xref: /openbmc/linux/fs/ubifs/super.c (revision 75f25bd3)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.shrink = ubifs_shrinker,
53 	.seeks = DEFAULT_SEEKS,
54 };
55 
56 /**
57  * validate_inode - validate inode.
58  * @c: UBIFS file-system description object
59  * @inode: the inode to validate
60  *
61  * This is a helper function for 'ubifs_iget()' which validates various fields
62  * of a newly built inode to make sure they contain sane values and prevent
63  * possible vulnerabilities. Returns zero if the inode is all right and
64  * a non-zero error code if not.
65  */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 	int err;
69 	const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71 	if (inode->i_size > c->max_inode_sz) {
72 		ubifs_err("inode is too large (%lld)",
73 			  (long long)inode->i_size);
74 		return 1;
75 	}
76 
77 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 		ubifs_err("unknown compression type %d", ui->compr_type);
79 		return 2;
80 	}
81 
82 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 		return 3;
84 
85 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 		return 4;
87 
88 	if (ui->xattr && !S_ISREG(inode->i_mode))
89 		return 5;
90 
91 	if (!ubifs_compr_present(ui->compr_type)) {
92 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 			   "compiled in", inode->i_ino,
94 			   ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	inode->i_nlink = le32_to_cpu(ino->nlink);
133 	inode->i_uid   = le32_to_cpu(ino->uid);
134 	inode->i_gid   = le32_to_cpu(ino->gid);
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	/* Disable read-ahead */
160 	inode->i_mapping->backing_dev_info = &c->bdi;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 	dbg_dump_node(c, ino);
250 	dbg_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	INIT_LIST_HEAD(&inode->i_dentry);
280 	kmem_cache_free(ubifs_inode_slab, ui);
281 }
282 
283 static void ubifs_destroy_inode(struct inode *inode)
284 {
285 	struct ubifs_inode *ui = ubifs_inode(inode);
286 
287 	kfree(ui->data);
288 	call_rcu(&inode->i_rcu, ubifs_i_callback);
289 }
290 
291 /*
292  * Note, Linux write-back code calls this without 'i_mutex'.
293  */
294 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
295 {
296 	int err = 0;
297 	struct ubifs_info *c = inode->i_sb->s_fs_info;
298 	struct ubifs_inode *ui = ubifs_inode(inode);
299 
300 	ubifs_assert(!ui->xattr);
301 	if (is_bad_inode(inode))
302 		return 0;
303 
304 	mutex_lock(&ui->ui_mutex);
305 	/*
306 	 * Due to races between write-back forced by budgeting
307 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
308 	 * have already been synchronized, do not do this again. This might
309 	 * also happen if it was synchronized in an VFS operation, e.g.
310 	 * 'ubifs_link()'.
311 	 */
312 	if (!ui->dirty) {
313 		mutex_unlock(&ui->ui_mutex);
314 		return 0;
315 	}
316 
317 	/*
318 	 * As an optimization, do not write orphan inodes to the media just
319 	 * because this is not needed.
320 	 */
321 	dbg_gen("inode %lu, mode %#x, nlink %u",
322 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
323 	if (inode->i_nlink) {
324 		err = ubifs_jnl_write_inode(c, inode);
325 		if (err)
326 			ubifs_err("can't write inode %lu, error %d",
327 				  inode->i_ino, err);
328 		else
329 			err = dbg_check_inode_size(c, inode, ui->ui_size);
330 	}
331 
332 	ui->dirty = 0;
333 	mutex_unlock(&ui->ui_mutex);
334 	ubifs_release_dirty_inode_budget(c, ui);
335 	return err;
336 }
337 
338 static void ubifs_evict_inode(struct inode *inode)
339 {
340 	int err;
341 	struct ubifs_info *c = inode->i_sb->s_fs_info;
342 	struct ubifs_inode *ui = ubifs_inode(inode);
343 
344 	if (ui->xattr)
345 		/*
346 		 * Extended attribute inode deletions are fully handled in
347 		 * 'ubifs_removexattr()'. These inodes are special and have
348 		 * limited usage, so there is nothing to do here.
349 		 */
350 		goto out;
351 
352 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
353 	ubifs_assert(!atomic_read(&inode->i_count));
354 
355 	truncate_inode_pages(&inode->i_data, 0);
356 
357 	if (inode->i_nlink)
358 		goto done;
359 
360 	if (is_bad_inode(inode))
361 		goto out;
362 
363 	ui->ui_size = inode->i_size = 0;
364 	err = ubifs_jnl_delete_inode(c, inode);
365 	if (err)
366 		/*
367 		 * Worst case we have a lost orphan inode wasting space, so a
368 		 * simple error message is OK here.
369 		 */
370 		ubifs_err("can't delete inode %lu, error %d",
371 			  inode->i_ino, err);
372 
373 out:
374 	if (ui->dirty)
375 		ubifs_release_dirty_inode_budget(c, ui);
376 	else {
377 		/* We've deleted something - clean the "no space" flags */
378 		c->bi.nospace = c->bi.nospace_rp = 0;
379 		smp_wmb();
380 	}
381 done:
382 	end_writeback(inode);
383 }
384 
385 static void ubifs_dirty_inode(struct inode *inode, int flags)
386 {
387 	struct ubifs_inode *ui = ubifs_inode(inode);
388 
389 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
390 	if (!ui->dirty) {
391 		ui->dirty = 1;
392 		dbg_gen("inode %lu",  inode->i_ino);
393 	}
394 }
395 
396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397 {
398 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
399 	unsigned long long free;
400 	__le32 *uuid = (__le32 *)c->uuid;
401 
402 	free = ubifs_get_free_space(c);
403 	dbg_gen("free space %lld bytes (%lld blocks)",
404 		free, free >> UBIFS_BLOCK_SHIFT);
405 
406 	buf->f_type = UBIFS_SUPER_MAGIC;
407 	buf->f_bsize = UBIFS_BLOCK_SIZE;
408 	buf->f_blocks = c->block_cnt;
409 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
410 	if (free > c->report_rp_size)
411 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
412 	else
413 		buf->f_bavail = 0;
414 	buf->f_files = 0;
415 	buf->f_ffree = 0;
416 	buf->f_namelen = UBIFS_MAX_NLEN;
417 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
418 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
419 	ubifs_assert(buf->f_bfree <= c->block_cnt);
420 	return 0;
421 }
422 
423 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
424 {
425 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
426 
427 	if (c->mount_opts.unmount_mode == 2)
428 		seq_printf(s, ",fast_unmount");
429 	else if (c->mount_opts.unmount_mode == 1)
430 		seq_printf(s, ",norm_unmount");
431 
432 	if (c->mount_opts.bulk_read == 2)
433 		seq_printf(s, ",bulk_read");
434 	else if (c->mount_opts.bulk_read == 1)
435 		seq_printf(s, ",no_bulk_read");
436 
437 	if (c->mount_opts.chk_data_crc == 2)
438 		seq_printf(s, ",chk_data_crc");
439 	else if (c->mount_opts.chk_data_crc == 1)
440 		seq_printf(s, ",no_chk_data_crc");
441 
442 	if (c->mount_opts.override_compr) {
443 		seq_printf(s, ",compr=%s",
444 			   ubifs_compr_name(c->mount_opts.compr_type));
445 	}
446 
447 	return 0;
448 }
449 
450 static int ubifs_sync_fs(struct super_block *sb, int wait)
451 {
452 	int i, err;
453 	struct ubifs_info *c = sb->s_fs_info;
454 
455 	/*
456 	 * Zero @wait is just an advisory thing to help the file system shove
457 	 * lots of data into the queues, and there will be the second
458 	 * '->sync_fs()' call, with non-zero @wait.
459 	 */
460 	if (!wait)
461 		return 0;
462 
463 	/*
464 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
465 	 * do this if it waits for an already running commit.
466 	 */
467 	for (i = 0; i < c->jhead_cnt; i++) {
468 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
469 		if (err)
470 			return err;
471 	}
472 
473 	/*
474 	 * Strictly speaking, it is not necessary to commit the journal here,
475 	 * synchronizing write-buffers would be enough. But committing makes
476 	 * UBIFS free space predictions much more accurate, so we want to let
477 	 * the user be able to get more accurate results of 'statfs()' after
478 	 * they synchronize the file system.
479 	 */
480 	err = ubifs_run_commit(c);
481 	if (err)
482 		return err;
483 
484 	return ubi_sync(c->vi.ubi_num);
485 }
486 
487 /**
488  * init_constants_early - initialize UBIFS constants.
489  * @c: UBIFS file-system description object
490  *
491  * This function initialize UBIFS constants which do not need the superblock to
492  * be read. It also checks that the UBI volume satisfies basic UBIFS
493  * requirements. Returns zero in case of success and a negative error code in
494  * case of failure.
495  */
496 static int init_constants_early(struct ubifs_info *c)
497 {
498 	if (c->vi.corrupted) {
499 		ubifs_warn("UBI volume is corrupted - read-only mode");
500 		c->ro_media = 1;
501 	}
502 
503 	if (c->di.ro_mode) {
504 		ubifs_msg("read-only UBI device");
505 		c->ro_media = 1;
506 	}
507 
508 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
509 		ubifs_msg("static UBI volume - read-only mode");
510 		c->ro_media = 1;
511 	}
512 
513 	c->leb_cnt = c->vi.size;
514 	c->leb_size = c->vi.usable_leb_size;
515 	c->leb_start = c->di.leb_start;
516 	c->half_leb_size = c->leb_size / 2;
517 	c->min_io_size = c->di.min_io_size;
518 	c->min_io_shift = fls(c->min_io_size) - 1;
519 	c->max_write_size = c->di.max_write_size;
520 	c->max_write_shift = fls(c->max_write_size) - 1;
521 
522 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
523 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
524 			  c->leb_size, UBIFS_MIN_LEB_SZ);
525 		return -EINVAL;
526 	}
527 
528 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
529 		ubifs_err("too few LEBs (%d), min. is %d",
530 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
531 		return -EINVAL;
532 	}
533 
534 	if (!is_power_of_2(c->min_io_size)) {
535 		ubifs_err("bad min. I/O size %d", c->min_io_size);
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * Maximum write size has to be greater or equivalent to min. I/O
541 	 * size, and be multiple of min. I/O size.
542 	 */
543 	if (c->max_write_size < c->min_io_size ||
544 	    c->max_write_size % c->min_io_size ||
545 	    !is_power_of_2(c->max_write_size)) {
546 		ubifs_err("bad write buffer size %d for %d min. I/O unit",
547 			  c->max_write_size, c->min_io_size);
548 		return -EINVAL;
549 	}
550 
551 	/*
552 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
553 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
554 	 * less than 8.
555 	 */
556 	if (c->min_io_size < 8) {
557 		c->min_io_size = 8;
558 		c->min_io_shift = 3;
559 		if (c->max_write_size < c->min_io_size) {
560 			c->max_write_size = c->min_io_size;
561 			c->max_write_shift = c->min_io_shift;
562 		}
563 	}
564 
565 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
566 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
567 
568 	/*
569 	 * Initialize node length ranges which are mostly needed for node
570 	 * length validation.
571 	 */
572 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
573 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
574 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
575 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
576 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
577 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
578 
579 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
580 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
581 	c->ranges[UBIFS_ORPH_NODE].min_len =
582 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
583 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
584 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
585 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
586 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
587 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
588 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
589 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
590 	/*
591 	 * Minimum indexing node size is amended later when superblock is
592 	 * read and the key length is known.
593 	 */
594 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
595 	/*
596 	 * Maximum indexing node size is amended later when superblock is
597 	 * read and the fanout is known.
598 	 */
599 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
600 
601 	/*
602 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
603 	 * about these values.
604 	 */
605 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
606 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
607 
608 	/*
609 	 * Calculate how many bytes would be wasted at the end of LEB if it was
610 	 * fully filled with data nodes of maximum size. This is used in
611 	 * calculations when reporting free space.
612 	 */
613 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
614 
615 	/* Buffer size for bulk-reads */
616 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
617 	if (c->max_bu_buf_len > c->leb_size)
618 		c->max_bu_buf_len = c->leb_size;
619 	return 0;
620 }
621 
622 /**
623  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
624  * @c: UBIFS file-system description object
625  * @lnum: LEB the write-buffer was synchronized to
626  * @free: how many free bytes left in this LEB
627  * @pad: how many bytes were padded
628  *
629  * This is a callback function which is called by the I/O unit when the
630  * write-buffer is synchronized. We need this to correctly maintain space
631  * accounting in bud logical eraseblocks. This function returns zero in case of
632  * success and a negative error code in case of failure.
633  *
634  * This function actually belongs to the journal, but we keep it here because
635  * we want to keep it static.
636  */
637 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
638 {
639 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
640 }
641 
642 /*
643  * init_constants_sb - initialize UBIFS constants.
644  * @c: UBIFS file-system description object
645  *
646  * This is a helper function which initializes various UBIFS constants after
647  * the superblock has been read. It also checks various UBIFS parameters and
648  * makes sure they are all right. Returns zero in case of success and a
649  * negative error code in case of failure.
650  */
651 static int init_constants_sb(struct ubifs_info *c)
652 {
653 	int tmp, err;
654 	long long tmp64;
655 
656 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
657 	c->max_znode_sz = sizeof(struct ubifs_znode) +
658 				c->fanout * sizeof(struct ubifs_zbranch);
659 
660 	tmp = ubifs_idx_node_sz(c, 1);
661 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
662 	c->min_idx_node_sz = ALIGN(tmp, 8);
663 
664 	tmp = ubifs_idx_node_sz(c, c->fanout);
665 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
666 	c->max_idx_node_sz = ALIGN(tmp, 8);
667 
668 	/* Make sure LEB size is large enough to fit full commit */
669 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
670 	tmp = ALIGN(tmp, c->min_io_size);
671 	if (tmp > c->leb_size) {
672 		dbg_err("too small LEB size %d, at least %d needed",
673 			c->leb_size, tmp);
674 		return -EINVAL;
675 	}
676 
677 	/*
678 	 * Make sure that the log is large enough to fit reference nodes for
679 	 * all buds plus one reserved LEB.
680 	 */
681 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
682 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
683 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
684 	tmp /= c->leb_size;
685 	tmp += 1;
686 	if (c->log_lebs < tmp) {
687 		dbg_err("too small log %d LEBs, required min. %d LEBs",
688 			c->log_lebs, tmp);
689 		return -EINVAL;
690 	}
691 
692 	/*
693 	 * When budgeting we assume worst-case scenarios when the pages are not
694 	 * be compressed and direntries are of the maximum size.
695 	 *
696 	 * Note, data, which may be stored in inodes is budgeted separately, so
697 	 * it is not included into 'c->bi.inode_budget'.
698 	 */
699 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
700 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
701 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
702 
703 	/*
704 	 * When the amount of flash space used by buds becomes
705 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
706 	 * The writers are unblocked when the commit is finished. To avoid
707 	 * writers to be blocked UBIFS initiates background commit in advance,
708 	 * when number of bud bytes becomes above the limit defined below.
709 	 */
710 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
711 
712 	/*
713 	 * Ensure minimum journal size. All the bytes in the journal heads are
714 	 * considered to be used, when calculating the current journal usage.
715 	 * Consequently, if the journal is too small, UBIFS will treat it as
716 	 * always full.
717 	 */
718 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
719 	if (c->bg_bud_bytes < tmp64)
720 		c->bg_bud_bytes = tmp64;
721 	if (c->max_bud_bytes < tmp64 + c->leb_size)
722 		c->max_bud_bytes = tmp64 + c->leb_size;
723 
724 	err = ubifs_calc_lpt_geom(c);
725 	if (err)
726 		return err;
727 
728 	/* Initialize effective LEB size used in budgeting calculations */
729 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
730 	return 0;
731 }
732 
733 /*
734  * init_constants_master - initialize UBIFS constants.
735  * @c: UBIFS file-system description object
736  *
737  * This is a helper function which initializes various UBIFS constants after
738  * the master node has been read. It also checks various UBIFS parameters and
739  * makes sure they are all right.
740  */
741 static void init_constants_master(struct ubifs_info *c)
742 {
743 	long long tmp64;
744 
745 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
746 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
747 
748 	/*
749 	 * Calculate total amount of FS blocks. This number is not used
750 	 * internally because it does not make much sense for UBIFS, but it is
751 	 * necessary to report something for the 'statfs()' call.
752 	 *
753 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
754 	 * deletions, minimum LEBs for the index, and assume only one journal
755 	 * head is available.
756 	 */
757 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
758 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
759 	tmp64 = ubifs_reported_space(c, tmp64);
760 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
761 }
762 
763 /**
764  * take_gc_lnum - reserve GC LEB.
765  * @c: UBIFS file-system description object
766  *
767  * This function ensures that the LEB reserved for garbage collection is marked
768  * as "taken" in lprops. We also have to set free space to LEB size and dirty
769  * space to zero, because lprops may contain out-of-date information if the
770  * file-system was un-mounted before it has been committed. This function
771  * returns zero in case of success and a negative error code in case of
772  * failure.
773  */
774 static int take_gc_lnum(struct ubifs_info *c)
775 {
776 	int err;
777 
778 	if (c->gc_lnum == -1) {
779 		ubifs_err("no LEB for GC");
780 		return -EINVAL;
781 	}
782 
783 	/* And we have to tell lprops that this LEB is taken */
784 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
785 				  LPROPS_TAKEN, 0, 0);
786 	return err;
787 }
788 
789 /**
790  * alloc_wbufs - allocate write-buffers.
791  * @c: UBIFS file-system description object
792  *
793  * This helper function allocates and initializes UBIFS write-buffers. Returns
794  * zero in case of success and %-ENOMEM in case of failure.
795  */
796 static int alloc_wbufs(struct ubifs_info *c)
797 {
798 	int i, err;
799 
800 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
801 			   GFP_KERNEL);
802 	if (!c->jheads)
803 		return -ENOMEM;
804 
805 	/* Initialize journal heads */
806 	for (i = 0; i < c->jhead_cnt; i++) {
807 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
808 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
809 		if (err)
810 			return err;
811 
812 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
813 		c->jheads[i].wbuf.jhead = i;
814 		c->jheads[i].grouped = 1;
815 	}
816 
817 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
818 	/*
819 	 * Garbage Collector head likely contains long-term data and
820 	 * does not need to be synchronized by timer. Also GC head nodes are
821 	 * not grouped.
822 	 */
823 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
824 	c->jheads[GCHD].wbuf.no_timer = 1;
825 	c->jheads[GCHD].grouped = 0;
826 
827 	return 0;
828 }
829 
830 /**
831  * free_wbufs - free write-buffers.
832  * @c: UBIFS file-system description object
833  */
834 static void free_wbufs(struct ubifs_info *c)
835 {
836 	int i;
837 
838 	if (c->jheads) {
839 		for (i = 0; i < c->jhead_cnt; i++) {
840 			kfree(c->jheads[i].wbuf.buf);
841 			kfree(c->jheads[i].wbuf.inodes);
842 		}
843 		kfree(c->jheads);
844 		c->jheads = NULL;
845 	}
846 }
847 
848 /**
849  * free_orphans - free orphans.
850  * @c: UBIFS file-system description object
851  */
852 static void free_orphans(struct ubifs_info *c)
853 {
854 	struct ubifs_orphan *orph;
855 
856 	while (c->orph_dnext) {
857 		orph = c->orph_dnext;
858 		c->orph_dnext = orph->dnext;
859 		list_del(&orph->list);
860 		kfree(orph);
861 	}
862 
863 	while (!list_empty(&c->orph_list)) {
864 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
865 		list_del(&orph->list);
866 		kfree(orph);
867 		dbg_err("orphan list not empty at unmount");
868 	}
869 
870 	vfree(c->orph_buf);
871 	c->orph_buf = NULL;
872 }
873 
874 /**
875  * free_buds - free per-bud objects.
876  * @c: UBIFS file-system description object
877  */
878 static void free_buds(struct ubifs_info *c)
879 {
880 	struct rb_node *this = c->buds.rb_node;
881 	struct ubifs_bud *bud;
882 
883 	while (this) {
884 		if (this->rb_left)
885 			this = this->rb_left;
886 		else if (this->rb_right)
887 			this = this->rb_right;
888 		else {
889 			bud = rb_entry(this, struct ubifs_bud, rb);
890 			this = rb_parent(this);
891 			if (this) {
892 				if (this->rb_left == &bud->rb)
893 					this->rb_left = NULL;
894 				else
895 					this->rb_right = NULL;
896 			}
897 			kfree(bud);
898 		}
899 	}
900 }
901 
902 /**
903  * check_volume_empty - check if the UBI volume is empty.
904  * @c: UBIFS file-system description object
905  *
906  * This function checks if the UBIFS volume is empty by looking if its LEBs are
907  * mapped or not. The result of checking is stored in the @c->empty variable.
908  * Returns zero in case of success and a negative error code in case of
909  * failure.
910  */
911 static int check_volume_empty(struct ubifs_info *c)
912 {
913 	int lnum, err;
914 
915 	c->empty = 1;
916 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
917 		err = ubifs_is_mapped(c, lnum);
918 		if (unlikely(err < 0))
919 			return err;
920 		if (err == 1) {
921 			c->empty = 0;
922 			break;
923 		}
924 
925 		cond_resched();
926 	}
927 
928 	return 0;
929 }
930 
931 /*
932  * UBIFS mount options.
933  *
934  * Opt_fast_unmount: do not run a journal commit before un-mounting
935  * Opt_norm_unmount: run a journal commit before un-mounting
936  * Opt_bulk_read: enable bulk-reads
937  * Opt_no_bulk_read: disable bulk-reads
938  * Opt_chk_data_crc: check CRCs when reading data nodes
939  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
940  * Opt_override_compr: override default compressor
941  * Opt_err: just end of array marker
942  */
943 enum {
944 	Opt_fast_unmount,
945 	Opt_norm_unmount,
946 	Opt_bulk_read,
947 	Opt_no_bulk_read,
948 	Opt_chk_data_crc,
949 	Opt_no_chk_data_crc,
950 	Opt_override_compr,
951 	Opt_err,
952 };
953 
954 static const match_table_t tokens = {
955 	{Opt_fast_unmount, "fast_unmount"},
956 	{Opt_norm_unmount, "norm_unmount"},
957 	{Opt_bulk_read, "bulk_read"},
958 	{Opt_no_bulk_read, "no_bulk_read"},
959 	{Opt_chk_data_crc, "chk_data_crc"},
960 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
961 	{Opt_override_compr, "compr=%s"},
962 	{Opt_err, NULL},
963 };
964 
965 /**
966  * parse_standard_option - parse a standard mount option.
967  * @option: the option to parse
968  *
969  * Normally, standard mount options like "sync" are passed to file-systems as
970  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
971  * be present in the options string. This function tries to deal with this
972  * situation and parse standard options. Returns 0 if the option was not
973  * recognized, and the corresponding integer flag if it was.
974  *
975  * UBIFS is only interested in the "sync" option, so do not check for anything
976  * else.
977  */
978 static int parse_standard_option(const char *option)
979 {
980 	ubifs_msg("parse %s", option);
981 	if (!strcmp(option, "sync"))
982 		return MS_SYNCHRONOUS;
983 	return 0;
984 }
985 
986 /**
987  * ubifs_parse_options - parse mount parameters.
988  * @c: UBIFS file-system description object
989  * @options: parameters to parse
990  * @is_remount: non-zero if this is FS re-mount
991  *
992  * This function parses UBIFS mount options and returns zero in case success
993  * and a negative error code in case of failure.
994  */
995 static int ubifs_parse_options(struct ubifs_info *c, char *options,
996 			       int is_remount)
997 {
998 	char *p;
999 	substring_t args[MAX_OPT_ARGS];
1000 
1001 	if (!options)
1002 		return 0;
1003 
1004 	while ((p = strsep(&options, ","))) {
1005 		int token;
1006 
1007 		if (!*p)
1008 			continue;
1009 
1010 		token = match_token(p, tokens, args);
1011 		switch (token) {
1012 		/*
1013 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1014 		 * We accept them in order to be backward-compatible. But this
1015 		 * should be removed at some point.
1016 		 */
1017 		case Opt_fast_unmount:
1018 			c->mount_opts.unmount_mode = 2;
1019 			break;
1020 		case Opt_norm_unmount:
1021 			c->mount_opts.unmount_mode = 1;
1022 			break;
1023 		case Opt_bulk_read:
1024 			c->mount_opts.bulk_read = 2;
1025 			c->bulk_read = 1;
1026 			break;
1027 		case Opt_no_bulk_read:
1028 			c->mount_opts.bulk_read = 1;
1029 			c->bulk_read = 0;
1030 			break;
1031 		case Opt_chk_data_crc:
1032 			c->mount_opts.chk_data_crc = 2;
1033 			c->no_chk_data_crc = 0;
1034 			break;
1035 		case Opt_no_chk_data_crc:
1036 			c->mount_opts.chk_data_crc = 1;
1037 			c->no_chk_data_crc = 1;
1038 			break;
1039 		case Opt_override_compr:
1040 		{
1041 			char *name = match_strdup(&args[0]);
1042 
1043 			if (!name)
1044 				return -ENOMEM;
1045 			if (!strcmp(name, "none"))
1046 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1047 			else if (!strcmp(name, "lzo"))
1048 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1049 			else if (!strcmp(name, "zlib"))
1050 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1051 			else {
1052 				ubifs_err("unknown compressor \"%s\"", name);
1053 				kfree(name);
1054 				return -EINVAL;
1055 			}
1056 			kfree(name);
1057 			c->mount_opts.override_compr = 1;
1058 			c->default_compr = c->mount_opts.compr_type;
1059 			break;
1060 		}
1061 		default:
1062 		{
1063 			unsigned long flag;
1064 			struct super_block *sb = c->vfs_sb;
1065 
1066 			flag = parse_standard_option(p);
1067 			if (!flag) {
1068 				ubifs_err("unrecognized mount option \"%s\" "
1069 					  "or missing value", p);
1070 				return -EINVAL;
1071 			}
1072 			sb->s_flags |= flag;
1073 			break;
1074 		}
1075 		}
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * destroy_journal - destroy journal data structures.
1083  * @c: UBIFS file-system description object
1084  *
1085  * This function destroys journal data structures including those that may have
1086  * been created by recovery functions.
1087  */
1088 static void destroy_journal(struct ubifs_info *c)
1089 {
1090 	while (!list_empty(&c->unclean_leb_list)) {
1091 		struct ubifs_unclean_leb *ucleb;
1092 
1093 		ucleb = list_entry(c->unclean_leb_list.next,
1094 				   struct ubifs_unclean_leb, list);
1095 		list_del(&ucleb->list);
1096 		kfree(ucleb);
1097 	}
1098 	while (!list_empty(&c->old_buds)) {
1099 		struct ubifs_bud *bud;
1100 
1101 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1102 		list_del(&bud->list);
1103 		kfree(bud);
1104 	}
1105 	ubifs_destroy_idx_gc(c);
1106 	ubifs_destroy_size_tree(c);
1107 	ubifs_tnc_close(c);
1108 	free_buds(c);
1109 }
1110 
1111 /**
1112  * bu_init - initialize bulk-read information.
1113  * @c: UBIFS file-system description object
1114  */
1115 static void bu_init(struct ubifs_info *c)
1116 {
1117 	ubifs_assert(c->bulk_read == 1);
1118 
1119 	if (c->bu.buf)
1120 		return; /* Already initialized */
1121 
1122 again:
1123 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1124 	if (!c->bu.buf) {
1125 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1126 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1127 			goto again;
1128 		}
1129 
1130 		/* Just disable bulk-read */
1131 		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1132 			   "disabling it", c->max_bu_buf_len);
1133 		c->mount_opts.bulk_read = 1;
1134 		c->bulk_read = 0;
1135 		return;
1136 	}
1137 }
1138 
1139 /**
1140  * check_free_space - check if there is enough free space to mount.
1141  * @c: UBIFS file-system description object
1142  *
1143  * This function makes sure UBIFS has enough free space to be mounted in
1144  * read/write mode. UBIFS must always have some free space to allow deletions.
1145  */
1146 static int check_free_space(struct ubifs_info *c)
1147 {
1148 	ubifs_assert(c->dark_wm > 0);
1149 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1150 		ubifs_err("insufficient free space to mount in R/W mode");
1151 		dbg_dump_budg(c, &c->bi);
1152 		dbg_dump_lprops(c);
1153 		return -ENOSPC;
1154 	}
1155 	return 0;
1156 }
1157 
1158 /**
1159  * mount_ubifs - mount UBIFS file-system.
1160  * @c: UBIFS file-system description object
1161  *
1162  * This function mounts UBIFS file system. Returns zero in case of success and
1163  * a negative error code in case of failure.
1164  *
1165  * Note, the function does not de-allocate resources it it fails half way
1166  * through, and the caller has to do this instead.
1167  */
1168 static int mount_ubifs(struct ubifs_info *c)
1169 {
1170 	int err;
1171 	long long x;
1172 	size_t sz;
1173 
1174 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1175 	err = init_constants_early(c);
1176 	if (err)
1177 		return err;
1178 
1179 	err = ubifs_debugging_init(c);
1180 	if (err)
1181 		return err;
1182 
1183 	err = check_volume_empty(c);
1184 	if (err)
1185 		goto out_free;
1186 
1187 	if (c->empty && (c->ro_mount || c->ro_media)) {
1188 		/*
1189 		 * This UBI volume is empty, and read-only, or the file system
1190 		 * is mounted read-only - we cannot format it.
1191 		 */
1192 		ubifs_err("can't format empty UBI volume: read-only %s",
1193 			  c->ro_media ? "UBI volume" : "mount");
1194 		err = -EROFS;
1195 		goto out_free;
1196 	}
1197 
1198 	if (c->ro_media && !c->ro_mount) {
1199 		ubifs_err("cannot mount read-write - read-only media");
1200 		err = -EROFS;
1201 		goto out_free;
1202 	}
1203 
1204 	/*
1205 	 * The requirement for the buffer is that it should fit indexing B-tree
1206 	 * height amount of integers. We assume the height if the TNC tree will
1207 	 * never exceed 64.
1208 	 */
1209 	err = -ENOMEM;
1210 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1211 	if (!c->bottom_up_buf)
1212 		goto out_free;
1213 
1214 	c->sbuf = vmalloc(c->leb_size);
1215 	if (!c->sbuf)
1216 		goto out_free;
1217 
1218 	if (!c->ro_mount) {
1219 		c->ileb_buf = vmalloc(c->leb_size);
1220 		if (!c->ileb_buf)
1221 			goto out_free;
1222 	}
1223 
1224 	if (c->bulk_read == 1)
1225 		bu_init(c);
1226 
1227 	if (!c->ro_mount) {
1228 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1229 					       GFP_KERNEL);
1230 		if (!c->write_reserve_buf)
1231 			goto out_free;
1232 	}
1233 
1234 	c->mounting = 1;
1235 
1236 	err = ubifs_read_superblock(c);
1237 	if (err)
1238 		goto out_free;
1239 
1240 	/*
1241 	 * Make sure the compressor which is set as default in the superblock
1242 	 * or overridden by mount options is actually compiled in.
1243 	 */
1244 	if (!ubifs_compr_present(c->default_compr)) {
1245 		ubifs_err("'compressor \"%s\" is not compiled in",
1246 			  ubifs_compr_name(c->default_compr));
1247 		err = -ENOTSUPP;
1248 		goto out_free;
1249 	}
1250 
1251 	err = init_constants_sb(c);
1252 	if (err)
1253 		goto out_free;
1254 
1255 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1256 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1257 	c->cbuf = kmalloc(sz, GFP_NOFS);
1258 	if (!c->cbuf) {
1259 		err = -ENOMEM;
1260 		goto out_free;
1261 	}
1262 
1263 	err = alloc_wbufs(c);
1264 	if (err)
1265 		goto out_cbuf;
1266 
1267 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1268 	if (!c->ro_mount) {
1269 		/* Create background thread */
1270 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1271 		if (IS_ERR(c->bgt)) {
1272 			err = PTR_ERR(c->bgt);
1273 			c->bgt = NULL;
1274 			ubifs_err("cannot spawn \"%s\", error %d",
1275 				  c->bgt_name, err);
1276 			goto out_wbufs;
1277 		}
1278 		wake_up_process(c->bgt);
1279 	}
1280 
1281 	err = ubifs_read_master(c);
1282 	if (err)
1283 		goto out_master;
1284 
1285 	init_constants_master(c);
1286 
1287 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1288 		ubifs_msg("recovery needed");
1289 		c->need_recovery = 1;
1290 	}
1291 
1292 	if (c->need_recovery && !c->ro_mount) {
1293 		err = ubifs_recover_inl_heads(c, c->sbuf);
1294 		if (err)
1295 			goto out_master;
1296 	}
1297 
1298 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1299 	if (err)
1300 		goto out_master;
1301 
1302 	if (!c->ro_mount && c->space_fixup) {
1303 		err = ubifs_fixup_free_space(c);
1304 		if (err)
1305 			goto out_master;
1306 	}
1307 
1308 	if (!c->ro_mount) {
1309 		/*
1310 		 * Set the "dirty" flag so that if we reboot uncleanly we
1311 		 * will notice this immediately on the next mount.
1312 		 */
1313 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1314 		err = ubifs_write_master(c);
1315 		if (err)
1316 			goto out_lpt;
1317 	}
1318 
1319 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1320 	if (err)
1321 		goto out_lpt;
1322 
1323 	err = ubifs_replay_journal(c);
1324 	if (err)
1325 		goto out_journal;
1326 
1327 	/* Calculate 'min_idx_lebs' after journal replay */
1328 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1329 
1330 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1331 	if (err)
1332 		goto out_orphans;
1333 
1334 	if (!c->ro_mount) {
1335 		int lnum;
1336 
1337 		err = check_free_space(c);
1338 		if (err)
1339 			goto out_orphans;
1340 
1341 		/* Check for enough log space */
1342 		lnum = c->lhead_lnum + 1;
1343 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1344 			lnum = UBIFS_LOG_LNUM;
1345 		if (lnum == c->ltail_lnum) {
1346 			err = ubifs_consolidate_log(c);
1347 			if (err)
1348 				goto out_orphans;
1349 		}
1350 
1351 		if (c->need_recovery) {
1352 			err = ubifs_recover_size(c);
1353 			if (err)
1354 				goto out_orphans;
1355 			err = ubifs_rcvry_gc_commit(c);
1356 			if (err)
1357 				goto out_orphans;
1358 		} else {
1359 			err = take_gc_lnum(c);
1360 			if (err)
1361 				goto out_orphans;
1362 
1363 			/*
1364 			 * GC LEB may contain garbage if there was an unclean
1365 			 * reboot, and it should be un-mapped.
1366 			 */
1367 			err = ubifs_leb_unmap(c, c->gc_lnum);
1368 			if (err)
1369 				goto out_orphans;
1370 		}
1371 
1372 		err = dbg_check_lprops(c);
1373 		if (err)
1374 			goto out_orphans;
1375 	} else if (c->need_recovery) {
1376 		err = ubifs_recover_size(c);
1377 		if (err)
1378 			goto out_orphans;
1379 	} else {
1380 		/*
1381 		 * Even if we mount read-only, we have to set space in GC LEB
1382 		 * to proper value because this affects UBIFS free space
1383 		 * reporting. We do not want to have a situation when
1384 		 * re-mounting from R/O to R/W changes amount of free space.
1385 		 */
1386 		err = take_gc_lnum(c);
1387 		if (err)
1388 			goto out_orphans;
1389 	}
1390 
1391 	spin_lock(&ubifs_infos_lock);
1392 	list_add_tail(&c->infos_list, &ubifs_infos);
1393 	spin_unlock(&ubifs_infos_lock);
1394 
1395 	if (c->need_recovery) {
1396 		if (c->ro_mount)
1397 			ubifs_msg("recovery deferred");
1398 		else {
1399 			c->need_recovery = 0;
1400 			ubifs_msg("recovery completed");
1401 			/*
1402 			 * GC LEB has to be empty and taken at this point. But
1403 			 * the journal head LEBs may also be accounted as
1404 			 * "empty taken" if they are empty.
1405 			 */
1406 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1407 		}
1408 	} else
1409 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1410 
1411 	err = dbg_check_filesystem(c);
1412 	if (err)
1413 		goto out_infos;
1414 
1415 	err = dbg_debugfs_init_fs(c);
1416 	if (err)
1417 		goto out_infos;
1418 
1419 	c->mounting = 0;
1420 
1421 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1422 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1423 	if (c->ro_mount)
1424 		ubifs_msg("mounted read-only");
1425 	x = (long long)c->main_lebs * c->leb_size;
1426 	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1427 		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1428 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1429 	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1430 		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1431 	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1432 		  c->fmt_version, c->ro_compat_version,
1433 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1434 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1435 	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1436 		c->report_rp_size, c->report_rp_size >> 10);
1437 
1438 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1439 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1440 	dbg_msg("max. write size:     %d bytes", c->max_write_size);
1441 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1442 		c->leb_size, c->leb_size >> 10);
1443 	dbg_msg("data journal heads:  %d",
1444 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1445 	dbg_msg("UUID:                %pUB", c->uuid);
1446 	dbg_msg("big_lpt              %d", c->big_lpt);
1447 	dbg_msg("log LEBs:            %d (%d - %d)",
1448 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1449 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1450 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1451 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1452 		c->orph_lebs, c->orph_first, c->orph_last);
1453 	dbg_msg("main area LEBs:      %d (%d - %d)",
1454 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1455 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1456 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1457 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1458 		c->bi.old_idx_sz >> 20);
1459 	dbg_msg("key hash type:       %d", c->key_hash_type);
1460 	dbg_msg("tree fanout:         %d", c->fanout);
1461 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1462 	dbg_msg("first main LEB:      %d", c->main_first);
1463 	dbg_msg("max. znode size      %d", c->max_znode_sz);
1464 	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1465 	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1466 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1467 	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1468 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1469 	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1470 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1471 	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1472 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1473 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1474 	dbg_msg("dead watermark:      %d", c->dead_wm);
1475 	dbg_msg("dark watermark:      %d", c->dark_wm);
1476 	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1477 	x = (long long)c->main_lebs * c->dark_wm;
1478 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1479 		x, x >> 10, x >> 20);
1480 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1481 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1482 		c->max_bud_bytes >> 20);
1483 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1484 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1485 		c->bg_bud_bytes >> 20);
1486 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1487 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1488 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1489 	dbg_msg("commit number:       %llu", c->cmt_no);
1490 
1491 	return 0;
1492 
1493 out_infos:
1494 	spin_lock(&ubifs_infos_lock);
1495 	list_del(&c->infos_list);
1496 	spin_unlock(&ubifs_infos_lock);
1497 out_orphans:
1498 	free_orphans(c);
1499 out_journal:
1500 	destroy_journal(c);
1501 out_lpt:
1502 	ubifs_lpt_free(c, 0);
1503 out_master:
1504 	kfree(c->mst_node);
1505 	kfree(c->rcvrd_mst_node);
1506 	if (c->bgt)
1507 		kthread_stop(c->bgt);
1508 out_wbufs:
1509 	free_wbufs(c);
1510 out_cbuf:
1511 	kfree(c->cbuf);
1512 out_free:
1513 	kfree(c->write_reserve_buf);
1514 	kfree(c->bu.buf);
1515 	vfree(c->ileb_buf);
1516 	vfree(c->sbuf);
1517 	kfree(c->bottom_up_buf);
1518 	ubifs_debugging_exit(c);
1519 	return err;
1520 }
1521 
1522 /**
1523  * ubifs_umount - un-mount UBIFS file-system.
1524  * @c: UBIFS file-system description object
1525  *
1526  * Note, this function is called to free allocated resourced when un-mounting,
1527  * as well as free resources when an error occurred while we were half way
1528  * through mounting (error path cleanup function). So it has to make sure the
1529  * resource was actually allocated before freeing it.
1530  */
1531 static void ubifs_umount(struct ubifs_info *c)
1532 {
1533 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1534 		c->vi.vol_id);
1535 
1536 	dbg_debugfs_exit_fs(c);
1537 	spin_lock(&ubifs_infos_lock);
1538 	list_del(&c->infos_list);
1539 	spin_unlock(&ubifs_infos_lock);
1540 
1541 	if (c->bgt)
1542 		kthread_stop(c->bgt);
1543 
1544 	destroy_journal(c);
1545 	free_wbufs(c);
1546 	free_orphans(c);
1547 	ubifs_lpt_free(c, 0);
1548 
1549 	kfree(c->cbuf);
1550 	kfree(c->rcvrd_mst_node);
1551 	kfree(c->mst_node);
1552 	kfree(c->write_reserve_buf);
1553 	kfree(c->bu.buf);
1554 	vfree(c->ileb_buf);
1555 	vfree(c->sbuf);
1556 	kfree(c->bottom_up_buf);
1557 	ubifs_debugging_exit(c);
1558 }
1559 
1560 /**
1561  * ubifs_remount_rw - re-mount in read-write mode.
1562  * @c: UBIFS file-system description object
1563  *
1564  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1565  * mode. This function allocates the needed resources and re-mounts UBIFS in
1566  * read-write mode.
1567  */
1568 static int ubifs_remount_rw(struct ubifs_info *c)
1569 {
1570 	int err, lnum;
1571 
1572 	if (c->rw_incompat) {
1573 		ubifs_err("the file-system is not R/W-compatible");
1574 		ubifs_msg("on-flash format version is w%d/r%d, but software "
1575 			  "only supports up to version w%d/r%d", c->fmt_version,
1576 			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1577 			  UBIFS_RO_COMPAT_VERSION);
1578 		return -EROFS;
1579 	}
1580 
1581 	mutex_lock(&c->umount_mutex);
1582 	dbg_save_space_info(c);
1583 	c->remounting_rw = 1;
1584 	c->ro_mount = 0;
1585 
1586 	err = check_free_space(c);
1587 	if (err)
1588 		goto out;
1589 
1590 	if (c->old_leb_cnt != c->leb_cnt) {
1591 		struct ubifs_sb_node *sup;
1592 
1593 		sup = ubifs_read_sb_node(c);
1594 		if (IS_ERR(sup)) {
1595 			err = PTR_ERR(sup);
1596 			goto out;
1597 		}
1598 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1599 		err = ubifs_write_sb_node(c, sup);
1600 		kfree(sup);
1601 		if (err)
1602 			goto out;
1603 	}
1604 
1605 	if (c->need_recovery) {
1606 		ubifs_msg("completing deferred recovery");
1607 		err = ubifs_write_rcvrd_mst_node(c);
1608 		if (err)
1609 			goto out;
1610 		err = ubifs_recover_size(c);
1611 		if (err)
1612 			goto out;
1613 		err = ubifs_clean_lebs(c, c->sbuf);
1614 		if (err)
1615 			goto out;
1616 		err = ubifs_recover_inl_heads(c, c->sbuf);
1617 		if (err)
1618 			goto out;
1619 	} else {
1620 		/* A readonly mount is not allowed to have orphans */
1621 		ubifs_assert(c->tot_orphans == 0);
1622 		err = ubifs_clear_orphans(c);
1623 		if (err)
1624 			goto out;
1625 	}
1626 
1627 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1628 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1629 		err = ubifs_write_master(c);
1630 		if (err)
1631 			goto out;
1632 	}
1633 
1634 	c->ileb_buf = vmalloc(c->leb_size);
1635 	if (!c->ileb_buf) {
1636 		err = -ENOMEM;
1637 		goto out;
1638 	}
1639 
1640 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1641 	if (!c->write_reserve_buf)
1642 		goto out;
1643 
1644 	err = ubifs_lpt_init(c, 0, 1);
1645 	if (err)
1646 		goto out;
1647 
1648 	/* Create background thread */
1649 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1650 	if (IS_ERR(c->bgt)) {
1651 		err = PTR_ERR(c->bgt);
1652 		c->bgt = NULL;
1653 		ubifs_err("cannot spawn \"%s\", error %d",
1654 			  c->bgt_name, err);
1655 		goto out;
1656 	}
1657 	wake_up_process(c->bgt);
1658 
1659 	c->orph_buf = vmalloc(c->leb_size);
1660 	if (!c->orph_buf) {
1661 		err = -ENOMEM;
1662 		goto out;
1663 	}
1664 
1665 	/* Check for enough log space */
1666 	lnum = c->lhead_lnum + 1;
1667 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1668 		lnum = UBIFS_LOG_LNUM;
1669 	if (lnum == c->ltail_lnum) {
1670 		err = ubifs_consolidate_log(c);
1671 		if (err)
1672 			goto out;
1673 	}
1674 
1675 	if (c->need_recovery)
1676 		err = ubifs_rcvry_gc_commit(c);
1677 	else
1678 		err = ubifs_leb_unmap(c, c->gc_lnum);
1679 	if (err)
1680 		goto out;
1681 
1682 	dbg_gen("re-mounted read-write");
1683 	c->remounting_rw = 0;
1684 
1685 	if (c->need_recovery) {
1686 		c->need_recovery = 0;
1687 		ubifs_msg("deferred recovery completed");
1688 	} else {
1689 		/*
1690 		 * Do not run the debugging space check if the were doing
1691 		 * recovery, because when we saved the information we had the
1692 		 * file-system in a state where the TNC and lprops has been
1693 		 * modified in memory, but all the I/O operations (including a
1694 		 * commit) were deferred. So the file-system was in
1695 		 * "non-committed" state. Now the file-system is in committed
1696 		 * state, and of course the amount of free space will change
1697 		 * because, for example, the old index size was imprecise.
1698 		 */
1699 		err = dbg_check_space_info(c);
1700 	}
1701 
1702 	if (c->space_fixup) {
1703 		err = ubifs_fixup_free_space(c);
1704 		if (err)
1705 			goto out;
1706 	}
1707 
1708 	mutex_unlock(&c->umount_mutex);
1709 	return err;
1710 
1711 out:
1712 	c->ro_mount = 1;
1713 	vfree(c->orph_buf);
1714 	c->orph_buf = NULL;
1715 	if (c->bgt) {
1716 		kthread_stop(c->bgt);
1717 		c->bgt = NULL;
1718 	}
1719 	free_wbufs(c);
1720 	kfree(c->write_reserve_buf);
1721 	c->write_reserve_buf = NULL;
1722 	vfree(c->ileb_buf);
1723 	c->ileb_buf = NULL;
1724 	ubifs_lpt_free(c, 1);
1725 	c->remounting_rw = 0;
1726 	mutex_unlock(&c->umount_mutex);
1727 	return err;
1728 }
1729 
1730 /**
1731  * ubifs_remount_ro - re-mount in read-only mode.
1732  * @c: UBIFS file-system description object
1733  *
1734  * We assume VFS has stopped writing. Possibly the background thread could be
1735  * running a commit, however kthread_stop will wait in that case.
1736  */
1737 static void ubifs_remount_ro(struct ubifs_info *c)
1738 {
1739 	int i, err;
1740 
1741 	ubifs_assert(!c->need_recovery);
1742 	ubifs_assert(!c->ro_mount);
1743 
1744 	mutex_lock(&c->umount_mutex);
1745 	if (c->bgt) {
1746 		kthread_stop(c->bgt);
1747 		c->bgt = NULL;
1748 	}
1749 
1750 	dbg_save_space_info(c);
1751 
1752 	for (i = 0; i < c->jhead_cnt; i++)
1753 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1754 
1755 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1756 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1757 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1758 	err = ubifs_write_master(c);
1759 	if (err)
1760 		ubifs_ro_mode(c, err);
1761 
1762 	vfree(c->orph_buf);
1763 	c->orph_buf = NULL;
1764 	kfree(c->write_reserve_buf);
1765 	c->write_reserve_buf = NULL;
1766 	vfree(c->ileb_buf);
1767 	c->ileb_buf = NULL;
1768 	ubifs_lpt_free(c, 1);
1769 	c->ro_mount = 1;
1770 	err = dbg_check_space_info(c);
1771 	if (err)
1772 		ubifs_ro_mode(c, err);
1773 	mutex_unlock(&c->umount_mutex);
1774 }
1775 
1776 static void ubifs_put_super(struct super_block *sb)
1777 {
1778 	int i;
1779 	struct ubifs_info *c = sb->s_fs_info;
1780 
1781 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1782 		  c->vi.vol_id);
1783 
1784 	/*
1785 	 * The following asserts are only valid if there has not been a failure
1786 	 * of the media. For example, there will be dirty inodes if we failed
1787 	 * to write them back because of I/O errors.
1788 	 */
1789 	if (!c->ro_error) {
1790 		ubifs_assert(c->bi.idx_growth == 0);
1791 		ubifs_assert(c->bi.dd_growth == 0);
1792 		ubifs_assert(c->bi.data_growth == 0);
1793 	}
1794 
1795 	/*
1796 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1797 	 * and file system un-mount. Namely, it prevents the shrinker from
1798 	 * picking this superblock for shrinking - it will be just skipped if
1799 	 * the mutex is locked.
1800 	 */
1801 	mutex_lock(&c->umount_mutex);
1802 	if (!c->ro_mount) {
1803 		/*
1804 		 * First of all kill the background thread to make sure it does
1805 		 * not interfere with un-mounting and freeing resources.
1806 		 */
1807 		if (c->bgt) {
1808 			kthread_stop(c->bgt);
1809 			c->bgt = NULL;
1810 		}
1811 
1812 		/*
1813 		 * On fatal errors c->ro_error is set to 1, in which case we do
1814 		 * not write the master node.
1815 		 */
1816 		if (!c->ro_error) {
1817 			int err;
1818 
1819 			/* Synchronize write-buffers */
1820 			for (i = 0; i < c->jhead_cnt; i++)
1821 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1822 
1823 			/*
1824 			 * We are being cleanly unmounted which means the
1825 			 * orphans were killed - indicate this in the master
1826 			 * node. Also save the reserved GC LEB number.
1827 			 */
1828 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1829 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1830 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1831 			err = ubifs_write_master(c);
1832 			if (err)
1833 				/*
1834 				 * Recovery will attempt to fix the master area
1835 				 * next mount, so we just print a message and
1836 				 * continue to unmount normally.
1837 				 */
1838 				ubifs_err("failed to write master node, "
1839 					  "error %d", err);
1840 		} else {
1841 			for (i = 0; i < c->jhead_cnt; i++)
1842 				/* Make sure write-buffer timers are canceled */
1843 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1844 		}
1845 	}
1846 
1847 	ubifs_umount(c);
1848 	bdi_destroy(&c->bdi);
1849 	ubi_close_volume(c->ubi);
1850 	mutex_unlock(&c->umount_mutex);
1851 }
1852 
1853 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1854 {
1855 	int err;
1856 	struct ubifs_info *c = sb->s_fs_info;
1857 
1858 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1859 
1860 	err = ubifs_parse_options(c, data, 1);
1861 	if (err) {
1862 		ubifs_err("invalid or unknown remount parameter");
1863 		return err;
1864 	}
1865 
1866 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1867 		if (c->ro_error) {
1868 			ubifs_msg("cannot re-mount R/W due to prior errors");
1869 			return -EROFS;
1870 		}
1871 		if (c->ro_media) {
1872 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1873 			return -EROFS;
1874 		}
1875 		err = ubifs_remount_rw(c);
1876 		if (err)
1877 			return err;
1878 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1879 		if (c->ro_error) {
1880 			ubifs_msg("cannot re-mount R/O due to prior errors");
1881 			return -EROFS;
1882 		}
1883 		ubifs_remount_ro(c);
1884 	}
1885 
1886 	if (c->bulk_read == 1)
1887 		bu_init(c);
1888 	else {
1889 		dbg_gen("disable bulk-read");
1890 		kfree(c->bu.buf);
1891 		c->bu.buf = NULL;
1892 	}
1893 
1894 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1895 	return 0;
1896 }
1897 
1898 const struct super_operations ubifs_super_operations = {
1899 	.alloc_inode   = ubifs_alloc_inode,
1900 	.destroy_inode = ubifs_destroy_inode,
1901 	.put_super     = ubifs_put_super,
1902 	.write_inode   = ubifs_write_inode,
1903 	.evict_inode   = ubifs_evict_inode,
1904 	.statfs        = ubifs_statfs,
1905 	.dirty_inode   = ubifs_dirty_inode,
1906 	.remount_fs    = ubifs_remount_fs,
1907 	.show_options  = ubifs_show_options,
1908 	.sync_fs       = ubifs_sync_fs,
1909 };
1910 
1911 /**
1912  * open_ubi - parse UBI device name string and open the UBI device.
1913  * @name: UBI volume name
1914  * @mode: UBI volume open mode
1915  *
1916  * The primary method of mounting UBIFS is by specifying the UBI volume
1917  * character device node path. However, UBIFS may also be mounted withoug any
1918  * character device node using one of the following methods:
1919  *
1920  * o ubiX_Y    - mount UBI device number X, volume Y;
1921  * o ubiY      - mount UBI device number 0, volume Y;
1922  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1923  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1924  *
1925  * Alternative '!' separator may be used instead of ':' (because some shells
1926  * like busybox may interpret ':' as an NFS host name separator). This function
1927  * returns UBI volume description object in case of success and a negative
1928  * error code in case of failure.
1929  */
1930 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1931 {
1932 	struct ubi_volume_desc *ubi;
1933 	int dev, vol;
1934 	char *endptr;
1935 
1936 	/* First, try to open using the device node path method */
1937 	ubi = ubi_open_volume_path(name, mode);
1938 	if (!IS_ERR(ubi))
1939 		return ubi;
1940 
1941 	/* Try the "nodev" method */
1942 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1943 		return ERR_PTR(-EINVAL);
1944 
1945 	/* ubi:NAME method */
1946 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1947 		return ubi_open_volume_nm(0, name + 4, mode);
1948 
1949 	if (!isdigit(name[3]))
1950 		return ERR_PTR(-EINVAL);
1951 
1952 	dev = simple_strtoul(name + 3, &endptr, 0);
1953 
1954 	/* ubiY method */
1955 	if (*endptr == '\0')
1956 		return ubi_open_volume(0, dev, mode);
1957 
1958 	/* ubiX_Y method */
1959 	if (*endptr == '_' && isdigit(endptr[1])) {
1960 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1961 		if (*endptr != '\0')
1962 			return ERR_PTR(-EINVAL);
1963 		return ubi_open_volume(dev, vol, mode);
1964 	}
1965 
1966 	/* ubiX:NAME method */
1967 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1968 		return ubi_open_volume_nm(dev, ++endptr, mode);
1969 
1970 	return ERR_PTR(-EINVAL);
1971 }
1972 
1973 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1974 {
1975 	struct ubifs_info *c;
1976 
1977 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1978 	if (c) {
1979 		spin_lock_init(&c->cnt_lock);
1980 		spin_lock_init(&c->cs_lock);
1981 		spin_lock_init(&c->buds_lock);
1982 		spin_lock_init(&c->space_lock);
1983 		spin_lock_init(&c->orphan_lock);
1984 		init_rwsem(&c->commit_sem);
1985 		mutex_init(&c->lp_mutex);
1986 		mutex_init(&c->tnc_mutex);
1987 		mutex_init(&c->log_mutex);
1988 		mutex_init(&c->mst_mutex);
1989 		mutex_init(&c->umount_mutex);
1990 		mutex_init(&c->bu_mutex);
1991 		mutex_init(&c->write_reserve_mutex);
1992 		init_waitqueue_head(&c->cmt_wq);
1993 		c->buds = RB_ROOT;
1994 		c->old_idx = RB_ROOT;
1995 		c->size_tree = RB_ROOT;
1996 		c->orph_tree = RB_ROOT;
1997 		INIT_LIST_HEAD(&c->infos_list);
1998 		INIT_LIST_HEAD(&c->idx_gc);
1999 		INIT_LIST_HEAD(&c->replay_list);
2000 		INIT_LIST_HEAD(&c->replay_buds);
2001 		INIT_LIST_HEAD(&c->uncat_list);
2002 		INIT_LIST_HEAD(&c->empty_list);
2003 		INIT_LIST_HEAD(&c->freeable_list);
2004 		INIT_LIST_HEAD(&c->frdi_idx_list);
2005 		INIT_LIST_HEAD(&c->unclean_leb_list);
2006 		INIT_LIST_HEAD(&c->old_buds);
2007 		INIT_LIST_HEAD(&c->orph_list);
2008 		INIT_LIST_HEAD(&c->orph_new);
2009 		c->no_chk_data_crc = 1;
2010 
2011 		c->highest_inum = UBIFS_FIRST_INO;
2012 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2013 
2014 		ubi_get_volume_info(ubi, &c->vi);
2015 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2016 	}
2017 	return c;
2018 }
2019 
2020 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2021 {
2022 	struct ubifs_info *c = sb->s_fs_info;
2023 	struct inode *root;
2024 	int err;
2025 
2026 	c->vfs_sb = sb;
2027 	/* Re-open the UBI device in read-write mode */
2028 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2029 	if (IS_ERR(c->ubi)) {
2030 		err = PTR_ERR(c->ubi);
2031 		goto out;
2032 	}
2033 
2034 	/*
2035 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2036 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2037 	 * which means the user would have to wait not just for their own I/O
2038 	 * but the read-ahead I/O as well i.e. completely pointless.
2039 	 *
2040 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2041 	 */
2042 	c->bdi.name = "ubifs",
2043 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
2044 	err  = bdi_init(&c->bdi);
2045 	if (err)
2046 		goto out_close;
2047 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2048 			   c->vi.ubi_num, c->vi.vol_id);
2049 	if (err)
2050 		goto out_bdi;
2051 
2052 	err = ubifs_parse_options(c, data, 0);
2053 	if (err)
2054 		goto out_bdi;
2055 
2056 	sb->s_bdi = &c->bdi;
2057 	sb->s_fs_info = c;
2058 	sb->s_magic = UBIFS_SUPER_MAGIC;
2059 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2060 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2061 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2062 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2063 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2064 	sb->s_op = &ubifs_super_operations;
2065 
2066 	mutex_lock(&c->umount_mutex);
2067 	err = mount_ubifs(c);
2068 	if (err) {
2069 		ubifs_assert(err < 0);
2070 		goto out_unlock;
2071 	}
2072 
2073 	/* Read the root inode */
2074 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2075 	if (IS_ERR(root)) {
2076 		err = PTR_ERR(root);
2077 		goto out_umount;
2078 	}
2079 
2080 	sb->s_root = d_alloc_root(root);
2081 	if (!sb->s_root)
2082 		goto out_iput;
2083 
2084 	mutex_unlock(&c->umount_mutex);
2085 	return 0;
2086 
2087 out_iput:
2088 	iput(root);
2089 out_umount:
2090 	ubifs_umount(c);
2091 out_unlock:
2092 	mutex_unlock(&c->umount_mutex);
2093 out_bdi:
2094 	bdi_destroy(&c->bdi);
2095 out_close:
2096 	ubi_close_volume(c->ubi);
2097 out:
2098 	return err;
2099 }
2100 
2101 static int sb_test(struct super_block *sb, void *data)
2102 {
2103 	struct ubifs_info *c1 = data;
2104 	struct ubifs_info *c = sb->s_fs_info;
2105 
2106 	return c->vi.cdev == c1->vi.cdev;
2107 }
2108 
2109 static int sb_set(struct super_block *sb, void *data)
2110 {
2111 	sb->s_fs_info = data;
2112 	return set_anon_super(sb, NULL);
2113 }
2114 
2115 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2116 			const char *name, void *data)
2117 {
2118 	struct ubi_volume_desc *ubi;
2119 	struct ubifs_info *c;
2120 	struct super_block *sb;
2121 	int err;
2122 
2123 	dbg_gen("name %s, flags %#x", name, flags);
2124 
2125 	/*
2126 	 * Get UBI device number and volume ID. Mount it read-only so far
2127 	 * because this might be a new mount point, and UBI allows only one
2128 	 * read-write user at a time.
2129 	 */
2130 	ubi = open_ubi(name, UBI_READONLY);
2131 	if (IS_ERR(ubi)) {
2132 		dbg_err("cannot open \"%s\", error %d",
2133 			name, (int)PTR_ERR(ubi));
2134 		return ERR_CAST(ubi);
2135 	}
2136 
2137 	c = alloc_ubifs_info(ubi);
2138 	if (!c) {
2139 		err = -ENOMEM;
2140 		goto out_close;
2141 	}
2142 
2143 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2144 
2145 	sb = sget(fs_type, sb_test, sb_set, c);
2146 	if (IS_ERR(sb)) {
2147 		err = PTR_ERR(sb);
2148 		kfree(c);
2149 		goto out_close;
2150 	}
2151 
2152 	if (sb->s_root) {
2153 		struct ubifs_info *c1 = sb->s_fs_info;
2154 		kfree(c);
2155 		/* A new mount point for already mounted UBIFS */
2156 		dbg_gen("this ubi volume is already mounted");
2157 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2158 			err = -EBUSY;
2159 			goto out_deact;
2160 		}
2161 	} else {
2162 		sb->s_flags = flags;
2163 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2164 		if (err)
2165 			goto out_deact;
2166 		/* We do not support atime */
2167 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2168 	}
2169 
2170 	/* 'fill_super()' opens ubi again so we must close it here */
2171 	ubi_close_volume(ubi);
2172 
2173 	return dget(sb->s_root);
2174 
2175 out_deact:
2176 	deactivate_locked_super(sb);
2177 out_close:
2178 	ubi_close_volume(ubi);
2179 	return ERR_PTR(err);
2180 }
2181 
2182 static void kill_ubifs_super(struct super_block *s)
2183 {
2184 	struct ubifs_info *c = s->s_fs_info;
2185 	kill_anon_super(s);
2186 	kfree(c);
2187 }
2188 
2189 static struct file_system_type ubifs_fs_type = {
2190 	.name    = "ubifs",
2191 	.owner   = THIS_MODULE,
2192 	.mount   = ubifs_mount,
2193 	.kill_sb = kill_ubifs_super,
2194 };
2195 
2196 /*
2197  * Inode slab cache constructor.
2198  */
2199 static void inode_slab_ctor(void *obj)
2200 {
2201 	struct ubifs_inode *ui = obj;
2202 	inode_init_once(&ui->vfs_inode);
2203 }
2204 
2205 static int __init ubifs_init(void)
2206 {
2207 	int err;
2208 
2209 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2210 
2211 	/* Make sure node sizes are 8-byte aligned */
2212 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2213 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2214 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2215 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2216 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2217 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2218 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2219 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2220 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2221 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2222 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2223 
2224 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2225 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2226 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2227 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2228 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2229 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2230 
2231 	/* Check min. node size */
2232 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2233 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2234 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2235 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2236 
2237 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2238 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2239 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2240 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2241 
2242 	/* Defined node sizes */
2243 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2244 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2245 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2246 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2247 
2248 	/*
2249 	 * We use 2 bit wide bit-fields to store compression type, which should
2250 	 * be amended if more compressors are added. The bit-fields are:
2251 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2252 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2253 	 */
2254 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2255 
2256 	/*
2257 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2258 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2259 	 */
2260 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2261 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2262 			  " at least 4096 bytes",
2263 			  (unsigned int)PAGE_CACHE_SIZE);
2264 		return -EINVAL;
2265 	}
2266 
2267 	err = register_filesystem(&ubifs_fs_type);
2268 	if (err) {
2269 		ubifs_err("cannot register file system, error %d", err);
2270 		return err;
2271 	}
2272 
2273 	err = -ENOMEM;
2274 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2275 				sizeof(struct ubifs_inode), 0,
2276 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2277 				&inode_slab_ctor);
2278 	if (!ubifs_inode_slab)
2279 		goto out_reg;
2280 
2281 	register_shrinker(&ubifs_shrinker_info);
2282 
2283 	err = ubifs_compressors_init();
2284 	if (err)
2285 		goto out_shrinker;
2286 
2287 	err = dbg_debugfs_init();
2288 	if (err)
2289 		goto out_compr;
2290 
2291 	return 0;
2292 
2293 out_compr:
2294 	ubifs_compressors_exit();
2295 out_shrinker:
2296 	unregister_shrinker(&ubifs_shrinker_info);
2297 	kmem_cache_destroy(ubifs_inode_slab);
2298 out_reg:
2299 	unregister_filesystem(&ubifs_fs_type);
2300 	return err;
2301 }
2302 /* late_initcall to let compressors initialize first */
2303 late_initcall(ubifs_init);
2304 
2305 static void __exit ubifs_exit(void)
2306 {
2307 	ubifs_assert(list_empty(&ubifs_infos));
2308 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2309 
2310 	dbg_debugfs_exit();
2311 	ubifs_compressors_exit();
2312 	unregister_shrinker(&ubifs_shrinker_info);
2313 	kmem_cache_destroy(ubifs_inode_slab);
2314 	unregister_filesystem(&ubifs_fs_type);
2315 }
2316 module_exit(ubifs_exit);
2317 
2318 MODULE_LICENSE("GPL");
2319 MODULE_VERSION(__stringify(UBIFS_VERSION));
2320 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2321 MODULE_DESCRIPTION("UBIFS - UBI File System");
2322