1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/kthread.h> 22 #include <linux/parser.h> 23 #include <linux/seq_file.h> 24 #include <linux/mount.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include "ubifs.h" 28 29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp) 30 { 31 int n = 0, ret; 32 33 ret = kstrtoint(val, 10, &n); 34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION) 35 return -EINVAL; 36 return param_set_int(val, kp); 37 } 38 39 static const struct kernel_param_ops ubifs_default_version_ops = { 40 .set = ubifs_default_version_set, 41 .get = param_get_int, 42 }; 43 44 int ubifs_default_version = UBIFS_FORMAT_VERSION; 45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600); 46 47 /* 48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 49 * allocating too much. 50 */ 51 #define UBIFS_KMALLOC_OK (128*1024) 52 53 /* Slab cache for UBIFS inodes */ 54 static struct kmem_cache *ubifs_inode_slab; 55 56 /* UBIFS TNC shrinker description */ 57 static struct shrinker ubifs_shrinker_info = { 58 .scan_objects = ubifs_shrink_scan, 59 .count_objects = ubifs_shrink_count, 60 .seeks = DEFAULT_SEEKS, 61 }; 62 63 /** 64 * validate_inode - validate inode. 65 * @c: UBIFS file-system description object 66 * @inode: the inode to validate 67 * 68 * This is a helper function for 'ubifs_iget()' which validates various fields 69 * of a newly built inode to make sure they contain sane values and prevent 70 * possible vulnerabilities. Returns zero if the inode is all right and 71 * a non-zero error code if not. 72 */ 73 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 74 { 75 int err; 76 const struct ubifs_inode *ui = ubifs_inode(inode); 77 78 if (inode->i_size > c->max_inode_sz) { 79 ubifs_err(c, "inode is too large (%lld)", 80 (long long)inode->i_size); 81 return 1; 82 } 83 84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 85 ubifs_err(c, "unknown compression type %d", ui->compr_type); 86 return 2; 87 } 88 89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 90 return 3; 91 92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 93 return 4; 94 95 if (ui->xattr && !S_ISREG(inode->i_mode)) 96 return 5; 97 98 if (!ubifs_compr_present(c, ui->compr_type)) { 99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 100 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 101 } 102 103 err = dbg_check_dir(c, inode); 104 return err; 105 } 106 107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 108 { 109 int err; 110 union ubifs_key key; 111 struct ubifs_ino_node *ino; 112 struct ubifs_info *c = sb->s_fs_info; 113 struct inode *inode; 114 struct ubifs_inode *ui; 115 116 dbg_gen("inode %lu", inum); 117 118 inode = iget_locked(sb, inum); 119 if (!inode) 120 return ERR_PTR(-ENOMEM); 121 if (!(inode->i_state & I_NEW)) 122 return inode; 123 ui = ubifs_inode(inode); 124 125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 126 if (!ino) { 127 err = -ENOMEM; 128 goto out; 129 } 130 131 ino_key_init(c, &key, inode->i_ino); 132 133 err = ubifs_tnc_lookup(c, &key, ino); 134 if (err) 135 goto out_ino; 136 137 inode->i_flags |= S_NOCMTIME; 138 139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 140 inode->i_flags |= S_NOATIME; 141 142 set_nlink(inode, le32_to_cpu(ino->nlink)); 143 i_uid_write(inode, le32_to_cpu(ino->uid)); 144 i_gid_write(inode, le32_to_cpu(ino->gid)); 145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 149 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 150 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 151 inode->i_mode = le32_to_cpu(ino->mode); 152 inode->i_size = le64_to_cpu(ino->size); 153 154 ui->data_len = le32_to_cpu(ino->data_len); 155 ui->flags = le32_to_cpu(ino->flags); 156 ui->compr_type = le16_to_cpu(ino->compr_type); 157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 159 ui->xattr_size = le32_to_cpu(ino->xattr_size); 160 ui->xattr_names = le32_to_cpu(ino->xattr_names); 161 ui->synced_i_size = ui->ui_size = inode->i_size; 162 163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 164 165 err = validate_inode(c, inode); 166 if (err) 167 goto out_invalid; 168 169 switch (inode->i_mode & S_IFMT) { 170 case S_IFREG: 171 inode->i_mapping->a_ops = &ubifs_file_address_operations; 172 inode->i_op = &ubifs_file_inode_operations; 173 inode->i_fop = &ubifs_file_operations; 174 if (ui->xattr) { 175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 176 if (!ui->data) { 177 err = -ENOMEM; 178 goto out_ino; 179 } 180 memcpy(ui->data, ino->data, ui->data_len); 181 ((char *)ui->data)[ui->data_len] = '\0'; 182 } else if (ui->data_len != 0) { 183 err = 10; 184 goto out_invalid; 185 } 186 break; 187 case S_IFDIR: 188 inode->i_op = &ubifs_dir_inode_operations; 189 inode->i_fop = &ubifs_dir_operations; 190 if (ui->data_len != 0) { 191 err = 11; 192 goto out_invalid; 193 } 194 break; 195 case S_IFLNK: 196 inode->i_op = &ubifs_symlink_inode_operations; 197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 198 err = 12; 199 goto out_invalid; 200 } 201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 202 if (!ui->data) { 203 err = -ENOMEM; 204 goto out_ino; 205 } 206 memcpy(ui->data, ino->data, ui->data_len); 207 ((char *)ui->data)[ui->data_len] = '\0'; 208 break; 209 case S_IFBLK: 210 case S_IFCHR: 211 { 212 dev_t rdev; 213 union ubifs_dev_desc *dev; 214 215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 216 if (!ui->data) { 217 err = -ENOMEM; 218 goto out_ino; 219 } 220 221 dev = (union ubifs_dev_desc *)ino->data; 222 if (ui->data_len == sizeof(dev->new)) 223 rdev = new_decode_dev(le32_to_cpu(dev->new)); 224 else if (ui->data_len == sizeof(dev->huge)) 225 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 226 else { 227 err = 13; 228 goto out_invalid; 229 } 230 memcpy(ui->data, ino->data, ui->data_len); 231 inode->i_op = &ubifs_file_inode_operations; 232 init_special_inode(inode, inode->i_mode, rdev); 233 break; 234 } 235 case S_IFSOCK: 236 case S_IFIFO: 237 inode->i_op = &ubifs_file_inode_operations; 238 init_special_inode(inode, inode->i_mode, 0); 239 if (ui->data_len != 0) { 240 err = 14; 241 goto out_invalid; 242 } 243 break; 244 default: 245 err = 15; 246 goto out_invalid; 247 } 248 249 kfree(ino); 250 ubifs_set_inode_flags(inode); 251 unlock_new_inode(inode); 252 return inode; 253 254 out_invalid: 255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 256 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ); 257 ubifs_dump_inode(c, inode); 258 err = -EINVAL; 259 out_ino: 260 kfree(ino); 261 out: 262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 263 iget_failed(inode); 264 return ERR_PTR(err); 265 } 266 267 static struct inode *ubifs_alloc_inode(struct super_block *sb) 268 { 269 struct ubifs_inode *ui; 270 271 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 272 if (!ui) 273 return NULL; 274 275 memset((void *)ui + sizeof(struct inode), 0, 276 sizeof(struct ubifs_inode) - sizeof(struct inode)); 277 mutex_init(&ui->ui_mutex); 278 init_rwsem(&ui->xattr_sem); 279 spin_lock_init(&ui->ui_lock); 280 return &ui->vfs_inode; 281 }; 282 283 static void ubifs_free_inode(struct inode *inode) 284 { 285 struct ubifs_inode *ui = ubifs_inode(inode); 286 287 kfree(ui->data); 288 fscrypt_free_inode(inode); 289 290 kmem_cache_free(ubifs_inode_slab, ui); 291 } 292 293 /* 294 * Note, Linux write-back code calls this without 'i_mutex'. 295 */ 296 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 297 { 298 int err = 0; 299 struct ubifs_info *c = inode->i_sb->s_fs_info; 300 struct ubifs_inode *ui = ubifs_inode(inode); 301 302 ubifs_assert(c, !ui->xattr); 303 if (is_bad_inode(inode)) 304 return 0; 305 306 mutex_lock(&ui->ui_mutex); 307 /* 308 * Due to races between write-back forced by budgeting 309 * (see 'sync_some_inodes()') and background write-back, the inode may 310 * have already been synchronized, do not do this again. This might 311 * also happen if it was synchronized in an VFS operation, e.g. 312 * 'ubifs_link()'. 313 */ 314 if (!ui->dirty) { 315 mutex_unlock(&ui->ui_mutex); 316 return 0; 317 } 318 319 /* 320 * As an optimization, do not write orphan inodes to the media just 321 * because this is not needed. 322 */ 323 dbg_gen("inode %lu, mode %#x, nlink %u", 324 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 325 if (inode->i_nlink) { 326 err = ubifs_jnl_write_inode(c, inode); 327 if (err) 328 ubifs_err(c, "can't write inode %lu, error %d", 329 inode->i_ino, err); 330 else 331 err = dbg_check_inode_size(c, inode, ui->ui_size); 332 } 333 334 ui->dirty = 0; 335 mutex_unlock(&ui->ui_mutex); 336 ubifs_release_dirty_inode_budget(c, ui); 337 return err; 338 } 339 340 static int ubifs_drop_inode(struct inode *inode) 341 { 342 int drop = generic_drop_inode(inode); 343 344 if (!drop) 345 drop = fscrypt_drop_inode(inode); 346 347 return drop; 348 } 349 350 static void ubifs_evict_inode(struct inode *inode) 351 { 352 int err; 353 struct ubifs_info *c = inode->i_sb->s_fs_info; 354 struct ubifs_inode *ui = ubifs_inode(inode); 355 356 if (ui->xattr) 357 /* 358 * Extended attribute inode deletions are fully handled in 359 * 'ubifs_removexattr()'. These inodes are special and have 360 * limited usage, so there is nothing to do here. 361 */ 362 goto out; 363 364 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 365 ubifs_assert(c, !atomic_read(&inode->i_count)); 366 367 truncate_inode_pages_final(&inode->i_data); 368 369 if (inode->i_nlink) 370 goto done; 371 372 if (is_bad_inode(inode)) 373 goto out; 374 375 ui->ui_size = inode->i_size = 0; 376 err = ubifs_jnl_delete_inode(c, inode); 377 if (err) 378 /* 379 * Worst case we have a lost orphan inode wasting space, so a 380 * simple error message is OK here. 381 */ 382 ubifs_err(c, "can't delete inode %lu, error %d", 383 inode->i_ino, err); 384 385 out: 386 if (ui->dirty) 387 ubifs_release_dirty_inode_budget(c, ui); 388 else { 389 /* We've deleted something - clean the "no space" flags */ 390 c->bi.nospace = c->bi.nospace_rp = 0; 391 smp_wmb(); 392 } 393 done: 394 clear_inode(inode); 395 fscrypt_put_encryption_info(inode); 396 } 397 398 static void ubifs_dirty_inode(struct inode *inode, int flags) 399 { 400 struct ubifs_info *c = inode->i_sb->s_fs_info; 401 struct ubifs_inode *ui = ubifs_inode(inode); 402 403 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 404 if (!ui->dirty) { 405 ui->dirty = 1; 406 dbg_gen("inode %lu", inode->i_ino); 407 } 408 } 409 410 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 411 { 412 struct ubifs_info *c = dentry->d_sb->s_fs_info; 413 unsigned long long free; 414 __le32 *uuid = (__le32 *)c->uuid; 415 416 free = ubifs_get_free_space(c); 417 dbg_gen("free space %lld bytes (%lld blocks)", 418 free, free >> UBIFS_BLOCK_SHIFT); 419 420 buf->f_type = UBIFS_SUPER_MAGIC; 421 buf->f_bsize = UBIFS_BLOCK_SIZE; 422 buf->f_blocks = c->block_cnt; 423 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 424 if (free > c->report_rp_size) 425 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 426 else 427 buf->f_bavail = 0; 428 buf->f_files = 0; 429 buf->f_ffree = 0; 430 buf->f_namelen = UBIFS_MAX_NLEN; 431 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 432 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 433 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 434 return 0; 435 } 436 437 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 438 { 439 struct ubifs_info *c = root->d_sb->s_fs_info; 440 441 if (c->mount_opts.unmount_mode == 2) 442 seq_puts(s, ",fast_unmount"); 443 else if (c->mount_opts.unmount_mode == 1) 444 seq_puts(s, ",norm_unmount"); 445 446 if (c->mount_opts.bulk_read == 2) 447 seq_puts(s, ",bulk_read"); 448 else if (c->mount_opts.bulk_read == 1) 449 seq_puts(s, ",no_bulk_read"); 450 451 if (c->mount_opts.chk_data_crc == 2) 452 seq_puts(s, ",chk_data_crc"); 453 else if (c->mount_opts.chk_data_crc == 1) 454 seq_puts(s, ",no_chk_data_crc"); 455 456 if (c->mount_opts.override_compr) { 457 seq_printf(s, ",compr=%s", 458 ubifs_compr_name(c, c->mount_opts.compr_type)); 459 } 460 461 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 462 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 463 464 return 0; 465 } 466 467 static int ubifs_sync_fs(struct super_block *sb, int wait) 468 { 469 int i, err; 470 struct ubifs_info *c = sb->s_fs_info; 471 472 /* 473 * Zero @wait is just an advisory thing to help the file system shove 474 * lots of data into the queues, and there will be the second 475 * '->sync_fs()' call, with non-zero @wait. 476 */ 477 if (!wait) 478 return 0; 479 480 /* 481 * Synchronize write buffers, because 'ubifs_run_commit()' does not 482 * do this if it waits for an already running commit. 483 */ 484 for (i = 0; i < c->jhead_cnt; i++) { 485 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 486 if (err) 487 return err; 488 } 489 490 /* 491 * Strictly speaking, it is not necessary to commit the journal here, 492 * synchronizing write-buffers would be enough. But committing makes 493 * UBIFS free space predictions much more accurate, so we want to let 494 * the user be able to get more accurate results of 'statfs()' after 495 * they synchronize the file system. 496 */ 497 err = ubifs_run_commit(c); 498 if (err) 499 return err; 500 501 return ubi_sync(c->vi.ubi_num); 502 } 503 504 /** 505 * init_constants_early - initialize UBIFS constants. 506 * @c: UBIFS file-system description object 507 * 508 * This function initialize UBIFS constants which do not need the superblock to 509 * be read. It also checks that the UBI volume satisfies basic UBIFS 510 * requirements. Returns zero in case of success and a negative error code in 511 * case of failure. 512 */ 513 static int init_constants_early(struct ubifs_info *c) 514 { 515 if (c->vi.corrupted) { 516 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 517 c->ro_media = 1; 518 } 519 520 if (c->di.ro_mode) { 521 ubifs_msg(c, "read-only UBI device"); 522 c->ro_media = 1; 523 } 524 525 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 526 ubifs_msg(c, "static UBI volume - read-only mode"); 527 c->ro_media = 1; 528 } 529 530 c->leb_cnt = c->vi.size; 531 c->leb_size = c->vi.usable_leb_size; 532 c->leb_start = c->di.leb_start; 533 c->half_leb_size = c->leb_size / 2; 534 c->min_io_size = c->di.min_io_size; 535 c->min_io_shift = fls(c->min_io_size) - 1; 536 c->max_write_size = c->di.max_write_size; 537 c->max_write_shift = fls(c->max_write_size) - 1; 538 539 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 540 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 541 c->leb_size, UBIFS_MIN_LEB_SZ); 542 return -EINVAL; 543 } 544 545 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 546 ubifs_errc(c, "too few LEBs (%d), min. is %d", 547 c->leb_cnt, UBIFS_MIN_LEB_CNT); 548 return -EINVAL; 549 } 550 551 if (!is_power_of_2(c->min_io_size)) { 552 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 553 return -EINVAL; 554 } 555 556 /* 557 * Maximum write size has to be greater or equivalent to min. I/O 558 * size, and be multiple of min. I/O size. 559 */ 560 if (c->max_write_size < c->min_io_size || 561 c->max_write_size % c->min_io_size || 562 !is_power_of_2(c->max_write_size)) { 563 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 564 c->max_write_size, c->min_io_size); 565 return -EINVAL; 566 } 567 568 /* 569 * UBIFS aligns all node to 8-byte boundary, so to make function in 570 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 571 * less than 8. 572 */ 573 if (c->min_io_size < 8) { 574 c->min_io_size = 8; 575 c->min_io_shift = 3; 576 if (c->max_write_size < c->min_io_size) { 577 c->max_write_size = c->min_io_size; 578 c->max_write_shift = c->min_io_shift; 579 } 580 } 581 582 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 583 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 584 585 /* 586 * Initialize node length ranges which are mostly needed for node 587 * length validation. 588 */ 589 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 590 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 591 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 592 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 593 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 594 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 595 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 596 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 597 UBIFS_MAX_HMAC_LEN; 598 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ; 599 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ; 600 601 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 602 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 603 c->ranges[UBIFS_ORPH_NODE].min_len = 604 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 605 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 606 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 607 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 608 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 609 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 610 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 611 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 612 /* 613 * Minimum indexing node size is amended later when superblock is 614 * read and the key length is known. 615 */ 616 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 617 /* 618 * Maximum indexing node size is amended later when superblock is 619 * read and the fanout is known. 620 */ 621 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 622 623 /* 624 * Initialize dead and dark LEB space watermarks. See gc.c for comments 625 * about these values. 626 */ 627 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 628 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 629 630 /* 631 * Calculate how many bytes would be wasted at the end of LEB if it was 632 * fully filled with data nodes of maximum size. This is used in 633 * calculations when reporting free space. 634 */ 635 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 636 637 /* Buffer size for bulk-reads */ 638 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 639 if (c->max_bu_buf_len > c->leb_size) 640 c->max_bu_buf_len = c->leb_size; 641 642 /* Log is ready, preserve one LEB for commits. */ 643 c->min_log_bytes = c->leb_size; 644 645 return 0; 646 } 647 648 /** 649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 650 * @c: UBIFS file-system description object 651 * @lnum: LEB the write-buffer was synchronized to 652 * @free: how many free bytes left in this LEB 653 * @pad: how many bytes were padded 654 * 655 * This is a callback function which is called by the I/O unit when the 656 * write-buffer is synchronized. We need this to correctly maintain space 657 * accounting in bud logical eraseblocks. This function returns zero in case of 658 * success and a negative error code in case of failure. 659 * 660 * This function actually belongs to the journal, but we keep it here because 661 * we want to keep it static. 662 */ 663 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 664 { 665 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 666 } 667 668 /* 669 * init_constants_sb - initialize UBIFS constants. 670 * @c: UBIFS file-system description object 671 * 672 * This is a helper function which initializes various UBIFS constants after 673 * the superblock has been read. It also checks various UBIFS parameters and 674 * makes sure they are all right. Returns zero in case of success and a 675 * negative error code in case of failure. 676 */ 677 static int init_constants_sb(struct ubifs_info *c) 678 { 679 int tmp, err; 680 long long tmp64; 681 682 c->main_bytes = (long long)c->main_lebs * c->leb_size; 683 c->max_znode_sz = sizeof(struct ubifs_znode) + 684 c->fanout * sizeof(struct ubifs_zbranch); 685 686 tmp = ubifs_idx_node_sz(c, 1); 687 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 688 c->min_idx_node_sz = ALIGN(tmp, 8); 689 690 tmp = ubifs_idx_node_sz(c, c->fanout); 691 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 692 c->max_idx_node_sz = ALIGN(tmp, 8); 693 694 /* Make sure LEB size is large enough to fit full commit */ 695 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 696 tmp = ALIGN(tmp, c->min_io_size); 697 if (tmp > c->leb_size) { 698 ubifs_err(c, "too small LEB size %d, at least %d needed", 699 c->leb_size, tmp); 700 return -EINVAL; 701 } 702 703 /* 704 * Make sure that the log is large enough to fit reference nodes for 705 * all buds plus one reserved LEB. 706 */ 707 tmp64 = c->max_bud_bytes + c->leb_size - 1; 708 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 709 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 710 tmp /= c->leb_size; 711 tmp += 1; 712 if (c->log_lebs < tmp) { 713 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 714 c->log_lebs, tmp); 715 return -EINVAL; 716 } 717 718 /* 719 * When budgeting we assume worst-case scenarios when the pages are not 720 * be compressed and direntries are of the maximum size. 721 * 722 * Note, data, which may be stored in inodes is budgeted separately, so 723 * it is not included into 'c->bi.inode_budget'. 724 */ 725 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 726 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 727 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 728 729 /* 730 * When the amount of flash space used by buds becomes 731 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 732 * The writers are unblocked when the commit is finished. To avoid 733 * writers to be blocked UBIFS initiates background commit in advance, 734 * when number of bud bytes becomes above the limit defined below. 735 */ 736 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 737 738 /* 739 * Ensure minimum journal size. All the bytes in the journal heads are 740 * considered to be used, when calculating the current journal usage. 741 * Consequently, if the journal is too small, UBIFS will treat it as 742 * always full. 743 */ 744 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 745 if (c->bg_bud_bytes < tmp64) 746 c->bg_bud_bytes = tmp64; 747 if (c->max_bud_bytes < tmp64 + c->leb_size) 748 c->max_bud_bytes = tmp64 + c->leb_size; 749 750 err = ubifs_calc_lpt_geom(c); 751 if (err) 752 return err; 753 754 /* Initialize effective LEB size used in budgeting calculations */ 755 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 756 return 0; 757 } 758 759 /* 760 * init_constants_master - initialize UBIFS constants. 761 * @c: UBIFS file-system description object 762 * 763 * This is a helper function which initializes various UBIFS constants after 764 * the master node has been read. It also checks various UBIFS parameters and 765 * makes sure they are all right. 766 */ 767 static void init_constants_master(struct ubifs_info *c) 768 { 769 long long tmp64; 770 771 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 772 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 773 774 /* 775 * Calculate total amount of FS blocks. This number is not used 776 * internally because it does not make much sense for UBIFS, but it is 777 * necessary to report something for the 'statfs()' call. 778 * 779 * Subtract the LEB reserved for GC, the LEB which is reserved for 780 * deletions, minimum LEBs for the index, and assume only one journal 781 * head is available. 782 */ 783 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 784 tmp64 *= (long long)c->leb_size - c->leb_overhead; 785 tmp64 = ubifs_reported_space(c, tmp64); 786 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 787 } 788 789 /** 790 * take_gc_lnum - reserve GC LEB. 791 * @c: UBIFS file-system description object 792 * 793 * This function ensures that the LEB reserved for garbage collection is marked 794 * as "taken" in lprops. We also have to set free space to LEB size and dirty 795 * space to zero, because lprops may contain out-of-date information if the 796 * file-system was un-mounted before it has been committed. This function 797 * returns zero in case of success and a negative error code in case of 798 * failure. 799 */ 800 static int take_gc_lnum(struct ubifs_info *c) 801 { 802 int err; 803 804 if (c->gc_lnum == -1) { 805 ubifs_err(c, "no LEB for GC"); 806 return -EINVAL; 807 } 808 809 /* And we have to tell lprops that this LEB is taken */ 810 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 811 LPROPS_TAKEN, 0, 0); 812 return err; 813 } 814 815 /** 816 * alloc_wbufs - allocate write-buffers. 817 * @c: UBIFS file-system description object 818 * 819 * This helper function allocates and initializes UBIFS write-buffers. Returns 820 * zero in case of success and %-ENOMEM in case of failure. 821 */ 822 static int alloc_wbufs(struct ubifs_info *c) 823 { 824 int i, err; 825 826 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 827 GFP_KERNEL); 828 if (!c->jheads) 829 return -ENOMEM; 830 831 /* Initialize journal heads */ 832 for (i = 0; i < c->jhead_cnt; i++) { 833 INIT_LIST_HEAD(&c->jheads[i].buds_list); 834 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 835 if (err) 836 return err; 837 838 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 839 c->jheads[i].wbuf.jhead = i; 840 c->jheads[i].grouped = 1; 841 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 842 if (IS_ERR(c->jheads[i].log_hash)) { 843 err = PTR_ERR(c->jheads[i].log_hash); 844 goto out; 845 } 846 } 847 848 /* 849 * Garbage Collector head does not need to be synchronized by timer. 850 * Also GC head nodes are not grouped. 851 */ 852 c->jheads[GCHD].wbuf.no_timer = 1; 853 c->jheads[GCHD].grouped = 0; 854 855 return 0; 856 857 out: 858 while (i--) 859 kfree(c->jheads[i].log_hash); 860 861 return err; 862 } 863 864 /** 865 * free_wbufs - free write-buffers. 866 * @c: UBIFS file-system description object 867 */ 868 static void free_wbufs(struct ubifs_info *c) 869 { 870 int i; 871 872 if (c->jheads) { 873 for (i = 0; i < c->jhead_cnt; i++) { 874 kfree(c->jheads[i].wbuf.buf); 875 kfree(c->jheads[i].wbuf.inodes); 876 kfree(c->jheads[i].log_hash); 877 } 878 kfree(c->jheads); 879 c->jheads = NULL; 880 } 881 } 882 883 /** 884 * free_orphans - free orphans. 885 * @c: UBIFS file-system description object 886 */ 887 static void free_orphans(struct ubifs_info *c) 888 { 889 struct ubifs_orphan *orph; 890 891 while (c->orph_dnext) { 892 orph = c->orph_dnext; 893 c->orph_dnext = orph->dnext; 894 list_del(&orph->list); 895 kfree(orph); 896 } 897 898 while (!list_empty(&c->orph_list)) { 899 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 900 list_del(&orph->list); 901 kfree(orph); 902 ubifs_err(c, "orphan list not empty at unmount"); 903 } 904 905 vfree(c->orph_buf); 906 c->orph_buf = NULL; 907 } 908 909 /** 910 * free_buds - free per-bud objects. 911 * @c: UBIFS file-system description object 912 */ 913 static void free_buds(struct ubifs_info *c) 914 { 915 struct ubifs_bud *bud, *n; 916 917 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 918 kfree(bud); 919 } 920 921 /** 922 * check_volume_empty - check if the UBI volume is empty. 923 * @c: UBIFS file-system description object 924 * 925 * This function checks if the UBIFS volume is empty by looking if its LEBs are 926 * mapped or not. The result of checking is stored in the @c->empty variable. 927 * Returns zero in case of success and a negative error code in case of 928 * failure. 929 */ 930 static int check_volume_empty(struct ubifs_info *c) 931 { 932 int lnum, err; 933 934 c->empty = 1; 935 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 936 err = ubifs_is_mapped(c, lnum); 937 if (unlikely(err < 0)) 938 return err; 939 if (err == 1) { 940 c->empty = 0; 941 break; 942 } 943 944 cond_resched(); 945 } 946 947 return 0; 948 } 949 950 /* 951 * UBIFS mount options. 952 * 953 * Opt_fast_unmount: do not run a journal commit before un-mounting 954 * Opt_norm_unmount: run a journal commit before un-mounting 955 * Opt_bulk_read: enable bulk-reads 956 * Opt_no_bulk_read: disable bulk-reads 957 * Opt_chk_data_crc: check CRCs when reading data nodes 958 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 959 * Opt_override_compr: override default compressor 960 * Opt_assert: set ubifs_assert() action 961 * Opt_auth_key: The key name used for authentication 962 * Opt_auth_hash_name: The hash type used for authentication 963 * Opt_err: just end of array marker 964 */ 965 enum { 966 Opt_fast_unmount, 967 Opt_norm_unmount, 968 Opt_bulk_read, 969 Opt_no_bulk_read, 970 Opt_chk_data_crc, 971 Opt_no_chk_data_crc, 972 Opt_override_compr, 973 Opt_assert, 974 Opt_auth_key, 975 Opt_auth_hash_name, 976 Opt_ignore, 977 Opt_err, 978 }; 979 980 static const match_table_t tokens = { 981 {Opt_fast_unmount, "fast_unmount"}, 982 {Opt_norm_unmount, "norm_unmount"}, 983 {Opt_bulk_read, "bulk_read"}, 984 {Opt_no_bulk_read, "no_bulk_read"}, 985 {Opt_chk_data_crc, "chk_data_crc"}, 986 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 987 {Opt_override_compr, "compr=%s"}, 988 {Opt_auth_key, "auth_key=%s"}, 989 {Opt_auth_hash_name, "auth_hash_name=%s"}, 990 {Opt_ignore, "ubi=%s"}, 991 {Opt_ignore, "vol=%s"}, 992 {Opt_assert, "assert=%s"}, 993 {Opt_err, NULL}, 994 }; 995 996 /** 997 * parse_standard_option - parse a standard mount option. 998 * @option: the option to parse 999 * 1000 * Normally, standard mount options like "sync" are passed to file-systems as 1001 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 1002 * be present in the options string. This function tries to deal with this 1003 * situation and parse standard options. Returns 0 if the option was not 1004 * recognized, and the corresponding integer flag if it was. 1005 * 1006 * UBIFS is only interested in the "sync" option, so do not check for anything 1007 * else. 1008 */ 1009 static int parse_standard_option(const char *option) 1010 { 1011 1012 pr_notice("UBIFS: parse %s\n", option); 1013 if (!strcmp(option, "sync")) 1014 return SB_SYNCHRONOUS; 1015 return 0; 1016 } 1017 1018 /** 1019 * ubifs_parse_options - parse mount parameters. 1020 * @c: UBIFS file-system description object 1021 * @options: parameters to parse 1022 * @is_remount: non-zero if this is FS re-mount 1023 * 1024 * This function parses UBIFS mount options and returns zero in case success 1025 * and a negative error code in case of failure. 1026 */ 1027 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1028 int is_remount) 1029 { 1030 char *p; 1031 substring_t args[MAX_OPT_ARGS]; 1032 1033 if (!options) 1034 return 0; 1035 1036 while ((p = strsep(&options, ","))) { 1037 int token; 1038 1039 if (!*p) 1040 continue; 1041 1042 token = match_token(p, tokens, args); 1043 switch (token) { 1044 /* 1045 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1046 * We accept them in order to be backward-compatible. But this 1047 * should be removed at some point. 1048 */ 1049 case Opt_fast_unmount: 1050 c->mount_opts.unmount_mode = 2; 1051 break; 1052 case Opt_norm_unmount: 1053 c->mount_opts.unmount_mode = 1; 1054 break; 1055 case Opt_bulk_read: 1056 c->mount_opts.bulk_read = 2; 1057 c->bulk_read = 1; 1058 break; 1059 case Opt_no_bulk_read: 1060 c->mount_opts.bulk_read = 1; 1061 c->bulk_read = 0; 1062 break; 1063 case Opt_chk_data_crc: 1064 c->mount_opts.chk_data_crc = 2; 1065 c->no_chk_data_crc = 0; 1066 break; 1067 case Opt_no_chk_data_crc: 1068 c->mount_opts.chk_data_crc = 1; 1069 c->no_chk_data_crc = 1; 1070 break; 1071 case Opt_override_compr: 1072 { 1073 char *name = match_strdup(&args[0]); 1074 1075 if (!name) 1076 return -ENOMEM; 1077 if (!strcmp(name, "none")) 1078 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1079 else if (!strcmp(name, "lzo")) 1080 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1081 else if (!strcmp(name, "zlib")) 1082 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1083 else if (!strcmp(name, "zstd")) 1084 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD; 1085 else { 1086 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1087 kfree(name); 1088 return -EINVAL; 1089 } 1090 kfree(name); 1091 c->mount_opts.override_compr = 1; 1092 c->default_compr = c->mount_opts.compr_type; 1093 break; 1094 } 1095 case Opt_assert: 1096 { 1097 char *act = match_strdup(&args[0]); 1098 1099 if (!act) 1100 return -ENOMEM; 1101 if (!strcmp(act, "report")) 1102 c->assert_action = ASSACT_REPORT; 1103 else if (!strcmp(act, "read-only")) 1104 c->assert_action = ASSACT_RO; 1105 else if (!strcmp(act, "panic")) 1106 c->assert_action = ASSACT_PANIC; 1107 else { 1108 ubifs_err(c, "unknown assert action \"%s\"", act); 1109 kfree(act); 1110 return -EINVAL; 1111 } 1112 kfree(act); 1113 break; 1114 } 1115 case Opt_auth_key: 1116 if (!is_remount) { 1117 c->auth_key_name = kstrdup(args[0].from, 1118 GFP_KERNEL); 1119 if (!c->auth_key_name) 1120 return -ENOMEM; 1121 } 1122 break; 1123 case Opt_auth_hash_name: 1124 if (!is_remount) { 1125 c->auth_hash_name = kstrdup(args[0].from, 1126 GFP_KERNEL); 1127 if (!c->auth_hash_name) 1128 return -ENOMEM; 1129 } 1130 break; 1131 case Opt_ignore: 1132 break; 1133 default: 1134 { 1135 unsigned long flag; 1136 struct super_block *sb = c->vfs_sb; 1137 1138 flag = parse_standard_option(p); 1139 if (!flag) { 1140 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1141 p); 1142 return -EINVAL; 1143 } 1144 sb->s_flags |= flag; 1145 break; 1146 } 1147 } 1148 } 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * ubifs_release_options - release mount parameters which have been dumped. 1155 * @c: UBIFS file-system description object 1156 */ 1157 static void ubifs_release_options(struct ubifs_info *c) 1158 { 1159 kfree(c->auth_key_name); 1160 c->auth_key_name = NULL; 1161 kfree(c->auth_hash_name); 1162 c->auth_hash_name = NULL; 1163 } 1164 1165 /** 1166 * destroy_journal - destroy journal data structures. 1167 * @c: UBIFS file-system description object 1168 * 1169 * This function destroys journal data structures including those that may have 1170 * been created by recovery functions. 1171 */ 1172 static void destroy_journal(struct ubifs_info *c) 1173 { 1174 while (!list_empty(&c->unclean_leb_list)) { 1175 struct ubifs_unclean_leb *ucleb; 1176 1177 ucleb = list_entry(c->unclean_leb_list.next, 1178 struct ubifs_unclean_leb, list); 1179 list_del(&ucleb->list); 1180 kfree(ucleb); 1181 } 1182 while (!list_empty(&c->old_buds)) { 1183 struct ubifs_bud *bud; 1184 1185 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1186 list_del(&bud->list); 1187 kfree(bud); 1188 } 1189 ubifs_destroy_idx_gc(c); 1190 ubifs_destroy_size_tree(c); 1191 ubifs_tnc_close(c); 1192 free_buds(c); 1193 } 1194 1195 /** 1196 * bu_init - initialize bulk-read information. 1197 * @c: UBIFS file-system description object 1198 */ 1199 static void bu_init(struct ubifs_info *c) 1200 { 1201 ubifs_assert(c, c->bulk_read == 1); 1202 1203 if (c->bu.buf) 1204 return; /* Already initialized */ 1205 1206 again: 1207 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1208 if (!c->bu.buf) { 1209 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1210 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1211 goto again; 1212 } 1213 1214 /* Just disable bulk-read */ 1215 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1216 c->max_bu_buf_len); 1217 c->mount_opts.bulk_read = 1; 1218 c->bulk_read = 0; 1219 return; 1220 } 1221 } 1222 1223 /** 1224 * check_free_space - check if there is enough free space to mount. 1225 * @c: UBIFS file-system description object 1226 * 1227 * This function makes sure UBIFS has enough free space to be mounted in 1228 * read/write mode. UBIFS must always have some free space to allow deletions. 1229 */ 1230 static int check_free_space(struct ubifs_info *c) 1231 { 1232 ubifs_assert(c, c->dark_wm > 0); 1233 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1234 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1235 ubifs_dump_budg(c, &c->bi); 1236 ubifs_dump_lprops(c); 1237 return -ENOSPC; 1238 } 1239 return 0; 1240 } 1241 1242 /** 1243 * mount_ubifs - mount UBIFS file-system. 1244 * @c: UBIFS file-system description object 1245 * 1246 * This function mounts UBIFS file system. Returns zero in case of success and 1247 * a negative error code in case of failure. 1248 */ 1249 static int mount_ubifs(struct ubifs_info *c) 1250 { 1251 int err; 1252 long long x, y; 1253 size_t sz; 1254 1255 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1256 /* Suppress error messages while probing if SB_SILENT is set */ 1257 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1258 1259 err = init_constants_early(c); 1260 if (err) 1261 return err; 1262 1263 err = ubifs_debugging_init(c); 1264 if (err) 1265 return err; 1266 1267 err = ubifs_sysfs_register(c); 1268 if (err) 1269 goto out_debugging; 1270 1271 err = check_volume_empty(c); 1272 if (err) 1273 goto out_free; 1274 1275 if (c->empty && (c->ro_mount || c->ro_media)) { 1276 /* 1277 * This UBI volume is empty, and read-only, or the file system 1278 * is mounted read-only - we cannot format it. 1279 */ 1280 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1281 c->ro_media ? "UBI volume" : "mount"); 1282 err = -EROFS; 1283 goto out_free; 1284 } 1285 1286 if (c->ro_media && !c->ro_mount) { 1287 ubifs_err(c, "cannot mount read-write - read-only media"); 1288 err = -EROFS; 1289 goto out_free; 1290 } 1291 1292 /* 1293 * The requirement for the buffer is that it should fit indexing B-tree 1294 * height amount of integers. We assume the height if the TNC tree will 1295 * never exceed 64. 1296 */ 1297 err = -ENOMEM; 1298 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1299 GFP_KERNEL); 1300 if (!c->bottom_up_buf) 1301 goto out_free; 1302 1303 c->sbuf = vmalloc(c->leb_size); 1304 if (!c->sbuf) 1305 goto out_free; 1306 1307 if (!c->ro_mount) { 1308 c->ileb_buf = vmalloc(c->leb_size); 1309 if (!c->ileb_buf) 1310 goto out_free; 1311 } 1312 1313 if (c->bulk_read == 1) 1314 bu_init(c); 1315 1316 if (!c->ro_mount) { 1317 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1318 UBIFS_CIPHER_BLOCK_SIZE, 1319 GFP_KERNEL); 1320 if (!c->write_reserve_buf) 1321 goto out_free; 1322 } 1323 1324 c->mounting = 1; 1325 1326 if (c->auth_key_name) { 1327 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1328 err = ubifs_init_authentication(c); 1329 if (err) 1330 goto out_free; 1331 } else { 1332 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1333 " authentication support"); 1334 err = -EINVAL; 1335 goto out_free; 1336 } 1337 } 1338 1339 err = ubifs_read_superblock(c); 1340 if (err) 1341 goto out_auth; 1342 1343 c->probing = 0; 1344 1345 /* 1346 * Make sure the compressor which is set as default in the superblock 1347 * or overridden by mount options is actually compiled in. 1348 */ 1349 if (!ubifs_compr_present(c, c->default_compr)) { 1350 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1351 ubifs_compr_name(c, c->default_compr)); 1352 err = -ENOTSUPP; 1353 goto out_auth; 1354 } 1355 1356 err = init_constants_sb(c); 1357 if (err) 1358 goto out_auth; 1359 1360 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2; 1361 c->cbuf = kmalloc(sz, GFP_NOFS); 1362 if (!c->cbuf) { 1363 err = -ENOMEM; 1364 goto out_auth; 1365 } 1366 1367 err = alloc_wbufs(c); 1368 if (err) 1369 goto out_cbuf; 1370 1371 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1372 if (!c->ro_mount) { 1373 /* Create background thread */ 1374 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name); 1375 if (IS_ERR(c->bgt)) { 1376 err = PTR_ERR(c->bgt); 1377 c->bgt = NULL; 1378 ubifs_err(c, "cannot spawn \"%s\", error %d", 1379 c->bgt_name, err); 1380 goto out_wbufs; 1381 } 1382 } 1383 1384 err = ubifs_read_master(c); 1385 if (err) 1386 goto out_master; 1387 1388 init_constants_master(c); 1389 1390 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1391 ubifs_msg(c, "recovery needed"); 1392 c->need_recovery = 1; 1393 } 1394 1395 if (c->need_recovery && !c->ro_mount) { 1396 err = ubifs_recover_inl_heads(c, c->sbuf); 1397 if (err) 1398 goto out_master; 1399 } 1400 1401 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1402 if (err) 1403 goto out_master; 1404 1405 if (!c->ro_mount && c->space_fixup) { 1406 err = ubifs_fixup_free_space(c); 1407 if (err) 1408 goto out_lpt; 1409 } 1410 1411 if (!c->ro_mount && !c->need_recovery) { 1412 /* 1413 * Set the "dirty" flag so that if we reboot uncleanly we 1414 * will notice this immediately on the next mount. 1415 */ 1416 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1417 err = ubifs_write_master(c); 1418 if (err) 1419 goto out_lpt; 1420 } 1421 1422 /* 1423 * Handle offline signed images: Now that the master node is 1424 * written and its validation no longer depends on the hash 1425 * in the superblock, we can update the offline signed 1426 * superblock with a HMAC version, 1427 */ 1428 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) { 1429 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm); 1430 if (err) 1431 goto out_lpt; 1432 c->superblock_need_write = 1; 1433 } 1434 1435 if (!c->ro_mount && c->superblock_need_write) { 1436 err = ubifs_write_sb_node(c, c->sup_node); 1437 if (err) 1438 goto out_lpt; 1439 c->superblock_need_write = 0; 1440 } 1441 1442 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1443 if (err) 1444 goto out_lpt; 1445 1446 err = ubifs_replay_journal(c); 1447 if (err) 1448 goto out_journal; 1449 1450 /* Calculate 'min_idx_lebs' after journal replay */ 1451 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1452 1453 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1454 if (err) 1455 goto out_orphans; 1456 1457 if (!c->ro_mount) { 1458 int lnum; 1459 1460 err = check_free_space(c); 1461 if (err) 1462 goto out_orphans; 1463 1464 /* Check for enough log space */ 1465 lnum = c->lhead_lnum + 1; 1466 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1467 lnum = UBIFS_LOG_LNUM; 1468 if (lnum == c->ltail_lnum) { 1469 err = ubifs_consolidate_log(c); 1470 if (err) 1471 goto out_orphans; 1472 } 1473 1474 if (c->need_recovery) { 1475 if (!ubifs_authenticated(c)) { 1476 err = ubifs_recover_size(c, true); 1477 if (err) 1478 goto out_orphans; 1479 } 1480 1481 err = ubifs_rcvry_gc_commit(c); 1482 if (err) 1483 goto out_orphans; 1484 1485 if (ubifs_authenticated(c)) { 1486 err = ubifs_recover_size(c, false); 1487 if (err) 1488 goto out_orphans; 1489 } 1490 } else { 1491 err = take_gc_lnum(c); 1492 if (err) 1493 goto out_orphans; 1494 1495 /* 1496 * GC LEB may contain garbage if there was an unclean 1497 * reboot, and it should be un-mapped. 1498 */ 1499 err = ubifs_leb_unmap(c, c->gc_lnum); 1500 if (err) 1501 goto out_orphans; 1502 } 1503 1504 err = dbg_check_lprops(c); 1505 if (err) 1506 goto out_orphans; 1507 } else if (c->need_recovery) { 1508 err = ubifs_recover_size(c, false); 1509 if (err) 1510 goto out_orphans; 1511 } else { 1512 /* 1513 * Even if we mount read-only, we have to set space in GC LEB 1514 * to proper value because this affects UBIFS free space 1515 * reporting. We do not want to have a situation when 1516 * re-mounting from R/O to R/W changes amount of free space. 1517 */ 1518 err = take_gc_lnum(c); 1519 if (err) 1520 goto out_orphans; 1521 } 1522 1523 spin_lock(&ubifs_infos_lock); 1524 list_add_tail(&c->infos_list, &ubifs_infos); 1525 spin_unlock(&ubifs_infos_lock); 1526 1527 if (c->need_recovery) { 1528 if (c->ro_mount) 1529 ubifs_msg(c, "recovery deferred"); 1530 else { 1531 c->need_recovery = 0; 1532 ubifs_msg(c, "recovery completed"); 1533 /* 1534 * GC LEB has to be empty and taken at this point. But 1535 * the journal head LEBs may also be accounted as 1536 * "empty taken" if they are empty. 1537 */ 1538 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1539 } 1540 } else 1541 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1542 1543 err = dbg_check_filesystem(c); 1544 if (err) 1545 goto out_infos; 1546 1547 dbg_debugfs_init_fs(c); 1548 1549 c->mounting = 0; 1550 1551 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1552 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1553 c->ro_mount ? ", R/O mode" : ""); 1554 x = (long long)c->main_lebs * c->leb_size; 1555 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1556 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1557 c->leb_size, c->leb_size >> 10, c->min_io_size, 1558 c->max_write_size); 1559 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)", 1560 x, x >> 20, c->main_lebs, c->max_leb_cnt, 1561 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1562 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1563 c->report_rp_size, c->report_rp_size >> 10); 1564 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1565 c->fmt_version, c->ro_compat_version, 1566 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1567 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1568 1569 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1570 dbg_gen("data journal heads: %d", 1571 c->jhead_cnt - NONDATA_JHEADS_CNT); 1572 dbg_gen("log LEBs: %d (%d - %d)", 1573 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1574 dbg_gen("LPT area LEBs: %d (%d - %d)", 1575 c->lpt_lebs, c->lpt_first, c->lpt_last); 1576 dbg_gen("orphan area LEBs: %d (%d - %d)", 1577 c->orph_lebs, c->orph_first, c->orph_last); 1578 dbg_gen("main area LEBs: %d (%d - %d)", 1579 c->main_lebs, c->main_first, c->leb_cnt - 1); 1580 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1581 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)", 1582 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1583 c->bi.old_idx_sz >> 20); 1584 dbg_gen("key hash type: %d", c->key_hash_type); 1585 dbg_gen("tree fanout: %d", c->fanout); 1586 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1587 dbg_gen("max. znode size %d", c->max_znode_sz); 1588 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1589 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1590 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1591 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1592 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1593 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1594 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1595 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1596 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1597 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1598 dbg_gen("dead watermark: %d", c->dead_wm); 1599 dbg_gen("dark watermark: %d", c->dark_wm); 1600 dbg_gen("LEB overhead: %d", c->leb_overhead); 1601 x = (long long)c->main_lebs * c->dark_wm; 1602 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1603 x, x >> 10, x >> 20); 1604 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1605 c->max_bud_bytes, c->max_bud_bytes >> 10, 1606 c->max_bud_bytes >> 20); 1607 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1608 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1609 c->bg_bud_bytes >> 20); 1610 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1611 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1612 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1613 dbg_gen("commit number: %llu", c->cmt_no); 1614 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c)); 1615 dbg_gen("max orphans: %d", c->max_orphans); 1616 1617 return 0; 1618 1619 out_infos: 1620 spin_lock(&ubifs_infos_lock); 1621 list_del(&c->infos_list); 1622 spin_unlock(&ubifs_infos_lock); 1623 out_orphans: 1624 free_orphans(c); 1625 out_journal: 1626 destroy_journal(c); 1627 out_lpt: 1628 ubifs_lpt_free(c, 0); 1629 out_master: 1630 kfree(c->mst_node); 1631 kfree(c->rcvrd_mst_node); 1632 if (c->bgt) 1633 kthread_stop(c->bgt); 1634 out_wbufs: 1635 free_wbufs(c); 1636 out_cbuf: 1637 kfree(c->cbuf); 1638 out_auth: 1639 ubifs_exit_authentication(c); 1640 out_free: 1641 kfree(c->write_reserve_buf); 1642 kfree(c->bu.buf); 1643 vfree(c->ileb_buf); 1644 vfree(c->sbuf); 1645 kfree(c->bottom_up_buf); 1646 kfree(c->sup_node); 1647 ubifs_sysfs_unregister(c); 1648 out_debugging: 1649 ubifs_debugging_exit(c); 1650 return err; 1651 } 1652 1653 /** 1654 * ubifs_umount - un-mount UBIFS file-system. 1655 * @c: UBIFS file-system description object 1656 * 1657 * Note, this function is called to free allocated resourced when un-mounting, 1658 * as well as free resources when an error occurred while we were half way 1659 * through mounting (error path cleanup function). So it has to make sure the 1660 * resource was actually allocated before freeing it. 1661 */ 1662 static void ubifs_umount(struct ubifs_info *c) 1663 { 1664 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1665 c->vi.vol_id); 1666 1667 dbg_debugfs_exit_fs(c); 1668 spin_lock(&ubifs_infos_lock); 1669 list_del(&c->infos_list); 1670 spin_unlock(&ubifs_infos_lock); 1671 1672 if (c->bgt) 1673 kthread_stop(c->bgt); 1674 1675 destroy_journal(c); 1676 free_wbufs(c); 1677 free_orphans(c); 1678 ubifs_lpt_free(c, 0); 1679 ubifs_exit_authentication(c); 1680 1681 ubifs_release_options(c); 1682 kfree(c->cbuf); 1683 kfree(c->rcvrd_mst_node); 1684 kfree(c->mst_node); 1685 kfree(c->write_reserve_buf); 1686 kfree(c->bu.buf); 1687 vfree(c->ileb_buf); 1688 vfree(c->sbuf); 1689 kfree(c->bottom_up_buf); 1690 kfree(c->sup_node); 1691 ubifs_debugging_exit(c); 1692 ubifs_sysfs_unregister(c); 1693 } 1694 1695 /** 1696 * ubifs_remount_rw - re-mount in read-write mode. 1697 * @c: UBIFS file-system description object 1698 * 1699 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1700 * mode. This function allocates the needed resources and re-mounts UBIFS in 1701 * read-write mode. 1702 */ 1703 static int ubifs_remount_rw(struct ubifs_info *c) 1704 { 1705 int err, lnum; 1706 1707 if (c->rw_incompat) { 1708 ubifs_err(c, "the file-system is not R/W-compatible"); 1709 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1710 c->fmt_version, c->ro_compat_version, 1711 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1712 return -EROFS; 1713 } 1714 1715 mutex_lock(&c->umount_mutex); 1716 dbg_save_space_info(c); 1717 c->remounting_rw = 1; 1718 c->ro_mount = 0; 1719 1720 if (c->space_fixup) { 1721 err = ubifs_fixup_free_space(c); 1722 if (err) 1723 goto out; 1724 } 1725 1726 err = check_free_space(c); 1727 if (err) 1728 goto out; 1729 1730 if (c->need_recovery) { 1731 ubifs_msg(c, "completing deferred recovery"); 1732 err = ubifs_write_rcvrd_mst_node(c); 1733 if (err) 1734 goto out; 1735 if (!ubifs_authenticated(c)) { 1736 err = ubifs_recover_size(c, true); 1737 if (err) 1738 goto out; 1739 } 1740 err = ubifs_clean_lebs(c, c->sbuf); 1741 if (err) 1742 goto out; 1743 err = ubifs_recover_inl_heads(c, c->sbuf); 1744 if (err) 1745 goto out; 1746 } else { 1747 /* A readonly mount is not allowed to have orphans */ 1748 ubifs_assert(c, c->tot_orphans == 0); 1749 err = ubifs_clear_orphans(c); 1750 if (err) 1751 goto out; 1752 } 1753 1754 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1755 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1756 err = ubifs_write_master(c); 1757 if (err) 1758 goto out; 1759 } 1760 1761 if (c->superblock_need_write) { 1762 struct ubifs_sb_node *sup = c->sup_node; 1763 1764 err = ubifs_write_sb_node(c, sup); 1765 if (err) 1766 goto out; 1767 1768 c->superblock_need_write = 0; 1769 } 1770 1771 c->ileb_buf = vmalloc(c->leb_size); 1772 if (!c->ileb_buf) { 1773 err = -ENOMEM; 1774 goto out; 1775 } 1776 1777 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1778 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1779 if (!c->write_reserve_buf) { 1780 err = -ENOMEM; 1781 goto out; 1782 } 1783 1784 err = ubifs_lpt_init(c, 0, 1); 1785 if (err) 1786 goto out; 1787 1788 /* Create background thread */ 1789 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name); 1790 if (IS_ERR(c->bgt)) { 1791 err = PTR_ERR(c->bgt); 1792 c->bgt = NULL; 1793 ubifs_err(c, "cannot spawn \"%s\", error %d", 1794 c->bgt_name, err); 1795 goto out; 1796 } 1797 1798 c->orph_buf = vmalloc(c->leb_size); 1799 if (!c->orph_buf) { 1800 err = -ENOMEM; 1801 goto out; 1802 } 1803 1804 /* Check for enough log space */ 1805 lnum = c->lhead_lnum + 1; 1806 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1807 lnum = UBIFS_LOG_LNUM; 1808 if (lnum == c->ltail_lnum) { 1809 err = ubifs_consolidate_log(c); 1810 if (err) 1811 goto out; 1812 } 1813 1814 if (c->need_recovery) { 1815 err = ubifs_rcvry_gc_commit(c); 1816 if (err) 1817 goto out; 1818 1819 if (ubifs_authenticated(c)) { 1820 err = ubifs_recover_size(c, false); 1821 if (err) 1822 goto out; 1823 } 1824 } else { 1825 err = ubifs_leb_unmap(c, c->gc_lnum); 1826 } 1827 if (err) 1828 goto out; 1829 1830 dbg_gen("re-mounted read-write"); 1831 c->remounting_rw = 0; 1832 1833 if (c->need_recovery) { 1834 c->need_recovery = 0; 1835 ubifs_msg(c, "deferred recovery completed"); 1836 } else { 1837 /* 1838 * Do not run the debugging space check if the were doing 1839 * recovery, because when we saved the information we had the 1840 * file-system in a state where the TNC and lprops has been 1841 * modified in memory, but all the I/O operations (including a 1842 * commit) were deferred. So the file-system was in 1843 * "non-committed" state. Now the file-system is in committed 1844 * state, and of course the amount of free space will change 1845 * because, for example, the old index size was imprecise. 1846 */ 1847 err = dbg_check_space_info(c); 1848 } 1849 1850 mutex_unlock(&c->umount_mutex); 1851 return err; 1852 1853 out: 1854 c->ro_mount = 1; 1855 vfree(c->orph_buf); 1856 c->orph_buf = NULL; 1857 if (c->bgt) { 1858 kthread_stop(c->bgt); 1859 c->bgt = NULL; 1860 } 1861 kfree(c->write_reserve_buf); 1862 c->write_reserve_buf = NULL; 1863 vfree(c->ileb_buf); 1864 c->ileb_buf = NULL; 1865 ubifs_lpt_free(c, 1); 1866 c->remounting_rw = 0; 1867 mutex_unlock(&c->umount_mutex); 1868 return err; 1869 } 1870 1871 /** 1872 * ubifs_remount_ro - re-mount in read-only mode. 1873 * @c: UBIFS file-system description object 1874 * 1875 * We assume VFS has stopped writing. Possibly the background thread could be 1876 * running a commit, however kthread_stop will wait in that case. 1877 */ 1878 static void ubifs_remount_ro(struct ubifs_info *c) 1879 { 1880 int i, err; 1881 1882 ubifs_assert(c, !c->need_recovery); 1883 ubifs_assert(c, !c->ro_mount); 1884 1885 mutex_lock(&c->umount_mutex); 1886 if (c->bgt) { 1887 kthread_stop(c->bgt); 1888 c->bgt = NULL; 1889 } 1890 1891 dbg_save_space_info(c); 1892 1893 for (i = 0; i < c->jhead_cnt; i++) { 1894 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1895 if (err) 1896 ubifs_ro_mode(c, err); 1897 } 1898 1899 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1900 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1901 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1902 err = ubifs_write_master(c); 1903 if (err) 1904 ubifs_ro_mode(c, err); 1905 1906 vfree(c->orph_buf); 1907 c->orph_buf = NULL; 1908 kfree(c->write_reserve_buf); 1909 c->write_reserve_buf = NULL; 1910 vfree(c->ileb_buf); 1911 c->ileb_buf = NULL; 1912 ubifs_lpt_free(c, 1); 1913 c->ro_mount = 1; 1914 err = dbg_check_space_info(c); 1915 if (err) 1916 ubifs_ro_mode(c, err); 1917 mutex_unlock(&c->umount_mutex); 1918 } 1919 1920 static void ubifs_put_super(struct super_block *sb) 1921 { 1922 int i; 1923 struct ubifs_info *c = sb->s_fs_info; 1924 1925 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1926 1927 /* 1928 * The following asserts are only valid if there has not been a failure 1929 * of the media. For example, there will be dirty inodes if we failed 1930 * to write them back because of I/O errors. 1931 */ 1932 if (!c->ro_error) { 1933 ubifs_assert(c, c->bi.idx_growth == 0); 1934 ubifs_assert(c, c->bi.dd_growth == 0); 1935 ubifs_assert(c, c->bi.data_growth == 0); 1936 } 1937 1938 /* 1939 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1940 * and file system un-mount. Namely, it prevents the shrinker from 1941 * picking this superblock for shrinking - it will be just skipped if 1942 * the mutex is locked. 1943 */ 1944 mutex_lock(&c->umount_mutex); 1945 if (!c->ro_mount) { 1946 /* 1947 * First of all kill the background thread to make sure it does 1948 * not interfere with un-mounting and freeing resources. 1949 */ 1950 if (c->bgt) { 1951 kthread_stop(c->bgt); 1952 c->bgt = NULL; 1953 } 1954 1955 /* 1956 * On fatal errors c->ro_error is set to 1, in which case we do 1957 * not write the master node. 1958 */ 1959 if (!c->ro_error) { 1960 int err; 1961 1962 /* Synchronize write-buffers */ 1963 for (i = 0; i < c->jhead_cnt; i++) { 1964 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1965 if (err) 1966 ubifs_ro_mode(c, err); 1967 } 1968 1969 /* 1970 * We are being cleanly unmounted which means the 1971 * orphans were killed - indicate this in the master 1972 * node. Also save the reserved GC LEB number. 1973 */ 1974 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1975 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1976 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1977 err = ubifs_write_master(c); 1978 if (err) 1979 /* 1980 * Recovery will attempt to fix the master area 1981 * next mount, so we just print a message and 1982 * continue to unmount normally. 1983 */ 1984 ubifs_err(c, "failed to write master node, error %d", 1985 err); 1986 } else { 1987 for (i = 0; i < c->jhead_cnt; i++) 1988 /* Make sure write-buffer timers are canceled */ 1989 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1990 } 1991 } 1992 1993 ubifs_umount(c); 1994 ubi_close_volume(c->ubi); 1995 mutex_unlock(&c->umount_mutex); 1996 } 1997 1998 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1999 { 2000 int err; 2001 struct ubifs_info *c = sb->s_fs_info; 2002 2003 sync_filesystem(sb); 2004 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 2005 2006 err = ubifs_parse_options(c, data, 1); 2007 if (err) { 2008 ubifs_err(c, "invalid or unknown remount parameter"); 2009 return err; 2010 } 2011 2012 if (c->ro_mount && !(*flags & SB_RDONLY)) { 2013 if (c->ro_error) { 2014 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 2015 return -EROFS; 2016 } 2017 if (c->ro_media) { 2018 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 2019 return -EROFS; 2020 } 2021 err = ubifs_remount_rw(c); 2022 if (err) 2023 return err; 2024 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 2025 if (c->ro_error) { 2026 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 2027 return -EROFS; 2028 } 2029 ubifs_remount_ro(c); 2030 } 2031 2032 if (c->bulk_read == 1) 2033 bu_init(c); 2034 else { 2035 dbg_gen("disable bulk-read"); 2036 mutex_lock(&c->bu_mutex); 2037 kfree(c->bu.buf); 2038 c->bu.buf = NULL; 2039 mutex_unlock(&c->bu_mutex); 2040 } 2041 2042 if (!c->need_recovery) 2043 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 2044 2045 return 0; 2046 } 2047 2048 const struct super_operations ubifs_super_operations = { 2049 .alloc_inode = ubifs_alloc_inode, 2050 .free_inode = ubifs_free_inode, 2051 .put_super = ubifs_put_super, 2052 .write_inode = ubifs_write_inode, 2053 .drop_inode = ubifs_drop_inode, 2054 .evict_inode = ubifs_evict_inode, 2055 .statfs = ubifs_statfs, 2056 .dirty_inode = ubifs_dirty_inode, 2057 .remount_fs = ubifs_remount_fs, 2058 .show_options = ubifs_show_options, 2059 .sync_fs = ubifs_sync_fs, 2060 }; 2061 2062 /** 2063 * open_ubi - parse UBI device name string and open the UBI device. 2064 * @name: UBI volume name 2065 * @mode: UBI volume open mode 2066 * 2067 * The primary method of mounting UBIFS is by specifying the UBI volume 2068 * character device node path. However, UBIFS may also be mounted without any 2069 * character device node using one of the following methods: 2070 * 2071 * o ubiX_Y - mount UBI device number X, volume Y; 2072 * o ubiY - mount UBI device number 0, volume Y; 2073 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2074 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2075 * 2076 * Alternative '!' separator may be used instead of ':' (because some shells 2077 * like busybox may interpret ':' as an NFS host name separator). This function 2078 * returns UBI volume description object in case of success and a negative 2079 * error code in case of failure. 2080 */ 2081 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2082 { 2083 struct ubi_volume_desc *ubi; 2084 int dev, vol; 2085 char *endptr; 2086 2087 if (!name || !*name) 2088 return ERR_PTR(-EINVAL); 2089 2090 /* First, try to open using the device node path method */ 2091 ubi = ubi_open_volume_path(name, mode); 2092 if (!IS_ERR(ubi)) 2093 return ubi; 2094 2095 /* Try the "nodev" method */ 2096 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2097 return ERR_PTR(-EINVAL); 2098 2099 /* ubi:NAME method */ 2100 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2101 return ubi_open_volume_nm(0, name + 4, mode); 2102 2103 if (!isdigit(name[3])) 2104 return ERR_PTR(-EINVAL); 2105 2106 dev = simple_strtoul(name + 3, &endptr, 0); 2107 2108 /* ubiY method */ 2109 if (*endptr == '\0') 2110 return ubi_open_volume(0, dev, mode); 2111 2112 /* ubiX_Y method */ 2113 if (*endptr == '_' && isdigit(endptr[1])) { 2114 vol = simple_strtoul(endptr + 1, &endptr, 0); 2115 if (*endptr != '\0') 2116 return ERR_PTR(-EINVAL); 2117 return ubi_open_volume(dev, vol, mode); 2118 } 2119 2120 /* ubiX:NAME method */ 2121 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2122 return ubi_open_volume_nm(dev, ++endptr, mode); 2123 2124 return ERR_PTR(-EINVAL); 2125 } 2126 2127 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2128 { 2129 struct ubifs_info *c; 2130 2131 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2132 if (c) { 2133 spin_lock_init(&c->cnt_lock); 2134 spin_lock_init(&c->cs_lock); 2135 spin_lock_init(&c->buds_lock); 2136 spin_lock_init(&c->space_lock); 2137 spin_lock_init(&c->orphan_lock); 2138 init_rwsem(&c->commit_sem); 2139 mutex_init(&c->lp_mutex); 2140 mutex_init(&c->tnc_mutex); 2141 mutex_init(&c->log_mutex); 2142 mutex_init(&c->umount_mutex); 2143 mutex_init(&c->bu_mutex); 2144 mutex_init(&c->write_reserve_mutex); 2145 init_waitqueue_head(&c->cmt_wq); 2146 c->buds = RB_ROOT; 2147 c->old_idx = RB_ROOT; 2148 c->size_tree = RB_ROOT; 2149 c->orph_tree = RB_ROOT; 2150 INIT_LIST_HEAD(&c->infos_list); 2151 INIT_LIST_HEAD(&c->idx_gc); 2152 INIT_LIST_HEAD(&c->replay_list); 2153 INIT_LIST_HEAD(&c->replay_buds); 2154 INIT_LIST_HEAD(&c->uncat_list); 2155 INIT_LIST_HEAD(&c->empty_list); 2156 INIT_LIST_HEAD(&c->freeable_list); 2157 INIT_LIST_HEAD(&c->frdi_idx_list); 2158 INIT_LIST_HEAD(&c->unclean_leb_list); 2159 INIT_LIST_HEAD(&c->old_buds); 2160 INIT_LIST_HEAD(&c->orph_list); 2161 INIT_LIST_HEAD(&c->orph_new); 2162 c->no_chk_data_crc = 1; 2163 c->assert_action = ASSACT_RO; 2164 2165 c->highest_inum = UBIFS_FIRST_INO; 2166 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2167 2168 ubi_get_volume_info(ubi, &c->vi); 2169 ubi_get_device_info(c->vi.ubi_num, &c->di); 2170 } 2171 return c; 2172 } 2173 2174 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2175 { 2176 struct ubifs_info *c = sb->s_fs_info; 2177 struct inode *root; 2178 int err; 2179 2180 c->vfs_sb = sb; 2181 /* Re-open the UBI device in read-write mode */ 2182 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2183 if (IS_ERR(c->ubi)) { 2184 err = PTR_ERR(c->ubi); 2185 goto out; 2186 } 2187 2188 err = ubifs_parse_options(c, data, 0); 2189 if (err) 2190 goto out_close; 2191 2192 /* 2193 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2194 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2195 * which means the user would have to wait not just for their own I/O 2196 * but the read-ahead I/O as well i.e. completely pointless. 2197 * 2198 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2199 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2200 * writeback happening. 2201 */ 2202 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2203 c->vi.vol_id); 2204 if (err) 2205 goto out_close; 2206 sb->s_bdi->ra_pages = 0; 2207 sb->s_bdi->io_pages = 0; 2208 2209 sb->s_fs_info = c; 2210 sb->s_magic = UBIFS_SUPER_MAGIC; 2211 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2212 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2213 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2214 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2215 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2216 sb->s_op = &ubifs_super_operations; 2217 sb->s_xattr = ubifs_xattr_handlers; 2218 fscrypt_set_ops(sb, &ubifs_crypt_operations); 2219 2220 mutex_lock(&c->umount_mutex); 2221 err = mount_ubifs(c); 2222 if (err) { 2223 ubifs_assert(c, err < 0); 2224 goto out_unlock; 2225 } 2226 2227 /* Read the root inode */ 2228 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2229 if (IS_ERR(root)) { 2230 err = PTR_ERR(root); 2231 goto out_umount; 2232 } 2233 2234 sb->s_root = d_make_root(root); 2235 if (!sb->s_root) { 2236 err = -ENOMEM; 2237 goto out_umount; 2238 } 2239 2240 import_uuid(&sb->s_uuid, c->uuid); 2241 2242 mutex_unlock(&c->umount_mutex); 2243 return 0; 2244 2245 out_umount: 2246 ubifs_umount(c); 2247 out_unlock: 2248 mutex_unlock(&c->umount_mutex); 2249 out_close: 2250 ubifs_release_options(c); 2251 ubi_close_volume(c->ubi); 2252 out: 2253 return err; 2254 } 2255 2256 static int sb_test(struct super_block *sb, void *data) 2257 { 2258 struct ubifs_info *c1 = data; 2259 struct ubifs_info *c = sb->s_fs_info; 2260 2261 return c->vi.cdev == c1->vi.cdev; 2262 } 2263 2264 static int sb_set(struct super_block *sb, void *data) 2265 { 2266 sb->s_fs_info = data; 2267 return set_anon_super(sb, NULL); 2268 } 2269 2270 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2271 const char *name, void *data) 2272 { 2273 struct ubi_volume_desc *ubi; 2274 struct ubifs_info *c; 2275 struct super_block *sb; 2276 int err; 2277 2278 dbg_gen("name %s, flags %#x", name, flags); 2279 2280 /* 2281 * Get UBI device number and volume ID. Mount it read-only so far 2282 * because this might be a new mount point, and UBI allows only one 2283 * read-write user at a time. 2284 */ 2285 ubi = open_ubi(name, UBI_READONLY); 2286 if (IS_ERR(ubi)) { 2287 if (!(flags & SB_SILENT)) 2288 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2289 current->pid, name, (int)PTR_ERR(ubi)); 2290 return ERR_CAST(ubi); 2291 } 2292 2293 c = alloc_ubifs_info(ubi); 2294 if (!c) { 2295 err = -ENOMEM; 2296 goto out_close; 2297 } 2298 2299 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2300 2301 sb = sget(fs_type, sb_test, sb_set, flags, c); 2302 if (IS_ERR(sb)) { 2303 err = PTR_ERR(sb); 2304 kfree(c); 2305 goto out_close; 2306 } 2307 2308 if (sb->s_root) { 2309 struct ubifs_info *c1 = sb->s_fs_info; 2310 kfree(c); 2311 /* A new mount point for already mounted UBIFS */ 2312 dbg_gen("this ubi volume is already mounted"); 2313 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2314 err = -EBUSY; 2315 goto out_deact; 2316 } 2317 } else { 2318 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2319 if (err) 2320 goto out_deact; 2321 /* We do not support atime */ 2322 sb->s_flags |= SB_ACTIVE; 2323 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 2324 ubifs_msg(c, "full atime support is enabled."); 2325 else 2326 sb->s_flags |= SB_NOATIME; 2327 } 2328 2329 /* 'fill_super()' opens ubi again so we must close it here */ 2330 ubi_close_volume(ubi); 2331 2332 return dget(sb->s_root); 2333 2334 out_deact: 2335 deactivate_locked_super(sb); 2336 out_close: 2337 ubi_close_volume(ubi); 2338 return ERR_PTR(err); 2339 } 2340 2341 static void kill_ubifs_super(struct super_block *s) 2342 { 2343 struct ubifs_info *c = s->s_fs_info; 2344 kill_anon_super(s); 2345 kfree(c); 2346 } 2347 2348 static struct file_system_type ubifs_fs_type = { 2349 .name = "ubifs", 2350 .owner = THIS_MODULE, 2351 .mount = ubifs_mount, 2352 .kill_sb = kill_ubifs_super, 2353 }; 2354 MODULE_ALIAS_FS("ubifs"); 2355 2356 /* 2357 * Inode slab cache constructor. 2358 */ 2359 static void inode_slab_ctor(void *obj) 2360 { 2361 struct ubifs_inode *ui = obj; 2362 inode_init_once(&ui->vfs_inode); 2363 } 2364 2365 static int __init ubifs_init(void) 2366 { 2367 int err; 2368 2369 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2370 2371 /* Make sure node sizes are 8-byte aligned */ 2372 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2373 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2374 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2375 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2376 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2377 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2378 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2379 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2380 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2381 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2382 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2383 2384 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2385 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2386 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2387 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2388 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2389 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2390 2391 /* Check min. node size */ 2392 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2393 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2394 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2395 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2396 2397 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2398 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2399 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2400 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2401 2402 /* Defined node sizes */ 2403 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2404 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2405 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2406 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2407 2408 /* 2409 * We use 2 bit wide bit-fields to store compression type, which should 2410 * be amended if more compressors are added. The bit-fields are: 2411 * @compr_type in 'struct ubifs_inode', @default_compr in 2412 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2413 */ 2414 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2415 2416 /* 2417 * We require that PAGE_SIZE is greater-than-or-equal-to 2418 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2419 */ 2420 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2421 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2422 current->pid, (unsigned int)PAGE_SIZE); 2423 return -EINVAL; 2424 } 2425 2426 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2427 sizeof(struct ubifs_inode), 0, 2428 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2429 SLAB_ACCOUNT, &inode_slab_ctor); 2430 if (!ubifs_inode_slab) 2431 return -ENOMEM; 2432 2433 err = register_shrinker(&ubifs_shrinker_info); 2434 if (err) 2435 goto out_slab; 2436 2437 err = ubifs_compressors_init(); 2438 if (err) 2439 goto out_shrinker; 2440 2441 dbg_debugfs_init(); 2442 2443 err = ubifs_sysfs_init(); 2444 if (err) 2445 goto out_dbg; 2446 2447 err = register_filesystem(&ubifs_fs_type); 2448 if (err) { 2449 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2450 current->pid, err); 2451 goto out_sysfs; 2452 } 2453 return 0; 2454 2455 out_sysfs: 2456 ubifs_sysfs_exit(); 2457 out_dbg: 2458 dbg_debugfs_exit(); 2459 ubifs_compressors_exit(); 2460 out_shrinker: 2461 unregister_shrinker(&ubifs_shrinker_info); 2462 out_slab: 2463 kmem_cache_destroy(ubifs_inode_slab); 2464 return err; 2465 } 2466 /* late_initcall to let compressors initialize first */ 2467 late_initcall(ubifs_init); 2468 2469 static void __exit ubifs_exit(void) 2470 { 2471 WARN_ON(!list_empty(&ubifs_infos)); 2472 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2473 2474 dbg_debugfs_exit(); 2475 ubifs_sysfs_exit(); 2476 ubifs_compressors_exit(); 2477 unregister_shrinker(&ubifs_shrinker_info); 2478 2479 /* 2480 * Make sure all delayed rcu free inodes are flushed before we 2481 * destroy cache. 2482 */ 2483 rcu_barrier(); 2484 kmem_cache_destroy(ubifs_inode_slab); 2485 unregister_filesystem(&ubifs_fs_type); 2486 } 2487 module_exit(ubifs_exit); 2488 2489 MODULE_LICENSE("GPL"); 2490 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2491 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2492 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2493