1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/kthread.h> 22 #include <linux/parser.h> 23 #include <linux/seq_file.h> 24 #include <linux/mount.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include "ubifs.h" 28 29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp) 30 { 31 int n = 0, ret; 32 33 ret = kstrtoint(val, 10, &n); 34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION) 35 return -EINVAL; 36 return param_set_int(val, kp); 37 } 38 39 static const struct kernel_param_ops ubifs_default_version_ops = { 40 .set = ubifs_default_version_set, 41 .get = param_get_int, 42 }; 43 44 int ubifs_default_version = UBIFS_FORMAT_VERSION; 45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600); 46 47 /* 48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 49 * allocating too much. 50 */ 51 #define UBIFS_KMALLOC_OK (128*1024) 52 53 /* Slab cache for UBIFS inodes */ 54 static struct kmem_cache *ubifs_inode_slab; 55 56 /* UBIFS TNC shrinker description */ 57 static struct shrinker ubifs_shrinker_info = { 58 .scan_objects = ubifs_shrink_scan, 59 .count_objects = ubifs_shrink_count, 60 .seeks = DEFAULT_SEEKS, 61 }; 62 63 /** 64 * validate_inode - validate inode. 65 * @c: UBIFS file-system description object 66 * @inode: the inode to validate 67 * 68 * This is a helper function for 'ubifs_iget()' which validates various fields 69 * of a newly built inode to make sure they contain sane values and prevent 70 * possible vulnerabilities. Returns zero if the inode is all right and 71 * a non-zero error code if not. 72 */ 73 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 74 { 75 int err; 76 const struct ubifs_inode *ui = ubifs_inode(inode); 77 78 if (inode->i_size > c->max_inode_sz) { 79 ubifs_err(c, "inode is too large (%lld)", 80 (long long)inode->i_size); 81 return 1; 82 } 83 84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 85 ubifs_err(c, "unknown compression type %d", ui->compr_type); 86 return 2; 87 } 88 89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 90 return 3; 91 92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 93 return 4; 94 95 if (ui->xattr && !S_ISREG(inode->i_mode)) 96 return 5; 97 98 if (!ubifs_compr_present(c, ui->compr_type)) { 99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 100 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 101 } 102 103 err = dbg_check_dir(c, inode); 104 return err; 105 } 106 107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 108 { 109 int err; 110 union ubifs_key key; 111 struct ubifs_ino_node *ino; 112 struct ubifs_info *c = sb->s_fs_info; 113 struct inode *inode; 114 struct ubifs_inode *ui; 115 116 dbg_gen("inode %lu", inum); 117 118 inode = iget_locked(sb, inum); 119 if (!inode) 120 return ERR_PTR(-ENOMEM); 121 if (!(inode->i_state & I_NEW)) 122 return inode; 123 ui = ubifs_inode(inode); 124 125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 126 if (!ino) { 127 err = -ENOMEM; 128 goto out; 129 } 130 131 ino_key_init(c, &key, inode->i_ino); 132 133 err = ubifs_tnc_lookup(c, &key, ino); 134 if (err) 135 goto out_ino; 136 137 inode->i_flags |= S_NOCMTIME; 138 139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 140 inode->i_flags |= S_NOATIME; 141 142 set_nlink(inode, le32_to_cpu(ino->nlink)); 143 i_uid_write(inode, le32_to_cpu(ino->uid)); 144 i_gid_write(inode, le32_to_cpu(ino->gid)); 145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 149 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 150 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 151 inode->i_mode = le32_to_cpu(ino->mode); 152 inode->i_size = le64_to_cpu(ino->size); 153 154 ui->data_len = le32_to_cpu(ino->data_len); 155 ui->flags = le32_to_cpu(ino->flags); 156 ui->compr_type = le16_to_cpu(ino->compr_type); 157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 159 ui->xattr_size = le32_to_cpu(ino->xattr_size); 160 ui->xattr_names = le32_to_cpu(ino->xattr_names); 161 ui->synced_i_size = ui->ui_size = inode->i_size; 162 163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 164 165 err = validate_inode(c, inode); 166 if (err) 167 goto out_invalid; 168 169 switch (inode->i_mode & S_IFMT) { 170 case S_IFREG: 171 inode->i_mapping->a_ops = &ubifs_file_address_operations; 172 inode->i_op = &ubifs_file_inode_operations; 173 inode->i_fop = &ubifs_file_operations; 174 if (ui->xattr) { 175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 176 if (!ui->data) { 177 err = -ENOMEM; 178 goto out_ino; 179 } 180 memcpy(ui->data, ino->data, ui->data_len); 181 ((char *)ui->data)[ui->data_len] = '\0'; 182 } else if (ui->data_len != 0) { 183 err = 10; 184 goto out_invalid; 185 } 186 break; 187 case S_IFDIR: 188 inode->i_op = &ubifs_dir_inode_operations; 189 inode->i_fop = &ubifs_dir_operations; 190 if (ui->data_len != 0) { 191 err = 11; 192 goto out_invalid; 193 } 194 break; 195 case S_IFLNK: 196 inode->i_op = &ubifs_symlink_inode_operations; 197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 198 err = 12; 199 goto out_invalid; 200 } 201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 202 if (!ui->data) { 203 err = -ENOMEM; 204 goto out_ino; 205 } 206 memcpy(ui->data, ino->data, ui->data_len); 207 ((char *)ui->data)[ui->data_len] = '\0'; 208 break; 209 case S_IFBLK: 210 case S_IFCHR: 211 { 212 dev_t rdev; 213 union ubifs_dev_desc *dev; 214 215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 216 if (!ui->data) { 217 err = -ENOMEM; 218 goto out_ino; 219 } 220 221 dev = (union ubifs_dev_desc *)ino->data; 222 if (ui->data_len == sizeof(dev->new)) 223 rdev = new_decode_dev(le32_to_cpu(dev->new)); 224 else if (ui->data_len == sizeof(dev->huge)) 225 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 226 else { 227 err = 13; 228 goto out_invalid; 229 } 230 memcpy(ui->data, ino->data, ui->data_len); 231 inode->i_op = &ubifs_file_inode_operations; 232 init_special_inode(inode, inode->i_mode, rdev); 233 break; 234 } 235 case S_IFSOCK: 236 case S_IFIFO: 237 inode->i_op = &ubifs_file_inode_operations; 238 init_special_inode(inode, inode->i_mode, 0); 239 if (ui->data_len != 0) { 240 err = 14; 241 goto out_invalid; 242 } 243 break; 244 default: 245 err = 15; 246 goto out_invalid; 247 } 248 249 kfree(ino); 250 ubifs_set_inode_flags(inode); 251 unlock_new_inode(inode); 252 return inode; 253 254 out_invalid: 255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 256 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ); 257 ubifs_dump_inode(c, inode); 258 err = -EINVAL; 259 out_ino: 260 kfree(ino); 261 out: 262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 263 iget_failed(inode); 264 return ERR_PTR(err); 265 } 266 267 static struct inode *ubifs_alloc_inode(struct super_block *sb) 268 { 269 struct ubifs_inode *ui; 270 271 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 272 if (!ui) 273 return NULL; 274 275 memset((void *)ui + sizeof(struct inode), 0, 276 sizeof(struct ubifs_inode) - sizeof(struct inode)); 277 mutex_init(&ui->ui_mutex); 278 spin_lock_init(&ui->ui_lock); 279 return &ui->vfs_inode; 280 }; 281 282 static void ubifs_free_inode(struct inode *inode) 283 { 284 struct ubifs_inode *ui = ubifs_inode(inode); 285 286 kfree(ui->data); 287 fscrypt_free_inode(inode); 288 289 kmem_cache_free(ubifs_inode_slab, ui); 290 } 291 292 /* 293 * Note, Linux write-back code calls this without 'i_mutex'. 294 */ 295 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 296 { 297 int err = 0; 298 struct ubifs_info *c = inode->i_sb->s_fs_info; 299 struct ubifs_inode *ui = ubifs_inode(inode); 300 301 ubifs_assert(c, !ui->xattr); 302 if (is_bad_inode(inode)) 303 return 0; 304 305 mutex_lock(&ui->ui_mutex); 306 /* 307 * Due to races between write-back forced by budgeting 308 * (see 'sync_some_inodes()') and background write-back, the inode may 309 * have already been synchronized, do not do this again. This might 310 * also happen if it was synchronized in an VFS operation, e.g. 311 * 'ubifs_link()'. 312 */ 313 if (!ui->dirty) { 314 mutex_unlock(&ui->ui_mutex); 315 return 0; 316 } 317 318 /* 319 * As an optimization, do not write orphan inodes to the media just 320 * because this is not needed. 321 */ 322 dbg_gen("inode %lu, mode %#x, nlink %u", 323 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 324 if (inode->i_nlink) { 325 err = ubifs_jnl_write_inode(c, inode); 326 if (err) 327 ubifs_err(c, "can't write inode %lu, error %d", 328 inode->i_ino, err); 329 else 330 err = dbg_check_inode_size(c, inode, ui->ui_size); 331 } 332 333 ui->dirty = 0; 334 mutex_unlock(&ui->ui_mutex); 335 ubifs_release_dirty_inode_budget(c, ui); 336 return err; 337 } 338 339 static int ubifs_drop_inode(struct inode *inode) 340 { 341 int drop = generic_drop_inode(inode); 342 343 if (!drop) 344 drop = fscrypt_drop_inode(inode); 345 346 return drop; 347 } 348 349 static void ubifs_evict_inode(struct inode *inode) 350 { 351 int err; 352 struct ubifs_info *c = inode->i_sb->s_fs_info; 353 struct ubifs_inode *ui = ubifs_inode(inode); 354 355 if (ui->xattr) 356 /* 357 * Extended attribute inode deletions are fully handled in 358 * 'ubifs_removexattr()'. These inodes are special and have 359 * limited usage, so there is nothing to do here. 360 */ 361 goto out; 362 363 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 364 ubifs_assert(c, !atomic_read(&inode->i_count)); 365 366 truncate_inode_pages_final(&inode->i_data); 367 368 if (inode->i_nlink) 369 goto done; 370 371 if (is_bad_inode(inode)) 372 goto out; 373 374 ui->ui_size = inode->i_size = 0; 375 err = ubifs_jnl_delete_inode(c, inode); 376 if (err) 377 /* 378 * Worst case we have a lost orphan inode wasting space, so a 379 * simple error message is OK here. 380 */ 381 ubifs_err(c, "can't delete inode %lu, error %d", 382 inode->i_ino, err); 383 384 out: 385 if (ui->dirty) 386 ubifs_release_dirty_inode_budget(c, ui); 387 else { 388 /* We've deleted something - clean the "no space" flags */ 389 c->bi.nospace = c->bi.nospace_rp = 0; 390 smp_wmb(); 391 } 392 done: 393 clear_inode(inode); 394 fscrypt_put_encryption_info(inode); 395 } 396 397 static void ubifs_dirty_inode(struct inode *inode, int flags) 398 { 399 struct ubifs_info *c = inode->i_sb->s_fs_info; 400 struct ubifs_inode *ui = ubifs_inode(inode); 401 402 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 403 if (!ui->dirty) { 404 ui->dirty = 1; 405 dbg_gen("inode %lu", inode->i_ino); 406 } 407 } 408 409 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 410 { 411 struct ubifs_info *c = dentry->d_sb->s_fs_info; 412 unsigned long long free; 413 __le32 *uuid = (__le32 *)c->uuid; 414 415 free = ubifs_get_free_space(c); 416 dbg_gen("free space %lld bytes (%lld blocks)", 417 free, free >> UBIFS_BLOCK_SHIFT); 418 419 buf->f_type = UBIFS_SUPER_MAGIC; 420 buf->f_bsize = UBIFS_BLOCK_SIZE; 421 buf->f_blocks = c->block_cnt; 422 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 423 if (free > c->report_rp_size) 424 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 425 else 426 buf->f_bavail = 0; 427 buf->f_files = 0; 428 buf->f_ffree = 0; 429 buf->f_namelen = UBIFS_MAX_NLEN; 430 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 431 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 432 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 433 return 0; 434 } 435 436 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 437 { 438 struct ubifs_info *c = root->d_sb->s_fs_info; 439 440 if (c->mount_opts.unmount_mode == 2) 441 seq_puts(s, ",fast_unmount"); 442 else if (c->mount_opts.unmount_mode == 1) 443 seq_puts(s, ",norm_unmount"); 444 445 if (c->mount_opts.bulk_read == 2) 446 seq_puts(s, ",bulk_read"); 447 else if (c->mount_opts.bulk_read == 1) 448 seq_puts(s, ",no_bulk_read"); 449 450 if (c->mount_opts.chk_data_crc == 2) 451 seq_puts(s, ",chk_data_crc"); 452 else if (c->mount_opts.chk_data_crc == 1) 453 seq_puts(s, ",no_chk_data_crc"); 454 455 if (c->mount_opts.override_compr) { 456 seq_printf(s, ",compr=%s", 457 ubifs_compr_name(c, c->mount_opts.compr_type)); 458 } 459 460 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 461 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 462 463 return 0; 464 } 465 466 static int ubifs_sync_fs(struct super_block *sb, int wait) 467 { 468 int i, err; 469 struct ubifs_info *c = sb->s_fs_info; 470 471 /* 472 * Zero @wait is just an advisory thing to help the file system shove 473 * lots of data into the queues, and there will be the second 474 * '->sync_fs()' call, with non-zero @wait. 475 */ 476 if (!wait) 477 return 0; 478 479 /* 480 * Synchronize write buffers, because 'ubifs_run_commit()' does not 481 * do this if it waits for an already running commit. 482 */ 483 for (i = 0; i < c->jhead_cnt; i++) { 484 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 485 if (err) 486 return err; 487 } 488 489 /* 490 * Strictly speaking, it is not necessary to commit the journal here, 491 * synchronizing write-buffers would be enough. But committing makes 492 * UBIFS free space predictions much more accurate, so we want to let 493 * the user be able to get more accurate results of 'statfs()' after 494 * they synchronize the file system. 495 */ 496 err = ubifs_run_commit(c); 497 if (err) 498 return err; 499 500 return ubi_sync(c->vi.ubi_num); 501 } 502 503 /** 504 * init_constants_early - initialize UBIFS constants. 505 * @c: UBIFS file-system description object 506 * 507 * This function initialize UBIFS constants which do not need the superblock to 508 * be read. It also checks that the UBI volume satisfies basic UBIFS 509 * requirements. Returns zero in case of success and a negative error code in 510 * case of failure. 511 */ 512 static int init_constants_early(struct ubifs_info *c) 513 { 514 if (c->vi.corrupted) { 515 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 516 c->ro_media = 1; 517 } 518 519 if (c->di.ro_mode) { 520 ubifs_msg(c, "read-only UBI device"); 521 c->ro_media = 1; 522 } 523 524 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 525 ubifs_msg(c, "static UBI volume - read-only mode"); 526 c->ro_media = 1; 527 } 528 529 c->leb_cnt = c->vi.size; 530 c->leb_size = c->vi.usable_leb_size; 531 c->leb_start = c->di.leb_start; 532 c->half_leb_size = c->leb_size / 2; 533 c->min_io_size = c->di.min_io_size; 534 c->min_io_shift = fls(c->min_io_size) - 1; 535 c->max_write_size = c->di.max_write_size; 536 c->max_write_shift = fls(c->max_write_size) - 1; 537 538 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 539 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 540 c->leb_size, UBIFS_MIN_LEB_SZ); 541 return -EINVAL; 542 } 543 544 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 545 ubifs_errc(c, "too few LEBs (%d), min. is %d", 546 c->leb_cnt, UBIFS_MIN_LEB_CNT); 547 return -EINVAL; 548 } 549 550 if (!is_power_of_2(c->min_io_size)) { 551 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 552 return -EINVAL; 553 } 554 555 /* 556 * Maximum write size has to be greater or equivalent to min. I/O 557 * size, and be multiple of min. I/O size. 558 */ 559 if (c->max_write_size < c->min_io_size || 560 c->max_write_size % c->min_io_size || 561 !is_power_of_2(c->max_write_size)) { 562 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 563 c->max_write_size, c->min_io_size); 564 return -EINVAL; 565 } 566 567 /* 568 * UBIFS aligns all node to 8-byte boundary, so to make function in 569 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 570 * less than 8. 571 */ 572 if (c->min_io_size < 8) { 573 c->min_io_size = 8; 574 c->min_io_shift = 3; 575 if (c->max_write_size < c->min_io_size) { 576 c->max_write_size = c->min_io_size; 577 c->max_write_shift = c->min_io_shift; 578 } 579 } 580 581 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 582 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 583 584 /* 585 * Initialize node length ranges which are mostly needed for node 586 * length validation. 587 */ 588 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 589 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 590 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 591 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 592 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 593 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 594 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 595 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 596 UBIFS_MAX_HMAC_LEN; 597 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ; 598 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ; 599 600 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 601 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 602 c->ranges[UBIFS_ORPH_NODE].min_len = 603 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 604 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 605 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 606 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 607 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 608 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 609 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 610 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 611 /* 612 * Minimum indexing node size is amended later when superblock is 613 * read and the key length is known. 614 */ 615 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 616 /* 617 * Maximum indexing node size is amended later when superblock is 618 * read and the fanout is known. 619 */ 620 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 621 622 /* 623 * Initialize dead and dark LEB space watermarks. See gc.c for comments 624 * about these values. 625 */ 626 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 627 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 628 629 /* 630 * Calculate how many bytes would be wasted at the end of LEB if it was 631 * fully filled with data nodes of maximum size. This is used in 632 * calculations when reporting free space. 633 */ 634 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 635 636 /* Buffer size for bulk-reads */ 637 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 638 if (c->max_bu_buf_len > c->leb_size) 639 c->max_bu_buf_len = c->leb_size; 640 641 /* Log is ready, preserve one LEB for commits. */ 642 c->min_log_bytes = c->leb_size; 643 644 return 0; 645 } 646 647 /** 648 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 649 * @c: UBIFS file-system description object 650 * @lnum: LEB the write-buffer was synchronized to 651 * @free: how many free bytes left in this LEB 652 * @pad: how many bytes were padded 653 * 654 * This is a callback function which is called by the I/O unit when the 655 * write-buffer is synchronized. We need this to correctly maintain space 656 * accounting in bud logical eraseblocks. This function returns zero in case of 657 * success and a negative error code in case of failure. 658 * 659 * This function actually belongs to the journal, but we keep it here because 660 * we want to keep it static. 661 */ 662 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 663 { 664 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 665 } 666 667 /* 668 * init_constants_sb - initialize UBIFS constants. 669 * @c: UBIFS file-system description object 670 * 671 * This is a helper function which initializes various UBIFS constants after 672 * the superblock has been read. It also checks various UBIFS parameters and 673 * makes sure they are all right. Returns zero in case of success and a 674 * negative error code in case of failure. 675 */ 676 static int init_constants_sb(struct ubifs_info *c) 677 { 678 int tmp, err; 679 long long tmp64; 680 681 c->main_bytes = (long long)c->main_lebs * c->leb_size; 682 c->max_znode_sz = sizeof(struct ubifs_znode) + 683 c->fanout * sizeof(struct ubifs_zbranch); 684 685 tmp = ubifs_idx_node_sz(c, 1); 686 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 687 c->min_idx_node_sz = ALIGN(tmp, 8); 688 689 tmp = ubifs_idx_node_sz(c, c->fanout); 690 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 691 c->max_idx_node_sz = ALIGN(tmp, 8); 692 693 /* Make sure LEB size is large enough to fit full commit */ 694 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 695 tmp = ALIGN(tmp, c->min_io_size); 696 if (tmp > c->leb_size) { 697 ubifs_err(c, "too small LEB size %d, at least %d needed", 698 c->leb_size, tmp); 699 return -EINVAL; 700 } 701 702 /* 703 * Make sure that the log is large enough to fit reference nodes for 704 * all buds plus one reserved LEB. 705 */ 706 tmp64 = c->max_bud_bytes + c->leb_size - 1; 707 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 708 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 709 tmp /= c->leb_size; 710 tmp += 1; 711 if (c->log_lebs < tmp) { 712 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 713 c->log_lebs, tmp); 714 return -EINVAL; 715 } 716 717 /* 718 * When budgeting we assume worst-case scenarios when the pages are not 719 * be compressed and direntries are of the maximum size. 720 * 721 * Note, data, which may be stored in inodes is budgeted separately, so 722 * it is not included into 'c->bi.inode_budget'. 723 */ 724 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 725 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 726 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 727 728 /* 729 * When the amount of flash space used by buds becomes 730 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 731 * The writers are unblocked when the commit is finished. To avoid 732 * writers to be blocked UBIFS initiates background commit in advance, 733 * when number of bud bytes becomes above the limit defined below. 734 */ 735 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 736 737 /* 738 * Ensure minimum journal size. All the bytes in the journal heads are 739 * considered to be used, when calculating the current journal usage. 740 * Consequently, if the journal is too small, UBIFS will treat it as 741 * always full. 742 */ 743 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 744 if (c->bg_bud_bytes < tmp64) 745 c->bg_bud_bytes = tmp64; 746 if (c->max_bud_bytes < tmp64 + c->leb_size) 747 c->max_bud_bytes = tmp64 + c->leb_size; 748 749 err = ubifs_calc_lpt_geom(c); 750 if (err) 751 return err; 752 753 /* Initialize effective LEB size used in budgeting calculations */ 754 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 755 return 0; 756 } 757 758 /* 759 * init_constants_master - initialize UBIFS constants. 760 * @c: UBIFS file-system description object 761 * 762 * This is a helper function which initializes various UBIFS constants after 763 * the master node has been read. It also checks various UBIFS parameters and 764 * makes sure they are all right. 765 */ 766 static void init_constants_master(struct ubifs_info *c) 767 { 768 long long tmp64; 769 770 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 771 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 772 773 /* 774 * Calculate total amount of FS blocks. This number is not used 775 * internally because it does not make much sense for UBIFS, but it is 776 * necessary to report something for the 'statfs()' call. 777 * 778 * Subtract the LEB reserved for GC, the LEB which is reserved for 779 * deletions, minimum LEBs for the index, and assume only one journal 780 * head is available. 781 */ 782 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 783 tmp64 *= (long long)c->leb_size - c->leb_overhead; 784 tmp64 = ubifs_reported_space(c, tmp64); 785 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 786 } 787 788 /** 789 * take_gc_lnum - reserve GC LEB. 790 * @c: UBIFS file-system description object 791 * 792 * This function ensures that the LEB reserved for garbage collection is marked 793 * as "taken" in lprops. We also have to set free space to LEB size and dirty 794 * space to zero, because lprops may contain out-of-date information if the 795 * file-system was un-mounted before it has been committed. This function 796 * returns zero in case of success and a negative error code in case of 797 * failure. 798 */ 799 static int take_gc_lnum(struct ubifs_info *c) 800 { 801 int err; 802 803 if (c->gc_lnum == -1) { 804 ubifs_err(c, "no LEB for GC"); 805 return -EINVAL; 806 } 807 808 /* And we have to tell lprops that this LEB is taken */ 809 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 810 LPROPS_TAKEN, 0, 0); 811 return err; 812 } 813 814 /** 815 * alloc_wbufs - allocate write-buffers. 816 * @c: UBIFS file-system description object 817 * 818 * This helper function allocates and initializes UBIFS write-buffers. Returns 819 * zero in case of success and %-ENOMEM in case of failure. 820 */ 821 static int alloc_wbufs(struct ubifs_info *c) 822 { 823 int i, err; 824 825 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 826 GFP_KERNEL); 827 if (!c->jheads) 828 return -ENOMEM; 829 830 /* Initialize journal heads */ 831 for (i = 0; i < c->jhead_cnt; i++) { 832 INIT_LIST_HEAD(&c->jheads[i].buds_list); 833 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 834 if (err) 835 return err; 836 837 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 838 c->jheads[i].wbuf.jhead = i; 839 c->jheads[i].grouped = 1; 840 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 841 if (IS_ERR(c->jheads[i].log_hash)) 842 goto out; 843 } 844 845 /* 846 * Garbage Collector head does not need to be synchronized by timer. 847 * Also GC head nodes are not grouped. 848 */ 849 c->jheads[GCHD].wbuf.no_timer = 1; 850 c->jheads[GCHD].grouped = 0; 851 852 return 0; 853 854 out: 855 while (i--) 856 kfree(c->jheads[i].log_hash); 857 858 return err; 859 } 860 861 /** 862 * free_wbufs - free write-buffers. 863 * @c: UBIFS file-system description object 864 */ 865 static void free_wbufs(struct ubifs_info *c) 866 { 867 int i; 868 869 if (c->jheads) { 870 for (i = 0; i < c->jhead_cnt; i++) { 871 kfree(c->jheads[i].wbuf.buf); 872 kfree(c->jheads[i].wbuf.inodes); 873 kfree(c->jheads[i].log_hash); 874 } 875 kfree(c->jheads); 876 c->jheads = NULL; 877 } 878 } 879 880 /** 881 * free_orphans - free orphans. 882 * @c: UBIFS file-system description object 883 */ 884 static void free_orphans(struct ubifs_info *c) 885 { 886 struct ubifs_orphan *orph; 887 888 while (c->orph_dnext) { 889 orph = c->orph_dnext; 890 c->orph_dnext = orph->dnext; 891 list_del(&orph->list); 892 kfree(orph); 893 } 894 895 while (!list_empty(&c->orph_list)) { 896 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 897 list_del(&orph->list); 898 kfree(orph); 899 ubifs_err(c, "orphan list not empty at unmount"); 900 } 901 902 vfree(c->orph_buf); 903 c->orph_buf = NULL; 904 } 905 906 /** 907 * free_buds - free per-bud objects. 908 * @c: UBIFS file-system description object 909 */ 910 static void free_buds(struct ubifs_info *c) 911 { 912 struct ubifs_bud *bud, *n; 913 914 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 915 kfree(bud); 916 } 917 918 /** 919 * check_volume_empty - check if the UBI volume is empty. 920 * @c: UBIFS file-system description object 921 * 922 * This function checks if the UBIFS volume is empty by looking if its LEBs are 923 * mapped or not. The result of checking is stored in the @c->empty variable. 924 * Returns zero in case of success and a negative error code in case of 925 * failure. 926 */ 927 static int check_volume_empty(struct ubifs_info *c) 928 { 929 int lnum, err; 930 931 c->empty = 1; 932 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 933 err = ubifs_is_mapped(c, lnum); 934 if (unlikely(err < 0)) 935 return err; 936 if (err == 1) { 937 c->empty = 0; 938 break; 939 } 940 941 cond_resched(); 942 } 943 944 return 0; 945 } 946 947 /* 948 * UBIFS mount options. 949 * 950 * Opt_fast_unmount: do not run a journal commit before un-mounting 951 * Opt_norm_unmount: run a journal commit before un-mounting 952 * Opt_bulk_read: enable bulk-reads 953 * Opt_no_bulk_read: disable bulk-reads 954 * Opt_chk_data_crc: check CRCs when reading data nodes 955 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 956 * Opt_override_compr: override default compressor 957 * Opt_assert: set ubifs_assert() action 958 * Opt_auth_key: The key name used for authentication 959 * Opt_auth_hash_name: The hash type used for authentication 960 * Opt_err: just end of array marker 961 */ 962 enum { 963 Opt_fast_unmount, 964 Opt_norm_unmount, 965 Opt_bulk_read, 966 Opt_no_bulk_read, 967 Opt_chk_data_crc, 968 Opt_no_chk_data_crc, 969 Opt_override_compr, 970 Opt_assert, 971 Opt_auth_key, 972 Opt_auth_hash_name, 973 Opt_ignore, 974 Opt_err, 975 }; 976 977 static const match_table_t tokens = { 978 {Opt_fast_unmount, "fast_unmount"}, 979 {Opt_norm_unmount, "norm_unmount"}, 980 {Opt_bulk_read, "bulk_read"}, 981 {Opt_no_bulk_read, "no_bulk_read"}, 982 {Opt_chk_data_crc, "chk_data_crc"}, 983 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 984 {Opt_override_compr, "compr=%s"}, 985 {Opt_auth_key, "auth_key=%s"}, 986 {Opt_auth_hash_name, "auth_hash_name=%s"}, 987 {Opt_ignore, "ubi=%s"}, 988 {Opt_ignore, "vol=%s"}, 989 {Opt_assert, "assert=%s"}, 990 {Opt_err, NULL}, 991 }; 992 993 /** 994 * parse_standard_option - parse a standard mount option. 995 * @option: the option to parse 996 * 997 * Normally, standard mount options like "sync" are passed to file-systems as 998 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 999 * be present in the options string. This function tries to deal with this 1000 * situation and parse standard options. Returns 0 if the option was not 1001 * recognized, and the corresponding integer flag if it was. 1002 * 1003 * UBIFS is only interested in the "sync" option, so do not check for anything 1004 * else. 1005 */ 1006 static int parse_standard_option(const char *option) 1007 { 1008 1009 pr_notice("UBIFS: parse %s\n", option); 1010 if (!strcmp(option, "sync")) 1011 return SB_SYNCHRONOUS; 1012 return 0; 1013 } 1014 1015 /** 1016 * ubifs_parse_options - parse mount parameters. 1017 * @c: UBIFS file-system description object 1018 * @options: parameters to parse 1019 * @is_remount: non-zero if this is FS re-mount 1020 * 1021 * This function parses UBIFS mount options and returns zero in case success 1022 * and a negative error code in case of failure. 1023 */ 1024 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1025 int is_remount) 1026 { 1027 char *p; 1028 substring_t args[MAX_OPT_ARGS]; 1029 1030 if (!options) 1031 return 0; 1032 1033 while ((p = strsep(&options, ","))) { 1034 int token; 1035 1036 if (!*p) 1037 continue; 1038 1039 token = match_token(p, tokens, args); 1040 switch (token) { 1041 /* 1042 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1043 * We accept them in order to be backward-compatible. But this 1044 * should be removed at some point. 1045 */ 1046 case Opt_fast_unmount: 1047 c->mount_opts.unmount_mode = 2; 1048 break; 1049 case Opt_norm_unmount: 1050 c->mount_opts.unmount_mode = 1; 1051 break; 1052 case Opt_bulk_read: 1053 c->mount_opts.bulk_read = 2; 1054 c->bulk_read = 1; 1055 break; 1056 case Opt_no_bulk_read: 1057 c->mount_opts.bulk_read = 1; 1058 c->bulk_read = 0; 1059 break; 1060 case Opt_chk_data_crc: 1061 c->mount_opts.chk_data_crc = 2; 1062 c->no_chk_data_crc = 0; 1063 break; 1064 case Opt_no_chk_data_crc: 1065 c->mount_opts.chk_data_crc = 1; 1066 c->no_chk_data_crc = 1; 1067 break; 1068 case Opt_override_compr: 1069 { 1070 char *name = match_strdup(&args[0]); 1071 1072 if (!name) 1073 return -ENOMEM; 1074 if (!strcmp(name, "none")) 1075 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1076 else if (!strcmp(name, "lzo")) 1077 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1078 else if (!strcmp(name, "zlib")) 1079 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1080 else if (!strcmp(name, "zstd")) 1081 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD; 1082 else { 1083 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1084 kfree(name); 1085 return -EINVAL; 1086 } 1087 kfree(name); 1088 c->mount_opts.override_compr = 1; 1089 c->default_compr = c->mount_opts.compr_type; 1090 break; 1091 } 1092 case Opt_assert: 1093 { 1094 char *act = match_strdup(&args[0]); 1095 1096 if (!act) 1097 return -ENOMEM; 1098 if (!strcmp(act, "report")) 1099 c->assert_action = ASSACT_REPORT; 1100 else if (!strcmp(act, "read-only")) 1101 c->assert_action = ASSACT_RO; 1102 else if (!strcmp(act, "panic")) 1103 c->assert_action = ASSACT_PANIC; 1104 else { 1105 ubifs_err(c, "unknown assert action \"%s\"", act); 1106 kfree(act); 1107 return -EINVAL; 1108 } 1109 kfree(act); 1110 break; 1111 } 1112 case Opt_auth_key: 1113 if (!is_remount) { 1114 c->auth_key_name = kstrdup(args[0].from, 1115 GFP_KERNEL); 1116 if (!c->auth_key_name) 1117 return -ENOMEM; 1118 } 1119 break; 1120 case Opt_auth_hash_name: 1121 if (!is_remount) { 1122 c->auth_hash_name = kstrdup(args[0].from, 1123 GFP_KERNEL); 1124 if (!c->auth_hash_name) 1125 return -ENOMEM; 1126 } 1127 break; 1128 case Opt_ignore: 1129 break; 1130 default: 1131 { 1132 unsigned long flag; 1133 struct super_block *sb = c->vfs_sb; 1134 1135 flag = parse_standard_option(p); 1136 if (!flag) { 1137 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1138 p); 1139 return -EINVAL; 1140 } 1141 sb->s_flags |= flag; 1142 break; 1143 } 1144 } 1145 } 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * ubifs_release_options - release mount parameters which have been dumped. 1152 * @c: UBIFS file-system description object 1153 */ 1154 static void ubifs_release_options(struct ubifs_info *c) 1155 { 1156 kfree(c->auth_key_name); 1157 c->auth_key_name = NULL; 1158 kfree(c->auth_hash_name); 1159 c->auth_hash_name = NULL; 1160 } 1161 1162 /** 1163 * destroy_journal - destroy journal data structures. 1164 * @c: UBIFS file-system description object 1165 * 1166 * This function destroys journal data structures including those that may have 1167 * been created by recovery functions. 1168 */ 1169 static void destroy_journal(struct ubifs_info *c) 1170 { 1171 while (!list_empty(&c->unclean_leb_list)) { 1172 struct ubifs_unclean_leb *ucleb; 1173 1174 ucleb = list_entry(c->unclean_leb_list.next, 1175 struct ubifs_unclean_leb, list); 1176 list_del(&ucleb->list); 1177 kfree(ucleb); 1178 } 1179 while (!list_empty(&c->old_buds)) { 1180 struct ubifs_bud *bud; 1181 1182 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1183 list_del(&bud->list); 1184 kfree(bud); 1185 } 1186 ubifs_destroy_idx_gc(c); 1187 ubifs_destroy_size_tree(c); 1188 ubifs_tnc_close(c); 1189 free_buds(c); 1190 } 1191 1192 /** 1193 * bu_init - initialize bulk-read information. 1194 * @c: UBIFS file-system description object 1195 */ 1196 static void bu_init(struct ubifs_info *c) 1197 { 1198 ubifs_assert(c, c->bulk_read == 1); 1199 1200 if (c->bu.buf) 1201 return; /* Already initialized */ 1202 1203 again: 1204 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1205 if (!c->bu.buf) { 1206 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1207 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1208 goto again; 1209 } 1210 1211 /* Just disable bulk-read */ 1212 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1213 c->max_bu_buf_len); 1214 c->mount_opts.bulk_read = 1; 1215 c->bulk_read = 0; 1216 return; 1217 } 1218 } 1219 1220 /** 1221 * check_free_space - check if there is enough free space to mount. 1222 * @c: UBIFS file-system description object 1223 * 1224 * This function makes sure UBIFS has enough free space to be mounted in 1225 * read/write mode. UBIFS must always have some free space to allow deletions. 1226 */ 1227 static int check_free_space(struct ubifs_info *c) 1228 { 1229 ubifs_assert(c, c->dark_wm > 0); 1230 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1231 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1232 ubifs_dump_budg(c, &c->bi); 1233 ubifs_dump_lprops(c); 1234 return -ENOSPC; 1235 } 1236 return 0; 1237 } 1238 1239 /** 1240 * mount_ubifs - mount UBIFS file-system. 1241 * @c: UBIFS file-system description object 1242 * 1243 * This function mounts UBIFS file system. Returns zero in case of success and 1244 * a negative error code in case of failure. 1245 */ 1246 static int mount_ubifs(struct ubifs_info *c) 1247 { 1248 int err; 1249 long long x, y; 1250 size_t sz; 1251 1252 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1253 /* Suppress error messages while probing if SB_SILENT is set */ 1254 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1255 1256 err = init_constants_early(c); 1257 if (err) 1258 return err; 1259 1260 err = ubifs_debugging_init(c); 1261 if (err) 1262 return err; 1263 1264 err = check_volume_empty(c); 1265 if (err) 1266 goto out_free; 1267 1268 if (c->empty && (c->ro_mount || c->ro_media)) { 1269 /* 1270 * This UBI volume is empty, and read-only, or the file system 1271 * is mounted read-only - we cannot format it. 1272 */ 1273 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1274 c->ro_media ? "UBI volume" : "mount"); 1275 err = -EROFS; 1276 goto out_free; 1277 } 1278 1279 if (c->ro_media && !c->ro_mount) { 1280 ubifs_err(c, "cannot mount read-write - read-only media"); 1281 err = -EROFS; 1282 goto out_free; 1283 } 1284 1285 /* 1286 * The requirement for the buffer is that it should fit indexing B-tree 1287 * height amount of integers. We assume the height if the TNC tree will 1288 * never exceed 64. 1289 */ 1290 err = -ENOMEM; 1291 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1292 GFP_KERNEL); 1293 if (!c->bottom_up_buf) 1294 goto out_free; 1295 1296 c->sbuf = vmalloc(c->leb_size); 1297 if (!c->sbuf) 1298 goto out_free; 1299 1300 if (!c->ro_mount) { 1301 c->ileb_buf = vmalloc(c->leb_size); 1302 if (!c->ileb_buf) 1303 goto out_free; 1304 } 1305 1306 if (c->bulk_read == 1) 1307 bu_init(c); 1308 1309 if (!c->ro_mount) { 1310 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1311 UBIFS_CIPHER_BLOCK_SIZE, 1312 GFP_KERNEL); 1313 if (!c->write_reserve_buf) 1314 goto out_free; 1315 } 1316 1317 c->mounting = 1; 1318 1319 if (c->auth_key_name) { 1320 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1321 err = ubifs_init_authentication(c); 1322 if (err) 1323 goto out_free; 1324 } else { 1325 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1326 " authentication support"); 1327 err = -EINVAL; 1328 goto out_free; 1329 } 1330 } 1331 1332 err = ubifs_read_superblock(c); 1333 if (err) 1334 goto out_auth; 1335 1336 c->probing = 0; 1337 1338 /* 1339 * Make sure the compressor which is set as default in the superblock 1340 * or overridden by mount options is actually compiled in. 1341 */ 1342 if (!ubifs_compr_present(c, c->default_compr)) { 1343 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1344 ubifs_compr_name(c, c->default_compr)); 1345 err = -ENOTSUPP; 1346 goto out_auth; 1347 } 1348 1349 err = init_constants_sb(c); 1350 if (err) 1351 goto out_auth; 1352 1353 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2; 1354 c->cbuf = kmalloc(sz, GFP_NOFS); 1355 if (!c->cbuf) { 1356 err = -ENOMEM; 1357 goto out_auth; 1358 } 1359 1360 err = alloc_wbufs(c); 1361 if (err) 1362 goto out_cbuf; 1363 1364 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1365 if (!c->ro_mount) { 1366 /* Create background thread */ 1367 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1368 if (IS_ERR(c->bgt)) { 1369 err = PTR_ERR(c->bgt); 1370 c->bgt = NULL; 1371 ubifs_err(c, "cannot spawn \"%s\", error %d", 1372 c->bgt_name, err); 1373 goto out_wbufs; 1374 } 1375 wake_up_process(c->bgt); 1376 } 1377 1378 err = ubifs_read_master(c); 1379 if (err) 1380 goto out_master; 1381 1382 init_constants_master(c); 1383 1384 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1385 ubifs_msg(c, "recovery needed"); 1386 c->need_recovery = 1; 1387 } 1388 1389 if (c->need_recovery && !c->ro_mount) { 1390 err = ubifs_recover_inl_heads(c, c->sbuf); 1391 if (err) 1392 goto out_master; 1393 } 1394 1395 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1396 if (err) 1397 goto out_master; 1398 1399 if (!c->ro_mount && c->space_fixup) { 1400 err = ubifs_fixup_free_space(c); 1401 if (err) 1402 goto out_lpt; 1403 } 1404 1405 if (!c->ro_mount && !c->need_recovery) { 1406 /* 1407 * Set the "dirty" flag so that if we reboot uncleanly we 1408 * will notice this immediately on the next mount. 1409 */ 1410 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1411 err = ubifs_write_master(c); 1412 if (err) 1413 goto out_lpt; 1414 } 1415 1416 /* 1417 * Handle offline signed images: Now that the master node is 1418 * written and its validation no longer depends on the hash 1419 * in the superblock, we can update the offline signed 1420 * superblock with a HMAC version, 1421 */ 1422 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) { 1423 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm); 1424 if (err) 1425 goto out_lpt; 1426 c->superblock_need_write = 1; 1427 } 1428 1429 if (!c->ro_mount && c->superblock_need_write) { 1430 err = ubifs_write_sb_node(c, c->sup_node); 1431 if (err) 1432 goto out_lpt; 1433 c->superblock_need_write = 0; 1434 } 1435 1436 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1437 if (err) 1438 goto out_lpt; 1439 1440 err = ubifs_replay_journal(c); 1441 if (err) 1442 goto out_journal; 1443 1444 /* Calculate 'min_idx_lebs' after journal replay */ 1445 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1446 1447 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1448 if (err) 1449 goto out_orphans; 1450 1451 if (!c->ro_mount) { 1452 int lnum; 1453 1454 err = check_free_space(c); 1455 if (err) 1456 goto out_orphans; 1457 1458 /* Check for enough log space */ 1459 lnum = c->lhead_lnum + 1; 1460 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1461 lnum = UBIFS_LOG_LNUM; 1462 if (lnum == c->ltail_lnum) { 1463 err = ubifs_consolidate_log(c); 1464 if (err) 1465 goto out_orphans; 1466 } 1467 1468 if (c->need_recovery) { 1469 if (!ubifs_authenticated(c)) { 1470 err = ubifs_recover_size(c, true); 1471 if (err) 1472 goto out_orphans; 1473 } 1474 1475 err = ubifs_rcvry_gc_commit(c); 1476 if (err) 1477 goto out_orphans; 1478 1479 if (ubifs_authenticated(c)) { 1480 err = ubifs_recover_size(c, false); 1481 if (err) 1482 goto out_orphans; 1483 } 1484 } else { 1485 err = take_gc_lnum(c); 1486 if (err) 1487 goto out_orphans; 1488 1489 /* 1490 * GC LEB may contain garbage if there was an unclean 1491 * reboot, and it should be un-mapped. 1492 */ 1493 err = ubifs_leb_unmap(c, c->gc_lnum); 1494 if (err) 1495 goto out_orphans; 1496 } 1497 1498 err = dbg_check_lprops(c); 1499 if (err) 1500 goto out_orphans; 1501 } else if (c->need_recovery) { 1502 err = ubifs_recover_size(c, false); 1503 if (err) 1504 goto out_orphans; 1505 } else { 1506 /* 1507 * Even if we mount read-only, we have to set space in GC LEB 1508 * to proper value because this affects UBIFS free space 1509 * reporting. We do not want to have a situation when 1510 * re-mounting from R/O to R/W changes amount of free space. 1511 */ 1512 err = take_gc_lnum(c); 1513 if (err) 1514 goto out_orphans; 1515 } 1516 1517 spin_lock(&ubifs_infos_lock); 1518 list_add_tail(&c->infos_list, &ubifs_infos); 1519 spin_unlock(&ubifs_infos_lock); 1520 1521 if (c->need_recovery) { 1522 if (c->ro_mount) 1523 ubifs_msg(c, "recovery deferred"); 1524 else { 1525 c->need_recovery = 0; 1526 ubifs_msg(c, "recovery completed"); 1527 /* 1528 * GC LEB has to be empty and taken at this point. But 1529 * the journal head LEBs may also be accounted as 1530 * "empty taken" if they are empty. 1531 */ 1532 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1533 } 1534 } else 1535 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1536 1537 err = dbg_check_filesystem(c); 1538 if (err) 1539 goto out_infos; 1540 1541 dbg_debugfs_init_fs(c); 1542 1543 c->mounting = 0; 1544 1545 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1546 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1547 c->ro_mount ? ", R/O mode" : ""); 1548 x = (long long)c->main_lebs * c->leb_size; 1549 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1550 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1551 c->leb_size, c->leb_size >> 10, c->min_io_size, 1552 c->max_write_size); 1553 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1554 x, x >> 20, c->main_lebs, 1555 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1556 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1557 c->report_rp_size, c->report_rp_size >> 10); 1558 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1559 c->fmt_version, c->ro_compat_version, 1560 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1561 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1562 1563 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1564 dbg_gen("data journal heads: %d", 1565 c->jhead_cnt - NONDATA_JHEADS_CNT); 1566 dbg_gen("log LEBs: %d (%d - %d)", 1567 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1568 dbg_gen("LPT area LEBs: %d (%d - %d)", 1569 c->lpt_lebs, c->lpt_first, c->lpt_last); 1570 dbg_gen("orphan area LEBs: %d (%d - %d)", 1571 c->orph_lebs, c->orph_first, c->orph_last); 1572 dbg_gen("main area LEBs: %d (%d - %d)", 1573 c->main_lebs, c->main_first, c->leb_cnt - 1); 1574 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1575 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)", 1576 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1577 c->bi.old_idx_sz >> 20); 1578 dbg_gen("key hash type: %d", c->key_hash_type); 1579 dbg_gen("tree fanout: %d", c->fanout); 1580 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1581 dbg_gen("max. znode size %d", c->max_znode_sz); 1582 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1583 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1584 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1585 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1586 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1587 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1588 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1589 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1590 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1591 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1592 dbg_gen("dead watermark: %d", c->dead_wm); 1593 dbg_gen("dark watermark: %d", c->dark_wm); 1594 dbg_gen("LEB overhead: %d", c->leb_overhead); 1595 x = (long long)c->main_lebs * c->dark_wm; 1596 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1597 x, x >> 10, x >> 20); 1598 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1599 c->max_bud_bytes, c->max_bud_bytes >> 10, 1600 c->max_bud_bytes >> 20); 1601 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1602 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1603 c->bg_bud_bytes >> 20); 1604 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1605 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1606 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1607 dbg_gen("commit number: %llu", c->cmt_no); 1608 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c)); 1609 dbg_gen("max orphans: %d", c->max_orphans); 1610 1611 return 0; 1612 1613 out_infos: 1614 spin_lock(&ubifs_infos_lock); 1615 list_del(&c->infos_list); 1616 spin_unlock(&ubifs_infos_lock); 1617 out_orphans: 1618 free_orphans(c); 1619 out_journal: 1620 destroy_journal(c); 1621 out_lpt: 1622 ubifs_lpt_free(c, 0); 1623 out_master: 1624 kfree(c->mst_node); 1625 kfree(c->rcvrd_mst_node); 1626 if (c->bgt) 1627 kthread_stop(c->bgt); 1628 out_wbufs: 1629 free_wbufs(c); 1630 out_cbuf: 1631 kfree(c->cbuf); 1632 out_auth: 1633 ubifs_exit_authentication(c); 1634 out_free: 1635 kfree(c->write_reserve_buf); 1636 kfree(c->bu.buf); 1637 vfree(c->ileb_buf); 1638 vfree(c->sbuf); 1639 kfree(c->bottom_up_buf); 1640 kfree(c->sup_node); 1641 ubifs_debugging_exit(c); 1642 return err; 1643 } 1644 1645 /** 1646 * ubifs_umount - un-mount UBIFS file-system. 1647 * @c: UBIFS file-system description object 1648 * 1649 * Note, this function is called to free allocated resourced when un-mounting, 1650 * as well as free resources when an error occurred while we were half way 1651 * through mounting (error path cleanup function). So it has to make sure the 1652 * resource was actually allocated before freeing it. 1653 */ 1654 static void ubifs_umount(struct ubifs_info *c) 1655 { 1656 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1657 c->vi.vol_id); 1658 1659 dbg_debugfs_exit_fs(c); 1660 spin_lock(&ubifs_infos_lock); 1661 list_del(&c->infos_list); 1662 spin_unlock(&ubifs_infos_lock); 1663 1664 if (c->bgt) 1665 kthread_stop(c->bgt); 1666 1667 destroy_journal(c); 1668 free_wbufs(c); 1669 free_orphans(c); 1670 ubifs_lpt_free(c, 0); 1671 ubifs_exit_authentication(c); 1672 1673 ubifs_release_options(c); 1674 kfree(c->cbuf); 1675 kfree(c->rcvrd_mst_node); 1676 kfree(c->mst_node); 1677 kfree(c->write_reserve_buf); 1678 kfree(c->bu.buf); 1679 vfree(c->ileb_buf); 1680 vfree(c->sbuf); 1681 kfree(c->bottom_up_buf); 1682 kfree(c->sup_node); 1683 ubifs_debugging_exit(c); 1684 } 1685 1686 /** 1687 * ubifs_remount_rw - re-mount in read-write mode. 1688 * @c: UBIFS file-system description object 1689 * 1690 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1691 * mode. This function allocates the needed resources and re-mounts UBIFS in 1692 * read-write mode. 1693 */ 1694 static int ubifs_remount_rw(struct ubifs_info *c) 1695 { 1696 int err, lnum; 1697 1698 if (c->rw_incompat) { 1699 ubifs_err(c, "the file-system is not R/W-compatible"); 1700 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1701 c->fmt_version, c->ro_compat_version, 1702 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1703 return -EROFS; 1704 } 1705 1706 mutex_lock(&c->umount_mutex); 1707 dbg_save_space_info(c); 1708 c->remounting_rw = 1; 1709 c->ro_mount = 0; 1710 1711 if (c->space_fixup) { 1712 err = ubifs_fixup_free_space(c); 1713 if (err) 1714 goto out; 1715 } 1716 1717 err = check_free_space(c); 1718 if (err) 1719 goto out; 1720 1721 if (c->need_recovery) { 1722 ubifs_msg(c, "completing deferred recovery"); 1723 err = ubifs_write_rcvrd_mst_node(c); 1724 if (err) 1725 goto out; 1726 if (!ubifs_authenticated(c)) { 1727 err = ubifs_recover_size(c, true); 1728 if (err) 1729 goto out; 1730 } 1731 err = ubifs_clean_lebs(c, c->sbuf); 1732 if (err) 1733 goto out; 1734 err = ubifs_recover_inl_heads(c, c->sbuf); 1735 if (err) 1736 goto out; 1737 } else { 1738 /* A readonly mount is not allowed to have orphans */ 1739 ubifs_assert(c, c->tot_orphans == 0); 1740 err = ubifs_clear_orphans(c); 1741 if (err) 1742 goto out; 1743 } 1744 1745 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1746 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1747 err = ubifs_write_master(c); 1748 if (err) 1749 goto out; 1750 } 1751 1752 if (c->superblock_need_write) { 1753 struct ubifs_sb_node *sup = c->sup_node; 1754 1755 err = ubifs_write_sb_node(c, sup); 1756 if (err) 1757 goto out; 1758 1759 c->superblock_need_write = 0; 1760 } 1761 1762 c->ileb_buf = vmalloc(c->leb_size); 1763 if (!c->ileb_buf) { 1764 err = -ENOMEM; 1765 goto out; 1766 } 1767 1768 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1769 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1770 if (!c->write_reserve_buf) { 1771 err = -ENOMEM; 1772 goto out; 1773 } 1774 1775 err = ubifs_lpt_init(c, 0, 1); 1776 if (err) 1777 goto out; 1778 1779 /* Create background thread */ 1780 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1781 if (IS_ERR(c->bgt)) { 1782 err = PTR_ERR(c->bgt); 1783 c->bgt = NULL; 1784 ubifs_err(c, "cannot spawn \"%s\", error %d", 1785 c->bgt_name, err); 1786 goto out; 1787 } 1788 wake_up_process(c->bgt); 1789 1790 c->orph_buf = vmalloc(c->leb_size); 1791 if (!c->orph_buf) { 1792 err = -ENOMEM; 1793 goto out; 1794 } 1795 1796 /* Check for enough log space */ 1797 lnum = c->lhead_lnum + 1; 1798 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1799 lnum = UBIFS_LOG_LNUM; 1800 if (lnum == c->ltail_lnum) { 1801 err = ubifs_consolidate_log(c); 1802 if (err) 1803 goto out; 1804 } 1805 1806 if (c->need_recovery) { 1807 err = ubifs_rcvry_gc_commit(c); 1808 if (err) 1809 goto out; 1810 1811 if (ubifs_authenticated(c)) { 1812 err = ubifs_recover_size(c, false); 1813 if (err) 1814 goto out; 1815 } 1816 } else { 1817 err = ubifs_leb_unmap(c, c->gc_lnum); 1818 } 1819 if (err) 1820 goto out; 1821 1822 dbg_gen("re-mounted read-write"); 1823 c->remounting_rw = 0; 1824 1825 if (c->need_recovery) { 1826 c->need_recovery = 0; 1827 ubifs_msg(c, "deferred recovery completed"); 1828 } else { 1829 /* 1830 * Do not run the debugging space check if the were doing 1831 * recovery, because when we saved the information we had the 1832 * file-system in a state where the TNC and lprops has been 1833 * modified in memory, but all the I/O operations (including a 1834 * commit) were deferred. So the file-system was in 1835 * "non-committed" state. Now the file-system is in committed 1836 * state, and of course the amount of free space will change 1837 * because, for example, the old index size was imprecise. 1838 */ 1839 err = dbg_check_space_info(c); 1840 } 1841 1842 mutex_unlock(&c->umount_mutex); 1843 return err; 1844 1845 out: 1846 c->ro_mount = 1; 1847 vfree(c->orph_buf); 1848 c->orph_buf = NULL; 1849 if (c->bgt) { 1850 kthread_stop(c->bgt); 1851 c->bgt = NULL; 1852 } 1853 free_wbufs(c); 1854 kfree(c->write_reserve_buf); 1855 c->write_reserve_buf = NULL; 1856 vfree(c->ileb_buf); 1857 c->ileb_buf = NULL; 1858 ubifs_lpt_free(c, 1); 1859 c->remounting_rw = 0; 1860 mutex_unlock(&c->umount_mutex); 1861 return err; 1862 } 1863 1864 /** 1865 * ubifs_remount_ro - re-mount in read-only mode. 1866 * @c: UBIFS file-system description object 1867 * 1868 * We assume VFS has stopped writing. Possibly the background thread could be 1869 * running a commit, however kthread_stop will wait in that case. 1870 */ 1871 static void ubifs_remount_ro(struct ubifs_info *c) 1872 { 1873 int i, err; 1874 1875 ubifs_assert(c, !c->need_recovery); 1876 ubifs_assert(c, !c->ro_mount); 1877 1878 mutex_lock(&c->umount_mutex); 1879 if (c->bgt) { 1880 kthread_stop(c->bgt); 1881 c->bgt = NULL; 1882 } 1883 1884 dbg_save_space_info(c); 1885 1886 for (i = 0; i < c->jhead_cnt; i++) { 1887 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1888 if (err) 1889 ubifs_ro_mode(c, err); 1890 } 1891 1892 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1893 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1894 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1895 err = ubifs_write_master(c); 1896 if (err) 1897 ubifs_ro_mode(c, err); 1898 1899 vfree(c->orph_buf); 1900 c->orph_buf = NULL; 1901 kfree(c->write_reserve_buf); 1902 c->write_reserve_buf = NULL; 1903 vfree(c->ileb_buf); 1904 c->ileb_buf = NULL; 1905 ubifs_lpt_free(c, 1); 1906 c->ro_mount = 1; 1907 err = dbg_check_space_info(c); 1908 if (err) 1909 ubifs_ro_mode(c, err); 1910 mutex_unlock(&c->umount_mutex); 1911 } 1912 1913 static void ubifs_put_super(struct super_block *sb) 1914 { 1915 int i; 1916 struct ubifs_info *c = sb->s_fs_info; 1917 1918 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1919 1920 /* 1921 * The following asserts are only valid if there has not been a failure 1922 * of the media. For example, there will be dirty inodes if we failed 1923 * to write them back because of I/O errors. 1924 */ 1925 if (!c->ro_error) { 1926 ubifs_assert(c, c->bi.idx_growth == 0); 1927 ubifs_assert(c, c->bi.dd_growth == 0); 1928 ubifs_assert(c, c->bi.data_growth == 0); 1929 } 1930 1931 /* 1932 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1933 * and file system un-mount. Namely, it prevents the shrinker from 1934 * picking this superblock for shrinking - it will be just skipped if 1935 * the mutex is locked. 1936 */ 1937 mutex_lock(&c->umount_mutex); 1938 if (!c->ro_mount) { 1939 /* 1940 * First of all kill the background thread to make sure it does 1941 * not interfere with un-mounting and freeing resources. 1942 */ 1943 if (c->bgt) { 1944 kthread_stop(c->bgt); 1945 c->bgt = NULL; 1946 } 1947 1948 /* 1949 * On fatal errors c->ro_error is set to 1, in which case we do 1950 * not write the master node. 1951 */ 1952 if (!c->ro_error) { 1953 int err; 1954 1955 /* Synchronize write-buffers */ 1956 for (i = 0; i < c->jhead_cnt; i++) { 1957 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1958 if (err) 1959 ubifs_ro_mode(c, err); 1960 } 1961 1962 /* 1963 * We are being cleanly unmounted which means the 1964 * orphans were killed - indicate this in the master 1965 * node. Also save the reserved GC LEB number. 1966 */ 1967 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1968 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1969 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1970 err = ubifs_write_master(c); 1971 if (err) 1972 /* 1973 * Recovery will attempt to fix the master area 1974 * next mount, so we just print a message and 1975 * continue to unmount normally. 1976 */ 1977 ubifs_err(c, "failed to write master node, error %d", 1978 err); 1979 } else { 1980 for (i = 0; i < c->jhead_cnt; i++) 1981 /* Make sure write-buffer timers are canceled */ 1982 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1983 } 1984 } 1985 1986 ubifs_umount(c); 1987 ubi_close_volume(c->ubi); 1988 mutex_unlock(&c->umount_mutex); 1989 } 1990 1991 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1992 { 1993 int err; 1994 struct ubifs_info *c = sb->s_fs_info; 1995 1996 sync_filesystem(sb); 1997 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1998 1999 err = ubifs_parse_options(c, data, 1); 2000 if (err) { 2001 ubifs_err(c, "invalid or unknown remount parameter"); 2002 return err; 2003 } 2004 2005 if (c->ro_mount && !(*flags & SB_RDONLY)) { 2006 if (c->ro_error) { 2007 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 2008 return -EROFS; 2009 } 2010 if (c->ro_media) { 2011 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 2012 return -EROFS; 2013 } 2014 err = ubifs_remount_rw(c); 2015 if (err) 2016 return err; 2017 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 2018 if (c->ro_error) { 2019 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 2020 return -EROFS; 2021 } 2022 ubifs_remount_ro(c); 2023 } 2024 2025 if (c->bulk_read == 1) 2026 bu_init(c); 2027 else { 2028 dbg_gen("disable bulk-read"); 2029 mutex_lock(&c->bu_mutex); 2030 kfree(c->bu.buf); 2031 c->bu.buf = NULL; 2032 mutex_unlock(&c->bu_mutex); 2033 } 2034 2035 if (!c->need_recovery) 2036 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 2037 2038 return 0; 2039 } 2040 2041 const struct super_operations ubifs_super_operations = { 2042 .alloc_inode = ubifs_alloc_inode, 2043 .free_inode = ubifs_free_inode, 2044 .put_super = ubifs_put_super, 2045 .write_inode = ubifs_write_inode, 2046 .drop_inode = ubifs_drop_inode, 2047 .evict_inode = ubifs_evict_inode, 2048 .statfs = ubifs_statfs, 2049 .dirty_inode = ubifs_dirty_inode, 2050 .remount_fs = ubifs_remount_fs, 2051 .show_options = ubifs_show_options, 2052 .sync_fs = ubifs_sync_fs, 2053 }; 2054 2055 /** 2056 * open_ubi - parse UBI device name string and open the UBI device. 2057 * @name: UBI volume name 2058 * @mode: UBI volume open mode 2059 * 2060 * The primary method of mounting UBIFS is by specifying the UBI volume 2061 * character device node path. However, UBIFS may also be mounted withoug any 2062 * character device node using one of the following methods: 2063 * 2064 * o ubiX_Y - mount UBI device number X, volume Y; 2065 * o ubiY - mount UBI device number 0, volume Y; 2066 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2067 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2068 * 2069 * Alternative '!' separator may be used instead of ':' (because some shells 2070 * like busybox may interpret ':' as an NFS host name separator). This function 2071 * returns UBI volume description object in case of success and a negative 2072 * error code in case of failure. 2073 */ 2074 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2075 { 2076 struct ubi_volume_desc *ubi; 2077 int dev, vol; 2078 char *endptr; 2079 2080 if (!name || !*name) 2081 return ERR_PTR(-EINVAL); 2082 2083 /* First, try to open using the device node path method */ 2084 ubi = ubi_open_volume_path(name, mode); 2085 if (!IS_ERR(ubi)) 2086 return ubi; 2087 2088 /* Try the "nodev" method */ 2089 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2090 return ERR_PTR(-EINVAL); 2091 2092 /* ubi:NAME method */ 2093 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2094 return ubi_open_volume_nm(0, name + 4, mode); 2095 2096 if (!isdigit(name[3])) 2097 return ERR_PTR(-EINVAL); 2098 2099 dev = simple_strtoul(name + 3, &endptr, 0); 2100 2101 /* ubiY method */ 2102 if (*endptr == '\0') 2103 return ubi_open_volume(0, dev, mode); 2104 2105 /* ubiX_Y method */ 2106 if (*endptr == '_' && isdigit(endptr[1])) { 2107 vol = simple_strtoul(endptr + 1, &endptr, 0); 2108 if (*endptr != '\0') 2109 return ERR_PTR(-EINVAL); 2110 return ubi_open_volume(dev, vol, mode); 2111 } 2112 2113 /* ubiX:NAME method */ 2114 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2115 return ubi_open_volume_nm(dev, ++endptr, mode); 2116 2117 return ERR_PTR(-EINVAL); 2118 } 2119 2120 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2121 { 2122 struct ubifs_info *c; 2123 2124 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2125 if (c) { 2126 spin_lock_init(&c->cnt_lock); 2127 spin_lock_init(&c->cs_lock); 2128 spin_lock_init(&c->buds_lock); 2129 spin_lock_init(&c->space_lock); 2130 spin_lock_init(&c->orphan_lock); 2131 init_rwsem(&c->commit_sem); 2132 mutex_init(&c->lp_mutex); 2133 mutex_init(&c->tnc_mutex); 2134 mutex_init(&c->log_mutex); 2135 mutex_init(&c->umount_mutex); 2136 mutex_init(&c->bu_mutex); 2137 mutex_init(&c->write_reserve_mutex); 2138 init_waitqueue_head(&c->cmt_wq); 2139 c->buds = RB_ROOT; 2140 c->old_idx = RB_ROOT; 2141 c->size_tree = RB_ROOT; 2142 c->orph_tree = RB_ROOT; 2143 INIT_LIST_HEAD(&c->infos_list); 2144 INIT_LIST_HEAD(&c->idx_gc); 2145 INIT_LIST_HEAD(&c->replay_list); 2146 INIT_LIST_HEAD(&c->replay_buds); 2147 INIT_LIST_HEAD(&c->uncat_list); 2148 INIT_LIST_HEAD(&c->empty_list); 2149 INIT_LIST_HEAD(&c->freeable_list); 2150 INIT_LIST_HEAD(&c->frdi_idx_list); 2151 INIT_LIST_HEAD(&c->unclean_leb_list); 2152 INIT_LIST_HEAD(&c->old_buds); 2153 INIT_LIST_HEAD(&c->orph_list); 2154 INIT_LIST_HEAD(&c->orph_new); 2155 c->no_chk_data_crc = 1; 2156 c->assert_action = ASSACT_RO; 2157 2158 c->highest_inum = UBIFS_FIRST_INO; 2159 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2160 2161 ubi_get_volume_info(ubi, &c->vi); 2162 ubi_get_device_info(c->vi.ubi_num, &c->di); 2163 } 2164 return c; 2165 } 2166 2167 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2168 { 2169 struct ubifs_info *c = sb->s_fs_info; 2170 struct inode *root; 2171 int err; 2172 2173 c->vfs_sb = sb; 2174 /* Re-open the UBI device in read-write mode */ 2175 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2176 if (IS_ERR(c->ubi)) { 2177 err = PTR_ERR(c->ubi); 2178 goto out; 2179 } 2180 2181 err = ubifs_parse_options(c, data, 0); 2182 if (err) 2183 goto out_close; 2184 2185 /* 2186 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2187 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2188 * which means the user would have to wait not just for their own I/O 2189 * but the read-ahead I/O as well i.e. completely pointless. 2190 * 2191 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2192 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2193 * writeback happening. 2194 */ 2195 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2196 c->vi.vol_id); 2197 if (err) 2198 goto out_close; 2199 sb->s_bdi->ra_pages = 0; 2200 sb->s_bdi->io_pages = 0; 2201 2202 sb->s_fs_info = c; 2203 sb->s_magic = UBIFS_SUPER_MAGIC; 2204 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2205 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2206 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2207 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2208 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2209 sb->s_op = &ubifs_super_operations; 2210 sb->s_xattr = ubifs_xattr_handlers; 2211 fscrypt_set_ops(sb, &ubifs_crypt_operations); 2212 2213 mutex_lock(&c->umount_mutex); 2214 err = mount_ubifs(c); 2215 if (err) { 2216 ubifs_assert(c, err < 0); 2217 goto out_unlock; 2218 } 2219 2220 /* Read the root inode */ 2221 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2222 if (IS_ERR(root)) { 2223 err = PTR_ERR(root); 2224 goto out_umount; 2225 } 2226 2227 sb->s_root = d_make_root(root); 2228 if (!sb->s_root) { 2229 err = -ENOMEM; 2230 goto out_umount; 2231 } 2232 2233 mutex_unlock(&c->umount_mutex); 2234 return 0; 2235 2236 out_umount: 2237 ubifs_umount(c); 2238 out_unlock: 2239 mutex_unlock(&c->umount_mutex); 2240 out_close: 2241 ubifs_release_options(c); 2242 ubi_close_volume(c->ubi); 2243 out: 2244 return err; 2245 } 2246 2247 static int sb_test(struct super_block *sb, void *data) 2248 { 2249 struct ubifs_info *c1 = data; 2250 struct ubifs_info *c = sb->s_fs_info; 2251 2252 return c->vi.cdev == c1->vi.cdev; 2253 } 2254 2255 static int sb_set(struct super_block *sb, void *data) 2256 { 2257 sb->s_fs_info = data; 2258 return set_anon_super(sb, NULL); 2259 } 2260 2261 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2262 const char *name, void *data) 2263 { 2264 struct ubi_volume_desc *ubi; 2265 struct ubifs_info *c; 2266 struct super_block *sb; 2267 int err; 2268 2269 dbg_gen("name %s, flags %#x", name, flags); 2270 2271 /* 2272 * Get UBI device number and volume ID. Mount it read-only so far 2273 * because this might be a new mount point, and UBI allows only one 2274 * read-write user at a time. 2275 */ 2276 ubi = open_ubi(name, UBI_READONLY); 2277 if (IS_ERR(ubi)) { 2278 if (!(flags & SB_SILENT)) 2279 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2280 current->pid, name, (int)PTR_ERR(ubi)); 2281 return ERR_CAST(ubi); 2282 } 2283 2284 c = alloc_ubifs_info(ubi); 2285 if (!c) { 2286 err = -ENOMEM; 2287 goto out_close; 2288 } 2289 2290 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2291 2292 sb = sget(fs_type, sb_test, sb_set, flags, c); 2293 if (IS_ERR(sb)) { 2294 err = PTR_ERR(sb); 2295 kfree(c); 2296 goto out_close; 2297 } 2298 2299 if (sb->s_root) { 2300 struct ubifs_info *c1 = sb->s_fs_info; 2301 kfree(c); 2302 /* A new mount point for already mounted UBIFS */ 2303 dbg_gen("this ubi volume is already mounted"); 2304 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2305 err = -EBUSY; 2306 goto out_deact; 2307 } 2308 } else { 2309 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2310 if (err) 2311 goto out_deact; 2312 /* We do not support atime */ 2313 sb->s_flags |= SB_ACTIVE; 2314 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 2315 ubifs_msg(c, "full atime support is enabled."); 2316 else 2317 sb->s_flags |= SB_NOATIME; 2318 } 2319 2320 /* 'fill_super()' opens ubi again so we must close it here */ 2321 ubi_close_volume(ubi); 2322 2323 return dget(sb->s_root); 2324 2325 out_deact: 2326 deactivate_locked_super(sb); 2327 out_close: 2328 ubi_close_volume(ubi); 2329 return ERR_PTR(err); 2330 } 2331 2332 static void kill_ubifs_super(struct super_block *s) 2333 { 2334 struct ubifs_info *c = s->s_fs_info; 2335 kill_anon_super(s); 2336 kfree(c); 2337 } 2338 2339 static struct file_system_type ubifs_fs_type = { 2340 .name = "ubifs", 2341 .owner = THIS_MODULE, 2342 .mount = ubifs_mount, 2343 .kill_sb = kill_ubifs_super, 2344 }; 2345 MODULE_ALIAS_FS("ubifs"); 2346 2347 /* 2348 * Inode slab cache constructor. 2349 */ 2350 static void inode_slab_ctor(void *obj) 2351 { 2352 struct ubifs_inode *ui = obj; 2353 inode_init_once(&ui->vfs_inode); 2354 } 2355 2356 static int __init ubifs_init(void) 2357 { 2358 int err; 2359 2360 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2361 2362 /* Make sure node sizes are 8-byte aligned */ 2363 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2364 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2365 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2366 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2367 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2368 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2369 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2370 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2371 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2372 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2373 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2374 2375 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2376 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2377 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2378 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2379 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2380 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2381 2382 /* Check min. node size */ 2383 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2384 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2385 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2386 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2387 2388 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2389 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2390 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2391 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2392 2393 /* Defined node sizes */ 2394 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2395 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2396 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2397 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2398 2399 /* 2400 * We use 2 bit wide bit-fields to store compression type, which should 2401 * be amended if more compressors are added. The bit-fields are: 2402 * @compr_type in 'struct ubifs_inode', @default_compr in 2403 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2404 */ 2405 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2406 2407 /* 2408 * We require that PAGE_SIZE is greater-than-or-equal-to 2409 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2410 */ 2411 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2412 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2413 current->pid, (unsigned int)PAGE_SIZE); 2414 return -EINVAL; 2415 } 2416 2417 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2418 sizeof(struct ubifs_inode), 0, 2419 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2420 SLAB_ACCOUNT, &inode_slab_ctor); 2421 if (!ubifs_inode_slab) 2422 return -ENOMEM; 2423 2424 err = register_shrinker(&ubifs_shrinker_info); 2425 if (err) 2426 goto out_slab; 2427 2428 err = ubifs_compressors_init(); 2429 if (err) 2430 goto out_shrinker; 2431 2432 dbg_debugfs_init(); 2433 2434 err = register_filesystem(&ubifs_fs_type); 2435 if (err) { 2436 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2437 current->pid, err); 2438 goto out_dbg; 2439 } 2440 return 0; 2441 2442 out_dbg: 2443 dbg_debugfs_exit(); 2444 ubifs_compressors_exit(); 2445 out_shrinker: 2446 unregister_shrinker(&ubifs_shrinker_info); 2447 out_slab: 2448 kmem_cache_destroy(ubifs_inode_slab); 2449 return err; 2450 } 2451 /* late_initcall to let compressors initialize first */ 2452 late_initcall(ubifs_init); 2453 2454 static void __exit ubifs_exit(void) 2455 { 2456 WARN_ON(!list_empty(&ubifs_infos)); 2457 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2458 2459 dbg_debugfs_exit(); 2460 ubifs_compressors_exit(); 2461 unregister_shrinker(&ubifs_shrinker_info); 2462 2463 /* 2464 * Make sure all delayed rcu free inodes are flushed before we 2465 * destroy cache. 2466 */ 2467 rcu_barrier(); 2468 kmem_cache_destroy(ubifs_inode_slab); 2469 unregister_filesystem(&ubifs_fs_type); 2470 } 2471 module_exit(ubifs_exit); 2472 2473 MODULE_LICENSE("GPL"); 2474 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2475 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2476 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2477