_to_cpu(ino->xattr_size); 142 ui->xattr_names = le32_to_cpu(ino->xattr_names); 143 ui->synced_i_size = ui->ui_size = inode->i_size; 144 145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 146 147 err = validate_inode(c, inode); 148 if (err) 149 goto out_invalid; 150 151 switch (inode->i_mode & S_IFMT) { 152 case S_IFREG: 153 inode->i_mapping->a_ops = &ubifs_file_address_operations; 154 inode->i_op = &ubifs_file_inode_operations; 155 inode->i_fop = &ubifs_file_operations; 156 if (ui->xattr) { 157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 158 if (!ui->data) { 159 err = -ENOMEM; 160 goto out_ino; 161 } 162 memcpy(ui->data, ino->data, ui->data_len); 163 ((char *)ui->data)[ui->data_len] = '\0'; 164 } else if (ui->data_len != 0) { 165 err = 10; 166 goto out_invalid; 167 } 168 break; 169 case S_IFDIR: 170 inode->i_op = &ubifs_dir_inode_operations; 171 inode->i_fop = &ubifs_dir_operations; 172 if (ui->data_len != 0) { 173 err = 11; 174 goto out_invalid; 175 } 176 break; 177 case S_IFLNK: 178 inode->i_op = &ubifs_symlink_inode_operations; 179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 180 err = 12; 181 goto out_invalid; 182 } 183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 184 if (!ui->data) { 185 err = -ENOMEM; 186 goto out_ino; 187 } 188 memcpy(ui->data, ino->data, ui->data_len); 189 ((char *)ui->data)[ui->data_len] = '\0'; 190 break; 191 case S_IFBLK: 192 case S_IFCHR: 193 { 194 dev_t rdev; 195 union ubifs_dev_desc *dev; 196 197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 198 if (!ui->data) { 199 err = -ENOMEM; 200 goto out_ino; 201 } 202 203 dev = (union ubifs_dev_desc *)ino->data; 204 if (ui->data_len == sizeof(dev->new)) 205 rdev = new_decode_dev(le32_to_cpu(dev->new)); 206 else if (ui->data_len == sizeof(dev->huge)) 207 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 208 else { 209 err = 13; 210 goto out_invalid; 211 } 212 memcpy(ui->data, ino->data, ui->data_len); 213 inode->i_op = &ubifs_file_inode_operations; 214 init_special_inode(inode, inode->i_mode, rdev); 215 break; 216 } 217 case S_IFSOCK: 218 case S_IFIFO: 219 inode->i_op = &ubifs_file_inode_operations; 220 init_special_inode(inode, inode->i_mode, 0); 221 if (ui->data_len != 0) { 222 err = 14; 223 goto out_invalid; 224 } 225 break; 226 default: 227 err = 15; 228 goto out_invalid; 229 } 230 231 kfree(ino); 232 ubifs_set_inode_flags(inode); 233 unlock_new_inode(inode); 234 return inode; 235 236 out_invalid: 237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 238 ubifs_dump_node(c, ino); 239 ubifs_dump_inode(c, inode); 240 err = -EINVAL; 241 out_ino: 242 kfree(ino); 243 out: 244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 245 iget_failed(inode); 246 return ERR_PTR(err); 247 } 248 249 static struct inode *ubifs_alloc_inode(struct super_block *sb) 250 { 251 struct ubifs_inode *ui; 252 253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 254 if (!ui) 255 return NULL; 256 257 memset((void *)ui + sizeof(struct inode), 0, 258 sizeof(struct ubifs_inode) - sizeof(struct inode)); 259 mutex_init(&ui->ui_mutex); 260 spin_lock_init(&ui->ui_lock); 261 return &ui->vfs_inode; 262 }; 263 264 static void ubifs_free_inode(struct inode *inode) 265 { 266 struct ubifs_inode *ui = ubifs_inode(inode); 267 268 kfree(ui->data); 269 fscrypt_free_inode(inode); 270 271 kmem_cache_free(ubifs_inode_slab, ui); 272 } 273 274 /* 275 * Note, Linux write-back code calls this without 'i_mutex'. 276 */ 277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 278 { 279 int err = 0; 280 struct ubifs_info *c = inode->i_sb->s_fs_info; 281 struct ubifs_inode *ui = ubifs_inode(inode); 282 283 ubifs_assert(c, !ui->xattr); 284 if (is_bad_inode(inode)) 285 return 0; 286 287 mutex_lock(&ui->ui_mutex); 288 /* 289 * Due to races between write-back forced by budgeting 290 * (see 'sync_some_inodes()') and background write-back, the inode may 291 * have already been synchronized, do not do this again. This might 292 * also happen if it was synchronized in an VFS operation, e.g. 293 * 'ubifs_link()'. 294 */ 295 if (!ui->dirty) { 296 mutex_unlock(&ui->ui_mutex); 297 return 0; 298 } 299 300 /* 301 * As an optimization, do not write orphan inodes to the media just 302 * because this is not needed. 303 */ 304 dbg_gen("inode %lu, mode %#x, nlink %u", 305 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 306 if (inode->i_nlink) { 307 err = ubifs_jnl_write_inode(c, inode); 308 if (err) 309 ubifs_err(c, "can't write inode %lu, error %d", 310 inode->i_ino, err); 311 else 312 err = dbg_check_inode_size(c, inode, ui->ui_size); 313 } 314 315 ui->dirty = 0; 316 mutex_unlock(&ui->ui_mutex); 317 ubifs_release_dirty_inode_budget(c, ui); 318 return err; 319 } 320 321 static void ubifs_evict_inode(struct inode *inode) 322 { 323 int err; 324 struct ubifs_info *c = inode->i_sb->s_fs_info; 325 struct ubifs_inode *ui = ubifs_inode(inode); 326 327 if (ui->xattr) 328 /* 329 * Extended attribute inode deletions are fully handled in 330 * 'ubifs_removexattr()'. These inodes are special and have 331 * limited usage, so there is nothing to do here. 332 */ 333 goto out; 334 335 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 336 ubifs_assert(c, !atomic_read(&inode->i_count)); 337 338 truncate_inode_pages_final(&inode->i_data); 339 340 if (inode->i_nlink) 341 goto done; 342 343 if (is_bad_inode(inode)) 344 goto out; 345 346 ui->ui_size = inode->i_size = 0; 347 err = ubifs_jnl_delete_inode(c, inode); 348 if (err) 349 /* 350 * Worst case we have a lost orphan inode wasting space, so a 351 * simple error message is OK here. 352 */ 353 ubifs_err(c, "can't delete inode %lu, error %d", 354 inode->i_ino, err); 355 356 out: 357 if (ui->dirty) 358 ubifs_release_dirty_inode_budget(c, ui); 359 else { 360 /* We've deleted something - clean the "no space" flags */ 361 c->bi.nospace = c->bi.nospace_rp = 0; 362 smp_wmb(); 363 } 364 done: 365 clear_inode(inode); 366 fscrypt_put_encryption_info(inode); 367 } 368 369 static void ubifs_dirty_inode(struct inode *inode, int flags) 370 { 371 struct ubifs_info *c = inode->i_sb->s_fs_info; 372 struct ubifs_inode *ui = ubifs_inode(inode); 373 374 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 375 if (!ui->dirty) { 376 ui->dirty = 1; 377 dbg_gen("inode %lu", inode->i_ino); 378 } 379 } 380 381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 382 { 383 struct ubifs_info *c = dentry->d_sb->s_fs_info; 384 unsigned long long free; 385 __le32 *uuid = (__le32 *)c->uuid; 386 387 free = ubifs_get_free_space(c); 388 dbg_gen("free space %lld bytes (%lld blocks)", 389 free, free >> UBIFS_BLOCK_SHIFT); 390 391 buf->f_type = UBIFS_SUPER_MAGIC; 392 buf->f_bsize = UBIFS_BLOCK_SIZE; 393 buf->f_blocks = c->block_cnt; 394 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 395 if (free > c->report_rp_size) 396 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 397 else 398 buf->f_bavail = 0; 399 buf->f_files = 0; 400 buf->f_ffree = 0; 401 buf->f_namelen = UBIFS_MAX_NLEN; 402 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 403 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 404 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 405 return 0; 406 } 407 408 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 409 { 410 struct ubifs_info *c = root->d_sb->s_fs_info; 411 412 if (c->mount_opts.unmount_mode == 2) 413 seq_puts(s, ",fast_unmount"); 414 else if (c->mount_opts.unmount_mode == 1) 415 seq_puts(s, ",norm_unmount"); 416 417 if (c->mount_opts.bulk_read == 2) 418 seq_puts(s, ",bulk_read"); 419 else if (c->mount_opts.bulk_read == 1) 420 seq_puts(s, ",no_bulk_read"); 421 422 if (c->mount_opts.chk_data_crc == 2) 423 seq_puts(s, ",chk_data_crc"); 424 else if (c->mount_opts.chk_data_crc == 1) 425 seq_puts(s, ",no_chk_data_crc"); 426 427 if (c->mount_opts.override_compr) { 428 seq_printf(s, ",compr=%s", 429 ubifs_compr_name(c, c->mount_opts.compr_type)); 430 } 431 432 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 433 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 434 435 return 0; 436 } 437 438 static int ubifs_sync_fs(struct super_block *sb, int wait) 439 { 440 int i, err; 441 struct ubifs_info *c = sb->s_fs_info; 442 443 /* 444 * Zero @wait is just an advisory thing to help the file system shove 445 * lots of data into the queues, and there will be the second 446 * '->sync_fs()' call, with non-zero @wait. 447 */ 448 if (!wait) 449 return 0; 450 451 /* 452 * Synchronize write buffers, because 'ubifs_run_commit()' does not 453 * do this if it waits for an already running commit. 454 */ 455 for (i = 0; i < c->jhead_cnt; i++) { 456 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 457 if (err) 458 return err; 459 } 460 461 /* 462 * Strictly speaking, it is not necessary to commit the journal here, 463 * synchronizing write-buffers would be enough. But committing makes 464 * UBIFS free space predictions much more accurate, so we want to let 465 * the user be able to get more accurate results of 'statfs()' after 466 * they synchronize the file system. 467 */ 468 err = ubifs_run_commit(c); 469 if (err) 470 return err; 471 472 return ubi_sync(c->vi.ubi_num); 473 } 474 475 /** 476 * init_constants_early - initialize UBIFS constants. 477 * @c: UBIFS file-system description object 478 * 479 * This function initialize UBIFS constants which do not need the superblock to 480 * be read. It also checks that the UBI volume satisfies basic UBIFS 481 * requirements. Returns zero in case of success and a negative error code in 482 * case of failure. 483 */ 484 static int init_constants_early(struct ubifs_info *c) 485 { 486 if (c->vi.corrupted) { 487 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 488 c->ro_media = 1; 489 } 490 491 if (c->di.ro_mode) { 492 ubifs_msg(c, "read-only UBI device"); 493 c->ro_media = 1; 494 } 495 496 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 497 ubifs_msg(c, "static UBI volume - read-only mode"); 498 c->ro_media = 1; 499 } 500 501 c->leb_cnt = c->vi.size; 502 c->leb_size = c->vi.usable_leb_size; 503 c->leb_start = c->di.leb_start; 504 c->half_leb_size = c->leb_size / 2; 505 c->min_io_size = c->di.min_io_size; 506 c->min_io_shift = fls(c->min_io_size) - 1; 507 c->max_write_size = c->di.max_write_size; 508 c->max_write_shift = fls(c->max_write_size) - 1; 509 510 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 511 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 512 c->leb_size, UBIFS_MIN_LEB_SZ); 513 return -EINVAL; 514 } 515 516 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 517 ubifs_errc(c, "too few LEBs (%d), min. is %d", 518 c->leb_cnt, UBIFS_MIN_LEB_CNT); 519 return -EINVAL; 520 } 521 522 if (!is_power_of_2(c->min_io_size)) { 523 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 524 return -EINVAL; 525 } 526 527 /* 528 * Maximum write size has to be greater or equivalent to min. I/O 529 * size, and be multiple of min. I/O size. 530 */ 531 if (c->max_write_size < c->min_io_size || 532 c->max_write_size % c->min_io_size || 533 !is_power_of_2(c->max_write_size)) { 534 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 535 c->max_write_size, c->min_io_size); 536 return -EINVAL; 537 } 538 539 /* 540 * UBIFS aligns all node to 8-byte boundary, so to make function in 541 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 542 * less than 8. 543 */ 544 if (c->min_io_size < 8) { 545 c->min_io_size = 8; 546 c->min_io_shift = 3; 547 if (c->max_write_size < c->min_io_size) { 548 c->max_write_size = c->min_io_size; 549 c->max_write_shift = c->min_io_shift; 550 } 551 } 552 553 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 554 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 555 556 /* 557 * Initialize node length ranges which are mostly needed for node 558 * length validation. 559 */ 560 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 561 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 562 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 563 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 564 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 565 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 566 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 567 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 568 UBIFS_MAX_HMAC_LEN; 569 570 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 571 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 572 c->ranges[UBIFS_ORPH_NODE].min_len = 573 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 574 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 575 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 576 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 577 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 578 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 579 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 580 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 581 /* 582 * Minimum indexing node size is amended later when superblock is 583 * read and the key length is known. 584 */ 585 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 586 /* 587 * Maximum indexing node size is amended later when superblock is 588 * read and the fanout is known. 589 */ 590 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 591 592 /* 593 * Initialize dead and dark LEB space watermarks. See gc.c for comments 594 * about these values. 595 */ 596 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 597 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 598 599 /* 600 * Calculate how many bytes would be wasted at the end of LEB if it was 601 * fully filled with data nodes of maximum size. This is used in 602 * calculations when reporting free space. 603 */ 604 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 605 606 /* Buffer size for bulk-reads */ 607 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 608 if (c->max_bu_buf_len > c->leb_size) 609 c->max_bu_buf_len = c->leb_size; 610 return 0; 611 } 612 613 /** 614 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 615 * @c: UBIFS file-system description object 616 * @lnum: LEB the write-buffer was synchronized to 617 * @free: how many free bytes left in this LEB 618 * @pad: how many bytes were padded 619 * 620 * This is a callback function which is called by the I/O unit when the 621 * write-buffer is synchronized. We need this to correctly maintain space 622 * accounting in bud logical eraseblocks. This function returns zero in case of 623 * success and a negative error code in case of failure. 624 * 625 * This function actually belongs to the journal, but we keep it here because 626 * we want to keep it static. 627 */ 628 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 629 { 630 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 631 } 632 633 /* 634 * init_constants_sb - initialize UBIFS constants. 635 * @c: UBIFS file-system description object 636 * 637 * This is a helper function which initializes various UBIFS constants after 638 * the superblock has been read. It also checks various UBIFS parameters and 639 * makes sure they are all right. Returns zero in case of success and a 640 * negative error code in case of failure. 641 */ 642 static int init_constants_sb(struct ubifs_info *c) 643 { 644 int tmp, err; 645 long long tmp64; 646 647 c->main_bytes = (long long)c->main_lebs * c->leb_size; 648 c->max_znode_sz = sizeof(struct ubifs_znode) + 649 c->fanout * sizeof(struct ubifs_zbranch); 650 651 tmp = ubifs_idx_node_sz(c, 1); 652 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 653 c->min_idx_node_sz = ALIGN(tmp, 8); 654 655 tmp = ubifs_idx_node_sz(c, c->fanout); 656 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 657 c->max_idx_node_sz = ALIGN(tmp, 8); 658 659 /* Make sure LEB size is large enough to fit full commit */ 660 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 661 tmp = ALIGN(tmp, c->min_io_size); 662 if (tmp > c->leb_size) { 663 ubifs_err(c, "too small LEB size %d, at least %d needed", 664 c->leb_size, tmp); 665 return -EINVAL; 666 } 667 668 /* 669 * Make sure that the log is large enough to fit reference nodes for 670 * all buds plus one reserved LEB. 671 */ 672 tmp64 = c->max_bud_bytes + c->leb_size - 1; 673 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 674 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 675 tmp /= c->leb_size; 676 tmp += 1; 677 if (c->log_lebs < tmp) { 678 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 679 c->log_lebs, tmp); 680 return -EINVAL; 681 } 682 683 /* 684 * When budgeting we assume worst-case scenarios when the pages are not 685 * be compressed and direntries are of the maximum size. 686 * 687 * Note, data, which may be stored in inodes is budgeted separately, so 688 * it is not included into 'c->bi.inode_budget'. 689 */ 690 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 691 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 692 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 693 694 /* 695 * When the amount of flash space used by buds becomes 696 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 697 * The writers are unblocked when the commit is finished. To avoid 698 * writers to be blocked UBIFS initiates background commit in advance, 699 * when number of bud bytes becomes above the limit defined below. 700 */ 701 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 702 703 /* 704 * Ensure minimum journal size. All the bytes in the journal heads are 705 * considered to be used, when calculating the current journal usage. 706 * Consequently, if the journal is too small, UBIFS will treat it as 707 * always full. 708 */ 709 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 710 if (c->bg_bud_bytes < tmp64) 711 c->bg_bud_bytes = tmp64; 712 if (c->max_bud_bytes < tmp64 + c->leb_size) 713 c->max_bud_bytes = tmp64 + c->leb_size; 714 715 err = ubifs_calc_lpt_geom(c); 716 if (err) 717 return err; 718 719 /* Initialize effective LEB size used in budgeting calculations */ 720 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 721 return 0; 722 } 723 724 /* 725 * init_constants_master - initialize UBIFS constants. 726 * @c: UBIFS file-system description object 727 * 728 * This is a helper function which initializes various UBIFS constants after 729 * the master node has been read. It also checks various UBIFS parameters and 730 * makes sure they are all right. 731 */ 732 static void init_constants_master(struct ubifs_info *c) 733 { 734 long long tmp64; 735 736 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 737 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 738 739 /* 740 * Calculate total amount of FS blocks. This number is not used 741 * internally because it does not make much sense for UBIFS, but it is 742 * necessary to report something for the 'statfs()' call. 743 * 744 * Subtract the LEB reserved for GC, the LEB which is reserved for 745 * deletions, minimum LEBs for the index, and assume only one journal 746 * head is available. 747 */ 748 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 749 tmp64 *= (long long)c->leb_size - c->leb_overhead; 750 tmp64 = ubifs_reported_space(c, tmp64); 751 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 752 } 753 754 /** 755 * take_gc_lnum - reserve GC LEB. 756 * @c: UBIFS file-system description object 757 * 758 * This function ensures that the LEB reserved for garbage collection is marked 759 * as "taken" in lprops. We also have to set free space to LEB size and dirty 760 * space to zero, because lprops may contain out-of-date information if the 761 * file-system was un-mounted before it has been committed. This function 762 * returns zero in case of success and a negative error code in case of 763 * failure. 764 */ 765 static int take_gc_lnum(struct ubifs_info *c) 766 { 767 int err; 768 769 if (c->gc_lnum == -1) { 770 ubifs_err(c, "no LEB for GC"); 771 return -EINVAL; 772 } 773 774 /* And we have to tell lprops that this LEB is taken */ 775 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 776 LPROPS_TAKEN, 0, 0); 777 return err; 778 } 779 780 /** 781 * alloc_wbufs - allocate write-buffers. 782 * @c: UBIFS file-system description object 783 * 784 * This helper function allocates and initializes UBIFS write-buffers. Returns 785 * zero in case of success and %-ENOMEM in case of failure. 786 */ 787 static int alloc_wbufs(struct ubifs_info *c) 788 { 789 int i, err; 790 791 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 792 GFP_KERNEL); 793 if (!c->jheads) 794 return -ENOMEM; 795 796 /* Initialize journal heads */ 797 for (i = 0; i < c->jhead_cnt; i++) { 798 INIT_LIST_HEAD(&c->jheads[i].buds_list); 799 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 800 if (err) 801 return err; 802 803 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 804 c->jheads[i].wbuf.jhead = i; 805 c->jheads[i].grouped = 1; 806 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 807 if (IS_ERR(c->jheads[i].log_hash)) 808 goto out; 809 } 810 811 /* 812 * Garbage Collector head does not need to be synchronized by timer. 813 * Also GC head nodes are not grouped. 814 */ 815 c->jheads[GCHD].wbuf.no_timer = 1; 816 c->jheads[GCHD].grouped = 0; 817 818 return 0; 819 820 out: 821 while (i--) 822 kfree(c->jheads[i].log_hash); 823 824 return err; 825 } 826 827 /** 828 * free_wbufs - free write-buffers. 829 * @c: UBIFS file-system description object 830 */ 831 static void free_wbufs(struct ubifs_info *c) 832 { 833 int i; 834 835 if (c->jheads) { 836 for (i = 0; i < c->jhead_cnt; i++) { 837 kfree(c->jheads[i].wbuf.buf); 838 kfree(c->jheads[i].wbuf.inodes); 839 kfree(c->jheads[i].log_hash); 840 } 841 kfree(c->jheads); 842 c->jheads = NULL; 843 } 844 } 845 846 /** 847 * free_orphans - free orphans. 848 * @c: UBIFS file-system description object 849 */ 850 static void free_orphans(struct ubifs_info *c) 851 { 852 struct ubifs_orphan *orph; 853 854 while (c->orph_dnext) { 855 orph = c->orph_dnext; 856 c->orph_dnext = orph->dnext; 857 list_del(&orph->list); 858 kfree(orph); 859 } 860 861 while (!list_empty(&c->orph_list)) { 862 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 863 list_del(&orph->list); 864 kfree(orph); 865 ubifs_err(c, "orphan list not empty at unmount"); 866 } 867 868 vfree(c->orph_buf); 869 c->orph_buf = NULL; 870 } 871 872 /** 873 * free_buds - free per-bud objects. 874 * @c: UBIFS file-system description object 875 */ 876 static void free_buds(struct ubifs_info *c) 877 { 878 struct ubifs_bud *bud, *n; 879 880 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 881 kfree(bud); 882 } 883 884 /** 885 * check_volume_empty - check if the UBI volume is empty. 886 * @c: UBIFS file-system description object 887 * 888 * This function checks if the UBIFS volume is empty by looking if its LEBs are 889 * mapped or not. The result of checking is stored in the @c->empty variable. 890 * Returns zero in case of success and a negative error code in case of 891 * failure. 892 */ 893 static int check_volume_empty(struct ubifs_info *c) 894 { 895 int lnum, err; 896 897 c->empty = 1; 898 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 899 err = ubifs_is_mapped(c, lnum); 900 if (unlikely(err < 0)) 901 return err; 902 if (err == 1) { 903 c->empty = 0; 904 break; 905 } 906 907 cond_resched(); 908 } 909 910 return 0; 911 } 912 913 /* 914 * UBIFS mount options. 915 * 916 * Opt_fast_unmount: do not run a journal commit before un-mounting 917 * Opt_norm_unmount: run a journal commit before un-mounting 918 * Opt_bulk_read: enable bulk-reads 919 * Opt_no_bulk_read: disable bulk-reads 920 * Opt_chk_data_crc: check CRCs when reading data nodes 921 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 922 * Opt_override_compr: override default compressor 923 * Opt_assert: set ubifs_assert() action 924 * Opt_auth_key: The key name used for authentication 925 * Opt_auth_hash_name: The hash type used for authentication 926 * Opt_err: just end of array marker 927 */ 928 enum { 929 Opt_fast_unmount, 930 Opt_norm_unmount, 931 Opt_bulk_read, 932 Opt_no_bulk_read, 933 Opt_chk_data_crc, 934 Opt_no_chk_data_crc, 935 Opt_override_compr, 936 Opt_assert, 937 Opt_auth_key, 938 Opt_auth_hash_name, 939 Opt_ignore, 940 Opt_err, 941 }; 942 943 static const match_table_t tokens = { 944 {Opt_fast_unmount, "fast_unmount"}, 945 {Opt_norm_unmount, "norm_unmount"}, 946 {Opt_bulk_read, "bulk_read"}, 947 {Opt_no_bulk_read, "no_bulk_read"}, 948 {Opt_chk_data_crc, "chk_data_crc"}, 949 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 950 {Opt_override_compr, "compr=%s"}, 951 {Opt_auth_key, "auth_key=%s"}, 952 {Opt_auth_hash_name, "auth_hash_name=%s"}, 953 {Opt_ignore, "ubi=%s"}, 954 {Opt_ignore, "vol=%s"}, 955 {Opt_assert, "assert=%s"}, 956 {Opt_err, NULL}, 957 }; 958 959 /** 960 * parse_standard_option - parse a standard mount option. 961 * @option: the option to parse 962 * 963 * Normally, standard mount options like "sync" are passed to file-systems as 964 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 965 * be present in the options string. This function tries to deal with this 966 * situation and parse standard options. Returns 0 if the option was not 967 * recognized, and the corresponding integer flag if it was. 968 * 969 * UBIFS is only interested in the "sync" option, so do not check for anything 970 * else. 971 */ 972 static int parse_standard_option(const char *option) 973 { 974 975 pr_notice("UBIFS: parse %s\n", option); 976 if (!strcmp(option, "sync")) 977 return SB_SYNCHRONOUS; 978 return 0; 979 } 980 981 /** 982 * ubifs_parse_options - parse mount parameters. 983 * @c: UBIFS file-system description object 984 * @options: parameters to parse 985 * @is_remount: non-zero if this is FS re-mount 986 * 987 * This function parses UBIFS mount options and returns zero in case success 988 * and a negative error code in case of failure. 989 */ 990 static int ubifs_parse_options(struct ubifs_info *c, char *options, 991 int is_remount) 992 { 993 char *p; 994 substring_t args[MAX_OPT_ARGS]; 995 996 if (!options) 997 return 0; 998 999 while ((p = strsep(&options, ","))) { 1000 int token; 1001 1002 if (!*p) 1003 continue; 1004 1005 token = match_token(p, tokens, args); 1006 switch (token) { 1007 /* 1008 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1009 * We accept them in order to be backward-compatible. But this 1010 * should be removed at some point. 1011 */ 1012 case Opt_fast_unmount: 1013 c->mount_opts.unmount_mode = 2; 1014 break; 1015 case Opt_norm_unmount: 1016 c->mount_opts.unmount_mode = 1; 1017 break; 1018 case Opt_bulk_read: 1019 c->mount_opts.bulk_read = 2; 1020 c->bulk_read = 1; 1021 break; 1022 case Opt_no_bulk_read: 1023 c->mount_opts.bulk_read = 1; 1024 c->bulk_read = 0; 1025 break; 1026 case Opt_chk_data_crc: 1027 c->mount_opts.chk_data_crc = 2; 1028 c->no_chk_data_crc = 0; 1029 break; 1030 case Opt_no_chk_data_crc: 1031 c->mount_opts.chk_data_crc = 1; 1032 c->no_chk_data_crc = 1; 1033 break; 1034 case Opt_override_compr: 1035 { 1036 char *name = match_strdup(&args[0]); 1037 1038 if (!name) 1039 return -ENOMEM; 1040 if (!strcmp(name, "none")) 1041 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1042 else if (!strcmp(name, "lzo")) 1043 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1044 else if (!strcmp(name, "zlib")) 1045 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1046 else { 1047 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1048 kfree(name); 1049 return -EINVAL; 1050 } 1051 kfree(name); 1052 c->mount_opts.override_compr = 1; 1053 c->default_compr = c->mount_opts.compr_type; 1054 break; 1055 } 1056 case Opt_assert: 1057 { 1058 char *act = match_strdup(&args[0]); 1059 1060 if (!act) 1061 return -ENOMEM; 1062 if (!strcmp(act, "report")) 1063 c->assert_action = ASSACT_REPORT; 1064 else if (!strcmp(act, "read-only")) 1065 c->assert_action = ASSACT_RO; 1066 else if (!strcmp(act, "panic")) 1067 c->assert_action = ASSACT_PANIC; 1068 else { 1069 ubifs_err(c, "unknown assert action \"%s\"", act); 1070 kfree(act); 1071 return -EINVAL; 1072 } 1073 kfree(act); 1074 break; 1075 } 1076 case Opt_auth_key: 1077 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL); 1078 if (!c->auth_key_name) 1079 return -ENOMEM; 1080 break; 1081 case Opt_auth_hash_name: 1082 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL); 1083 if (!c->auth_hash_name) 1084 return -ENOMEM; 1085 break; 1086 case Opt_ignore: 1087 break; 1088 default: 1089 { 1090 unsigned long flag; 1091 struct super_block *sb = c->vfs_sb; 1092 1093 flag = parse_standard_option(p); 1094 if (!flag) { 1095 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1096 p); 1097 return -EINVAL; 1098 } 1099 sb->s_flags |= flag; 1100 break; 1101 } 1102 } 1103 } 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * destroy_journal - destroy journal data structures. 1110 * @c: UBIFS file-system description object 1111 * 1112 * This function destroys journal data structures including those that may have 1113 * been created by recovery functions. 1114 */ 1115 static void destroy_journal(struct ubifs_info *c) 1116 { 1117 while (!list_empty(&c->unclean_leb_list)) { 1118 struct ubifs_unclean_leb *ucleb; 1119 1120 ucleb = list_entry(c->unclean_leb_list.next, 1121 struct ubifs_unclean_leb, list); 1122 list_del(&ucleb->list); 1123 kfree(ucleb); 1124 } 1125 while (!list_empty(&c->old_buds)) { 1126 struct ubifs_bud *bud; 1127 1128 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1129 list_del(&bud->list); 1130 kfree(bud); 1131 } 1132 ubifs_destroy_idx_gc(c); 1133 ubifs_destroy_size_tree(c); 1134 ubifs_tnc_close(c); 1135 free_buds(c); 1136 } 1137 1138 /** 1139 * bu_init - initialize bulk-read information. 1140 * @c: UBIFS file-system description object 1141 */ 1142 static void bu_init(struct ubifs_info *c) 1143 { 1144 ubifs_assert(c, c->bulk_read == 1); 1145 1146 if (c->bu.buf) 1147 return; /* Already initialized */ 1148 1149 again: 1150 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1151 if (!c->bu.buf) { 1152 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1153 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1154 goto again; 1155 } 1156 1157 /* Just disable bulk-read */ 1158 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1159 c->max_bu_buf_len); 1160 c->mount_opts.bulk_read = 1; 1161 c->bulk_read = 0; 1162 return; 1163 } 1164 } 1165 1166 /** 1167 * check_free_space - check if there is enough free space to mount. 1168 * @c: UBIFS file-system description object 1169 * 1170 * This function makes sure UBIFS has enough free space to be mounted in 1171 * read/write mode. UBIFS must always have some free space to allow deletions. 1172 */ 1173 static int check_free_space(struct ubifs_info *c) 1174 { 1175 ubifs_assert(c, c->dark_wm > 0); 1176 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1177 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1178 ubifs_dump_budg(c, &c->bi); 1179 ubifs_dump_lprops(c); 1180 return -ENOSPC; 1181 } 1182 return 0; 1183 } 1184 1185 /** 1186 * mount_ubifs - mount UBIFS file-system. 1187 * @c: UBIFS file-system description object 1188 * 1189 * This function mounts UBIFS file system. Returns zero in case of success and 1190 * a negative error code in case of failure. 1191 */ 1192 static int mount_ubifs(struct ubifs_info *c) 1193 { 1194 int err; 1195 long long x, y; 1196 size_t sz; 1197 1198 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1199 /* Suppress error messages while probing if SB_SILENT is set */ 1200 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1201 1202 err = init_constants_early(c); 1203 if (err) 1204 return err; 1205 1206 err = ubifs_debugging_init(c); 1207 if (err) 1208 return err; 1209 1210 err = check_volume_empty(c); 1211 if (err) 1212 goto out_free; 1213 1214 if (c->empty && (c->ro_mount || c->ro_media)) { 1215 /* 1216 * This UBI volume is empty, and read-only, or the file system 1217 * is mounted read-only - we cannot format it. 1218 */ 1219 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1220 c->ro_media ? "UBI volume" : "mount"); 1221 err = -EROFS; 1222 goto out_free; 1223 } 1224 1225 if (c->ro_media && !c->ro_mount) { 1226 ubifs_err(c, "cannot mount read-write - read-only media"); 1227 err = -EROFS; 1228 goto out_free; 1229 } 1230 1231 /* 1232 * The requirement for the buffer is that it should fit indexing B-tree 1233 * height amount of integers. We assume the height if the TNC tree will 1234 * never exceed 64. 1235 */ 1236 err = -ENOMEM; 1237 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1238 GFP_KERNEL); 1239 if (!c->bottom_up_buf) 1240 goto out_free; 1241 1242 c->sbuf = vmalloc(c->leb_size); 1243 if (!c->sbuf) 1244 goto out_free; 1245 1246 if (!c->ro_mount) { 1247 c->ileb_buf = vmalloc(c->leb_size); 1248 if (!c->ileb_buf) 1249 goto out_free; 1250 } 1251 1252 if (c->bulk_read == 1) 1253 bu_init(c); 1254 1255 if (!c->ro_mount) { 1256 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1257 UBIFS_CIPHER_BLOCK_SIZE, 1258 GFP_KERNEL); 1259 if (!c->write_reserve_buf) 1260 goto out_free; 1261 } 1262 1263 c->mounting = 1; 1264 1265 if (c->auth_key_name) { 1266 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1267 err = ubifs_init_authentication(c); 1268 if (err) 1269 goto out_free; 1270 } else { 1271 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1272 " authentication support"); 1273 err = -EINVAL; 1274 goto out_free; 1275 } 1276 } 1277 1278 err = ubifs_read_superblock(c); 1279 if (err) 1280 goto out_free; 1281 1282 c->probing = 0; 1283 1284 /* 1285 * Make sure the compressor which is set as default in the superblock 1286 * or overridden by mount options is actually compiled in. 1287 */ 1288 if (!ubifs_compr_present(c, c->default_compr)) { 1289 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1290 ubifs_compr_name(c, c->default_compr)); 1291 err = -ENOTSUPP; 1292 goto out_free; 1293 } 1294 1295 err = init_constants_sb(c); 1296 if (err) 1297 goto out_free; 1298 1299 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1300 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1301 c->cbuf = kmalloc(sz, GFP_NOFS); 1302 if (!c->cbuf) { 1303 err = -ENOMEM; 1304 goto out_free; 1305 } 1306 1307 err = alloc_wbufs(c); 1308 if (err) 1309 goto out_cbuf; 1310 1311 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1312 if (!c->ro_mount) { 1313 /* Create background thread */ 1314 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1315 if (IS_ERR(c->bgt)) { 1316 err = PTR_ERR(c->bgt); 1317 c->bgt = NULL; 1318 ubifs_err(c, "cannot spawn \"%s\", error %d", 1319 c->bgt_name, err); 1320 goto out_wbufs; 1321 } 1322 wake_up_process(c->bgt); 1323 } 1324 1325 err = ubifs_read_master(c); 1326 if (err) 1327 goto out_master; 1328 1329 init_constants_master(c); 1330 1331 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1332 ubifs_msg(c, "recovery needed"); 1333 c->need_recovery = 1; 1334 } 1335 1336 if (c->need_recovery && !c->ro_mount) { 1337 err = ubifs_recover_inl_heads(c, c->sbuf); 1338 if (err) 1339 goto out_master; 1340 } 1341 1342 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1343 if (err) 1344 goto out_master; 1345 1346 if (!c->ro_mount && c->space_fixup) { 1347 err = ubifs_fixup_free_space(c); 1348 if (err) 1349 goto out_lpt; 1350 } 1351 1352 if (!c->ro_mount && !c->need_recovery) { 1353 /* 1354 * Set the "dirty" flag so that if we reboot uncleanly we 1355 * will notice this immediately on the next mount. 1356 */ 1357 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1358 err = ubifs_write_master(c); 1359 if (err) 1360 goto out_lpt; 1361 } 1362 1363 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1364 if (err) 1365 goto out_lpt; 1366 1367 err = ubifs_replay_journal(c); 1368 if (err) 1369 goto out_journal; 1370 1371 /* Calculate 'min_idx_lebs' after journal replay */ 1372 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1373 1374 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1375 if (err) 1376 goto out_orphans; 1377 1378 if (!c->ro_mount) { 1379 int lnum; 1380 1381 err = check_free_space(c); 1382 if (err) 1383 goto out_orphans; 1384 1385 /* Check for enough log space */ 1386 lnum = c->lhead_lnum + 1; 1387 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1388 lnum = UBIFS_LOG_LNUM; 1389 if (lnum == c->ltail_lnum) { 1390 err = ubifs_consolidate_log(c); 1391 if (err) 1392 goto out_orphans; 1393 } 1394 1395 if (c->need_recovery) { 1396 if (!ubifs_authenticated(c)) { 1397 err = ubifs_recover_size(c, true); 1398 if (err) 1399 goto out_orphans; 1400 } 1401 1402 err = ubifs_rcvry_gc_commit(c); 1403 if (err) 1404 goto out_orphans; 1405 1406 if (ubifs_authenticated(c)) { 1407 err = ubifs_recover_size(c, false); 1408 if (err) 1409 goto out_orphans; 1410 } 1411 } else { 1412 err = take_gc_lnum(c); 1413 if (err) 1414 goto out_orphans; 1415 1416 /* 1417 * GC LEB may contain garbage if there was an unclean 1418 * reboot, and it should be un-mapped. 1419 */ 1420 err = ubifs_leb_unmap(c, c->gc_lnum); 1421 if (err) 1422 goto out_orphans; 1423 } 1424 1425 err = dbg_check_lprops(c); 1426 if (err) 1427 goto out_orphans; 1428 } else if (c->need_recovery) { 1429 err = ubifs_recover_size(c, false); 1430 if (err) 1431 goto out_orphans; 1432 } else { 1433 /* 1434 * Even if we mount read-only, we have to set space in GC LEB 1435 * to proper value because this affects UBIFS free space 1436 * reporting. We do not want to have a situation when 1437 * re-mounting from R/O to R/W changes amount of free space. 1438 */ 1439 err = take_gc_lnum(c); 1440 if (err) 1441 goto out_orphans; 1442 } 1443 1444 spin_lock(&ubifs_infos_lock); 1445 list_add_tail(&c->infos_list, &ubifs_infos); 1446 spin_unlock(&ubifs_infos_lock); 1447 1448 if (c->need_recovery) { 1449 if (c->ro_mount) 1450 ubifs_msg(c, "recovery deferred"); 1451 else { 1452 c->need_recovery = 0; 1453 ubifs_msg(c, "recovery completed"); 1454 /* 1455 * GC LEB has to be empty and taken at this point. But 1456 * the journal head LEBs may also be accounted as 1457 * "empty taken" if they are empty. 1458 */ 1459 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1460 } 1461 } else 1462 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1463 1464 err = dbg_check_filesystem(c); 1465 if (err) 1466 goto out_infos; 1467 1468 err = dbg_debugfs_init_fs(c); 1469 if (err) 1470 goto out_infos; 1471 1472 c->mounting = 0; 1473 1474 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1475 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1476 c->ro_mount ? ", R/O mode" : ""); 1477 x = (long long)c->main_lebs * c->leb_size; 1478 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1479 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1480 c->leb_size, c->leb_size >> 10, c->min_io_size, 1481 c->max_write_size); 1482 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1483 x, x >> 20, c->main_lebs, 1484 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1485 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1486 c->report_rp_size, c->report_rp_size >> 10); 1487 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1488 c->fmt_version, c->ro_compat_version, 1489 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1490 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1491 1492 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1493 dbg_gen("data journal heads: %d", 1494 c->jhead_cnt - NONDATA_JHEADS_CNT); 1495 dbg_gen("log LEBs: %d (%d - %d)", 1496 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1497 dbg_gen("LPT area LEBs: %d (%d - %d)", 1498 c->lpt_lebs, c->lpt_first, c->lpt_last); 1499 dbg_gen("orphan area LEBs: %d (%d - %d)", 1500 c->orph_lebs, c->orph_first, c->orph_last); 1501 dbg_gen("main area LEBs: %d (%d - %d)", 1502 c->main_lebs, c->main_first, c->leb_cnt - 1); 1503 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1504 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1505 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1506 c->bi.old_idx_sz >> 20); 1507 dbg_gen("key hash type: %d", c->key_hash_type); 1508 dbg_gen("tree fanout: %d", c->fanout); 1509 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1510 dbg_gen("max. znode size %d", c->max_znode_sz); 1511 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1512 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1513 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1514 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1515 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1516 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1517 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1518 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1519 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1520 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1521 dbg_gen("dead watermark: %d", c->dead_wm); 1522 dbg_gen("dark watermark: %d", c->dark_wm); 1523 dbg_gen("LEB overhead: %d", c->leb_overhead); 1524 x = (long long)c->main_lebs * c->dark_wm; 1525 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1526 x, x >> 10, x >> 20); 1527 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1528 c->max_bud_bytes, c->max_bud_bytes >> 10, 1529 c->max_bud_bytes >> 20); 1530 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1531 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1532 c->bg_bud_bytes >> 20); 1533 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1534 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1535 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1536 dbg_gen("commit number: %llu", c->cmt_no); 1537 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c)); 1538 dbg_gen("max orphans: %d", c->max_orphans); 1539 1540 return 0; 1541 1542 out_infos: 1543 spin_lock(&ubifs_infos_lock); 1544 list_del(&c->infos_list); 1545 spin_unlock(&ubifs_infos_lock); 1546 out_orphans: 1547 free_orphans(c); 1548 out_journal: 1549 destroy_journal(c); 1550 out_lpt: 1551 ubifs_lpt_free(c, 0); 1552 out_master: 1553 kfree(c->mst_node); 1554 kfree(c->rcvrd_mst_node); 1555 if (c->bgt) 1556 kthread_stop(c->bgt); 1557 out_wbufs: 1558 free_wbufs(c); 1559 out_cbuf: 1560 kfree(c->cbuf); 1561 out_free: 1562 kfree(c->write_reserve_buf); 1563 kfree(c->bu.buf); 1564 vfree(c->ileb_buf); 1565 vfree(c->sbuf); 1566 kfree(c->bottom_up_buf); 1567 ubifs_debugging_exit(c); 1568 return err; 1569 } 1570 1571 /** 1572 * ubifs_umount - un-mount UBIFS file-system. 1573 * @c: UBIFS file-system description object 1574 * 1575 * Note, this function is called to free allocated resourced when un-mounting, 1576 * as well as free resources when an error occurred while we were half way 1577 * through mounting (error path cleanup function). So it has to make sure the 1578 * resource was actually allocated before freeing it. 1579 */ 1580 static void ubifs_umount(struct ubifs_info *c) 1581 { 1582 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1583 c->vi.vol_id); 1584 1585 dbg_debugfs_exit_fs(c); 1586 spin_lock(&ubifs_infos_lock); 1587 list_del(&c->infos_list); 1588 spin_unlock(&ubifs_infos_lock); 1589 1590 if (c->bgt) 1591 kthread_stop(c->bgt); 1592 1593 destroy_journal(c); 1594 free_wbufs(c); 1595 free_orphans(c); 1596 ubifs_lpt_free(c, 0); 1597 ubifs_exit_authentication(c); 1598 1599 kfree(c->auth_key_name); 1600 kfree(c->auth_hash_name); 1601 kfree(c->cbuf); 1602 kfree(c->rcvrd_mst_node); 1603 kfree(c->mst_node); 1604 kfree(c->write_reserve_buf); 1605 kfree(c->bu.buf); 1606 vfree(c->ileb_buf); 1607 vfree(c->sbuf); 1608 kfree(c->bottom_up_buf); 1609 ubifs_debugging_exit(c); 1610 } 1611 1612 /** 1613 * ubifs_remount_rw - re-mount in read-write mode. 1614 * @c: UBIFS file-system description object 1615 * 1616 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1617 * mode. This function allocates the needed resources and re-mounts UBIFS in 1618 * read-write mode. 1619 */ 1620 static int ubifs_remount_rw(struct ubifs_info *c) 1621 { 1622 int err, lnum; 1623 1624 if (c->rw_incompat) { 1625 ubifs_err(c, "the file-system is not R/W-compatible"); 1626 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1627 c->fmt_version, c->ro_compat_version, 1628 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1629 return -EROFS; 1630 } 1631 1632 mutex_lock(&c->umount_mutex); 1633 dbg_save_space_info(c); 1634 c->remounting_rw = 1; 1635 c->ro_mount = 0; 1636 1637 if (c->space_fixup) { 1638 err = ubifs_fixup_free_space(c); 1639 if (err) 1640 goto out; 1641 } 1642 1643 err = check_free_space(c); 1644 if (err) 1645 goto out; 1646 1647 if (c->old_leb_cnt != c->leb_cnt) { 1648 struct ubifs_sb_node *sup = c->sup_node; 1649 1650 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1651 err = ubifs_write_sb_node(c, sup); 1652 if (err) 1653 goto out; 1654 } 1655 1656 if (c->need_recovery) { 1657 ubifs_msg(c, "completing deferred recovery"); 1658 err = ubifs_write_rcvrd_mst_node(c); 1659 if (err) 1660 goto out; 1661 if (!ubifs_authenticated(c)) { 1662 err = ubifs_recover_size(c, true); 1663 if (err) 1664 goto out; 1665 } 1666 err = ubifs_clean_lebs(c, c->sbuf); 1667 if (err) 1668 goto out; 1669 err = ubifs_recover_inl_heads(c, c->sbuf); 1670 if (err) 1671 goto out; 1672 } else { 1673 /* A readonly mount is not allowed to have orphans */ 1674 ubifs_assert(c, c->tot_orphans == 0); 1675 err = ubifs_clear_orphans(c); 1676 if (err) 1677 goto out; 1678 } 1679 1680 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1681 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1682 err = ubifs_write_master(c); 1683 if (err) 1684 goto out; 1685 } 1686 1687 c->ileb_buf = vmalloc(c->leb_size); 1688 if (!c->ileb_buf) { 1689 err = -ENOMEM; 1690 goto out; 1691 } 1692 1693 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1694 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1695 if (!c->write_reserve_buf) { 1696 err = -ENOMEM; 1697 goto out; 1698 } 1699 1700 err = ubifs_lpt_init(c, 0, 1); 1701 if (err) 1702 goto out; 1703 1704 /* Create background thread */ 1705 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1706 if (IS_ERR(c->bgt)) { 1707 err = PTR_ERR(c->bgt); 1708 c->bgt = NULL; 1709 ubifs_err(c, "cannot spawn \"%s\", error %d", 1710 c->bgt_name, err); 1711 goto out; 1712 } 1713 wake_up_process(c->bgt); 1714 1715 c->orph_buf = vmalloc(c->leb_size); 1716 if (!c->orph_buf) { 1717 err = -ENOMEM; 1718 goto out; 1719 } 1720 1721 /* Check for enough log space */ 1722 lnum = c->lhead_lnum + 1; 1723 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1724 lnum = UBIFS_LOG_LNUM; 1725 if (lnum == c->ltail_lnum) { 1726 err = ubifs_consolidate_log(c); 1727 if (err) 1728 goto out; 1729 } 1730 1731 if (c->need_recovery) { 1732 err = ubifs_rcvry_gc_commit(c); 1733 if (err) 1734 goto out; 1735 1736 if (ubifs_authenticated(c)) { 1737 err = ubifs_recover_size(c, false); 1738 if (err) 1739 goto out; 1740 } 1741 } else { 1742 err = ubifs_leb_unmap(c, c->gc_lnum); 1743 } 1744 if (err) 1745 goto out; 1746 1747 dbg_gen("re-mounted read-write"); 1748 c->remounting_rw = 0; 1749 1750 if (c->need_recovery) { 1751 c->need_recovery = 0; 1752 ubifs_msg(c, "deferred recovery completed"); 1753 } else { 1754 /* 1755 * Do not run the debugging space check if the were doing 1756 * recovery, because when we saved the information we had the 1757 * file-system in a state where the TNC and lprops has been 1758 * modified in memory, but all the I/O operations (including a 1759 * commit) were deferred. So the file-system was in 1760 * "non-committed" state. Now the file-system is in committed 1761 * state, and of course the amount of free space will change 1762 * because, for example, the old index size was imprecise. 1763 */ 1764 err = dbg_check_space_info(c); 1765 } 1766 1767 mutex_unlock(&c->umount_mutex); 1768 return err; 1769 1770 out: 1771 c->ro_mount = 1; 1772 vfree(c->orph_buf); 1773 c->orph_buf = NULL; 1774 if (c->bgt) { 1775 kthread_stop(c->bgt); 1776 c->bgt = NULL; 1777 } 1778 free_wbufs(c); 1779 kfree(c->write_reserve_buf); 1780 c->write_reserve_buf = NULL; 1781 vfree(c->ileb_buf); 1782 c->ileb_buf = NULL; 1783 ubifs_lpt_free(c, 1); 1784 c->remounting_rw = 0; 1785 mutex_unlock(&c->umount_mutex); 1786 return err; 1787 } 1788 1789 /** 1790 * ubifs_remount_ro - re-mount in read-only mode. 1791 * @c: UBIFS file-system description object 1792 * 1793 * We assume VFS has stopped writing. Possibly the background thread could be 1794 * running a commit, however kthread_stop will wait in that case. 1795 */ 1796 static void ubifs_remount_ro(struct ubifs_info *c) 1797 { 1798 int i, err; 1799 1800 ubifs_assert(c, !c->need_recovery); 1801 ubifs_assert(c, !c->ro_mount); 1802 1803 mutex_lock(&c->umount_mutex); 1804 if (c->bgt) { 1805 kthread_stop(c->bgt); 1806 c->bgt = NULL; 1807 } 1808 1809 dbg_save_space_info(c); 1810 1811 for (i = 0; i < c->jhead_cnt; i++) { 1812 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1813 if (err) 1814 ubifs_ro_mode(c, err); 1815 } 1816 1817 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1818 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1819 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1820 err = ubifs_write_master(c); 1821 if (err) 1822 ubifs_ro_mode(c, err); 1823 1824 vfree(c->orph_buf); 1825 c->orph_buf = NULL; 1826 kfree(c->write_reserve_buf); 1827 c->write_reserve_buf = NULL; 1828 vfree(c->ileb_buf); 1829 c->ileb_buf = NULL; 1830 ubifs_lpt_free(c, 1); 1831 c->ro_mount = 1; 1832 err = dbg_check_space_info(c); 1833 if (err) 1834 ubifs_ro_mode(c, err); 1835 mutex_unlock(&c->umount_mutex); 1836 } 1837 1838 static void ubifs_put_super(struct super_block *sb) 1839 { 1840 int i; 1841 struct ubifs_info *c = sb->s_fs_info; 1842 1843 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1844 1845 /* 1846 * The following asserts are only valid if there has not been a failure 1847 * of the media. For example, there will be dirty inodes if we failed 1848 * to write them back because of I/O errors. 1849 */ 1850 if (!c->ro_error) { 1851 ubifs_assert(c, c->bi.idx_growth == 0); 1852 ubifs_assert(c, c->bi.dd_growth == 0); 1853 ubifs_assert(c, c->bi.data_growth == 0); 1854 } 1855 1856 /* 1857 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1858 * and file system un-mount. Namely, it prevents the shrinker from 1859 * picking this superblock for shrinking - it will be just skipped if 1860 * the mutex is locked. 1861 */ 1862 mutex_lock(&c->umount_mutex); 1863 if (!c->ro_mount) { 1864 /* 1865 * First of all kill the background thread to make sure it does 1866 * not interfere with un-mounting and freeing resources. 1867 */ 1868 if (c->bgt) { 1869 kthread_stop(c->bgt); 1870 c->bgt = NULL; 1871 } 1872 1873 /* 1874 * On fatal errors c->ro_error is set to 1, in which case we do 1875 * not write the master node. 1876 */ 1877 if (!c->ro_error) { 1878 int err; 1879 1880 /* Synchronize write-buffers */ 1881 for (i = 0; i < c->jhead_cnt; i++) { 1882 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1883 if (err) 1884 ubifs_ro_mode(c, err); 1885 } 1886 1887 /* 1888 * We are being cleanly unmounted which means the 1889 * orphans were killed - indicate this in the master 1890 * node. Also save the reserved GC LEB number. 1891 */ 1892 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1893 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1894 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1895 err = ubifs_write_master(c); 1896 if (err) 1897 /* 1898 * Recovery will attempt to fix the master area 1899 * next mount, so we just print a message and 1900 * continue to unmount normally. 1901 */ 1902 ubifs_err(c, "failed to write master node, error %d", 1903 err); 1904 } else { 1905 for (i = 0; i < c->jhead_cnt; i++) 1906 /* Make sure write-buffer timers are canceled */ 1907 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1908 } 1909 } 1910 1911 ubifs_umount(c); 1912 ubi_close_volume(c->ubi); 1913 mutex_unlock(&c->umount_mutex); 1914 } 1915 1916 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1917 { 1918 int err; 1919 struct ubifs_info *c = sb->s_fs_info; 1920 1921 sync_filesystem(sb); 1922 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1923 1924 err = ubifs_parse_options(c, data, 1); 1925 if (err) { 1926 ubifs_err(c, "invalid or unknown remount parameter"); 1927 return err; 1928 } 1929 1930 if (c->ro_mount && !(*flags & SB_RDONLY)) { 1931 if (c->ro_error) { 1932 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1933 return -EROFS; 1934 } 1935 if (c->ro_media) { 1936 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1937 return -EROFS; 1938 } 1939 err = ubifs_remount_rw(c); 1940 if (err) 1941 return err; 1942 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 1943 if (c->ro_error) { 1944 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1945 return -EROFS; 1946 } 1947 ubifs_remount_ro(c); 1948 } 1949 1950 if (c->bulk_read == 1) 1951 bu_init(c); 1952 else { 1953 dbg_gen("disable bulk-read"); 1954 mutex_lock(&c->bu_mutex); 1955 kfree(c->bu.buf); 1956 c->bu.buf = NULL; 1957 mutex_unlock(&c->bu_mutex); 1958 } 1959 1960 if (!c->need_recovery) 1961 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1962 1963 return 0; 1964 } 1965 1966 const struct super_operations ubifs_super_operations = { 1967 .alloc_inode = ubifs_alloc_inode, 1968 .free_inode = ubifs_free_inode, 1969 .put_super = ubifs_put_super, 1970 .write_inode = ubifs_write_inode, 1971 .evict_inode = ubifs_evict_inode, 1972 .statfs = ubifs_statfs, 1973 .dirty_inode = ubifs_dirty_inode, 1974 .remount_fs = ubifs_remount_fs, 1975 .show_options = ubifs_show_options, 1976 .sync_fs = ubifs_sync_fs, 1977 }; 1978 1979 /** 1980 * open_ubi - parse UBI device name string and open the UBI device. 1981 * @name: UBI volume name 1982 * @mode: UBI volume open mode 1983 * 1984 * The primary method of mounting UBIFS is by specifying the UBI volume 1985 * character device node path. However, UBIFS may also be mounted withoug any 1986 * character device node using one of the following methods: 1987 * 1988 * o ubiX_Y - mount UBI device number X, volume Y; 1989 * o ubiY - mount UBI device number 0, volume Y; 1990 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1991 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1992 * 1993 * Alternative '!' separator may be used instead of ':' (because some shells 1994 * like busybox may interpret ':' as an NFS host name separator). This function 1995 * returns UBI volume description object in case of success and a negative 1996 * error code in case of failure. 1997 */ 1998 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1999 { 2000 struct ubi_volume_desc *ubi; 2001 int dev, vol; 2002 char *endptr; 2003 2004 if (!name || !*name) 2005 return ERR_PTR(-EINVAL); 2006 2007 /* First, try to open using the device node path method */ 2008 ubi = ubi_open_volume_path(name, mode); 2009 if (!IS_ERR(ubi)) 2010 return ubi; 2011 2012 /* Try the "nodev" method */ 2013 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2014 return ERR_PTR(-EINVAL); 2015 2016 /* ubi:NAME method */ 2017 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2018 return ubi_open_volume_nm(0, name + 4, mode); 2019 2020 if (!isdigit(name[3])) 2021 return ERR_PTR(-EINVAL); 2022 2023 dev = simple_strtoul(name + 3, &endptr, 0); 2024 2025 /* ubiY method */ 2026 if (*endptr == '\0') 2027 return ubi_open_volume(0, dev, mode); 2028 2029 /* ubiX_Y method */ 2030 if (*endptr == '_' && isdigit(endptr[1])) { 2031 vol = simple_strtoul(endptr + 1, &endptr, 0); 2032 if (*endptr != '\0') 2033 return ERR_PTR(-EINVAL); 2034 return ubi_open_volume(dev, vol, mode); 2035 } 2036 2037 /* ubiX:NAME method */ 2038 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2039 return ubi_open_volume_nm(dev, ++endptr, mode); 2040 2041 return ERR_PTR(-EINVAL); 2042 } 2043 2044 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2045 { 2046 struct ubifs_info *c; 2047 2048 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2049 if (c) { 2050 spin_lock_init(&c->cnt_lock); 2051 spin_lock_init(&c->cs_lock); 2052 spin_lock_init(&c->buds_lock); 2053 spin_lock_init(&c->space_lock); 2054 spin_lock_init(&c->orphan_lock); 2055 init_rwsem(&c->commit_sem); 2056 mutex_init(&c->lp_mutex); 2057 mutex_init(&c->tnc_mutex); 2058 mutex_init(&c->log_mutex); 2059 mutex_init(&c->umount_mutex); 2060 mutex_init(&c->bu_mutex); 2061 mutex_init(&c->write_reserve_mutex); 2062 init_waitqueue_head(&c->cmt_wq); 2063 c->buds = RB_ROOT; 2064 c->old_idx = RB_ROOT; 2065 c->size_tree = RB_ROOT; 2066 c->orph_tree = RB_ROOT; 2067 INIT_LIST_HEAD(&c->infos_list); 2068 INIT_LIST_HEAD(&c->idx_gc); 2069 INIT_LIST_HEAD(&c->replay_list); 2070 INIT_LIST_HEAD(&c->replay_buds); 2071 INIT_LIST_HEAD(&c->uncat_list); 2072 INIT_LIST_HEAD(&c->empty_list); 2073 INIT_LIST_HEAD(&c->freeable_list); 2074 INIT_LIST_HEAD(&c->frdi_idx_list); 2075 INIT_LIST_HEAD(&c->unclean_leb_list); 2076 INIT_LIST_HEAD(&c->old_buds); 2077 INIT_LIST_HEAD(&c->orph_list); 2078 INIT_LIST_HEAD(&c->orph_new); 2079 c->no_chk_data_crc = 1; 2080 c->assert_action = ASSACT_RO; 2081 2082 c->highest_inum = UBIFS_FIRST_INO; 2083 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2084 2085 ubi_get_volume_info(ubi, &c->vi); 2086 ubi_get_device_info(c->vi.ubi_num, &c->di); 2087 } 2088 return c; 2089 } 2090 2091 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2092 { 2093 struct ubifs_info *c = sb->s_fs_info; 2094 struct inode *root; 2095 int err; 2096 2097 c->vfs_sb = sb; 2098 /* Re-open the UBI device in read-write mode */ 2099 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2100 if (IS_ERR(c->ubi)) { 2101 err = PTR_ERR(c->ubi); 2102 goto out; 2103 } 2104 2105 err = ubifs_parse_options(c, data, 0); 2106 if (err) 2107 goto out_close; 2108 2109 /* 2110 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2111 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2112 * which means the user would have to wait not just for their own I/O 2113 * but the read-ahead I/O as well i.e. completely pointless. 2114 * 2115 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2116 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2117 * writeback happening. 2118 */ 2119 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2120 c->vi.vol_id); 2121 if (err) 2122 goto out_close; 2123 2124 sb->s_fs_info = c; 2125 sb->s_magic = UBIFS_SUPER_MAGIC; 2126 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2127 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2128 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2129 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2130 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2131 sb->s_op = &ubifs_super_operations; 2132 #ifdef CONFIG_UBIFS_FS_XATTR 2133 sb->s_xattr = ubifs_xattr_handlers; 2134 #endif 2135 fscrypt_set_ops(sb, &ubifs_crypt_operations); 2136 2137 mutex_lock(&c->umount_mutex); 2138 err = mount_ubifs(c); 2139 if (err) { 2140 ubifs_assert(c, err < 0); 2141 goto out_unlock; 2142 } 2143 2144 /* Read the root inode */ 2145 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2146 if (IS_ERR(root)) { 2147 err = PTR_ERR(root); 2148 goto out_umount; 2149 } 2150 2151 sb->s_root = d_make_root(root); 2152 if (!sb->s_root) { 2153 err = -ENOMEM; 2154 goto out_umount; 2155 } 2156 2157 mutex_unlock(&c->umount_mutex); 2158 return 0; 2159 2160 out_umount: 2161 ubifs_umount(c); 2162 out_unlock: 2163 mutex_unlock(&c->umount_mutex); 2164 out_close: 2165 ubi_close_volume(c->ubi); 2166 out: 2167 return err; 2168 } 2169 2170 static int sb_test(struct super_block *sb, void *data) 2171 { 2172 struct ubifs_info *c1 = data; 2173 struct ubifs_info *c = sb->s_fs_info; 2174 2175 return c->vi.cdev == c1->vi.cdev; 2176 } 2177 2178 static int sb_set(struct super_block *sb, void *data) 2179 { 2180 sb->s_fs_info = data; 2181 return set_anon_super(sb, NULL); 2182 } 2183 2184 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2185 const char *name, void *data) 2186 { 2187 struct ubi_volume_desc *ubi; 2188 struct ubifs_info *c; 2189 struct super_block *sb; 2190 int err; 2191 2192 dbg_gen("name %s, flags %#x", name, flags); 2193 2194 /* 2195 * Get UBI device number and volume ID. Mount it read-only so far 2196 * because this might be a new mount point, and UBI allows only one 2197 * read-write user at a time. 2198 */ 2199 ubi = open_ubi(name, UBI_READONLY); 2200 if (IS_ERR(ubi)) { 2201 if (!(flags & SB_SILENT)) 2202 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2203 current->pid, name, (int)PTR_ERR(ubi)); 2204 return ERR_CAST(ubi); 2205 } 2206 2207 c = alloc_ubifs_info(ubi); 2208 if (!c) { 2209 err = -ENOMEM; 2210 goto out_close; 2211 } 2212 2213 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2214 2215 sb = sget(fs_type, sb_test, sb_set, flags, c); 2216 if (IS_ERR(sb)) { 2217 err = PTR_ERR(sb); 2218 kfree(c); 2219 goto out_close; 2220 } 2221 2222 if (sb->s_root) { 2223 struct ubifs_info *c1 = sb->s_fs_info; 2224 kfree(c); 2225 /* A new mount point for already mounted UBIFS */ 2226 dbg_gen("this ubi volume is already mounted"); 2227 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2228 err = -EBUSY; 2229 goto out_deact; 2230 } 2231 } else { 2232 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2233 if (err) 2234 goto out_deact; 2235 /* We do not support atime */ 2236 sb->s_flags |= SB_ACTIVE; 2237 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 2238 ubifs_msg(c, "full atime support is enabled."); 2239 else 2240 sb->s_flags |= SB_NOATIME; 2241 } 2242 2243 /* 'fill_super()' opens ubi again so we must close it here */ 2244 ubi_close_volume(ubi); 2245 2246 return dget(sb->s_root); 2247 2248 out_deact: 2249 deactivate_locked_super(sb); 2250 out_close: 2251 ubi_close_volume(ubi); 2252 return ERR_PTR(err); 2253 } 2254 2255 static void kill_ubifs_super(struct super_block *s) 2256 { 2257 struct ubifs_info *c = s->s_fs_info; 2258 kill_anon_super(s); 2259 kfree(c); 2260 } 2261 2262 static struct file_system_type ubifs_fs_type = { 2263 .name = "ubifs", 2264 .owner = THIS_MODULE, 2265 .mount = ubifs_mount, 2266 .kill_sb = kill_ubifs_super, 2267 }; 2268 MODULE_ALIAS_FS("ubifs"); 2269 2270 /* 2271 * Inode slab cache constructor. 2272 */ 2273 static void inode_slab_ctor(void *obj) 2274 { 2275 struct ubifs_inode *ui = obj; 2276 inode_init_once(&ui->vfs_inode); 2277 } 2278 2279 static int __init ubifs_init(void) 2280 { 2281 int err; 2282 2283 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2284 2285 /* Make sure node sizes are 8-byte aligned */ 2286 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2287 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2288 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2289 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2290 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2291 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2292 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2293 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2294 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2295 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2296 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2297 2298 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2299 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2300 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2301 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2302 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2303 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2304 2305 /* Check min. node size */ 2306 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2307 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2308 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2309 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2310 2311 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2312 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2313 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2314 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2315 2316 /* Defined node sizes */ 2317 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2318 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2319 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2320 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2321 2322 /* 2323 * We use 2 bit wide bit-fields to store compression type, which should 2324 * be amended if more compressors are added. The bit-fields are: 2325 * @compr_type in 'struct ubifs_inode', @default_compr in 2326 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2327 */ 2328 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2329 2330 /* 2331 * We require that PAGE_SIZE is greater-than-or-equal-to 2332 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2333 */ 2334 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2335 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2336 current->pid, (unsigned int)PAGE_SIZE); 2337 return -EINVAL; 2338 } 2339 2340 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2341 sizeof(struct ubifs_inode), 0, 2342 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2343 SLAB_ACCOUNT, &inode_slab_ctor); 2344 if (!ubifs_inode_slab) 2345 return -ENOMEM; 2346 2347 err = register_shrinker(&ubifs_shrinker_info); 2348 if (err) 2349 goto out_slab; 2350 2351 err = ubifs_compressors_init(); 2352 if (err) 2353 goto out_shrinker; 2354 2355 err = dbg_debugfs_init(); 2356 if (err) 2357 goto out_compr; 2358 2359 err = register_filesystem(&ubifs_fs_type); 2360 if (err) { 2361 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2362 current->pid, err); 2363 goto out_dbg; 2364 } 2365 return 0; 2366 2367 out_dbg: 2368 dbg_debugfs_exit(); 2369 out_compr: 2370 ubifs_compressors_exit(); 2371 out_shrinker: 2372 unregister_shrinker(&ubifs_shrinker_info); 2373 out_slab: 2374 kmem_cache_destroy(ubifs_inode_slab); 2375 return err; 2376 } 2377 /* late_initcall to let compressors initialize first */ 2378 late_initcall(ubifs_init); 2379 2380 static void __exit ubifs_exit(void) 2381 { 2382 WARN_ON(!list_empty(&ubifs_infos)); 2383 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2384 2385 dbg_debugfs_exit(); 2386 ubifs_compressors_exit(); 2387 unregister_shrinker(&ubifs_shrinker_info); 2388 2389 /* 2390 * Make sure all delayed rcu free inodes are flushed before we 2391 * destroy cache. 2392 */ 2393 rcu_barrier(); 2394 kmem_cache_destroy(ubifs_inode_slab); 2395 unregister_filesystem(&ubifs_fs_type); 2396 } 2397 module_exit(ubifs_exit); 2398 2399 MODULE_LICENSE("GPL"); 2400 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2401 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2402 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2403