xref: /openbmc/linux/fs/ubifs/super.c (revision 60772e48)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 	inode->i_flags |= S_NOATIME;
134 #endif
135 	set_nlink(inode, le32_to_cpu(ino->nlink));
136 	i_uid_write(inode, le32_to_cpu(ino->uid));
137 	i_gid_write(inode, le32_to_cpu(ino->gid));
138 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
139 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
141 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
143 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 	inode->i_mode = le32_to_cpu(ino->mode);
145 	inode->i_size = le64_to_cpu(ino->size);
146 
147 	ui->data_len    = le32_to_cpu(ino->data_len);
148 	ui->flags       = le32_to_cpu(ino->flags);
149 	ui->compr_type  = le16_to_cpu(ino->compr_type);
150 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
152 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
153 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 	ui->synced_i_size = ui->ui_size = inode->i_size;
155 
156 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157 
158 	err = validate_inode(c, inode);
159 	if (err)
160 		goto out_invalid;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kmem_cache_free(ubifs_inode_slab, ui);
280 }
281 
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289 
290 /*
291  * Note, Linux write-back code calls this without 'i_mutex'.
292  */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	int err = 0;
296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
297 	struct ubifs_inode *ui = ubifs_inode(inode);
298 
299 	ubifs_assert(!ui->xattr);
300 	if (is_bad_inode(inode))
301 		return 0;
302 
303 	mutex_lock(&ui->ui_mutex);
304 	/*
305 	 * Due to races between write-back forced by budgeting
306 	 * (see 'sync_some_inodes()') and background write-back, the inode may
307 	 * have already been synchronized, do not do this again. This might
308 	 * also happen if it was synchronized in an VFS operation, e.g.
309 	 * 'ubifs_link()'.
310 	 */
311 	if (!ui->dirty) {
312 		mutex_unlock(&ui->ui_mutex);
313 		return 0;
314 	}
315 
316 	/*
317 	 * As an optimization, do not write orphan inodes to the media just
318 	 * because this is not needed.
319 	 */
320 	dbg_gen("inode %lu, mode %#x, nlink %u",
321 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 	if (inode->i_nlink) {
323 		err = ubifs_jnl_write_inode(c, inode);
324 		if (err)
325 			ubifs_err(c, "can't write inode %lu, error %d",
326 				  inode->i_ino, err);
327 		else
328 			err = dbg_check_inode_size(c, inode, ui->ui_size);
329 	}
330 
331 	ui->dirty = 0;
332 	mutex_unlock(&ui->ui_mutex);
333 	ubifs_release_dirty_inode_budget(c, ui);
334 	return err;
335 }
336 
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 	int err;
340 	struct ubifs_info *c = inode->i_sb->s_fs_info;
341 	struct ubifs_inode *ui = ubifs_inode(inode);
342 
343 	if (ui->xattr)
344 		/*
345 		 * Extended attribute inode deletions are fully handled in
346 		 * 'ubifs_removexattr()'. These inodes are special and have
347 		 * limited usage, so there is nothing to do here.
348 		 */
349 		goto out;
350 
351 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 	ubifs_assert(!atomic_read(&inode->i_count));
353 
354 	truncate_inode_pages_final(&inode->i_data);
355 
356 	if (inode->i_nlink)
357 		goto done;
358 
359 	if (is_bad_inode(inode))
360 		goto out;
361 
362 	ui->ui_size = inode->i_size = 0;
363 	err = ubifs_jnl_delete_inode(c, inode);
364 	if (err)
365 		/*
366 		 * Worst case we have a lost orphan inode wasting space, so a
367 		 * simple error message is OK here.
368 		 */
369 		ubifs_err(c, "can't delete inode %lu, error %d",
370 			  inode->i_ino, err);
371 
372 out:
373 	if (ui->dirty)
374 		ubifs_release_dirty_inode_budget(c, ui);
375 	else {
376 		/* We've deleted something - clean the "no space" flags */
377 		c->bi.nospace = c->bi.nospace_rp = 0;
378 		smp_wmb();
379 	}
380 done:
381 	clear_inode(inode);
382 	fscrypt_put_encryption_info(inode);
383 }
384 
385 static void ubifs_dirty_inode(struct inode *inode, int flags)
386 {
387 	struct ubifs_inode *ui = ubifs_inode(inode);
388 
389 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
390 	if (!ui->dirty) {
391 		ui->dirty = 1;
392 		dbg_gen("inode %lu",  inode->i_ino);
393 	}
394 }
395 
396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397 {
398 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
399 	unsigned long long free;
400 	__le32 *uuid = (__le32 *)c->uuid;
401 
402 	free = ubifs_get_free_space(c);
403 	dbg_gen("free space %lld bytes (%lld blocks)",
404 		free, free >> UBIFS_BLOCK_SHIFT);
405 
406 	buf->f_type = UBIFS_SUPER_MAGIC;
407 	buf->f_bsize = UBIFS_BLOCK_SIZE;
408 	buf->f_blocks = c->block_cnt;
409 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
410 	if (free > c->report_rp_size)
411 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
412 	else
413 		buf->f_bavail = 0;
414 	buf->f_files = 0;
415 	buf->f_ffree = 0;
416 	buf->f_namelen = UBIFS_MAX_NLEN;
417 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
418 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
419 	ubifs_assert(buf->f_bfree <= c->block_cnt);
420 	return 0;
421 }
422 
423 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
424 {
425 	struct ubifs_info *c = root->d_sb->s_fs_info;
426 
427 	if (c->mount_opts.unmount_mode == 2)
428 		seq_puts(s, ",fast_unmount");
429 	else if (c->mount_opts.unmount_mode == 1)
430 		seq_puts(s, ",norm_unmount");
431 
432 	if (c->mount_opts.bulk_read == 2)
433 		seq_puts(s, ",bulk_read");
434 	else if (c->mount_opts.bulk_read == 1)
435 		seq_puts(s, ",no_bulk_read");
436 
437 	if (c->mount_opts.chk_data_crc == 2)
438 		seq_puts(s, ",chk_data_crc");
439 	else if (c->mount_opts.chk_data_crc == 1)
440 		seq_puts(s, ",no_chk_data_crc");
441 
442 	if (c->mount_opts.override_compr) {
443 		seq_printf(s, ",compr=%s",
444 			   ubifs_compr_name(c->mount_opts.compr_type));
445 	}
446 
447 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
448 
449 	return 0;
450 }
451 
452 static int ubifs_sync_fs(struct super_block *sb, int wait)
453 {
454 	int i, err;
455 	struct ubifs_info *c = sb->s_fs_info;
456 
457 	/*
458 	 * Zero @wait is just an advisory thing to help the file system shove
459 	 * lots of data into the queues, and there will be the second
460 	 * '->sync_fs()' call, with non-zero @wait.
461 	 */
462 	if (!wait)
463 		return 0;
464 
465 	/*
466 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
467 	 * do this if it waits for an already running commit.
468 	 */
469 	for (i = 0; i < c->jhead_cnt; i++) {
470 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
471 		if (err)
472 			return err;
473 	}
474 
475 	/*
476 	 * Strictly speaking, it is not necessary to commit the journal here,
477 	 * synchronizing write-buffers would be enough. But committing makes
478 	 * UBIFS free space predictions much more accurate, so we want to let
479 	 * the user be able to get more accurate results of 'statfs()' after
480 	 * they synchronize the file system.
481 	 */
482 	err = ubifs_run_commit(c);
483 	if (err)
484 		return err;
485 
486 	return ubi_sync(c->vi.ubi_num);
487 }
488 
489 /**
490  * init_constants_early - initialize UBIFS constants.
491  * @c: UBIFS file-system description object
492  *
493  * This function initialize UBIFS constants which do not need the superblock to
494  * be read. It also checks that the UBI volume satisfies basic UBIFS
495  * requirements. Returns zero in case of success and a negative error code in
496  * case of failure.
497  */
498 static int init_constants_early(struct ubifs_info *c)
499 {
500 	if (c->vi.corrupted) {
501 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
502 		c->ro_media = 1;
503 	}
504 
505 	if (c->di.ro_mode) {
506 		ubifs_msg(c, "read-only UBI device");
507 		c->ro_media = 1;
508 	}
509 
510 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
511 		ubifs_msg(c, "static UBI volume - read-only mode");
512 		c->ro_media = 1;
513 	}
514 
515 	c->leb_cnt = c->vi.size;
516 	c->leb_size = c->vi.usable_leb_size;
517 	c->leb_start = c->di.leb_start;
518 	c->half_leb_size = c->leb_size / 2;
519 	c->min_io_size = c->di.min_io_size;
520 	c->min_io_shift = fls(c->min_io_size) - 1;
521 	c->max_write_size = c->di.max_write_size;
522 	c->max_write_shift = fls(c->max_write_size) - 1;
523 
524 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
525 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
526 			   c->leb_size, UBIFS_MIN_LEB_SZ);
527 		return -EINVAL;
528 	}
529 
530 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
531 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
532 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
533 		return -EINVAL;
534 	}
535 
536 	if (!is_power_of_2(c->min_io_size)) {
537 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
538 		return -EINVAL;
539 	}
540 
541 	/*
542 	 * Maximum write size has to be greater or equivalent to min. I/O
543 	 * size, and be multiple of min. I/O size.
544 	 */
545 	if (c->max_write_size < c->min_io_size ||
546 	    c->max_write_size % c->min_io_size ||
547 	    !is_power_of_2(c->max_write_size)) {
548 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
549 			   c->max_write_size, c->min_io_size);
550 		return -EINVAL;
551 	}
552 
553 	/*
554 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
555 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
556 	 * less than 8.
557 	 */
558 	if (c->min_io_size < 8) {
559 		c->min_io_size = 8;
560 		c->min_io_shift = 3;
561 		if (c->max_write_size < c->min_io_size) {
562 			c->max_write_size = c->min_io_size;
563 			c->max_write_shift = c->min_io_shift;
564 		}
565 	}
566 
567 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
568 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
569 
570 	/*
571 	 * Initialize node length ranges which are mostly needed for node
572 	 * length validation.
573 	 */
574 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
575 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
576 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
577 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
578 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
579 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
580 
581 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
582 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
583 	c->ranges[UBIFS_ORPH_NODE].min_len =
584 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
585 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
586 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
587 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
588 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
589 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
590 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
591 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
592 	/*
593 	 * Minimum indexing node size is amended later when superblock is
594 	 * read and the key length is known.
595 	 */
596 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
597 	/*
598 	 * Maximum indexing node size is amended later when superblock is
599 	 * read and the fanout is known.
600 	 */
601 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
602 
603 	/*
604 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
605 	 * about these values.
606 	 */
607 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
608 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
609 
610 	/*
611 	 * Calculate how many bytes would be wasted at the end of LEB if it was
612 	 * fully filled with data nodes of maximum size. This is used in
613 	 * calculations when reporting free space.
614 	 */
615 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
616 
617 	/* Buffer size for bulk-reads */
618 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
619 	if (c->max_bu_buf_len > c->leb_size)
620 		c->max_bu_buf_len = c->leb_size;
621 	return 0;
622 }
623 
624 /**
625  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
626  * @c: UBIFS file-system description object
627  * @lnum: LEB the write-buffer was synchronized to
628  * @free: how many free bytes left in this LEB
629  * @pad: how many bytes were padded
630  *
631  * This is a callback function which is called by the I/O unit when the
632  * write-buffer is synchronized. We need this to correctly maintain space
633  * accounting in bud logical eraseblocks. This function returns zero in case of
634  * success and a negative error code in case of failure.
635  *
636  * This function actually belongs to the journal, but we keep it here because
637  * we want to keep it static.
638  */
639 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
640 {
641 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
642 }
643 
644 /*
645  * init_constants_sb - initialize UBIFS constants.
646  * @c: UBIFS file-system description object
647  *
648  * This is a helper function which initializes various UBIFS constants after
649  * the superblock has been read. It also checks various UBIFS parameters and
650  * makes sure they are all right. Returns zero in case of success and a
651  * negative error code in case of failure.
652  */
653 static int init_constants_sb(struct ubifs_info *c)
654 {
655 	int tmp, err;
656 	long long tmp64;
657 
658 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
659 	c->max_znode_sz = sizeof(struct ubifs_znode) +
660 				c->fanout * sizeof(struct ubifs_zbranch);
661 
662 	tmp = ubifs_idx_node_sz(c, 1);
663 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
664 	c->min_idx_node_sz = ALIGN(tmp, 8);
665 
666 	tmp = ubifs_idx_node_sz(c, c->fanout);
667 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
668 	c->max_idx_node_sz = ALIGN(tmp, 8);
669 
670 	/* Make sure LEB size is large enough to fit full commit */
671 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
672 	tmp = ALIGN(tmp, c->min_io_size);
673 	if (tmp > c->leb_size) {
674 		ubifs_err(c, "too small LEB size %d, at least %d needed",
675 			  c->leb_size, tmp);
676 		return -EINVAL;
677 	}
678 
679 	/*
680 	 * Make sure that the log is large enough to fit reference nodes for
681 	 * all buds plus one reserved LEB.
682 	 */
683 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
684 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
685 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
686 	tmp /= c->leb_size;
687 	tmp += 1;
688 	if (c->log_lebs < tmp) {
689 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
690 			  c->log_lebs, tmp);
691 		return -EINVAL;
692 	}
693 
694 	/*
695 	 * When budgeting we assume worst-case scenarios when the pages are not
696 	 * be compressed and direntries are of the maximum size.
697 	 *
698 	 * Note, data, which may be stored in inodes is budgeted separately, so
699 	 * it is not included into 'c->bi.inode_budget'.
700 	 */
701 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
702 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
703 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
704 
705 	/*
706 	 * When the amount of flash space used by buds becomes
707 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
708 	 * The writers are unblocked when the commit is finished. To avoid
709 	 * writers to be blocked UBIFS initiates background commit in advance,
710 	 * when number of bud bytes becomes above the limit defined below.
711 	 */
712 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
713 
714 	/*
715 	 * Ensure minimum journal size. All the bytes in the journal heads are
716 	 * considered to be used, when calculating the current journal usage.
717 	 * Consequently, if the journal is too small, UBIFS will treat it as
718 	 * always full.
719 	 */
720 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
721 	if (c->bg_bud_bytes < tmp64)
722 		c->bg_bud_bytes = tmp64;
723 	if (c->max_bud_bytes < tmp64 + c->leb_size)
724 		c->max_bud_bytes = tmp64 + c->leb_size;
725 
726 	err = ubifs_calc_lpt_geom(c);
727 	if (err)
728 		return err;
729 
730 	/* Initialize effective LEB size used in budgeting calculations */
731 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
732 	return 0;
733 }
734 
735 /*
736  * init_constants_master - initialize UBIFS constants.
737  * @c: UBIFS file-system description object
738  *
739  * This is a helper function which initializes various UBIFS constants after
740  * the master node has been read. It also checks various UBIFS parameters and
741  * makes sure they are all right.
742  */
743 static void init_constants_master(struct ubifs_info *c)
744 {
745 	long long tmp64;
746 
747 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
748 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
749 
750 	/*
751 	 * Calculate total amount of FS blocks. This number is not used
752 	 * internally because it does not make much sense for UBIFS, but it is
753 	 * necessary to report something for the 'statfs()' call.
754 	 *
755 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
756 	 * deletions, minimum LEBs for the index, and assume only one journal
757 	 * head is available.
758 	 */
759 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
760 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
761 	tmp64 = ubifs_reported_space(c, tmp64);
762 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
763 }
764 
765 /**
766  * take_gc_lnum - reserve GC LEB.
767  * @c: UBIFS file-system description object
768  *
769  * This function ensures that the LEB reserved for garbage collection is marked
770  * as "taken" in lprops. We also have to set free space to LEB size and dirty
771  * space to zero, because lprops may contain out-of-date information if the
772  * file-system was un-mounted before it has been committed. This function
773  * returns zero in case of success and a negative error code in case of
774  * failure.
775  */
776 static int take_gc_lnum(struct ubifs_info *c)
777 {
778 	int err;
779 
780 	if (c->gc_lnum == -1) {
781 		ubifs_err(c, "no LEB for GC");
782 		return -EINVAL;
783 	}
784 
785 	/* And we have to tell lprops that this LEB is taken */
786 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
787 				  LPROPS_TAKEN, 0, 0);
788 	return err;
789 }
790 
791 /**
792  * alloc_wbufs - allocate write-buffers.
793  * @c: UBIFS file-system description object
794  *
795  * This helper function allocates and initializes UBIFS write-buffers. Returns
796  * zero in case of success and %-ENOMEM in case of failure.
797  */
798 static int alloc_wbufs(struct ubifs_info *c)
799 {
800 	int i, err;
801 
802 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
803 			    GFP_KERNEL);
804 	if (!c->jheads)
805 		return -ENOMEM;
806 
807 	/* Initialize journal heads */
808 	for (i = 0; i < c->jhead_cnt; i++) {
809 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
810 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
811 		if (err)
812 			return err;
813 
814 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
815 		c->jheads[i].wbuf.jhead = i;
816 		c->jheads[i].grouped = 1;
817 	}
818 
819 	/*
820 	 * Garbage Collector head does not need to be synchronized by timer.
821 	 * Also GC head nodes are not grouped.
822 	 */
823 	c->jheads[GCHD].wbuf.no_timer = 1;
824 	c->jheads[GCHD].grouped = 0;
825 
826 	return 0;
827 }
828 
829 /**
830  * free_wbufs - free write-buffers.
831  * @c: UBIFS file-system description object
832  */
833 static void free_wbufs(struct ubifs_info *c)
834 {
835 	int i;
836 
837 	if (c->jheads) {
838 		for (i = 0; i < c->jhead_cnt; i++) {
839 			kfree(c->jheads[i].wbuf.buf);
840 			kfree(c->jheads[i].wbuf.inodes);
841 		}
842 		kfree(c->jheads);
843 		c->jheads = NULL;
844 	}
845 }
846 
847 /**
848  * free_orphans - free orphans.
849  * @c: UBIFS file-system description object
850  */
851 static void free_orphans(struct ubifs_info *c)
852 {
853 	struct ubifs_orphan *orph;
854 
855 	while (c->orph_dnext) {
856 		orph = c->orph_dnext;
857 		c->orph_dnext = orph->dnext;
858 		list_del(&orph->list);
859 		kfree(orph);
860 	}
861 
862 	while (!list_empty(&c->orph_list)) {
863 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
864 		list_del(&orph->list);
865 		kfree(orph);
866 		ubifs_err(c, "orphan list not empty at unmount");
867 	}
868 
869 	vfree(c->orph_buf);
870 	c->orph_buf = NULL;
871 }
872 
873 /**
874  * free_buds - free per-bud objects.
875  * @c: UBIFS file-system description object
876  */
877 static void free_buds(struct ubifs_info *c)
878 {
879 	struct ubifs_bud *bud, *n;
880 
881 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
882 		kfree(bud);
883 }
884 
885 /**
886  * check_volume_empty - check if the UBI volume is empty.
887  * @c: UBIFS file-system description object
888  *
889  * This function checks if the UBIFS volume is empty by looking if its LEBs are
890  * mapped or not. The result of checking is stored in the @c->empty variable.
891  * Returns zero in case of success and a negative error code in case of
892  * failure.
893  */
894 static int check_volume_empty(struct ubifs_info *c)
895 {
896 	int lnum, err;
897 
898 	c->empty = 1;
899 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
900 		err = ubifs_is_mapped(c, lnum);
901 		if (unlikely(err < 0))
902 			return err;
903 		if (err == 1) {
904 			c->empty = 0;
905 			break;
906 		}
907 
908 		cond_resched();
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * UBIFS mount options.
916  *
917  * Opt_fast_unmount: do not run a journal commit before un-mounting
918  * Opt_norm_unmount: run a journal commit before un-mounting
919  * Opt_bulk_read: enable bulk-reads
920  * Opt_no_bulk_read: disable bulk-reads
921  * Opt_chk_data_crc: check CRCs when reading data nodes
922  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
923  * Opt_override_compr: override default compressor
924  * Opt_err: just end of array marker
925  */
926 enum {
927 	Opt_fast_unmount,
928 	Opt_norm_unmount,
929 	Opt_bulk_read,
930 	Opt_no_bulk_read,
931 	Opt_chk_data_crc,
932 	Opt_no_chk_data_crc,
933 	Opt_override_compr,
934 	Opt_ignore,
935 	Opt_err,
936 };
937 
938 static const match_table_t tokens = {
939 	{Opt_fast_unmount, "fast_unmount"},
940 	{Opt_norm_unmount, "norm_unmount"},
941 	{Opt_bulk_read, "bulk_read"},
942 	{Opt_no_bulk_read, "no_bulk_read"},
943 	{Opt_chk_data_crc, "chk_data_crc"},
944 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
945 	{Opt_override_compr, "compr=%s"},
946 	{Opt_ignore, "ubi=%s"},
947 	{Opt_ignore, "vol=%s"},
948 	{Opt_err, NULL},
949 };
950 
951 /**
952  * parse_standard_option - parse a standard mount option.
953  * @option: the option to parse
954  *
955  * Normally, standard mount options like "sync" are passed to file-systems as
956  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
957  * be present in the options string. This function tries to deal with this
958  * situation and parse standard options. Returns 0 if the option was not
959  * recognized, and the corresponding integer flag if it was.
960  *
961  * UBIFS is only interested in the "sync" option, so do not check for anything
962  * else.
963  */
964 static int parse_standard_option(const char *option)
965 {
966 
967 	pr_notice("UBIFS: parse %s\n", option);
968 	if (!strcmp(option, "sync"))
969 		return SB_SYNCHRONOUS;
970 	return 0;
971 }
972 
973 /**
974  * ubifs_parse_options - parse mount parameters.
975  * @c: UBIFS file-system description object
976  * @options: parameters to parse
977  * @is_remount: non-zero if this is FS re-mount
978  *
979  * This function parses UBIFS mount options and returns zero in case success
980  * and a negative error code in case of failure.
981  */
982 static int ubifs_parse_options(struct ubifs_info *c, char *options,
983 			       int is_remount)
984 {
985 	char *p;
986 	substring_t args[MAX_OPT_ARGS];
987 
988 	if (!options)
989 		return 0;
990 
991 	while ((p = strsep(&options, ","))) {
992 		int token;
993 
994 		if (!*p)
995 			continue;
996 
997 		token = match_token(p, tokens, args);
998 		switch (token) {
999 		/*
1000 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1001 		 * We accept them in order to be backward-compatible. But this
1002 		 * should be removed at some point.
1003 		 */
1004 		case Opt_fast_unmount:
1005 			c->mount_opts.unmount_mode = 2;
1006 			break;
1007 		case Opt_norm_unmount:
1008 			c->mount_opts.unmount_mode = 1;
1009 			break;
1010 		case Opt_bulk_read:
1011 			c->mount_opts.bulk_read = 2;
1012 			c->bulk_read = 1;
1013 			break;
1014 		case Opt_no_bulk_read:
1015 			c->mount_opts.bulk_read = 1;
1016 			c->bulk_read = 0;
1017 			break;
1018 		case Opt_chk_data_crc:
1019 			c->mount_opts.chk_data_crc = 2;
1020 			c->no_chk_data_crc = 0;
1021 			break;
1022 		case Opt_no_chk_data_crc:
1023 			c->mount_opts.chk_data_crc = 1;
1024 			c->no_chk_data_crc = 1;
1025 			break;
1026 		case Opt_override_compr:
1027 		{
1028 			char *name = match_strdup(&args[0]);
1029 
1030 			if (!name)
1031 				return -ENOMEM;
1032 			if (!strcmp(name, "none"))
1033 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1034 			else if (!strcmp(name, "lzo"))
1035 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1036 			else if (!strcmp(name, "zlib"))
1037 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1038 			else {
1039 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1040 				kfree(name);
1041 				return -EINVAL;
1042 			}
1043 			kfree(name);
1044 			c->mount_opts.override_compr = 1;
1045 			c->default_compr = c->mount_opts.compr_type;
1046 			break;
1047 		}
1048 		case Opt_ignore:
1049 			break;
1050 		default:
1051 		{
1052 			unsigned long flag;
1053 			struct super_block *sb = c->vfs_sb;
1054 
1055 			flag = parse_standard_option(p);
1056 			if (!flag) {
1057 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1058 					  p);
1059 				return -EINVAL;
1060 			}
1061 			sb->s_flags |= flag;
1062 			break;
1063 		}
1064 		}
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 /**
1071  * destroy_journal - destroy journal data structures.
1072  * @c: UBIFS file-system description object
1073  *
1074  * This function destroys journal data structures including those that may have
1075  * been created by recovery functions.
1076  */
1077 static void destroy_journal(struct ubifs_info *c)
1078 {
1079 	while (!list_empty(&c->unclean_leb_list)) {
1080 		struct ubifs_unclean_leb *ucleb;
1081 
1082 		ucleb = list_entry(c->unclean_leb_list.next,
1083 				   struct ubifs_unclean_leb, list);
1084 		list_del(&ucleb->list);
1085 		kfree(ucleb);
1086 	}
1087 	while (!list_empty(&c->old_buds)) {
1088 		struct ubifs_bud *bud;
1089 
1090 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1091 		list_del(&bud->list);
1092 		kfree(bud);
1093 	}
1094 	ubifs_destroy_idx_gc(c);
1095 	ubifs_destroy_size_tree(c);
1096 	ubifs_tnc_close(c);
1097 	free_buds(c);
1098 }
1099 
1100 /**
1101  * bu_init - initialize bulk-read information.
1102  * @c: UBIFS file-system description object
1103  */
1104 static void bu_init(struct ubifs_info *c)
1105 {
1106 	ubifs_assert(c->bulk_read == 1);
1107 
1108 	if (c->bu.buf)
1109 		return; /* Already initialized */
1110 
1111 again:
1112 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1113 	if (!c->bu.buf) {
1114 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1115 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1116 			goto again;
1117 		}
1118 
1119 		/* Just disable bulk-read */
1120 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1121 			   c->max_bu_buf_len);
1122 		c->mount_opts.bulk_read = 1;
1123 		c->bulk_read = 0;
1124 		return;
1125 	}
1126 }
1127 
1128 /**
1129  * check_free_space - check if there is enough free space to mount.
1130  * @c: UBIFS file-system description object
1131  *
1132  * This function makes sure UBIFS has enough free space to be mounted in
1133  * read/write mode. UBIFS must always have some free space to allow deletions.
1134  */
1135 static int check_free_space(struct ubifs_info *c)
1136 {
1137 	ubifs_assert(c->dark_wm > 0);
1138 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1139 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1140 		ubifs_dump_budg(c, &c->bi);
1141 		ubifs_dump_lprops(c);
1142 		return -ENOSPC;
1143 	}
1144 	return 0;
1145 }
1146 
1147 /**
1148  * mount_ubifs - mount UBIFS file-system.
1149  * @c: UBIFS file-system description object
1150  *
1151  * This function mounts UBIFS file system. Returns zero in case of success and
1152  * a negative error code in case of failure.
1153  */
1154 static int mount_ubifs(struct ubifs_info *c)
1155 {
1156 	int err;
1157 	long long x, y;
1158 	size_t sz;
1159 
1160 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1161 	/* Suppress error messages while probing if SB_SILENT is set */
1162 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1163 
1164 	err = init_constants_early(c);
1165 	if (err)
1166 		return err;
1167 
1168 	err = ubifs_debugging_init(c);
1169 	if (err)
1170 		return err;
1171 
1172 	err = check_volume_empty(c);
1173 	if (err)
1174 		goto out_free;
1175 
1176 	if (c->empty && (c->ro_mount || c->ro_media)) {
1177 		/*
1178 		 * This UBI volume is empty, and read-only, or the file system
1179 		 * is mounted read-only - we cannot format it.
1180 		 */
1181 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1182 			  c->ro_media ? "UBI volume" : "mount");
1183 		err = -EROFS;
1184 		goto out_free;
1185 	}
1186 
1187 	if (c->ro_media && !c->ro_mount) {
1188 		ubifs_err(c, "cannot mount read-write - read-only media");
1189 		err = -EROFS;
1190 		goto out_free;
1191 	}
1192 
1193 	/*
1194 	 * The requirement for the buffer is that it should fit indexing B-tree
1195 	 * height amount of integers. We assume the height if the TNC tree will
1196 	 * never exceed 64.
1197 	 */
1198 	err = -ENOMEM;
1199 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1200 	if (!c->bottom_up_buf)
1201 		goto out_free;
1202 
1203 	c->sbuf = vmalloc(c->leb_size);
1204 	if (!c->sbuf)
1205 		goto out_free;
1206 
1207 	if (!c->ro_mount) {
1208 		c->ileb_buf = vmalloc(c->leb_size);
1209 		if (!c->ileb_buf)
1210 			goto out_free;
1211 	}
1212 
1213 	if (c->bulk_read == 1)
1214 		bu_init(c);
1215 
1216 	if (!c->ro_mount) {
1217 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1218 					       UBIFS_CIPHER_BLOCK_SIZE,
1219 					       GFP_KERNEL);
1220 		if (!c->write_reserve_buf)
1221 			goto out_free;
1222 	}
1223 
1224 	c->mounting = 1;
1225 
1226 	err = ubifs_read_superblock(c);
1227 	if (err)
1228 		goto out_free;
1229 
1230 	c->probing = 0;
1231 
1232 	/*
1233 	 * Make sure the compressor which is set as default in the superblock
1234 	 * or overridden by mount options is actually compiled in.
1235 	 */
1236 	if (!ubifs_compr_present(c->default_compr)) {
1237 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1238 			  ubifs_compr_name(c->default_compr));
1239 		err = -ENOTSUPP;
1240 		goto out_free;
1241 	}
1242 
1243 	err = init_constants_sb(c);
1244 	if (err)
1245 		goto out_free;
1246 
1247 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1248 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1249 	c->cbuf = kmalloc(sz, GFP_NOFS);
1250 	if (!c->cbuf) {
1251 		err = -ENOMEM;
1252 		goto out_free;
1253 	}
1254 
1255 	err = alloc_wbufs(c);
1256 	if (err)
1257 		goto out_cbuf;
1258 
1259 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1260 	if (!c->ro_mount) {
1261 		/* Create background thread */
1262 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1263 		if (IS_ERR(c->bgt)) {
1264 			err = PTR_ERR(c->bgt);
1265 			c->bgt = NULL;
1266 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1267 				  c->bgt_name, err);
1268 			goto out_wbufs;
1269 		}
1270 		wake_up_process(c->bgt);
1271 	}
1272 
1273 	err = ubifs_read_master(c);
1274 	if (err)
1275 		goto out_master;
1276 
1277 	init_constants_master(c);
1278 
1279 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1280 		ubifs_msg(c, "recovery needed");
1281 		c->need_recovery = 1;
1282 	}
1283 
1284 	if (c->need_recovery && !c->ro_mount) {
1285 		err = ubifs_recover_inl_heads(c, c->sbuf);
1286 		if (err)
1287 			goto out_master;
1288 	}
1289 
1290 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1291 	if (err)
1292 		goto out_master;
1293 
1294 	if (!c->ro_mount && c->space_fixup) {
1295 		err = ubifs_fixup_free_space(c);
1296 		if (err)
1297 			goto out_lpt;
1298 	}
1299 
1300 	if (!c->ro_mount && !c->need_recovery) {
1301 		/*
1302 		 * Set the "dirty" flag so that if we reboot uncleanly we
1303 		 * will notice this immediately on the next mount.
1304 		 */
1305 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1306 		err = ubifs_write_master(c);
1307 		if (err)
1308 			goto out_lpt;
1309 	}
1310 
1311 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1312 	if (err)
1313 		goto out_lpt;
1314 
1315 	err = ubifs_replay_journal(c);
1316 	if (err)
1317 		goto out_journal;
1318 
1319 	/* Calculate 'min_idx_lebs' after journal replay */
1320 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1321 
1322 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1323 	if (err)
1324 		goto out_orphans;
1325 
1326 	if (!c->ro_mount) {
1327 		int lnum;
1328 
1329 		err = check_free_space(c);
1330 		if (err)
1331 			goto out_orphans;
1332 
1333 		/* Check for enough log space */
1334 		lnum = c->lhead_lnum + 1;
1335 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1336 			lnum = UBIFS_LOG_LNUM;
1337 		if (lnum == c->ltail_lnum) {
1338 			err = ubifs_consolidate_log(c);
1339 			if (err)
1340 				goto out_orphans;
1341 		}
1342 
1343 		if (c->need_recovery) {
1344 			err = ubifs_recover_size(c);
1345 			if (err)
1346 				goto out_orphans;
1347 			err = ubifs_rcvry_gc_commit(c);
1348 			if (err)
1349 				goto out_orphans;
1350 		} else {
1351 			err = take_gc_lnum(c);
1352 			if (err)
1353 				goto out_orphans;
1354 
1355 			/*
1356 			 * GC LEB may contain garbage if there was an unclean
1357 			 * reboot, and it should be un-mapped.
1358 			 */
1359 			err = ubifs_leb_unmap(c, c->gc_lnum);
1360 			if (err)
1361 				goto out_orphans;
1362 		}
1363 
1364 		err = dbg_check_lprops(c);
1365 		if (err)
1366 			goto out_orphans;
1367 	} else if (c->need_recovery) {
1368 		err = ubifs_recover_size(c);
1369 		if (err)
1370 			goto out_orphans;
1371 	} else {
1372 		/*
1373 		 * Even if we mount read-only, we have to set space in GC LEB
1374 		 * to proper value because this affects UBIFS free space
1375 		 * reporting. We do not want to have a situation when
1376 		 * re-mounting from R/O to R/W changes amount of free space.
1377 		 */
1378 		err = take_gc_lnum(c);
1379 		if (err)
1380 			goto out_orphans;
1381 	}
1382 
1383 	spin_lock(&ubifs_infos_lock);
1384 	list_add_tail(&c->infos_list, &ubifs_infos);
1385 	spin_unlock(&ubifs_infos_lock);
1386 
1387 	if (c->need_recovery) {
1388 		if (c->ro_mount)
1389 			ubifs_msg(c, "recovery deferred");
1390 		else {
1391 			c->need_recovery = 0;
1392 			ubifs_msg(c, "recovery completed");
1393 			/*
1394 			 * GC LEB has to be empty and taken at this point. But
1395 			 * the journal head LEBs may also be accounted as
1396 			 * "empty taken" if they are empty.
1397 			 */
1398 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1399 		}
1400 	} else
1401 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1402 
1403 	err = dbg_check_filesystem(c);
1404 	if (err)
1405 		goto out_infos;
1406 
1407 	err = dbg_debugfs_init_fs(c);
1408 	if (err)
1409 		goto out_infos;
1410 
1411 	c->mounting = 0;
1412 
1413 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1414 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1415 		  c->ro_mount ? ", R/O mode" : "");
1416 	x = (long long)c->main_lebs * c->leb_size;
1417 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1418 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1419 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1420 		  c->max_write_size);
1421 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1422 		  x, x >> 20, c->main_lebs,
1423 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1424 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1425 		  c->report_rp_size, c->report_rp_size >> 10);
1426 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1427 		  c->fmt_version, c->ro_compat_version,
1428 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1429 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1430 
1431 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1432 	dbg_gen("data journal heads:  %d",
1433 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1434 	dbg_gen("log LEBs:            %d (%d - %d)",
1435 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1436 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1437 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1438 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1439 		c->orph_lebs, c->orph_first, c->orph_last);
1440 	dbg_gen("main area LEBs:      %d (%d - %d)",
1441 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1442 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1443 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1444 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1445 		c->bi.old_idx_sz >> 20);
1446 	dbg_gen("key hash type:       %d", c->key_hash_type);
1447 	dbg_gen("tree fanout:         %d", c->fanout);
1448 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1449 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1450 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1451 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1452 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1453 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1454 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1455 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1456 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1457 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1458 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1459 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1460 	dbg_gen("dead watermark:      %d", c->dead_wm);
1461 	dbg_gen("dark watermark:      %d", c->dark_wm);
1462 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1463 	x = (long long)c->main_lebs * c->dark_wm;
1464 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1465 		x, x >> 10, x >> 20);
1466 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1467 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1468 		c->max_bud_bytes >> 20);
1469 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1470 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1471 		c->bg_bud_bytes >> 20);
1472 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1473 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1474 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1475 	dbg_gen("commit number:       %llu", c->cmt_no);
1476 
1477 	return 0;
1478 
1479 out_infos:
1480 	spin_lock(&ubifs_infos_lock);
1481 	list_del(&c->infos_list);
1482 	spin_unlock(&ubifs_infos_lock);
1483 out_orphans:
1484 	free_orphans(c);
1485 out_journal:
1486 	destroy_journal(c);
1487 out_lpt:
1488 	ubifs_lpt_free(c, 0);
1489 out_master:
1490 	kfree(c->mst_node);
1491 	kfree(c->rcvrd_mst_node);
1492 	if (c->bgt)
1493 		kthread_stop(c->bgt);
1494 out_wbufs:
1495 	free_wbufs(c);
1496 out_cbuf:
1497 	kfree(c->cbuf);
1498 out_free:
1499 	kfree(c->write_reserve_buf);
1500 	kfree(c->bu.buf);
1501 	vfree(c->ileb_buf);
1502 	vfree(c->sbuf);
1503 	kfree(c->bottom_up_buf);
1504 	ubifs_debugging_exit(c);
1505 	return err;
1506 }
1507 
1508 /**
1509  * ubifs_umount - un-mount UBIFS file-system.
1510  * @c: UBIFS file-system description object
1511  *
1512  * Note, this function is called to free allocated resourced when un-mounting,
1513  * as well as free resources when an error occurred while we were half way
1514  * through mounting (error path cleanup function). So it has to make sure the
1515  * resource was actually allocated before freeing it.
1516  */
1517 static void ubifs_umount(struct ubifs_info *c)
1518 {
1519 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1520 		c->vi.vol_id);
1521 
1522 	dbg_debugfs_exit_fs(c);
1523 	spin_lock(&ubifs_infos_lock);
1524 	list_del(&c->infos_list);
1525 	spin_unlock(&ubifs_infos_lock);
1526 
1527 	if (c->bgt)
1528 		kthread_stop(c->bgt);
1529 
1530 	destroy_journal(c);
1531 	free_wbufs(c);
1532 	free_orphans(c);
1533 	ubifs_lpt_free(c, 0);
1534 
1535 	kfree(c->cbuf);
1536 	kfree(c->rcvrd_mst_node);
1537 	kfree(c->mst_node);
1538 	kfree(c->write_reserve_buf);
1539 	kfree(c->bu.buf);
1540 	vfree(c->ileb_buf);
1541 	vfree(c->sbuf);
1542 	kfree(c->bottom_up_buf);
1543 	ubifs_debugging_exit(c);
1544 }
1545 
1546 /**
1547  * ubifs_remount_rw - re-mount in read-write mode.
1548  * @c: UBIFS file-system description object
1549  *
1550  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1551  * mode. This function allocates the needed resources and re-mounts UBIFS in
1552  * read-write mode.
1553  */
1554 static int ubifs_remount_rw(struct ubifs_info *c)
1555 {
1556 	int err, lnum;
1557 
1558 	if (c->rw_incompat) {
1559 		ubifs_err(c, "the file-system is not R/W-compatible");
1560 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1561 			  c->fmt_version, c->ro_compat_version,
1562 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1563 		return -EROFS;
1564 	}
1565 
1566 	mutex_lock(&c->umount_mutex);
1567 	dbg_save_space_info(c);
1568 	c->remounting_rw = 1;
1569 	c->ro_mount = 0;
1570 
1571 	if (c->space_fixup) {
1572 		err = ubifs_fixup_free_space(c);
1573 		if (err)
1574 			goto out;
1575 	}
1576 
1577 	err = check_free_space(c);
1578 	if (err)
1579 		goto out;
1580 
1581 	if (c->old_leb_cnt != c->leb_cnt) {
1582 		struct ubifs_sb_node *sup;
1583 
1584 		sup = ubifs_read_sb_node(c);
1585 		if (IS_ERR(sup)) {
1586 			err = PTR_ERR(sup);
1587 			goto out;
1588 		}
1589 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1590 		err = ubifs_write_sb_node(c, sup);
1591 		kfree(sup);
1592 		if (err)
1593 			goto out;
1594 	}
1595 
1596 	if (c->need_recovery) {
1597 		ubifs_msg(c, "completing deferred recovery");
1598 		err = ubifs_write_rcvrd_mst_node(c);
1599 		if (err)
1600 			goto out;
1601 		err = ubifs_recover_size(c);
1602 		if (err)
1603 			goto out;
1604 		err = ubifs_clean_lebs(c, c->sbuf);
1605 		if (err)
1606 			goto out;
1607 		err = ubifs_recover_inl_heads(c, c->sbuf);
1608 		if (err)
1609 			goto out;
1610 	} else {
1611 		/* A readonly mount is not allowed to have orphans */
1612 		ubifs_assert(c->tot_orphans == 0);
1613 		err = ubifs_clear_orphans(c);
1614 		if (err)
1615 			goto out;
1616 	}
1617 
1618 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1619 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1620 		err = ubifs_write_master(c);
1621 		if (err)
1622 			goto out;
1623 	}
1624 
1625 	c->ileb_buf = vmalloc(c->leb_size);
1626 	if (!c->ileb_buf) {
1627 		err = -ENOMEM;
1628 		goto out;
1629 	}
1630 
1631 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1632 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1633 	if (!c->write_reserve_buf) {
1634 		err = -ENOMEM;
1635 		goto out;
1636 	}
1637 
1638 	err = ubifs_lpt_init(c, 0, 1);
1639 	if (err)
1640 		goto out;
1641 
1642 	/* Create background thread */
1643 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1644 	if (IS_ERR(c->bgt)) {
1645 		err = PTR_ERR(c->bgt);
1646 		c->bgt = NULL;
1647 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1648 			  c->bgt_name, err);
1649 		goto out;
1650 	}
1651 	wake_up_process(c->bgt);
1652 
1653 	c->orph_buf = vmalloc(c->leb_size);
1654 	if (!c->orph_buf) {
1655 		err = -ENOMEM;
1656 		goto out;
1657 	}
1658 
1659 	/* Check for enough log space */
1660 	lnum = c->lhead_lnum + 1;
1661 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1662 		lnum = UBIFS_LOG_LNUM;
1663 	if (lnum == c->ltail_lnum) {
1664 		err = ubifs_consolidate_log(c);
1665 		if (err)
1666 			goto out;
1667 	}
1668 
1669 	if (c->need_recovery)
1670 		err = ubifs_rcvry_gc_commit(c);
1671 	else
1672 		err = ubifs_leb_unmap(c, c->gc_lnum);
1673 	if (err)
1674 		goto out;
1675 
1676 	dbg_gen("re-mounted read-write");
1677 	c->remounting_rw = 0;
1678 
1679 	if (c->need_recovery) {
1680 		c->need_recovery = 0;
1681 		ubifs_msg(c, "deferred recovery completed");
1682 	} else {
1683 		/*
1684 		 * Do not run the debugging space check if the were doing
1685 		 * recovery, because when we saved the information we had the
1686 		 * file-system in a state where the TNC and lprops has been
1687 		 * modified in memory, but all the I/O operations (including a
1688 		 * commit) were deferred. So the file-system was in
1689 		 * "non-committed" state. Now the file-system is in committed
1690 		 * state, and of course the amount of free space will change
1691 		 * because, for example, the old index size was imprecise.
1692 		 */
1693 		err = dbg_check_space_info(c);
1694 	}
1695 
1696 	mutex_unlock(&c->umount_mutex);
1697 	return err;
1698 
1699 out:
1700 	c->ro_mount = 1;
1701 	vfree(c->orph_buf);
1702 	c->orph_buf = NULL;
1703 	if (c->bgt) {
1704 		kthread_stop(c->bgt);
1705 		c->bgt = NULL;
1706 	}
1707 	free_wbufs(c);
1708 	kfree(c->write_reserve_buf);
1709 	c->write_reserve_buf = NULL;
1710 	vfree(c->ileb_buf);
1711 	c->ileb_buf = NULL;
1712 	ubifs_lpt_free(c, 1);
1713 	c->remounting_rw = 0;
1714 	mutex_unlock(&c->umount_mutex);
1715 	return err;
1716 }
1717 
1718 /**
1719  * ubifs_remount_ro - re-mount in read-only mode.
1720  * @c: UBIFS file-system description object
1721  *
1722  * We assume VFS has stopped writing. Possibly the background thread could be
1723  * running a commit, however kthread_stop will wait in that case.
1724  */
1725 static void ubifs_remount_ro(struct ubifs_info *c)
1726 {
1727 	int i, err;
1728 
1729 	ubifs_assert(!c->need_recovery);
1730 	ubifs_assert(!c->ro_mount);
1731 
1732 	mutex_lock(&c->umount_mutex);
1733 	if (c->bgt) {
1734 		kthread_stop(c->bgt);
1735 		c->bgt = NULL;
1736 	}
1737 
1738 	dbg_save_space_info(c);
1739 
1740 	for (i = 0; i < c->jhead_cnt; i++)
1741 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1742 
1743 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1744 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1745 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1746 	err = ubifs_write_master(c);
1747 	if (err)
1748 		ubifs_ro_mode(c, err);
1749 
1750 	vfree(c->orph_buf);
1751 	c->orph_buf = NULL;
1752 	kfree(c->write_reserve_buf);
1753 	c->write_reserve_buf = NULL;
1754 	vfree(c->ileb_buf);
1755 	c->ileb_buf = NULL;
1756 	ubifs_lpt_free(c, 1);
1757 	c->ro_mount = 1;
1758 	err = dbg_check_space_info(c);
1759 	if (err)
1760 		ubifs_ro_mode(c, err);
1761 	mutex_unlock(&c->umount_mutex);
1762 }
1763 
1764 static void ubifs_put_super(struct super_block *sb)
1765 {
1766 	int i;
1767 	struct ubifs_info *c = sb->s_fs_info;
1768 
1769 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1770 
1771 	/*
1772 	 * The following asserts are only valid if there has not been a failure
1773 	 * of the media. For example, there will be dirty inodes if we failed
1774 	 * to write them back because of I/O errors.
1775 	 */
1776 	if (!c->ro_error) {
1777 		ubifs_assert(c->bi.idx_growth == 0);
1778 		ubifs_assert(c->bi.dd_growth == 0);
1779 		ubifs_assert(c->bi.data_growth == 0);
1780 	}
1781 
1782 	/*
1783 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1784 	 * and file system un-mount. Namely, it prevents the shrinker from
1785 	 * picking this superblock for shrinking - it will be just skipped if
1786 	 * the mutex is locked.
1787 	 */
1788 	mutex_lock(&c->umount_mutex);
1789 	if (!c->ro_mount) {
1790 		/*
1791 		 * First of all kill the background thread to make sure it does
1792 		 * not interfere with un-mounting and freeing resources.
1793 		 */
1794 		if (c->bgt) {
1795 			kthread_stop(c->bgt);
1796 			c->bgt = NULL;
1797 		}
1798 
1799 		/*
1800 		 * On fatal errors c->ro_error is set to 1, in which case we do
1801 		 * not write the master node.
1802 		 */
1803 		if (!c->ro_error) {
1804 			int err;
1805 
1806 			/* Synchronize write-buffers */
1807 			for (i = 0; i < c->jhead_cnt; i++)
1808 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1809 
1810 			/*
1811 			 * We are being cleanly unmounted which means the
1812 			 * orphans were killed - indicate this in the master
1813 			 * node. Also save the reserved GC LEB number.
1814 			 */
1815 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1816 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1817 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1818 			err = ubifs_write_master(c);
1819 			if (err)
1820 				/*
1821 				 * Recovery will attempt to fix the master area
1822 				 * next mount, so we just print a message and
1823 				 * continue to unmount normally.
1824 				 */
1825 				ubifs_err(c, "failed to write master node, error %d",
1826 					  err);
1827 		} else {
1828 			for (i = 0; i < c->jhead_cnt; i++)
1829 				/* Make sure write-buffer timers are canceled */
1830 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1831 		}
1832 	}
1833 
1834 	ubifs_umount(c);
1835 	ubi_close_volume(c->ubi);
1836 	mutex_unlock(&c->umount_mutex);
1837 }
1838 
1839 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1840 {
1841 	int err;
1842 	struct ubifs_info *c = sb->s_fs_info;
1843 
1844 	sync_filesystem(sb);
1845 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1846 
1847 	err = ubifs_parse_options(c, data, 1);
1848 	if (err) {
1849 		ubifs_err(c, "invalid or unknown remount parameter");
1850 		return err;
1851 	}
1852 
1853 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1854 		if (c->ro_error) {
1855 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1856 			return -EROFS;
1857 		}
1858 		if (c->ro_media) {
1859 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1860 			return -EROFS;
1861 		}
1862 		err = ubifs_remount_rw(c);
1863 		if (err)
1864 			return err;
1865 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1866 		if (c->ro_error) {
1867 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1868 			return -EROFS;
1869 		}
1870 		ubifs_remount_ro(c);
1871 	}
1872 
1873 	if (c->bulk_read == 1)
1874 		bu_init(c);
1875 	else {
1876 		dbg_gen("disable bulk-read");
1877 		mutex_lock(&c->bu_mutex);
1878 		kfree(c->bu.buf);
1879 		c->bu.buf = NULL;
1880 		mutex_unlock(&c->bu_mutex);
1881 	}
1882 
1883 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1884 	return 0;
1885 }
1886 
1887 const struct super_operations ubifs_super_operations = {
1888 	.alloc_inode   = ubifs_alloc_inode,
1889 	.destroy_inode = ubifs_destroy_inode,
1890 	.put_super     = ubifs_put_super,
1891 	.write_inode   = ubifs_write_inode,
1892 	.evict_inode   = ubifs_evict_inode,
1893 	.statfs        = ubifs_statfs,
1894 	.dirty_inode   = ubifs_dirty_inode,
1895 	.remount_fs    = ubifs_remount_fs,
1896 	.show_options  = ubifs_show_options,
1897 	.sync_fs       = ubifs_sync_fs,
1898 };
1899 
1900 /**
1901  * open_ubi - parse UBI device name string and open the UBI device.
1902  * @name: UBI volume name
1903  * @mode: UBI volume open mode
1904  *
1905  * The primary method of mounting UBIFS is by specifying the UBI volume
1906  * character device node path. However, UBIFS may also be mounted withoug any
1907  * character device node using one of the following methods:
1908  *
1909  * o ubiX_Y    - mount UBI device number X, volume Y;
1910  * o ubiY      - mount UBI device number 0, volume Y;
1911  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1912  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1913  *
1914  * Alternative '!' separator may be used instead of ':' (because some shells
1915  * like busybox may interpret ':' as an NFS host name separator). This function
1916  * returns UBI volume description object in case of success and a negative
1917  * error code in case of failure.
1918  */
1919 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1920 {
1921 	struct ubi_volume_desc *ubi;
1922 	int dev, vol;
1923 	char *endptr;
1924 
1925 	/* First, try to open using the device node path method */
1926 	ubi = ubi_open_volume_path(name, mode);
1927 	if (!IS_ERR(ubi))
1928 		return ubi;
1929 
1930 	/* Try the "nodev" method */
1931 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1932 		return ERR_PTR(-EINVAL);
1933 
1934 	/* ubi:NAME method */
1935 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1936 		return ubi_open_volume_nm(0, name + 4, mode);
1937 
1938 	if (!isdigit(name[3]))
1939 		return ERR_PTR(-EINVAL);
1940 
1941 	dev = simple_strtoul(name + 3, &endptr, 0);
1942 
1943 	/* ubiY method */
1944 	if (*endptr == '\0')
1945 		return ubi_open_volume(0, dev, mode);
1946 
1947 	/* ubiX_Y method */
1948 	if (*endptr == '_' && isdigit(endptr[1])) {
1949 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1950 		if (*endptr != '\0')
1951 			return ERR_PTR(-EINVAL);
1952 		return ubi_open_volume(dev, vol, mode);
1953 	}
1954 
1955 	/* ubiX:NAME method */
1956 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1957 		return ubi_open_volume_nm(dev, ++endptr, mode);
1958 
1959 	return ERR_PTR(-EINVAL);
1960 }
1961 
1962 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1963 {
1964 	struct ubifs_info *c;
1965 
1966 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1967 	if (c) {
1968 		spin_lock_init(&c->cnt_lock);
1969 		spin_lock_init(&c->cs_lock);
1970 		spin_lock_init(&c->buds_lock);
1971 		spin_lock_init(&c->space_lock);
1972 		spin_lock_init(&c->orphan_lock);
1973 		init_rwsem(&c->commit_sem);
1974 		mutex_init(&c->lp_mutex);
1975 		mutex_init(&c->tnc_mutex);
1976 		mutex_init(&c->log_mutex);
1977 		mutex_init(&c->umount_mutex);
1978 		mutex_init(&c->bu_mutex);
1979 		mutex_init(&c->write_reserve_mutex);
1980 		init_waitqueue_head(&c->cmt_wq);
1981 		c->buds = RB_ROOT;
1982 		c->old_idx = RB_ROOT;
1983 		c->size_tree = RB_ROOT;
1984 		c->orph_tree = RB_ROOT;
1985 		INIT_LIST_HEAD(&c->infos_list);
1986 		INIT_LIST_HEAD(&c->idx_gc);
1987 		INIT_LIST_HEAD(&c->replay_list);
1988 		INIT_LIST_HEAD(&c->replay_buds);
1989 		INIT_LIST_HEAD(&c->uncat_list);
1990 		INIT_LIST_HEAD(&c->empty_list);
1991 		INIT_LIST_HEAD(&c->freeable_list);
1992 		INIT_LIST_HEAD(&c->frdi_idx_list);
1993 		INIT_LIST_HEAD(&c->unclean_leb_list);
1994 		INIT_LIST_HEAD(&c->old_buds);
1995 		INIT_LIST_HEAD(&c->orph_list);
1996 		INIT_LIST_HEAD(&c->orph_new);
1997 		c->no_chk_data_crc = 1;
1998 
1999 		c->highest_inum = UBIFS_FIRST_INO;
2000 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2001 
2002 		ubi_get_volume_info(ubi, &c->vi);
2003 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2004 	}
2005 	return c;
2006 }
2007 
2008 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2009 {
2010 	struct ubifs_info *c = sb->s_fs_info;
2011 	struct inode *root;
2012 	int err;
2013 
2014 	c->vfs_sb = sb;
2015 	/* Re-open the UBI device in read-write mode */
2016 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2017 	if (IS_ERR(c->ubi)) {
2018 		err = PTR_ERR(c->ubi);
2019 		goto out;
2020 	}
2021 
2022 	err = ubifs_parse_options(c, data, 0);
2023 	if (err)
2024 		goto out_close;
2025 
2026 	/*
2027 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2028 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2029 	 * which means the user would have to wait not just for their own I/O
2030 	 * but the read-ahead I/O as well i.e. completely pointless.
2031 	 *
2032 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2033 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2034 	 * writeback happening.
2035 	 */
2036 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2037 				   c->vi.vol_id);
2038 	if (err)
2039 		goto out_close;
2040 
2041 	sb->s_fs_info = c;
2042 	sb->s_magic = UBIFS_SUPER_MAGIC;
2043 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2044 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2045 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2046 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2047 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2048 	sb->s_op = &ubifs_super_operations;
2049 	sb->s_xattr = ubifs_xattr_handlers;
2050 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
2051 	sb->s_cop = &ubifs_crypt_operations;
2052 #endif
2053 
2054 	mutex_lock(&c->umount_mutex);
2055 	err = mount_ubifs(c);
2056 	if (err) {
2057 		ubifs_assert(err < 0);
2058 		goto out_unlock;
2059 	}
2060 
2061 	/* Read the root inode */
2062 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2063 	if (IS_ERR(root)) {
2064 		err = PTR_ERR(root);
2065 		goto out_umount;
2066 	}
2067 
2068 	sb->s_root = d_make_root(root);
2069 	if (!sb->s_root) {
2070 		err = -ENOMEM;
2071 		goto out_umount;
2072 	}
2073 
2074 	mutex_unlock(&c->umount_mutex);
2075 	return 0;
2076 
2077 out_umount:
2078 	ubifs_umount(c);
2079 out_unlock:
2080 	mutex_unlock(&c->umount_mutex);
2081 out_close:
2082 	ubi_close_volume(c->ubi);
2083 out:
2084 	return err;
2085 }
2086 
2087 static int sb_test(struct super_block *sb, void *data)
2088 {
2089 	struct ubifs_info *c1 = data;
2090 	struct ubifs_info *c = sb->s_fs_info;
2091 
2092 	return c->vi.cdev == c1->vi.cdev;
2093 }
2094 
2095 static int sb_set(struct super_block *sb, void *data)
2096 {
2097 	sb->s_fs_info = data;
2098 	return set_anon_super(sb, NULL);
2099 }
2100 
2101 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2102 			const char *name, void *data)
2103 {
2104 	struct ubi_volume_desc *ubi;
2105 	struct ubifs_info *c;
2106 	struct super_block *sb;
2107 	int err;
2108 
2109 	dbg_gen("name %s, flags %#x", name, flags);
2110 
2111 	/*
2112 	 * Get UBI device number and volume ID. Mount it read-only so far
2113 	 * because this might be a new mount point, and UBI allows only one
2114 	 * read-write user at a time.
2115 	 */
2116 	ubi = open_ubi(name, UBI_READONLY);
2117 	if (IS_ERR(ubi)) {
2118 		if (!(flags & SB_SILENT))
2119 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2120 			       current->pid, name, (int)PTR_ERR(ubi));
2121 		return ERR_CAST(ubi);
2122 	}
2123 
2124 	c = alloc_ubifs_info(ubi);
2125 	if (!c) {
2126 		err = -ENOMEM;
2127 		goto out_close;
2128 	}
2129 
2130 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2131 
2132 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2133 	if (IS_ERR(sb)) {
2134 		err = PTR_ERR(sb);
2135 		kfree(c);
2136 		goto out_close;
2137 	}
2138 
2139 	if (sb->s_root) {
2140 		struct ubifs_info *c1 = sb->s_fs_info;
2141 		kfree(c);
2142 		/* A new mount point for already mounted UBIFS */
2143 		dbg_gen("this ubi volume is already mounted");
2144 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2145 			err = -EBUSY;
2146 			goto out_deact;
2147 		}
2148 	} else {
2149 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2150 		if (err)
2151 			goto out_deact;
2152 		/* We do not support atime */
2153 		sb->s_flags |= SB_ACTIVE;
2154 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2155 		sb->s_flags |= SB_NOATIME;
2156 #else
2157 		ubifs_msg(c, "full atime support is enabled.");
2158 #endif
2159 	}
2160 
2161 	/* 'fill_super()' opens ubi again so we must close it here */
2162 	ubi_close_volume(ubi);
2163 
2164 	return dget(sb->s_root);
2165 
2166 out_deact:
2167 	deactivate_locked_super(sb);
2168 out_close:
2169 	ubi_close_volume(ubi);
2170 	return ERR_PTR(err);
2171 }
2172 
2173 static void kill_ubifs_super(struct super_block *s)
2174 {
2175 	struct ubifs_info *c = s->s_fs_info;
2176 	kill_anon_super(s);
2177 	kfree(c);
2178 }
2179 
2180 static struct file_system_type ubifs_fs_type = {
2181 	.name    = "ubifs",
2182 	.owner   = THIS_MODULE,
2183 	.mount   = ubifs_mount,
2184 	.kill_sb = kill_ubifs_super,
2185 };
2186 MODULE_ALIAS_FS("ubifs");
2187 
2188 /*
2189  * Inode slab cache constructor.
2190  */
2191 static void inode_slab_ctor(void *obj)
2192 {
2193 	struct ubifs_inode *ui = obj;
2194 	inode_init_once(&ui->vfs_inode);
2195 }
2196 
2197 static int __init ubifs_init(void)
2198 {
2199 	int err;
2200 
2201 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2202 
2203 	/* Make sure node sizes are 8-byte aligned */
2204 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2205 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2206 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2207 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2208 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2209 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2210 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2211 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2212 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2213 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2214 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2215 
2216 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2217 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2218 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2219 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2220 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2221 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2222 
2223 	/* Check min. node size */
2224 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2225 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2226 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2227 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2228 
2229 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2230 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2231 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2232 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2233 
2234 	/* Defined node sizes */
2235 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2236 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2237 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2238 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2239 
2240 	/*
2241 	 * We use 2 bit wide bit-fields to store compression type, which should
2242 	 * be amended if more compressors are added. The bit-fields are:
2243 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2244 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2245 	 */
2246 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2247 
2248 	/*
2249 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2250 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2251 	 */
2252 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2253 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2254 		       current->pid, (unsigned int)PAGE_SIZE);
2255 		return -EINVAL;
2256 	}
2257 
2258 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2259 				sizeof(struct ubifs_inode), 0,
2260 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2261 				SLAB_ACCOUNT, &inode_slab_ctor);
2262 	if (!ubifs_inode_slab)
2263 		return -ENOMEM;
2264 
2265 	err = register_shrinker(&ubifs_shrinker_info);
2266 	if (err)
2267 		goto out_slab;
2268 
2269 	err = ubifs_compressors_init();
2270 	if (err)
2271 		goto out_shrinker;
2272 
2273 	err = dbg_debugfs_init();
2274 	if (err)
2275 		goto out_compr;
2276 
2277 	err = register_filesystem(&ubifs_fs_type);
2278 	if (err) {
2279 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2280 		       current->pid, err);
2281 		goto out_dbg;
2282 	}
2283 	return 0;
2284 
2285 out_dbg:
2286 	dbg_debugfs_exit();
2287 out_compr:
2288 	ubifs_compressors_exit();
2289 out_shrinker:
2290 	unregister_shrinker(&ubifs_shrinker_info);
2291 out_slab:
2292 	kmem_cache_destroy(ubifs_inode_slab);
2293 	return err;
2294 }
2295 /* late_initcall to let compressors initialize first */
2296 late_initcall(ubifs_init);
2297 
2298 static void __exit ubifs_exit(void)
2299 {
2300 	ubifs_assert(list_empty(&ubifs_infos));
2301 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2302 
2303 	dbg_debugfs_exit();
2304 	ubifs_compressors_exit();
2305 	unregister_shrinker(&ubifs_shrinker_info);
2306 
2307 	/*
2308 	 * Make sure all delayed rcu free inodes are flushed before we
2309 	 * destroy cache.
2310 	 */
2311 	rcu_barrier();
2312 	kmem_cache_destroy(ubifs_inode_slab);
2313 	unregister_filesystem(&ubifs_fs_type);
2314 }
2315 module_exit(ubifs_exit);
2316 
2317 MODULE_LICENSE("GPL");
2318 MODULE_VERSION(__stringify(UBIFS_VERSION));
2319 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2320 MODULE_DESCRIPTION("UBIFS - UBI File System");
2321