1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && !S_ISREG(inode->i_mode)) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not " 93 "compiled in", inode->i_ino, 94 ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 set_nlink(inode, le32_to_cpu(ino->nlink)); 133 inode->i_uid = le32_to_cpu(ino->uid); 134 inode->i_gid = le32_to_cpu(ino->gid); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 dbg_dump_node(c, ino); 250 dbg_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 kmem_cache_free(ubifs_inode_slab, ui); 280 } 281 282 static void ubifs_destroy_inode(struct inode *inode) 283 { 284 struct ubifs_inode *ui = ubifs_inode(inode); 285 286 kfree(ui->data); 287 call_rcu(&inode->i_rcu, ubifs_i_callback); 288 } 289 290 /* 291 * Note, Linux write-back code calls this without 'i_mutex'. 292 */ 293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 294 { 295 int err = 0; 296 struct ubifs_info *c = inode->i_sb->s_fs_info; 297 struct ubifs_inode *ui = ubifs_inode(inode); 298 299 ubifs_assert(!ui->xattr); 300 if (is_bad_inode(inode)) 301 return 0; 302 303 mutex_lock(&ui->ui_mutex); 304 /* 305 * Due to races between write-back forced by budgeting 306 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 307 * have already been synchronized, do not do this again. This might 308 * also happen if it was synchronized in an VFS operation, e.g. 309 * 'ubifs_link()'. 310 */ 311 if (!ui->dirty) { 312 mutex_unlock(&ui->ui_mutex); 313 return 0; 314 } 315 316 /* 317 * As an optimization, do not write orphan inodes to the media just 318 * because this is not needed. 319 */ 320 dbg_gen("inode %lu, mode %#x, nlink %u", 321 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 322 if (inode->i_nlink) { 323 err = ubifs_jnl_write_inode(c, inode); 324 if (err) 325 ubifs_err("can't write inode %lu, error %d", 326 inode->i_ino, err); 327 else 328 err = dbg_check_inode_size(c, inode, ui->ui_size); 329 } 330 331 ui->dirty = 0; 332 mutex_unlock(&ui->ui_mutex); 333 ubifs_release_dirty_inode_budget(c, ui); 334 return err; 335 } 336 337 static void ubifs_evict_inode(struct inode *inode) 338 { 339 int err; 340 struct ubifs_info *c = inode->i_sb->s_fs_info; 341 struct ubifs_inode *ui = ubifs_inode(inode); 342 343 if (ui->xattr) 344 /* 345 * Extended attribute inode deletions are fully handled in 346 * 'ubifs_removexattr()'. These inodes are special and have 347 * limited usage, so there is nothing to do here. 348 */ 349 goto out; 350 351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 352 ubifs_assert(!atomic_read(&inode->i_count)); 353 354 truncate_inode_pages(&inode->i_data, 0); 355 356 if (inode->i_nlink) 357 goto done; 358 359 if (is_bad_inode(inode)) 360 goto out; 361 362 ui->ui_size = inode->i_size = 0; 363 err = ubifs_jnl_delete_inode(c, inode); 364 if (err) 365 /* 366 * Worst case we have a lost orphan inode wasting space, so a 367 * simple error message is OK here. 368 */ 369 ubifs_err("can't delete inode %lu, error %d", 370 inode->i_ino, err); 371 372 out: 373 if (ui->dirty) 374 ubifs_release_dirty_inode_budget(c, ui); 375 else { 376 /* We've deleted something - clean the "no space" flags */ 377 c->bi.nospace = c->bi.nospace_rp = 0; 378 smp_wmb(); 379 } 380 done: 381 end_writeback(inode); 382 } 383 384 static void ubifs_dirty_inode(struct inode *inode, int flags) 385 { 386 struct ubifs_inode *ui = ubifs_inode(inode); 387 388 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 389 if (!ui->dirty) { 390 ui->dirty = 1; 391 dbg_gen("inode %lu", inode->i_ino); 392 } 393 } 394 395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 396 { 397 struct ubifs_info *c = dentry->d_sb->s_fs_info; 398 unsigned long long free; 399 __le32 *uuid = (__le32 *)c->uuid; 400 401 free = ubifs_get_free_space(c); 402 dbg_gen("free space %lld bytes (%lld blocks)", 403 free, free >> UBIFS_BLOCK_SHIFT); 404 405 buf->f_type = UBIFS_SUPER_MAGIC; 406 buf->f_bsize = UBIFS_BLOCK_SIZE; 407 buf->f_blocks = c->block_cnt; 408 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 409 if (free > c->report_rp_size) 410 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 411 else 412 buf->f_bavail = 0; 413 buf->f_files = 0; 414 buf->f_ffree = 0; 415 buf->f_namelen = UBIFS_MAX_NLEN; 416 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 417 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 418 ubifs_assert(buf->f_bfree <= c->block_cnt); 419 return 0; 420 } 421 422 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 423 { 424 struct ubifs_info *c = root->d_sb->s_fs_info; 425 426 if (c->mount_opts.unmount_mode == 2) 427 seq_printf(s, ",fast_unmount"); 428 else if (c->mount_opts.unmount_mode == 1) 429 seq_printf(s, ",norm_unmount"); 430 431 if (c->mount_opts.bulk_read == 2) 432 seq_printf(s, ",bulk_read"); 433 else if (c->mount_opts.bulk_read == 1) 434 seq_printf(s, ",no_bulk_read"); 435 436 if (c->mount_opts.chk_data_crc == 2) 437 seq_printf(s, ",chk_data_crc"); 438 else if (c->mount_opts.chk_data_crc == 1) 439 seq_printf(s, ",no_chk_data_crc"); 440 441 if (c->mount_opts.override_compr) { 442 seq_printf(s, ",compr=%s", 443 ubifs_compr_name(c->mount_opts.compr_type)); 444 } 445 446 return 0; 447 } 448 449 static int ubifs_sync_fs(struct super_block *sb, int wait) 450 { 451 int i, err; 452 struct ubifs_info *c = sb->s_fs_info; 453 454 /* 455 * Zero @wait is just an advisory thing to help the file system shove 456 * lots of data into the queues, and there will be the second 457 * '->sync_fs()' call, with non-zero @wait. 458 */ 459 if (!wait) 460 return 0; 461 462 /* 463 * Synchronize write buffers, because 'ubifs_run_commit()' does not 464 * do this if it waits for an already running commit. 465 */ 466 for (i = 0; i < c->jhead_cnt; i++) { 467 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 468 if (err) 469 return err; 470 } 471 472 /* 473 * Strictly speaking, it is not necessary to commit the journal here, 474 * synchronizing write-buffers would be enough. But committing makes 475 * UBIFS free space predictions much more accurate, so we want to let 476 * the user be able to get more accurate results of 'statfs()' after 477 * they synchronize the file system. 478 */ 479 err = ubifs_run_commit(c); 480 if (err) 481 return err; 482 483 return ubi_sync(c->vi.ubi_num); 484 } 485 486 /** 487 * init_constants_early - initialize UBIFS constants. 488 * @c: UBIFS file-system description object 489 * 490 * This function initialize UBIFS constants which do not need the superblock to 491 * be read. It also checks that the UBI volume satisfies basic UBIFS 492 * requirements. Returns zero in case of success and a negative error code in 493 * case of failure. 494 */ 495 static int init_constants_early(struct ubifs_info *c) 496 { 497 if (c->vi.corrupted) { 498 ubifs_warn("UBI volume is corrupted - read-only mode"); 499 c->ro_media = 1; 500 } 501 502 if (c->di.ro_mode) { 503 ubifs_msg("read-only UBI device"); 504 c->ro_media = 1; 505 } 506 507 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 508 ubifs_msg("static UBI volume - read-only mode"); 509 c->ro_media = 1; 510 } 511 512 c->leb_cnt = c->vi.size; 513 c->leb_size = c->vi.usable_leb_size; 514 c->leb_start = c->di.leb_start; 515 c->half_leb_size = c->leb_size / 2; 516 c->min_io_size = c->di.min_io_size; 517 c->min_io_shift = fls(c->min_io_size) - 1; 518 c->max_write_size = c->di.max_write_size; 519 c->max_write_shift = fls(c->max_write_size) - 1; 520 521 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 522 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 523 c->leb_size, UBIFS_MIN_LEB_SZ); 524 return -EINVAL; 525 } 526 527 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 528 ubifs_err("too few LEBs (%d), min. is %d", 529 c->leb_cnt, UBIFS_MIN_LEB_CNT); 530 return -EINVAL; 531 } 532 533 if (!is_power_of_2(c->min_io_size)) { 534 ubifs_err("bad min. I/O size %d", c->min_io_size); 535 return -EINVAL; 536 } 537 538 /* 539 * Maximum write size has to be greater or equivalent to min. I/O 540 * size, and be multiple of min. I/O size. 541 */ 542 if (c->max_write_size < c->min_io_size || 543 c->max_write_size % c->min_io_size || 544 !is_power_of_2(c->max_write_size)) { 545 ubifs_err("bad write buffer size %d for %d min. I/O unit", 546 c->max_write_size, c->min_io_size); 547 return -EINVAL; 548 } 549 550 /* 551 * UBIFS aligns all node to 8-byte boundary, so to make function in 552 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 553 * less than 8. 554 */ 555 if (c->min_io_size < 8) { 556 c->min_io_size = 8; 557 c->min_io_shift = 3; 558 if (c->max_write_size < c->min_io_size) { 559 c->max_write_size = c->min_io_size; 560 c->max_write_shift = c->min_io_shift; 561 } 562 } 563 564 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 565 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 566 567 /* 568 * Initialize node length ranges which are mostly needed for node 569 * length validation. 570 */ 571 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 572 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 573 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 574 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 575 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 576 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 577 578 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 579 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 580 c->ranges[UBIFS_ORPH_NODE].min_len = 581 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 582 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 583 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 584 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 585 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 586 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 587 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 588 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 589 /* 590 * Minimum indexing node size is amended later when superblock is 591 * read and the key length is known. 592 */ 593 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 594 /* 595 * Maximum indexing node size is amended later when superblock is 596 * read and the fanout is known. 597 */ 598 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 599 600 /* 601 * Initialize dead and dark LEB space watermarks. See gc.c for comments 602 * about these values. 603 */ 604 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 605 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 606 607 /* 608 * Calculate how many bytes would be wasted at the end of LEB if it was 609 * fully filled with data nodes of maximum size. This is used in 610 * calculations when reporting free space. 611 */ 612 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 613 614 /* Buffer size for bulk-reads */ 615 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 616 if (c->max_bu_buf_len > c->leb_size) 617 c->max_bu_buf_len = c->leb_size; 618 return 0; 619 } 620 621 /** 622 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 623 * @c: UBIFS file-system description object 624 * @lnum: LEB the write-buffer was synchronized to 625 * @free: how many free bytes left in this LEB 626 * @pad: how many bytes were padded 627 * 628 * This is a callback function which is called by the I/O unit when the 629 * write-buffer is synchronized. We need this to correctly maintain space 630 * accounting in bud logical eraseblocks. This function returns zero in case of 631 * success and a negative error code in case of failure. 632 * 633 * This function actually belongs to the journal, but we keep it here because 634 * we want to keep it static. 635 */ 636 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 637 { 638 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 639 } 640 641 /* 642 * init_constants_sb - initialize UBIFS constants. 643 * @c: UBIFS file-system description object 644 * 645 * This is a helper function which initializes various UBIFS constants after 646 * the superblock has been read. It also checks various UBIFS parameters and 647 * makes sure they are all right. Returns zero in case of success and a 648 * negative error code in case of failure. 649 */ 650 static int init_constants_sb(struct ubifs_info *c) 651 { 652 int tmp, err; 653 long long tmp64; 654 655 c->main_bytes = (long long)c->main_lebs * c->leb_size; 656 c->max_znode_sz = sizeof(struct ubifs_znode) + 657 c->fanout * sizeof(struct ubifs_zbranch); 658 659 tmp = ubifs_idx_node_sz(c, 1); 660 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 661 c->min_idx_node_sz = ALIGN(tmp, 8); 662 663 tmp = ubifs_idx_node_sz(c, c->fanout); 664 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 665 c->max_idx_node_sz = ALIGN(tmp, 8); 666 667 /* Make sure LEB size is large enough to fit full commit */ 668 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 669 tmp = ALIGN(tmp, c->min_io_size); 670 if (tmp > c->leb_size) { 671 dbg_err("too small LEB size %d, at least %d needed", 672 c->leb_size, tmp); 673 return -EINVAL; 674 } 675 676 /* 677 * Make sure that the log is large enough to fit reference nodes for 678 * all buds plus one reserved LEB. 679 */ 680 tmp64 = c->max_bud_bytes + c->leb_size - 1; 681 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 682 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 683 tmp /= c->leb_size; 684 tmp += 1; 685 if (c->log_lebs < tmp) { 686 dbg_err("too small log %d LEBs, required min. %d LEBs", 687 c->log_lebs, tmp); 688 return -EINVAL; 689 } 690 691 /* 692 * When budgeting we assume worst-case scenarios when the pages are not 693 * be compressed and direntries are of the maximum size. 694 * 695 * Note, data, which may be stored in inodes is budgeted separately, so 696 * it is not included into 'c->bi.inode_budget'. 697 */ 698 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 699 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 700 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 701 702 /* 703 * When the amount of flash space used by buds becomes 704 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 705 * The writers are unblocked when the commit is finished. To avoid 706 * writers to be blocked UBIFS initiates background commit in advance, 707 * when number of bud bytes becomes above the limit defined below. 708 */ 709 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 710 711 /* 712 * Ensure minimum journal size. All the bytes in the journal heads are 713 * considered to be used, when calculating the current journal usage. 714 * Consequently, if the journal is too small, UBIFS will treat it as 715 * always full. 716 */ 717 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 718 if (c->bg_bud_bytes < tmp64) 719 c->bg_bud_bytes = tmp64; 720 if (c->max_bud_bytes < tmp64 + c->leb_size) 721 c->max_bud_bytes = tmp64 + c->leb_size; 722 723 err = ubifs_calc_lpt_geom(c); 724 if (err) 725 return err; 726 727 /* Initialize effective LEB size used in budgeting calculations */ 728 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 729 return 0; 730 } 731 732 /* 733 * init_constants_master - initialize UBIFS constants. 734 * @c: UBIFS file-system description object 735 * 736 * This is a helper function which initializes various UBIFS constants after 737 * the master node has been read. It also checks various UBIFS parameters and 738 * makes sure they are all right. 739 */ 740 static void init_constants_master(struct ubifs_info *c) 741 { 742 long long tmp64; 743 744 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 745 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 746 747 /* 748 * Calculate total amount of FS blocks. This number is not used 749 * internally because it does not make much sense for UBIFS, but it is 750 * necessary to report something for the 'statfs()' call. 751 * 752 * Subtract the LEB reserved for GC, the LEB which is reserved for 753 * deletions, minimum LEBs for the index, and assume only one journal 754 * head is available. 755 */ 756 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 757 tmp64 *= (long long)c->leb_size - c->leb_overhead; 758 tmp64 = ubifs_reported_space(c, tmp64); 759 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 760 } 761 762 /** 763 * take_gc_lnum - reserve GC LEB. 764 * @c: UBIFS file-system description object 765 * 766 * This function ensures that the LEB reserved for garbage collection is marked 767 * as "taken" in lprops. We also have to set free space to LEB size and dirty 768 * space to zero, because lprops may contain out-of-date information if the 769 * file-system was un-mounted before it has been committed. This function 770 * returns zero in case of success and a negative error code in case of 771 * failure. 772 */ 773 static int take_gc_lnum(struct ubifs_info *c) 774 { 775 int err; 776 777 if (c->gc_lnum == -1) { 778 ubifs_err("no LEB for GC"); 779 return -EINVAL; 780 } 781 782 /* And we have to tell lprops that this LEB is taken */ 783 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 784 LPROPS_TAKEN, 0, 0); 785 return err; 786 } 787 788 /** 789 * alloc_wbufs - allocate write-buffers. 790 * @c: UBIFS file-system description object 791 * 792 * This helper function allocates and initializes UBIFS write-buffers. Returns 793 * zero in case of success and %-ENOMEM in case of failure. 794 */ 795 static int alloc_wbufs(struct ubifs_info *c) 796 { 797 int i, err; 798 799 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 800 GFP_KERNEL); 801 if (!c->jheads) 802 return -ENOMEM; 803 804 /* Initialize journal heads */ 805 for (i = 0; i < c->jhead_cnt; i++) { 806 INIT_LIST_HEAD(&c->jheads[i].buds_list); 807 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 808 if (err) 809 return err; 810 811 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 812 c->jheads[i].wbuf.jhead = i; 813 c->jheads[i].grouped = 1; 814 } 815 816 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 817 /* 818 * Garbage Collector head likely contains long-term data and 819 * does not need to be synchronized by timer. Also GC head nodes are 820 * not grouped. 821 */ 822 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 823 c->jheads[GCHD].wbuf.no_timer = 1; 824 c->jheads[GCHD].grouped = 0; 825 826 return 0; 827 } 828 829 /** 830 * free_wbufs - free write-buffers. 831 * @c: UBIFS file-system description object 832 */ 833 static void free_wbufs(struct ubifs_info *c) 834 { 835 int i; 836 837 if (c->jheads) { 838 for (i = 0; i < c->jhead_cnt; i++) { 839 kfree(c->jheads[i].wbuf.buf); 840 kfree(c->jheads[i].wbuf.inodes); 841 } 842 kfree(c->jheads); 843 c->jheads = NULL; 844 } 845 } 846 847 /** 848 * free_orphans - free orphans. 849 * @c: UBIFS file-system description object 850 */ 851 static void free_orphans(struct ubifs_info *c) 852 { 853 struct ubifs_orphan *orph; 854 855 while (c->orph_dnext) { 856 orph = c->orph_dnext; 857 c->orph_dnext = orph->dnext; 858 list_del(&orph->list); 859 kfree(orph); 860 } 861 862 while (!list_empty(&c->orph_list)) { 863 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 864 list_del(&orph->list); 865 kfree(orph); 866 dbg_err("orphan list not empty at unmount"); 867 } 868 869 vfree(c->orph_buf); 870 c->orph_buf = NULL; 871 } 872 873 /** 874 * free_buds - free per-bud objects. 875 * @c: UBIFS file-system description object 876 */ 877 static void free_buds(struct ubifs_info *c) 878 { 879 struct rb_node *this = c->buds.rb_node; 880 struct ubifs_bud *bud; 881 882 while (this) { 883 if (this->rb_left) 884 this = this->rb_left; 885 else if (this->rb_right) 886 this = this->rb_right; 887 else { 888 bud = rb_entry(this, struct ubifs_bud, rb); 889 this = rb_parent(this); 890 if (this) { 891 if (this->rb_left == &bud->rb) 892 this->rb_left = NULL; 893 else 894 this->rb_right = NULL; 895 } 896 kfree(bud); 897 } 898 } 899 } 900 901 /** 902 * check_volume_empty - check if the UBI volume is empty. 903 * @c: UBIFS file-system description object 904 * 905 * This function checks if the UBIFS volume is empty by looking if its LEBs are 906 * mapped or not. The result of checking is stored in the @c->empty variable. 907 * Returns zero in case of success and a negative error code in case of 908 * failure. 909 */ 910 static int check_volume_empty(struct ubifs_info *c) 911 { 912 int lnum, err; 913 914 c->empty = 1; 915 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 916 err = ubifs_is_mapped(c, lnum); 917 if (unlikely(err < 0)) 918 return err; 919 if (err == 1) { 920 c->empty = 0; 921 break; 922 } 923 924 cond_resched(); 925 } 926 927 return 0; 928 } 929 930 /* 931 * UBIFS mount options. 932 * 933 * Opt_fast_unmount: do not run a journal commit before un-mounting 934 * Opt_norm_unmount: run a journal commit before un-mounting 935 * Opt_bulk_read: enable bulk-reads 936 * Opt_no_bulk_read: disable bulk-reads 937 * Opt_chk_data_crc: check CRCs when reading data nodes 938 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 939 * Opt_override_compr: override default compressor 940 * Opt_err: just end of array marker 941 */ 942 enum { 943 Opt_fast_unmount, 944 Opt_norm_unmount, 945 Opt_bulk_read, 946 Opt_no_bulk_read, 947 Opt_chk_data_crc, 948 Opt_no_chk_data_crc, 949 Opt_override_compr, 950 Opt_err, 951 }; 952 953 static const match_table_t tokens = { 954 {Opt_fast_unmount, "fast_unmount"}, 955 {Opt_norm_unmount, "norm_unmount"}, 956 {Opt_bulk_read, "bulk_read"}, 957 {Opt_no_bulk_read, "no_bulk_read"}, 958 {Opt_chk_data_crc, "chk_data_crc"}, 959 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 960 {Opt_override_compr, "compr=%s"}, 961 {Opt_err, NULL}, 962 }; 963 964 /** 965 * parse_standard_option - parse a standard mount option. 966 * @option: the option to parse 967 * 968 * Normally, standard mount options like "sync" are passed to file-systems as 969 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 970 * be present in the options string. This function tries to deal with this 971 * situation and parse standard options. Returns 0 if the option was not 972 * recognized, and the corresponding integer flag if it was. 973 * 974 * UBIFS is only interested in the "sync" option, so do not check for anything 975 * else. 976 */ 977 static int parse_standard_option(const char *option) 978 { 979 ubifs_msg("parse %s", option); 980 if (!strcmp(option, "sync")) 981 return MS_SYNCHRONOUS; 982 return 0; 983 } 984 985 /** 986 * ubifs_parse_options - parse mount parameters. 987 * @c: UBIFS file-system description object 988 * @options: parameters to parse 989 * @is_remount: non-zero if this is FS re-mount 990 * 991 * This function parses UBIFS mount options and returns zero in case success 992 * and a negative error code in case of failure. 993 */ 994 static int ubifs_parse_options(struct ubifs_info *c, char *options, 995 int is_remount) 996 { 997 char *p; 998 substring_t args[MAX_OPT_ARGS]; 999 1000 if (!options) 1001 return 0; 1002 1003 while ((p = strsep(&options, ","))) { 1004 int token; 1005 1006 if (!*p) 1007 continue; 1008 1009 token = match_token(p, tokens, args); 1010 switch (token) { 1011 /* 1012 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1013 * We accept them in order to be backward-compatible. But this 1014 * should be removed at some point. 1015 */ 1016 case Opt_fast_unmount: 1017 c->mount_opts.unmount_mode = 2; 1018 break; 1019 case Opt_norm_unmount: 1020 c->mount_opts.unmount_mode = 1; 1021 break; 1022 case Opt_bulk_read: 1023 c->mount_opts.bulk_read = 2; 1024 c->bulk_read = 1; 1025 break; 1026 case Opt_no_bulk_read: 1027 c->mount_opts.bulk_read = 1; 1028 c->bulk_read = 0; 1029 break; 1030 case Opt_chk_data_crc: 1031 c->mount_opts.chk_data_crc = 2; 1032 c->no_chk_data_crc = 0; 1033 break; 1034 case Opt_no_chk_data_crc: 1035 c->mount_opts.chk_data_crc = 1; 1036 c->no_chk_data_crc = 1; 1037 break; 1038 case Opt_override_compr: 1039 { 1040 char *name = match_strdup(&args[0]); 1041 1042 if (!name) 1043 return -ENOMEM; 1044 if (!strcmp(name, "none")) 1045 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1046 else if (!strcmp(name, "lzo")) 1047 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1048 else if (!strcmp(name, "zlib")) 1049 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1050 else { 1051 ubifs_err("unknown compressor \"%s\"", name); 1052 kfree(name); 1053 return -EINVAL; 1054 } 1055 kfree(name); 1056 c->mount_opts.override_compr = 1; 1057 c->default_compr = c->mount_opts.compr_type; 1058 break; 1059 } 1060 default: 1061 { 1062 unsigned long flag; 1063 struct super_block *sb = c->vfs_sb; 1064 1065 flag = parse_standard_option(p); 1066 if (!flag) { 1067 ubifs_err("unrecognized mount option \"%s\" " 1068 "or missing value", p); 1069 return -EINVAL; 1070 } 1071 sb->s_flags |= flag; 1072 break; 1073 } 1074 } 1075 } 1076 1077 return 0; 1078 } 1079 1080 /** 1081 * destroy_journal - destroy journal data structures. 1082 * @c: UBIFS file-system description object 1083 * 1084 * This function destroys journal data structures including those that may have 1085 * been created by recovery functions. 1086 */ 1087 static void destroy_journal(struct ubifs_info *c) 1088 { 1089 while (!list_empty(&c->unclean_leb_list)) { 1090 struct ubifs_unclean_leb *ucleb; 1091 1092 ucleb = list_entry(c->unclean_leb_list.next, 1093 struct ubifs_unclean_leb, list); 1094 list_del(&ucleb->list); 1095 kfree(ucleb); 1096 } 1097 while (!list_empty(&c->old_buds)) { 1098 struct ubifs_bud *bud; 1099 1100 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1101 list_del(&bud->list); 1102 kfree(bud); 1103 } 1104 ubifs_destroy_idx_gc(c); 1105 ubifs_destroy_size_tree(c); 1106 ubifs_tnc_close(c); 1107 free_buds(c); 1108 } 1109 1110 /** 1111 * bu_init - initialize bulk-read information. 1112 * @c: UBIFS file-system description object 1113 */ 1114 static void bu_init(struct ubifs_info *c) 1115 { 1116 ubifs_assert(c->bulk_read == 1); 1117 1118 if (c->bu.buf) 1119 return; /* Already initialized */ 1120 1121 again: 1122 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1123 if (!c->bu.buf) { 1124 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1125 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1126 goto again; 1127 } 1128 1129 /* Just disable bulk-read */ 1130 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1131 "disabling it", c->max_bu_buf_len); 1132 c->mount_opts.bulk_read = 1; 1133 c->bulk_read = 0; 1134 return; 1135 } 1136 } 1137 1138 /** 1139 * check_free_space - check if there is enough free space to mount. 1140 * @c: UBIFS file-system description object 1141 * 1142 * This function makes sure UBIFS has enough free space to be mounted in 1143 * read/write mode. UBIFS must always have some free space to allow deletions. 1144 */ 1145 static int check_free_space(struct ubifs_info *c) 1146 { 1147 ubifs_assert(c->dark_wm > 0); 1148 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1149 ubifs_err("insufficient free space to mount in R/W mode"); 1150 dbg_dump_budg(c, &c->bi); 1151 dbg_dump_lprops(c); 1152 return -ENOSPC; 1153 } 1154 return 0; 1155 } 1156 1157 /** 1158 * mount_ubifs - mount UBIFS file-system. 1159 * @c: UBIFS file-system description object 1160 * 1161 * This function mounts UBIFS file system. Returns zero in case of success and 1162 * a negative error code in case of failure. 1163 * 1164 * Note, the function does not de-allocate resources it it fails half way 1165 * through, and the caller has to do this instead. 1166 */ 1167 static int mount_ubifs(struct ubifs_info *c) 1168 { 1169 int err; 1170 long long x; 1171 size_t sz; 1172 1173 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1174 err = init_constants_early(c); 1175 if (err) 1176 return err; 1177 1178 err = ubifs_debugging_init(c); 1179 if (err) 1180 return err; 1181 1182 err = check_volume_empty(c); 1183 if (err) 1184 goto out_free; 1185 1186 if (c->empty && (c->ro_mount || c->ro_media)) { 1187 /* 1188 * This UBI volume is empty, and read-only, or the file system 1189 * is mounted read-only - we cannot format it. 1190 */ 1191 ubifs_err("can't format empty UBI volume: read-only %s", 1192 c->ro_media ? "UBI volume" : "mount"); 1193 err = -EROFS; 1194 goto out_free; 1195 } 1196 1197 if (c->ro_media && !c->ro_mount) { 1198 ubifs_err("cannot mount read-write - read-only media"); 1199 err = -EROFS; 1200 goto out_free; 1201 } 1202 1203 /* 1204 * The requirement for the buffer is that it should fit indexing B-tree 1205 * height amount of integers. We assume the height if the TNC tree will 1206 * never exceed 64. 1207 */ 1208 err = -ENOMEM; 1209 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1210 if (!c->bottom_up_buf) 1211 goto out_free; 1212 1213 c->sbuf = vmalloc(c->leb_size); 1214 if (!c->sbuf) 1215 goto out_free; 1216 1217 if (!c->ro_mount) { 1218 c->ileb_buf = vmalloc(c->leb_size); 1219 if (!c->ileb_buf) 1220 goto out_free; 1221 } 1222 1223 if (c->bulk_read == 1) 1224 bu_init(c); 1225 1226 if (!c->ro_mount) { 1227 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1228 GFP_KERNEL); 1229 if (!c->write_reserve_buf) 1230 goto out_free; 1231 } 1232 1233 c->mounting = 1; 1234 1235 err = ubifs_read_superblock(c); 1236 if (err) 1237 goto out_free; 1238 1239 /* 1240 * Make sure the compressor which is set as default in the superblock 1241 * or overridden by mount options is actually compiled in. 1242 */ 1243 if (!ubifs_compr_present(c->default_compr)) { 1244 ubifs_err("'compressor \"%s\" is not compiled in", 1245 ubifs_compr_name(c->default_compr)); 1246 err = -ENOTSUPP; 1247 goto out_free; 1248 } 1249 1250 err = init_constants_sb(c); 1251 if (err) 1252 goto out_free; 1253 1254 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1255 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1256 c->cbuf = kmalloc(sz, GFP_NOFS); 1257 if (!c->cbuf) { 1258 err = -ENOMEM; 1259 goto out_free; 1260 } 1261 1262 err = alloc_wbufs(c); 1263 if (err) 1264 goto out_cbuf; 1265 1266 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1267 if (!c->ro_mount) { 1268 /* Create background thread */ 1269 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1270 if (IS_ERR(c->bgt)) { 1271 err = PTR_ERR(c->bgt); 1272 c->bgt = NULL; 1273 ubifs_err("cannot spawn \"%s\", error %d", 1274 c->bgt_name, err); 1275 goto out_wbufs; 1276 } 1277 wake_up_process(c->bgt); 1278 } 1279 1280 err = ubifs_read_master(c); 1281 if (err) 1282 goto out_master; 1283 1284 init_constants_master(c); 1285 1286 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1287 ubifs_msg("recovery needed"); 1288 c->need_recovery = 1; 1289 } 1290 1291 if (c->need_recovery && !c->ro_mount) { 1292 err = ubifs_recover_inl_heads(c, c->sbuf); 1293 if (err) 1294 goto out_master; 1295 } 1296 1297 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1298 if (err) 1299 goto out_master; 1300 1301 if (!c->ro_mount && c->space_fixup) { 1302 err = ubifs_fixup_free_space(c); 1303 if (err) 1304 goto out_master; 1305 } 1306 1307 if (!c->ro_mount) { 1308 /* 1309 * Set the "dirty" flag so that if we reboot uncleanly we 1310 * will notice this immediately on the next mount. 1311 */ 1312 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1313 err = ubifs_write_master(c); 1314 if (err) 1315 goto out_lpt; 1316 } 1317 1318 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1319 if (err) 1320 goto out_lpt; 1321 1322 err = ubifs_replay_journal(c); 1323 if (err) 1324 goto out_journal; 1325 1326 /* Calculate 'min_idx_lebs' after journal replay */ 1327 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1328 1329 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1330 if (err) 1331 goto out_orphans; 1332 1333 if (!c->ro_mount) { 1334 int lnum; 1335 1336 err = check_free_space(c); 1337 if (err) 1338 goto out_orphans; 1339 1340 /* Check for enough log space */ 1341 lnum = c->lhead_lnum + 1; 1342 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1343 lnum = UBIFS_LOG_LNUM; 1344 if (lnum == c->ltail_lnum) { 1345 err = ubifs_consolidate_log(c); 1346 if (err) 1347 goto out_orphans; 1348 } 1349 1350 if (c->need_recovery) { 1351 err = ubifs_recover_size(c); 1352 if (err) 1353 goto out_orphans; 1354 err = ubifs_rcvry_gc_commit(c); 1355 if (err) 1356 goto out_orphans; 1357 } else { 1358 err = take_gc_lnum(c); 1359 if (err) 1360 goto out_orphans; 1361 1362 /* 1363 * GC LEB may contain garbage if there was an unclean 1364 * reboot, and it should be un-mapped. 1365 */ 1366 err = ubifs_leb_unmap(c, c->gc_lnum); 1367 if (err) 1368 goto out_orphans; 1369 } 1370 1371 err = dbg_check_lprops(c); 1372 if (err) 1373 goto out_orphans; 1374 } else if (c->need_recovery) { 1375 err = ubifs_recover_size(c); 1376 if (err) 1377 goto out_orphans; 1378 } else { 1379 /* 1380 * Even if we mount read-only, we have to set space in GC LEB 1381 * to proper value because this affects UBIFS free space 1382 * reporting. We do not want to have a situation when 1383 * re-mounting from R/O to R/W changes amount of free space. 1384 */ 1385 err = take_gc_lnum(c); 1386 if (err) 1387 goto out_orphans; 1388 } 1389 1390 spin_lock(&ubifs_infos_lock); 1391 list_add_tail(&c->infos_list, &ubifs_infos); 1392 spin_unlock(&ubifs_infos_lock); 1393 1394 if (c->need_recovery) { 1395 if (c->ro_mount) 1396 ubifs_msg("recovery deferred"); 1397 else { 1398 c->need_recovery = 0; 1399 ubifs_msg("recovery completed"); 1400 /* 1401 * GC LEB has to be empty and taken at this point. But 1402 * the journal head LEBs may also be accounted as 1403 * "empty taken" if they are empty. 1404 */ 1405 ubifs_assert(c->lst.taken_empty_lebs > 0); 1406 } 1407 } else 1408 ubifs_assert(c->lst.taken_empty_lebs > 0); 1409 1410 err = dbg_check_filesystem(c); 1411 if (err) 1412 goto out_infos; 1413 1414 err = dbg_debugfs_init_fs(c); 1415 if (err) 1416 goto out_infos; 1417 1418 c->mounting = 0; 1419 1420 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1421 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1422 if (c->ro_mount) 1423 ubifs_msg("mounted read-only"); 1424 x = (long long)c->main_lebs * c->leb_size; 1425 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1426 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1427 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1428 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1429 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1430 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", 1431 c->fmt_version, c->ro_compat_version, 1432 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1433 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1434 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1435 c->report_rp_size, c->report_rp_size >> 10); 1436 1437 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1438 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1439 dbg_msg("max. write size: %d bytes", c->max_write_size); 1440 dbg_msg("LEB size: %d bytes (%d KiB)", 1441 c->leb_size, c->leb_size >> 10); 1442 dbg_msg("data journal heads: %d", 1443 c->jhead_cnt - NONDATA_JHEADS_CNT); 1444 dbg_msg("UUID: %pUB", c->uuid); 1445 dbg_msg("big_lpt %d", c->big_lpt); 1446 dbg_msg("log LEBs: %d (%d - %d)", 1447 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1448 dbg_msg("LPT area LEBs: %d (%d - %d)", 1449 c->lpt_lebs, c->lpt_first, c->lpt_last); 1450 dbg_msg("orphan area LEBs: %d (%d - %d)", 1451 c->orph_lebs, c->orph_first, c->orph_last); 1452 dbg_msg("main area LEBs: %d (%d - %d)", 1453 c->main_lebs, c->main_first, c->leb_cnt - 1); 1454 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1455 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1456 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1457 c->bi.old_idx_sz >> 20); 1458 dbg_msg("key hash type: %d", c->key_hash_type); 1459 dbg_msg("tree fanout: %d", c->fanout); 1460 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1461 dbg_msg("first main LEB: %d", c->main_first); 1462 dbg_msg("max. znode size %d", c->max_znode_sz); 1463 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1464 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1465 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1466 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1467 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1468 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1469 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1470 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1471 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1472 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1473 dbg_msg("dead watermark: %d", c->dead_wm); 1474 dbg_msg("dark watermark: %d", c->dark_wm); 1475 dbg_msg("LEB overhead: %d", c->leb_overhead); 1476 x = (long long)c->main_lebs * c->dark_wm; 1477 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1478 x, x >> 10, x >> 20); 1479 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1480 c->max_bud_bytes, c->max_bud_bytes >> 10, 1481 c->max_bud_bytes >> 20); 1482 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1483 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1484 c->bg_bud_bytes >> 20); 1485 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1486 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1487 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1488 dbg_msg("commit number: %llu", c->cmt_no); 1489 1490 return 0; 1491 1492 out_infos: 1493 spin_lock(&ubifs_infos_lock); 1494 list_del(&c->infos_list); 1495 spin_unlock(&ubifs_infos_lock); 1496 out_orphans: 1497 free_orphans(c); 1498 out_journal: 1499 destroy_journal(c); 1500 out_lpt: 1501 ubifs_lpt_free(c, 0); 1502 out_master: 1503 kfree(c->mst_node); 1504 kfree(c->rcvrd_mst_node); 1505 if (c->bgt) 1506 kthread_stop(c->bgt); 1507 out_wbufs: 1508 free_wbufs(c); 1509 out_cbuf: 1510 kfree(c->cbuf); 1511 out_free: 1512 kfree(c->write_reserve_buf); 1513 kfree(c->bu.buf); 1514 vfree(c->ileb_buf); 1515 vfree(c->sbuf); 1516 kfree(c->bottom_up_buf); 1517 ubifs_debugging_exit(c); 1518 return err; 1519 } 1520 1521 /** 1522 * ubifs_umount - un-mount UBIFS file-system. 1523 * @c: UBIFS file-system description object 1524 * 1525 * Note, this function is called to free allocated resourced when un-mounting, 1526 * as well as free resources when an error occurred while we were half way 1527 * through mounting (error path cleanup function). So it has to make sure the 1528 * resource was actually allocated before freeing it. 1529 */ 1530 static void ubifs_umount(struct ubifs_info *c) 1531 { 1532 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1533 c->vi.vol_id); 1534 1535 dbg_debugfs_exit_fs(c); 1536 spin_lock(&ubifs_infos_lock); 1537 list_del(&c->infos_list); 1538 spin_unlock(&ubifs_infos_lock); 1539 1540 if (c->bgt) 1541 kthread_stop(c->bgt); 1542 1543 destroy_journal(c); 1544 free_wbufs(c); 1545 free_orphans(c); 1546 ubifs_lpt_free(c, 0); 1547 1548 kfree(c->cbuf); 1549 kfree(c->rcvrd_mst_node); 1550 kfree(c->mst_node); 1551 kfree(c->write_reserve_buf); 1552 kfree(c->bu.buf); 1553 vfree(c->ileb_buf); 1554 vfree(c->sbuf); 1555 kfree(c->bottom_up_buf); 1556 ubifs_debugging_exit(c); 1557 } 1558 1559 /** 1560 * ubifs_remount_rw - re-mount in read-write mode. 1561 * @c: UBIFS file-system description object 1562 * 1563 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1564 * mode. This function allocates the needed resources and re-mounts UBIFS in 1565 * read-write mode. 1566 */ 1567 static int ubifs_remount_rw(struct ubifs_info *c) 1568 { 1569 int err, lnum; 1570 1571 if (c->rw_incompat) { 1572 ubifs_err("the file-system is not R/W-compatible"); 1573 ubifs_msg("on-flash format version is w%d/r%d, but software " 1574 "only supports up to version w%d/r%d", c->fmt_version, 1575 c->ro_compat_version, UBIFS_FORMAT_VERSION, 1576 UBIFS_RO_COMPAT_VERSION); 1577 return -EROFS; 1578 } 1579 1580 mutex_lock(&c->umount_mutex); 1581 dbg_save_space_info(c); 1582 c->remounting_rw = 1; 1583 c->ro_mount = 0; 1584 1585 err = check_free_space(c); 1586 if (err) 1587 goto out; 1588 1589 if (c->old_leb_cnt != c->leb_cnt) { 1590 struct ubifs_sb_node *sup; 1591 1592 sup = ubifs_read_sb_node(c); 1593 if (IS_ERR(sup)) { 1594 err = PTR_ERR(sup); 1595 goto out; 1596 } 1597 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1598 err = ubifs_write_sb_node(c, sup); 1599 kfree(sup); 1600 if (err) 1601 goto out; 1602 } 1603 1604 if (c->need_recovery) { 1605 ubifs_msg("completing deferred recovery"); 1606 err = ubifs_write_rcvrd_mst_node(c); 1607 if (err) 1608 goto out; 1609 err = ubifs_recover_size(c); 1610 if (err) 1611 goto out; 1612 err = ubifs_clean_lebs(c, c->sbuf); 1613 if (err) 1614 goto out; 1615 err = ubifs_recover_inl_heads(c, c->sbuf); 1616 if (err) 1617 goto out; 1618 } else { 1619 /* A readonly mount is not allowed to have orphans */ 1620 ubifs_assert(c->tot_orphans == 0); 1621 err = ubifs_clear_orphans(c); 1622 if (err) 1623 goto out; 1624 } 1625 1626 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1627 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1628 err = ubifs_write_master(c); 1629 if (err) 1630 goto out; 1631 } 1632 1633 c->ileb_buf = vmalloc(c->leb_size); 1634 if (!c->ileb_buf) { 1635 err = -ENOMEM; 1636 goto out; 1637 } 1638 1639 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1640 if (!c->write_reserve_buf) 1641 goto out; 1642 1643 err = ubifs_lpt_init(c, 0, 1); 1644 if (err) 1645 goto out; 1646 1647 /* Create background thread */ 1648 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1649 if (IS_ERR(c->bgt)) { 1650 err = PTR_ERR(c->bgt); 1651 c->bgt = NULL; 1652 ubifs_err("cannot spawn \"%s\", error %d", 1653 c->bgt_name, err); 1654 goto out; 1655 } 1656 wake_up_process(c->bgt); 1657 1658 c->orph_buf = vmalloc(c->leb_size); 1659 if (!c->orph_buf) { 1660 err = -ENOMEM; 1661 goto out; 1662 } 1663 1664 /* Check for enough log space */ 1665 lnum = c->lhead_lnum + 1; 1666 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1667 lnum = UBIFS_LOG_LNUM; 1668 if (lnum == c->ltail_lnum) { 1669 err = ubifs_consolidate_log(c); 1670 if (err) 1671 goto out; 1672 } 1673 1674 if (c->need_recovery) 1675 err = ubifs_rcvry_gc_commit(c); 1676 else 1677 err = ubifs_leb_unmap(c, c->gc_lnum); 1678 if (err) 1679 goto out; 1680 1681 dbg_gen("re-mounted read-write"); 1682 c->remounting_rw = 0; 1683 1684 if (c->need_recovery) { 1685 c->need_recovery = 0; 1686 ubifs_msg("deferred recovery completed"); 1687 } else { 1688 /* 1689 * Do not run the debugging space check if the were doing 1690 * recovery, because when we saved the information we had the 1691 * file-system in a state where the TNC and lprops has been 1692 * modified in memory, but all the I/O operations (including a 1693 * commit) were deferred. So the file-system was in 1694 * "non-committed" state. Now the file-system is in committed 1695 * state, and of course the amount of free space will change 1696 * because, for example, the old index size was imprecise. 1697 */ 1698 err = dbg_check_space_info(c); 1699 } 1700 1701 if (c->space_fixup) { 1702 err = ubifs_fixup_free_space(c); 1703 if (err) 1704 goto out; 1705 } 1706 1707 mutex_unlock(&c->umount_mutex); 1708 return err; 1709 1710 out: 1711 c->ro_mount = 1; 1712 vfree(c->orph_buf); 1713 c->orph_buf = NULL; 1714 if (c->bgt) { 1715 kthread_stop(c->bgt); 1716 c->bgt = NULL; 1717 } 1718 free_wbufs(c); 1719 kfree(c->write_reserve_buf); 1720 c->write_reserve_buf = NULL; 1721 vfree(c->ileb_buf); 1722 c->ileb_buf = NULL; 1723 ubifs_lpt_free(c, 1); 1724 c->remounting_rw = 0; 1725 mutex_unlock(&c->umount_mutex); 1726 return err; 1727 } 1728 1729 /** 1730 * ubifs_remount_ro - re-mount in read-only mode. 1731 * @c: UBIFS file-system description object 1732 * 1733 * We assume VFS has stopped writing. Possibly the background thread could be 1734 * running a commit, however kthread_stop will wait in that case. 1735 */ 1736 static void ubifs_remount_ro(struct ubifs_info *c) 1737 { 1738 int i, err; 1739 1740 ubifs_assert(!c->need_recovery); 1741 ubifs_assert(!c->ro_mount); 1742 1743 mutex_lock(&c->umount_mutex); 1744 if (c->bgt) { 1745 kthread_stop(c->bgt); 1746 c->bgt = NULL; 1747 } 1748 1749 dbg_save_space_info(c); 1750 1751 for (i = 0; i < c->jhead_cnt; i++) 1752 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1753 1754 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1755 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1756 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1757 err = ubifs_write_master(c); 1758 if (err) 1759 ubifs_ro_mode(c, err); 1760 1761 vfree(c->orph_buf); 1762 c->orph_buf = NULL; 1763 kfree(c->write_reserve_buf); 1764 c->write_reserve_buf = NULL; 1765 vfree(c->ileb_buf); 1766 c->ileb_buf = NULL; 1767 ubifs_lpt_free(c, 1); 1768 c->ro_mount = 1; 1769 err = dbg_check_space_info(c); 1770 if (err) 1771 ubifs_ro_mode(c, err); 1772 mutex_unlock(&c->umount_mutex); 1773 } 1774 1775 static void ubifs_put_super(struct super_block *sb) 1776 { 1777 int i; 1778 struct ubifs_info *c = sb->s_fs_info; 1779 1780 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1781 c->vi.vol_id); 1782 1783 /* 1784 * The following asserts are only valid if there has not been a failure 1785 * of the media. For example, there will be dirty inodes if we failed 1786 * to write them back because of I/O errors. 1787 */ 1788 if (!c->ro_error) { 1789 ubifs_assert(c->bi.idx_growth == 0); 1790 ubifs_assert(c->bi.dd_growth == 0); 1791 ubifs_assert(c->bi.data_growth == 0); 1792 } 1793 1794 /* 1795 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1796 * and file system un-mount. Namely, it prevents the shrinker from 1797 * picking this superblock for shrinking - it will be just skipped if 1798 * the mutex is locked. 1799 */ 1800 mutex_lock(&c->umount_mutex); 1801 if (!c->ro_mount) { 1802 /* 1803 * First of all kill the background thread to make sure it does 1804 * not interfere with un-mounting and freeing resources. 1805 */ 1806 if (c->bgt) { 1807 kthread_stop(c->bgt); 1808 c->bgt = NULL; 1809 } 1810 1811 /* 1812 * On fatal errors c->ro_error is set to 1, in which case we do 1813 * not write the master node. 1814 */ 1815 if (!c->ro_error) { 1816 int err; 1817 1818 /* Synchronize write-buffers */ 1819 for (i = 0; i < c->jhead_cnt; i++) 1820 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1821 1822 /* 1823 * We are being cleanly unmounted which means the 1824 * orphans were killed - indicate this in the master 1825 * node. Also save the reserved GC LEB number. 1826 */ 1827 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1828 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1829 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1830 err = ubifs_write_master(c); 1831 if (err) 1832 /* 1833 * Recovery will attempt to fix the master area 1834 * next mount, so we just print a message and 1835 * continue to unmount normally. 1836 */ 1837 ubifs_err("failed to write master node, " 1838 "error %d", err); 1839 } else { 1840 for (i = 0; i < c->jhead_cnt; i++) 1841 /* Make sure write-buffer timers are canceled */ 1842 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1843 } 1844 } 1845 1846 ubifs_umount(c); 1847 bdi_destroy(&c->bdi); 1848 ubi_close_volume(c->ubi); 1849 mutex_unlock(&c->umount_mutex); 1850 } 1851 1852 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1853 { 1854 int err; 1855 struct ubifs_info *c = sb->s_fs_info; 1856 1857 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1858 1859 err = ubifs_parse_options(c, data, 1); 1860 if (err) { 1861 ubifs_err("invalid or unknown remount parameter"); 1862 return err; 1863 } 1864 1865 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1866 if (c->ro_error) { 1867 ubifs_msg("cannot re-mount R/W due to prior errors"); 1868 return -EROFS; 1869 } 1870 if (c->ro_media) { 1871 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 1872 return -EROFS; 1873 } 1874 err = ubifs_remount_rw(c); 1875 if (err) 1876 return err; 1877 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1878 if (c->ro_error) { 1879 ubifs_msg("cannot re-mount R/O due to prior errors"); 1880 return -EROFS; 1881 } 1882 ubifs_remount_ro(c); 1883 } 1884 1885 if (c->bulk_read == 1) 1886 bu_init(c); 1887 else { 1888 dbg_gen("disable bulk-read"); 1889 kfree(c->bu.buf); 1890 c->bu.buf = NULL; 1891 } 1892 1893 ubifs_assert(c->lst.taken_empty_lebs > 0); 1894 return 0; 1895 } 1896 1897 const struct super_operations ubifs_super_operations = { 1898 .alloc_inode = ubifs_alloc_inode, 1899 .destroy_inode = ubifs_destroy_inode, 1900 .put_super = ubifs_put_super, 1901 .write_inode = ubifs_write_inode, 1902 .evict_inode = ubifs_evict_inode, 1903 .statfs = ubifs_statfs, 1904 .dirty_inode = ubifs_dirty_inode, 1905 .remount_fs = ubifs_remount_fs, 1906 .show_options = ubifs_show_options, 1907 .sync_fs = ubifs_sync_fs, 1908 }; 1909 1910 /** 1911 * open_ubi - parse UBI device name string and open the UBI device. 1912 * @name: UBI volume name 1913 * @mode: UBI volume open mode 1914 * 1915 * The primary method of mounting UBIFS is by specifying the UBI volume 1916 * character device node path. However, UBIFS may also be mounted withoug any 1917 * character device node using one of the following methods: 1918 * 1919 * o ubiX_Y - mount UBI device number X, volume Y; 1920 * o ubiY - mount UBI device number 0, volume Y; 1921 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1922 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1923 * 1924 * Alternative '!' separator may be used instead of ':' (because some shells 1925 * like busybox may interpret ':' as an NFS host name separator). This function 1926 * returns UBI volume description object in case of success and a negative 1927 * error code in case of failure. 1928 */ 1929 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1930 { 1931 struct ubi_volume_desc *ubi; 1932 int dev, vol; 1933 char *endptr; 1934 1935 /* First, try to open using the device node path method */ 1936 ubi = ubi_open_volume_path(name, mode); 1937 if (!IS_ERR(ubi)) 1938 return ubi; 1939 1940 /* Try the "nodev" method */ 1941 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1942 return ERR_PTR(-EINVAL); 1943 1944 /* ubi:NAME method */ 1945 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1946 return ubi_open_volume_nm(0, name + 4, mode); 1947 1948 if (!isdigit(name[3])) 1949 return ERR_PTR(-EINVAL); 1950 1951 dev = simple_strtoul(name + 3, &endptr, 0); 1952 1953 /* ubiY method */ 1954 if (*endptr == '\0') 1955 return ubi_open_volume(0, dev, mode); 1956 1957 /* ubiX_Y method */ 1958 if (*endptr == '_' && isdigit(endptr[1])) { 1959 vol = simple_strtoul(endptr + 1, &endptr, 0); 1960 if (*endptr != '\0') 1961 return ERR_PTR(-EINVAL); 1962 return ubi_open_volume(dev, vol, mode); 1963 } 1964 1965 /* ubiX:NAME method */ 1966 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1967 return ubi_open_volume_nm(dev, ++endptr, mode); 1968 1969 return ERR_PTR(-EINVAL); 1970 } 1971 1972 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1973 { 1974 struct ubifs_info *c; 1975 1976 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1977 if (c) { 1978 spin_lock_init(&c->cnt_lock); 1979 spin_lock_init(&c->cs_lock); 1980 spin_lock_init(&c->buds_lock); 1981 spin_lock_init(&c->space_lock); 1982 spin_lock_init(&c->orphan_lock); 1983 init_rwsem(&c->commit_sem); 1984 mutex_init(&c->lp_mutex); 1985 mutex_init(&c->tnc_mutex); 1986 mutex_init(&c->log_mutex); 1987 mutex_init(&c->mst_mutex); 1988 mutex_init(&c->umount_mutex); 1989 mutex_init(&c->bu_mutex); 1990 mutex_init(&c->write_reserve_mutex); 1991 init_waitqueue_head(&c->cmt_wq); 1992 c->buds = RB_ROOT; 1993 c->old_idx = RB_ROOT; 1994 c->size_tree = RB_ROOT; 1995 c->orph_tree = RB_ROOT; 1996 INIT_LIST_HEAD(&c->infos_list); 1997 INIT_LIST_HEAD(&c->idx_gc); 1998 INIT_LIST_HEAD(&c->replay_list); 1999 INIT_LIST_HEAD(&c->replay_buds); 2000 INIT_LIST_HEAD(&c->uncat_list); 2001 INIT_LIST_HEAD(&c->empty_list); 2002 INIT_LIST_HEAD(&c->freeable_list); 2003 INIT_LIST_HEAD(&c->frdi_idx_list); 2004 INIT_LIST_HEAD(&c->unclean_leb_list); 2005 INIT_LIST_HEAD(&c->old_buds); 2006 INIT_LIST_HEAD(&c->orph_list); 2007 INIT_LIST_HEAD(&c->orph_new); 2008 c->no_chk_data_crc = 1; 2009 2010 c->highest_inum = UBIFS_FIRST_INO; 2011 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2012 2013 ubi_get_volume_info(ubi, &c->vi); 2014 ubi_get_device_info(c->vi.ubi_num, &c->di); 2015 } 2016 return c; 2017 } 2018 2019 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2020 { 2021 struct ubifs_info *c = sb->s_fs_info; 2022 struct inode *root; 2023 int err; 2024 2025 c->vfs_sb = sb; 2026 /* Re-open the UBI device in read-write mode */ 2027 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2028 if (IS_ERR(c->ubi)) { 2029 err = PTR_ERR(c->ubi); 2030 goto out; 2031 } 2032 2033 /* 2034 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2035 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2036 * which means the user would have to wait not just for their own I/O 2037 * but the read-ahead I/O as well i.e. completely pointless. 2038 * 2039 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2040 */ 2041 c->bdi.name = "ubifs", 2042 c->bdi.capabilities = BDI_CAP_MAP_COPY; 2043 err = bdi_init(&c->bdi); 2044 if (err) 2045 goto out_close; 2046 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2047 c->vi.ubi_num, c->vi.vol_id); 2048 if (err) 2049 goto out_bdi; 2050 2051 err = ubifs_parse_options(c, data, 0); 2052 if (err) 2053 goto out_bdi; 2054 2055 sb->s_bdi = &c->bdi; 2056 sb->s_fs_info = c; 2057 sb->s_magic = UBIFS_SUPER_MAGIC; 2058 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2059 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2060 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2061 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2062 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2063 sb->s_op = &ubifs_super_operations; 2064 2065 mutex_lock(&c->umount_mutex); 2066 err = mount_ubifs(c); 2067 if (err) { 2068 ubifs_assert(err < 0); 2069 goto out_unlock; 2070 } 2071 2072 /* Read the root inode */ 2073 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2074 if (IS_ERR(root)) { 2075 err = PTR_ERR(root); 2076 goto out_umount; 2077 } 2078 2079 sb->s_root = d_make_root(root); 2080 if (!sb->s_root) 2081 goto out_umount; 2082 2083 mutex_unlock(&c->umount_mutex); 2084 return 0; 2085 2086 out_umount: 2087 ubifs_umount(c); 2088 out_unlock: 2089 mutex_unlock(&c->umount_mutex); 2090 out_bdi: 2091 bdi_destroy(&c->bdi); 2092 out_close: 2093 ubi_close_volume(c->ubi); 2094 out: 2095 return err; 2096 } 2097 2098 static int sb_test(struct super_block *sb, void *data) 2099 { 2100 struct ubifs_info *c1 = data; 2101 struct ubifs_info *c = sb->s_fs_info; 2102 2103 return c->vi.cdev == c1->vi.cdev; 2104 } 2105 2106 static int sb_set(struct super_block *sb, void *data) 2107 { 2108 sb->s_fs_info = data; 2109 return set_anon_super(sb, NULL); 2110 } 2111 2112 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2113 const char *name, void *data) 2114 { 2115 struct ubi_volume_desc *ubi; 2116 struct ubifs_info *c; 2117 struct super_block *sb; 2118 int err; 2119 2120 dbg_gen("name %s, flags %#x", name, flags); 2121 2122 /* 2123 * Get UBI device number and volume ID. Mount it read-only so far 2124 * because this might be a new mount point, and UBI allows only one 2125 * read-write user at a time. 2126 */ 2127 ubi = open_ubi(name, UBI_READONLY); 2128 if (IS_ERR(ubi)) { 2129 dbg_err("cannot open \"%s\", error %d", 2130 name, (int)PTR_ERR(ubi)); 2131 return ERR_CAST(ubi); 2132 } 2133 2134 c = alloc_ubifs_info(ubi); 2135 if (!c) { 2136 err = -ENOMEM; 2137 goto out_close; 2138 } 2139 2140 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2141 2142 sb = sget(fs_type, sb_test, sb_set, c); 2143 if (IS_ERR(sb)) { 2144 err = PTR_ERR(sb); 2145 kfree(c); 2146 goto out_close; 2147 } 2148 2149 if (sb->s_root) { 2150 struct ubifs_info *c1 = sb->s_fs_info; 2151 kfree(c); 2152 /* A new mount point for already mounted UBIFS */ 2153 dbg_gen("this ubi volume is already mounted"); 2154 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2155 err = -EBUSY; 2156 goto out_deact; 2157 } 2158 } else { 2159 sb->s_flags = flags; 2160 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2161 if (err) 2162 goto out_deact; 2163 /* We do not support atime */ 2164 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2165 } 2166 2167 /* 'fill_super()' opens ubi again so we must close it here */ 2168 ubi_close_volume(ubi); 2169 2170 return dget(sb->s_root); 2171 2172 out_deact: 2173 deactivate_locked_super(sb); 2174 out_close: 2175 ubi_close_volume(ubi); 2176 return ERR_PTR(err); 2177 } 2178 2179 static void kill_ubifs_super(struct super_block *s) 2180 { 2181 struct ubifs_info *c = s->s_fs_info; 2182 kill_anon_super(s); 2183 kfree(c); 2184 } 2185 2186 static struct file_system_type ubifs_fs_type = { 2187 .name = "ubifs", 2188 .owner = THIS_MODULE, 2189 .mount = ubifs_mount, 2190 .kill_sb = kill_ubifs_super, 2191 }; 2192 2193 /* 2194 * Inode slab cache constructor. 2195 */ 2196 static void inode_slab_ctor(void *obj) 2197 { 2198 struct ubifs_inode *ui = obj; 2199 inode_init_once(&ui->vfs_inode); 2200 } 2201 2202 static int __init ubifs_init(void) 2203 { 2204 int err; 2205 2206 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2207 2208 /* Make sure node sizes are 8-byte aligned */ 2209 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2210 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2211 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2212 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2213 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2214 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2215 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2216 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2217 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2218 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2219 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2220 2221 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2222 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2223 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2224 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2225 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2226 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2227 2228 /* Check min. node size */ 2229 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2230 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2231 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2232 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2233 2234 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2235 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2236 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2237 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2238 2239 /* Defined node sizes */ 2240 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2241 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2242 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2243 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2244 2245 /* 2246 * We use 2 bit wide bit-fields to store compression type, which should 2247 * be amended if more compressors are added. The bit-fields are: 2248 * @compr_type in 'struct ubifs_inode', @default_compr in 2249 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2250 */ 2251 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2252 2253 /* 2254 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2255 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2256 */ 2257 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2258 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2259 " at least 4096 bytes", 2260 (unsigned int)PAGE_CACHE_SIZE); 2261 return -EINVAL; 2262 } 2263 2264 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2265 sizeof(struct ubifs_inode), 0, 2266 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2267 &inode_slab_ctor); 2268 if (!ubifs_inode_slab) 2269 return -ENOMEM; 2270 2271 register_shrinker(&ubifs_shrinker_info); 2272 2273 err = ubifs_compressors_init(); 2274 if (err) 2275 goto out_shrinker; 2276 2277 err = dbg_debugfs_init(); 2278 if (err) 2279 goto out_compr; 2280 2281 err = register_filesystem(&ubifs_fs_type); 2282 if (err) { 2283 ubifs_err("cannot register file system, error %d", err); 2284 goto out_dbg; 2285 } 2286 return 0; 2287 2288 out_dbg: 2289 dbg_debugfs_exit(); 2290 out_compr: 2291 ubifs_compressors_exit(); 2292 out_shrinker: 2293 unregister_shrinker(&ubifs_shrinker_info); 2294 kmem_cache_destroy(ubifs_inode_slab); 2295 return err; 2296 } 2297 /* late_initcall to let compressors initialize first */ 2298 late_initcall(ubifs_init); 2299 2300 static void __exit ubifs_exit(void) 2301 { 2302 ubifs_assert(list_empty(&ubifs_infos)); 2303 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2304 2305 dbg_debugfs_exit(); 2306 ubifs_compressors_exit(); 2307 unregister_shrinker(&ubifs_shrinker_info); 2308 kmem_cache_destroy(ubifs_inode_slab); 2309 unregister_filesystem(&ubifs_fs_type); 2310 } 2311 module_exit(ubifs_exit); 2312 2313 MODULE_LICENSE("GPL"); 2314 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2315 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2316 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2317