xref: /openbmc/linux/fs/ubifs/super.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 	inode->i_flags |= S_NOATIME;
134 #endif
135 	set_nlink(inode, le32_to_cpu(ino->nlink));
136 	i_uid_write(inode, le32_to_cpu(ino->uid));
137 	i_gid_write(inode, le32_to_cpu(ino->gid));
138 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
139 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
141 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
143 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 	inode->i_mode = le32_to_cpu(ino->mode);
145 	inode->i_size = le64_to_cpu(ino->size);
146 
147 	ui->data_len    = le32_to_cpu(ino->data_len);
148 	ui->flags       = le32_to_cpu(ino->flags);
149 	ui->compr_type  = le16_to_cpu(ino->compr_type);
150 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
152 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
153 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 	ui->synced_i_size = ui->ui_size = inode->i_size;
155 
156 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157 
158 	err = validate_inode(c, inode);
159 	if (err)
160 		goto out_invalid;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kmem_cache_free(ubifs_inode_slab, ui);
280 }
281 
282 static void ubifs_destroy_inode(struct inode *inode)
283 {
284 	struct ubifs_inode *ui = ubifs_inode(inode);
285 
286 	kfree(ui->data);
287 	call_rcu(&inode->i_rcu, ubifs_i_callback);
288 }
289 
290 /*
291  * Note, Linux write-back code calls this without 'i_mutex'.
292  */
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	int err = 0;
296 	struct ubifs_info *c = inode->i_sb->s_fs_info;
297 	struct ubifs_inode *ui = ubifs_inode(inode);
298 
299 	ubifs_assert(!ui->xattr);
300 	if (is_bad_inode(inode))
301 		return 0;
302 
303 	mutex_lock(&ui->ui_mutex);
304 	/*
305 	 * Due to races between write-back forced by budgeting
306 	 * (see 'sync_some_inodes()') and background write-back, the inode may
307 	 * have already been synchronized, do not do this again. This might
308 	 * also happen if it was synchronized in an VFS operation, e.g.
309 	 * 'ubifs_link()'.
310 	 */
311 	if (!ui->dirty) {
312 		mutex_unlock(&ui->ui_mutex);
313 		return 0;
314 	}
315 
316 	/*
317 	 * As an optimization, do not write orphan inodes to the media just
318 	 * because this is not needed.
319 	 */
320 	dbg_gen("inode %lu, mode %#x, nlink %u",
321 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 	if (inode->i_nlink) {
323 		err = ubifs_jnl_write_inode(c, inode);
324 		if (err)
325 			ubifs_err(c, "can't write inode %lu, error %d",
326 				  inode->i_ino, err);
327 		else
328 			err = dbg_check_inode_size(c, inode, ui->ui_size);
329 	}
330 
331 	ui->dirty = 0;
332 	mutex_unlock(&ui->ui_mutex);
333 	ubifs_release_dirty_inode_budget(c, ui);
334 	return err;
335 }
336 
337 static void ubifs_evict_inode(struct inode *inode)
338 {
339 	int err;
340 	struct ubifs_info *c = inode->i_sb->s_fs_info;
341 	struct ubifs_inode *ui = ubifs_inode(inode);
342 
343 	if (ui->xattr)
344 		/*
345 		 * Extended attribute inode deletions are fully handled in
346 		 * 'ubifs_removexattr()'. These inodes are special and have
347 		 * limited usage, so there is nothing to do here.
348 		 */
349 		goto out;
350 
351 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 	ubifs_assert(!atomic_read(&inode->i_count));
353 
354 	truncate_inode_pages_final(&inode->i_data);
355 
356 	if (inode->i_nlink)
357 		goto done;
358 
359 	if (is_bad_inode(inode))
360 		goto out;
361 
362 	ui->ui_size = inode->i_size = 0;
363 	err = ubifs_jnl_delete_inode(c, inode);
364 	if (err)
365 		/*
366 		 * Worst case we have a lost orphan inode wasting space, so a
367 		 * simple error message is OK here.
368 		 */
369 		ubifs_err(c, "can't delete inode %lu, error %d",
370 			  inode->i_ino, err);
371 
372 out:
373 	if (ui->dirty)
374 		ubifs_release_dirty_inode_budget(c, ui);
375 	else {
376 		/* We've deleted something - clean the "no space" flags */
377 		c->bi.nospace = c->bi.nospace_rp = 0;
378 		smp_wmb();
379 	}
380 done:
381 	clear_inode(inode);
382 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
383 	fscrypt_put_encryption_info(inode, NULL);
384 #endif
385 }
386 
387 static void ubifs_dirty_inode(struct inode *inode, int flags)
388 {
389 	struct ubifs_inode *ui = ubifs_inode(inode);
390 
391 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
392 	if (!ui->dirty) {
393 		ui->dirty = 1;
394 		dbg_gen("inode %lu",  inode->i_ino);
395 	}
396 }
397 
398 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
399 {
400 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
401 	unsigned long long free;
402 	__le32 *uuid = (__le32 *)c->uuid;
403 
404 	free = ubifs_get_free_space(c);
405 	dbg_gen("free space %lld bytes (%lld blocks)",
406 		free, free >> UBIFS_BLOCK_SHIFT);
407 
408 	buf->f_type = UBIFS_SUPER_MAGIC;
409 	buf->f_bsize = UBIFS_BLOCK_SIZE;
410 	buf->f_blocks = c->block_cnt;
411 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
412 	if (free > c->report_rp_size)
413 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
414 	else
415 		buf->f_bavail = 0;
416 	buf->f_files = 0;
417 	buf->f_ffree = 0;
418 	buf->f_namelen = UBIFS_MAX_NLEN;
419 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
420 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
421 	ubifs_assert(buf->f_bfree <= c->block_cnt);
422 	return 0;
423 }
424 
425 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
426 {
427 	struct ubifs_info *c = root->d_sb->s_fs_info;
428 
429 	if (c->mount_opts.unmount_mode == 2)
430 		seq_puts(s, ",fast_unmount");
431 	else if (c->mount_opts.unmount_mode == 1)
432 		seq_puts(s, ",norm_unmount");
433 
434 	if (c->mount_opts.bulk_read == 2)
435 		seq_puts(s, ",bulk_read");
436 	else if (c->mount_opts.bulk_read == 1)
437 		seq_puts(s, ",no_bulk_read");
438 
439 	if (c->mount_opts.chk_data_crc == 2)
440 		seq_puts(s, ",chk_data_crc");
441 	else if (c->mount_opts.chk_data_crc == 1)
442 		seq_puts(s, ",no_chk_data_crc");
443 
444 	if (c->mount_opts.override_compr) {
445 		seq_printf(s, ",compr=%s",
446 			   ubifs_compr_name(c->mount_opts.compr_type));
447 	}
448 
449 	return 0;
450 }
451 
452 static int ubifs_sync_fs(struct super_block *sb, int wait)
453 {
454 	int i, err;
455 	struct ubifs_info *c = sb->s_fs_info;
456 
457 	/*
458 	 * Zero @wait is just an advisory thing to help the file system shove
459 	 * lots of data into the queues, and there will be the second
460 	 * '->sync_fs()' call, with non-zero @wait.
461 	 */
462 	if (!wait)
463 		return 0;
464 
465 	/*
466 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
467 	 * do this if it waits for an already running commit.
468 	 */
469 	for (i = 0; i < c->jhead_cnt; i++) {
470 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
471 		if (err)
472 			return err;
473 	}
474 
475 	/*
476 	 * Strictly speaking, it is not necessary to commit the journal here,
477 	 * synchronizing write-buffers would be enough. But committing makes
478 	 * UBIFS free space predictions much more accurate, so we want to let
479 	 * the user be able to get more accurate results of 'statfs()' after
480 	 * they synchronize the file system.
481 	 */
482 	err = ubifs_run_commit(c);
483 	if (err)
484 		return err;
485 
486 	return ubi_sync(c->vi.ubi_num);
487 }
488 
489 /**
490  * init_constants_early - initialize UBIFS constants.
491  * @c: UBIFS file-system description object
492  *
493  * This function initialize UBIFS constants which do not need the superblock to
494  * be read. It also checks that the UBI volume satisfies basic UBIFS
495  * requirements. Returns zero in case of success and a negative error code in
496  * case of failure.
497  */
498 static int init_constants_early(struct ubifs_info *c)
499 {
500 	if (c->vi.corrupted) {
501 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
502 		c->ro_media = 1;
503 	}
504 
505 	if (c->di.ro_mode) {
506 		ubifs_msg(c, "read-only UBI device");
507 		c->ro_media = 1;
508 	}
509 
510 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
511 		ubifs_msg(c, "static UBI volume - read-only mode");
512 		c->ro_media = 1;
513 	}
514 
515 	c->leb_cnt = c->vi.size;
516 	c->leb_size = c->vi.usable_leb_size;
517 	c->leb_start = c->di.leb_start;
518 	c->half_leb_size = c->leb_size / 2;
519 	c->min_io_size = c->di.min_io_size;
520 	c->min_io_shift = fls(c->min_io_size) - 1;
521 	c->max_write_size = c->di.max_write_size;
522 	c->max_write_shift = fls(c->max_write_size) - 1;
523 
524 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
525 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
526 			   c->leb_size, UBIFS_MIN_LEB_SZ);
527 		return -EINVAL;
528 	}
529 
530 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
531 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
532 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
533 		return -EINVAL;
534 	}
535 
536 	if (!is_power_of_2(c->min_io_size)) {
537 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
538 		return -EINVAL;
539 	}
540 
541 	/*
542 	 * Maximum write size has to be greater or equivalent to min. I/O
543 	 * size, and be multiple of min. I/O size.
544 	 */
545 	if (c->max_write_size < c->min_io_size ||
546 	    c->max_write_size % c->min_io_size ||
547 	    !is_power_of_2(c->max_write_size)) {
548 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
549 			   c->max_write_size, c->min_io_size);
550 		return -EINVAL;
551 	}
552 
553 	/*
554 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
555 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
556 	 * less than 8.
557 	 */
558 	if (c->min_io_size < 8) {
559 		c->min_io_size = 8;
560 		c->min_io_shift = 3;
561 		if (c->max_write_size < c->min_io_size) {
562 			c->max_write_size = c->min_io_size;
563 			c->max_write_shift = c->min_io_shift;
564 		}
565 	}
566 
567 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
568 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
569 
570 	/*
571 	 * Initialize node length ranges which are mostly needed for node
572 	 * length validation.
573 	 */
574 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
575 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
576 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
577 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
578 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
579 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
580 
581 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
582 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
583 	c->ranges[UBIFS_ORPH_NODE].min_len =
584 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
585 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
586 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
587 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
588 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
589 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
590 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
591 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
592 	/*
593 	 * Minimum indexing node size is amended later when superblock is
594 	 * read and the key length is known.
595 	 */
596 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
597 	/*
598 	 * Maximum indexing node size is amended later when superblock is
599 	 * read and the fanout is known.
600 	 */
601 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
602 
603 	/*
604 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
605 	 * about these values.
606 	 */
607 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
608 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
609 
610 	/*
611 	 * Calculate how many bytes would be wasted at the end of LEB if it was
612 	 * fully filled with data nodes of maximum size. This is used in
613 	 * calculations when reporting free space.
614 	 */
615 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
616 
617 	/* Buffer size for bulk-reads */
618 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
619 	if (c->max_bu_buf_len > c->leb_size)
620 		c->max_bu_buf_len = c->leb_size;
621 	return 0;
622 }
623 
624 /**
625  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
626  * @c: UBIFS file-system description object
627  * @lnum: LEB the write-buffer was synchronized to
628  * @free: how many free bytes left in this LEB
629  * @pad: how many bytes were padded
630  *
631  * This is a callback function which is called by the I/O unit when the
632  * write-buffer is synchronized. We need this to correctly maintain space
633  * accounting in bud logical eraseblocks. This function returns zero in case of
634  * success and a negative error code in case of failure.
635  *
636  * This function actually belongs to the journal, but we keep it here because
637  * we want to keep it static.
638  */
639 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
640 {
641 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
642 }
643 
644 /*
645  * init_constants_sb - initialize UBIFS constants.
646  * @c: UBIFS file-system description object
647  *
648  * This is a helper function which initializes various UBIFS constants after
649  * the superblock has been read. It also checks various UBIFS parameters and
650  * makes sure they are all right. Returns zero in case of success and a
651  * negative error code in case of failure.
652  */
653 static int init_constants_sb(struct ubifs_info *c)
654 {
655 	int tmp, err;
656 	long long tmp64;
657 
658 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
659 	c->max_znode_sz = sizeof(struct ubifs_znode) +
660 				c->fanout * sizeof(struct ubifs_zbranch);
661 
662 	tmp = ubifs_idx_node_sz(c, 1);
663 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
664 	c->min_idx_node_sz = ALIGN(tmp, 8);
665 
666 	tmp = ubifs_idx_node_sz(c, c->fanout);
667 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
668 	c->max_idx_node_sz = ALIGN(tmp, 8);
669 
670 	/* Make sure LEB size is large enough to fit full commit */
671 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
672 	tmp = ALIGN(tmp, c->min_io_size);
673 	if (tmp > c->leb_size) {
674 		ubifs_err(c, "too small LEB size %d, at least %d needed",
675 			  c->leb_size, tmp);
676 		return -EINVAL;
677 	}
678 
679 	/*
680 	 * Make sure that the log is large enough to fit reference nodes for
681 	 * all buds plus one reserved LEB.
682 	 */
683 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
684 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
685 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
686 	tmp /= c->leb_size;
687 	tmp += 1;
688 	if (c->log_lebs < tmp) {
689 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
690 			  c->log_lebs, tmp);
691 		return -EINVAL;
692 	}
693 
694 	/*
695 	 * When budgeting we assume worst-case scenarios when the pages are not
696 	 * be compressed and direntries are of the maximum size.
697 	 *
698 	 * Note, data, which may be stored in inodes is budgeted separately, so
699 	 * it is not included into 'c->bi.inode_budget'.
700 	 */
701 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
702 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
703 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
704 
705 	/*
706 	 * When the amount of flash space used by buds becomes
707 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
708 	 * The writers are unblocked when the commit is finished. To avoid
709 	 * writers to be blocked UBIFS initiates background commit in advance,
710 	 * when number of bud bytes becomes above the limit defined below.
711 	 */
712 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
713 
714 	/*
715 	 * Ensure minimum journal size. All the bytes in the journal heads are
716 	 * considered to be used, when calculating the current journal usage.
717 	 * Consequently, if the journal is too small, UBIFS will treat it as
718 	 * always full.
719 	 */
720 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
721 	if (c->bg_bud_bytes < tmp64)
722 		c->bg_bud_bytes = tmp64;
723 	if (c->max_bud_bytes < tmp64 + c->leb_size)
724 		c->max_bud_bytes = tmp64 + c->leb_size;
725 
726 	err = ubifs_calc_lpt_geom(c);
727 	if (err)
728 		return err;
729 
730 	/* Initialize effective LEB size used in budgeting calculations */
731 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
732 	return 0;
733 }
734 
735 /*
736  * init_constants_master - initialize UBIFS constants.
737  * @c: UBIFS file-system description object
738  *
739  * This is a helper function which initializes various UBIFS constants after
740  * the master node has been read. It also checks various UBIFS parameters and
741  * makes sure they are all right.
742  */
743 static void init_constants_master(struct ubifs_info *c)
744 {
745 	long long tmp64;
746 
747 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
748 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
749 
750 	/*
751 	 * Calculate total amount of FS blocks. This number is not used
752 	 * internally because it does not make much sense for UBIFS, but it is
753 	 * necessary to report something for the 'statfs()' call.
754 	 *
755 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
756 	 * deletions, minimum LEBs for the index, and assume only one journal
757 	 * head is available.
758 	 */
759 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
760 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
761 	tmp64 = ubifs_reported_space(c, tmp64);
762 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
763 }
764 
765 /**
766  * take_gc_lnum - reserve GC LEB.
767  * @c: UBIFS file-system description object
768  *
769  * This function ensures that the LEB reserved for garbage collection is marked
770  * as "taken" in lprops. We also have to set free space to LEB size and dirty
771  * space to zero, because lprops may contain out-of-date information if the
772  * file-system was un-mounted before it has been committed. This function
773  * returns zero in case of success and a negative error code in case of
774  * failure.
775  */
776 static int take_gc_lnum(struct ubifs_info *c)
777 {
778 	int err;
779 
780 	if (c->gc_lnum == -1) {
781 		ubifs_err(c, "no LEB for GC");
782 		return -EINVAL;
783 	}
784 
785 	/* And we have to tell lprops that this LEB is taken */
786 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
787 				  LPROPS_TAKEN, 0, 0);
788 	return err;
789 }
790 
791 /**
792  * alloc_wbufs - allocate write-buffers.
793  * @c: UBIFS file-system description object
794  *
795  * This helper function allocates and initializes UBIFS write-buffers. Returns
796  * zero in case of success and %-ENOMEM in case of failure.
797  */
798 static int alloc_wbufs(struct ubifs_info *c)
799 {
800 	int i, err;
801 
802 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
803 			    GFP_KERNEL);
804 	if (!c->jheads)
805 		return -ENOMEM;
806 
807 	/* Initialize journal heads */
808 	for (i = 0; i < c->jhead_cnt; i++) {
809 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
810 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
811 		if (err)
812 			return err;
813 
814 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
815 		c->jheads[i].wbuf.jhead = i;
816 		c->jheads[i].grouped = 1;
817 	}
818 
819 	/*
820 	 * Garbage Collector head does not need to be synchronized by timer.
821 	 * Also GC head nodes are not grouped.
822 	 */
823 	c->jheads[GCHD].wbuf.no_timer = 1;
824 	c->jheads[GCHD].grouped = 0;
825 
826 	return 0;
827 }
828 
829 /**
830  * free_wbufs - free write-buffers.
831  * @c: UBIFS file-system description object
832  */
833 static void free_wbufs(struct ubifs_info *c)
834 {
835 	int i;
836 
837 	if (c->jheads) {
838 		for (i = 0; i < c->jhead_cnt; i++) {
839 			kfree(c->jheads[i].wbuf.buf);
840 			kfree(c->jheads[i].wbuf.inodes);
841 		}
842 		kfree(c->jheads);
843 		c->jheads = NULL;
844 	}
845 }
846 
847 /**
848  * free_orphans - free orphans.
849  * @c: UBIFS file-system description object
850  */
851 static void free_orphans(struct ubifs_info *c)
852 {
853 	struct ubifs_orphan *orph;
854 
855 	while (c->orph_dnext) {
856 		orph = c->orph_dnext;
857 		c->orph_dnext = orph->dnext;
858 		list_del(&orph->list);
859 		kfree(orph);
860 	}
861 
862 	while (!list_empty(&c->orph_list)) {
863 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
864 		list_del(&orph->list);
865 		kfree(orph);
866 		ubifs_err(c, "orphan list not empty at unmount");
867 	}
868 
869 	vfree(c->orph_buf);
870 	c->orph_buf = NULL;
871 }
872 
873 /**
874  * free_buds - free per-bud objects.
875  * @c: UBIFS file-system description object
876  */
877 static void free_buds(struct ubifs_info *c)
878 {
879 	struct ubifs_bud *bud, *n;
880 
881 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
882 		kfree(bud);
883 }
884 
885 /**
886  * check_volume_empty - check if the UBI volume is empty.
887  * @c: UBIFS file-system description object
888  *
889  * This function checks if the UBIFS volume is empty by looking if its LEBs are
890  * mapped or not. The result of checking is stored in the @c->empty variable.
891  * Returns zero in case of success and a negative error code in case of
892  * failure.
893  */
894 static int check_volume_empty(struct ubifs_info *c)
895 {
896 	int lnum, err;
897 
898 	c->empty = 1;
899 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
900 		err = ubifs_is_mapped(c, lnum);
901 		if (unlikely(err < 0))
902 			return err;
903 		if (err == 1) {
904 			c->empty = 0;
905 			break;
906 		}
907 
908 		cond_resched();
909 	}
910 
911 	return 0;
912 }
913 
914 /*
915  * UBIFS mount options.
916  *
917  * Opt_fast_unmount: do not run a journal commit before un-mounting
918  * Opt_norm_unmount: run a journal commit before un-mounting
919  * Opt_bulk_read: enable bulk-reads
920  * Opt_no_bulk_read: disable bulk-reads
921  * Opt_chk_data_crc: check CRCs when reading data nodes
922  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
923  * Opt_override_compr: override default compressor
924  * Opt_err: just end of array marker
925  */
926 enum {
927 	Opt_fast_unmount,
928 	Opt_norm_unmount,
929 	Opt_bulk_read,
930 	Opt_no_bulk_read,
931 	Opt_chk_data_crc,
932 	Opt_no_chk_data_crc,
933 	Opt_override_compr,
934 	Opt_err,
935 };
936 
937 static const match_table_t tokens = {
938 	{Opt_fast_unmount, "fast_unmount"},
939 	{Opt_norm_unmount, "norm_unmount"},
940 	{Opt_bulk_read, "bulk_read"},
941 	{Opt_no_bulk_read, "no_bulk_read"},
942 	{Opt_chk_data_crc, "chk_data_crc"},
943 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
944 	{Opt_override_compr, "compr=%s"},
945 	{Opt_err, NULL},
946 };
947 
948 /**
949  * parse_standard_option - parse a standard mount option.
950  * @option: the option to parse
951  *
952  * Normally, standard mount options like "sync" are passed to file-systems as
953  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
954  * be present in the options string. This function tries to deal with this
955  * situation and parse standard options. Returns 0 if the option was not
956  * recognized, and the corresponding integer flag if it was.
957  *
958  * UBIFS is only interested in the "sync" option, so do not check for anything
959  * else.
960  */
961 static int parse_standard_option(const char *option)
962 {
963 
964 	pr_notice("UBIFS: parse %s\n", option);
965 	if (!strcmp(option, "sync"))
966 		return MS_SYNCHRONOUS;
967 	return 0;
968 }
969 
970 /**
971  * ubifs_parse_options - parse mount parameters.
972  * @c: UBIFS file-system description object
973  * @options: parameters to parse
974  * @is_remount: non-zero if this is FS re-mount
975  *
976  * This function parses UBIFS mount options and returns zero in case success
977  * and a negative error code in case of failure.
978  */
979 static int ubifs_parse_options(struct ubifs_info *c, char *options,
980 			       int is_remount)
981 {
982 	char *p;
983 	substring_t args[MAX_OPT_ARGS];
984 
985 	if (!options)
986 		return 0;
987 
988 	while ((p = strsep(&options, ","))) {
989 		int token;
990 
991 		if (!*p)
992 			continue;
993 
994 		token = match_token(p, tokens, args);
995 		switch (token) {
996 		/*
997 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
998 		 * We accept them in order to be backward-compatible. But this
999 		 * should be removed at some point.
1000 		 */
1001 		case Opt_fast_unmount:
1002 			c->mount_opts.unmount_mode = 2;
1003 			break;
1004 		case Opt_norm_unmount:
1005 			c->mount_opts.unmount_mode = 1;
1006 			break;
1007 		case Opt_bulk_read:
1008 			c->mount_opts.bulk_read = 2;
1009 			c->bulk_read = 1;
1010 			break;
1011 		case Opt_no_bulk_read:
1012 			c->mount_opts.bulk_read = 1;
1013 			c->bulk_read = 0;
1014 			break;
1015 		case Opt_chk_data_crc:
1016 			c->mount_opts.chk_data_crc = 2;
1017 			c->no_chk_data_crc = 0;
1018 			break;
1019 		case Opt_no_chk_data_crc:
1020 			c->mount_opts.chk_data_crc = 1;
1021 			c->no_chk_data_crc = 1;
1022 			break;
1023 		case Opt_override_compr:
1024 		{
1025 			char *name = match_strdup(&args[0]);
1026 
1027 			if (!name)
1028 				return -ENOMEM;
1029 			if (!strcmp(name, "none"))
1030 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1031 			else if (!strcmp(name, "lzo"))
1032 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1033 			else if (!strcmp(name, "zlib"))
1034 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1035 			else {
1036 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1037 				kfree(name);
1038 				return -EINVAL;
1039 			}
1040 			kfree(name);
1041 			c->mount_opts.override_compr = 1;
1042 			c->default_compr = c->mount_opts.compr_type;
1043 			break;
1044 		}
1045 		default:
1046 		{
1047 			unsigned long flag;
1048 			struct super_block *sb = c->vfs_sb;
1049 
1050 			flag = parse_standard_option(p);
1051 			if (!flag) {
1052 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1053 					  p);
1054 				return -EINVAL;
1055 			}
1056 			sb->s_flags |= flag;
1057 			break;
1058 		}
1059 		}
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 /**
1066  * destroy_journal - destroy journal data structures.
1067  * @c: UBIFS file-system description object
1068  *
1069  * This function destroys journal data structures including those that may have
1070  * been created by recovery functions.
1071  */
1072 static void destroy_journal(struct ubifs_info *c)
1073 {
1074 	while (!list_empty(&c->unclean_leb_list)) {
1075 		struct ubifs_unclean_leb *ucleb;
1076 
1077 		ucleb = list_entry(c->unclean_leb_list.next,
1078 				   struct ubifs_unclean_leb, list);
1079 		list_del(&ucleb->list);
1080 		kfree(ucleb);
1081 	}
1082 	while (!list_empty(&c->old_buds)) {
1083 		struct ubifs_bud *bud;
1084 
1085 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1086 		list_del(&bud->list);
1087 		kfree(bud);
1088 	}
1089 	ubifs_destroy_idx_gc(c);
1090 	ubifs_destroy_size_tree(c);
1091 	ubifs_tnc_close(c);
1092 	free_buds(c);
1093 }
1094 
1095 /**
1096  * bu_init - initialize bulk-read information.
1097  * @c: UBIFS file-system description object
1098  */
1099 static void bu_init(struct ubifs_info *c)
1100 {
1101 	ubifs_assert(c->bulk_read == 1);
1102 
1103 	if (c->bu.buf)
1104 		return; /* Already initialized */
1105 
1106 again:
1107 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1108 	if (!c->bu.buf) {
1109 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1110 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1111 			goto again;
1112 		}
1113 
1114 		/* Just disable bulk-read */
1115 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1116 			   c->max_bu_buf_len);
1117 		c->mount_opts.bulk_read = 1;
1118 		c->bulk_read = 0;
1119 		return;
1120 	}
1121 }
1122 
1123 /**
1124  * check_free_space - check if there is enough free space to mount.
1125  * @c: UBIFS file-system description object
1126  *
1127  * This function makes sure UBIFS has enough free space to be mounted in
1128  * read/write mode. UBIFS must always have some free space to allow deletions.
1129  */
1130 static int check_free_space(struct ubifs_info *c)
1131 {
1132 	ubifs_assert(c->dark_wm > 0);
1133 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1134 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1135 		ubifs_dump_budg(c, &c->bi);
1136 		ubifs_dump_lprops(c);
1137 		return -ENOSPC;
1138 	}
1139 	return 0;
1140 }
1141 
1142 /**
1143  * mount_ubifs - mount UBIFS file-system.
1144  * @c: UBIFS file-system description object
1145  *
1146  * This function mounts UBIFS file system. Returns zero in case of success and
1147  * a negative error code in case of failure.
1148  */
1149 static int mount_ubifs(struct ubifs_info *c)
1150 {
1151 	int err;
1152 	long long x, y;
1153 	size_t sz;
1154 
1155 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1156 	/* Suppress error messages while probing if MS_SILENT is set */
1157 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1158 
1159 	err = init_constants_early(c);
1160 	if (err)
1161 		return err;
1162 
1163 	err = ubifs_debugging_init(c);
1164 	if (err)
1165 		return err;
1166 
1167 	err = check_volume_empty(c);
1168 	if (err)
1169 		goto out_free;
1170 
1171 	if (c->empty && (c->ro_mount || c->ro_media)) {
1172 		/*
1173 		 * This UBI volume is empty, and read-only, or the file system
1174 		 * is mounted read-only - we cannot format it.
1175 		 */
1176 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1177 			  c->ro_media ? "UBI volume" : "mount");
1178 		err = -EROFS;
1179 		goto out_free;
1180 	}
1181 
1182 	if (c->ro_media && !c->ro_mount) {
1183 		ubifs_err(c, "cannot mount read-write - read-only media");
1184 		err = -EROFS;
1185 		goto out_free;
1186 	}
1187 
1188 	/*
1189 	 * The requirement for the buffer is that it should fit indexing B-tree
1190 	 * height amount of integers. We assume the height if the TNC tree will
1191 	 * never exceed 64.
1192 	 */
1193 	err = -ENOMEM;
1194 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1195 	if (!c->bottom_up_buf)
1196 		goto out_free;
1197 
1198 	c->sbuf = vmalloc(c->leb_size);
1199 	if (!c->sbuf)
1200 		goto out_free;
1201 
1202 	if (!c->ro_mount) {
1203 		c->ileb_buf = vmalloc(c->leb_size);
1204 		if (!c->ileb_buf)
1205 			goto out_free;
1206 	}
1207 
1208 	if (c->bulk_read == 1)
1209 		bu_init(c);
1210 
1211 	if (!c->ro_mount) {
1212 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1213 					       UBIFS_CIPHER_BLOCK_SIZE,
1214 					       GFP_KERNEL);
1215 		if (!c->write_reserve_buf)
1216 			goto out_free;
1217 	}
1218 
1219 	c->mounting = 1;
1220 
1221 	err = ubifs_read_superblock(c);
1222 	if (err)
1223 		goto out_free;
1224 
1225 	c->probing = 0;
1226 
1227 	/*
1228 	 * Make sure the compressor which is set as default in the superblock
1229 	 * or overridden by mount options is actually compiled in.
1230 	 */
1231 	if (!ubifs_compr_present(c->default_compr)) {
1232 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1233 			  ubifs_compr_name(c->default_compr));
1234 		err = -ENOTSUPP;
1235 		goto out_free;
1236 	}
1237 
1238 	err = init_constants_sb(c);
1239 	if (err)
1240 		goto out_free;
1241 
1242 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1243 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1244 	c->cbuf = kmalloc(sz, GFP_NOFS);
1245 	if (!c->cbuf) {
1246 		err = -ENOMEM;
1247 		goto out_free;
1248 	}
1249 
1250 	err = alloc_wbufs(c);
1251 	if (err)
1252 		goto out_cbuf;
1253 
1254 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1255 	if (!c->ro_mount) {
1256 		/* Create background thread */
1257 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1258 		if (IS_ERR(c->bgt)) {
1259 			err = PTR_ERR(c->bgt);
1260 			c->bgt = NULL;
1261 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1262 				  c->bgt_name, err);
1263 			goto out_wbufs;
1264 		}
1265 		wake_up_process(c->bgt);
1266 	}
1267 
1268 	err = ubifs_read_master(c);
1269 	if (err)
1270 		goto out_master;
1271 
1272 	init_constants_master(c);
1273 
1274 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1275 		ubifs_msg(c, "recovery needed");
1276 		c->need_recovery = 1;
1277 	}
1278 
1279 	if (c->need_recovery && !c->ro_mount) {
1280 		err = ubifs_recover_inl_heads(c, c->sbuf);
1281 		if (err)
1282 			goto out_master;
1283 	}
1284 
1285 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1286 	if (err)
1287 		goto out_master;
1288 
1289 	if (!c->ro_mount && c->space_fixup) {
1290 		err = ubifs_fixup_free_space(c);
1291 		if (err)
1292 			goto out_lpt;
1293 	}
1294 
1295 	if (!c->ro_mount && !c->need_recovery) {
1296 		/*
1297 		 * Set the "dirty" flag so that if we reboot uncleanly we
1298 		 * will notice this immediately on the next mount.
1299 		 */
1300 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1301 		err = ubifs_write_master(c);
1302 		if (err)
1303 			goto out_lpt;
1304 	}
1305 
1306 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1307 	if (err)
1308 		goto out_lpt;
1309 
1310 	err = ubifs_replay_journal(c);
1311 	if (err)
1312 		goto out_journal;
1313 
1314 	/* Calculate 'min_idx_lebs' after journal replay */
1315 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1316 
1317 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1318 	if (err)
1319 		goto out_orphans;
1320 
1321 	if (!c->ro_mount) {
1322 		int lnum;
1323 
1324 		err = check_free_space(c);
1325 		if (err)
1326 			goto out_orphans;
1327 
1328 		/* Check for enough log space */
1329 		lnum = c->lhead_lnum + 1;
1330 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1331 			lnum = UBIFS_LOG_LNUM;
1332 		if (lnum == c->ltail_lnum) {
1333 			err = ubifs_consolidate_log(c);
1334 			if (err)
1335 				goto out_orphans;
1336 		}
1337 
1338 		if (c->need_recovery) {
1339 			err = ubifs_recover_size(c);
1340 			if (err)
1341 				goto out_orphans;
1342 			err = ubifs_rcvry_gc_commit(c);
1343 			if (err)
1344 				goto out_orphans;
1345 		} else {
1346 			err = take_gc_lnum(c);
1347 			if (err)
1348 				goto out_orphans;
1349 
1350 			/*
1351 			 * GC LEB may contain garbage if there was an unclean
1352 			 * reboot, and it should be un-mapped.
1353 			 */
1354 			err = ubifs_leb_unmap(c, c->gc_lnum);
1355 			if (err)
1356 				goto out_orphans;
1357 		}
1358 
1359 		err = dbg_check_lprops(c);
1360 		if (err)
1361 			goto out_orphans;
1362 	} else if (c->need_recovery) {
1363 		err = ubifs_recover_size(c);
1364 		if (err)
1365 			goto out_orphans;
1366 	} else {
1367 		/*
1368 		 * Even if we mount read-only, we have to set space in GC LEB
1369 		 * to proper value because this affects UBIFS free space
1370 		 * reporting. We do not want to have a situation when
1371 		 * re-mounting from R/O to R/W changes amount of free space.
1372 		 */
1373 		err = take_gc_lnum(c);
1374 		if (err)
1375 			goto out_orphans;
1376 	}
1377 
1378 	spin_lock(&ubifs_infos_lock);
1379 	list_add_tail(&c->infos_list, &ubifs_infos);
1380 	spin_unlock(&ubifs_infos_lock);
1381 
1382 	if (c->need_recovery) {
1383 		if (c->ro_mount)
1384 			ubifs_msg(c, "recovery deferred");
1385 		else {
1386 			c->need_recovery = 0;
1387 			ubifs_msg(c, "recovery completed");
1388 			/*
1389 			 * GC LEB has to be empty and taken at this point. But
1390 			 * the journal head LEBs may also be accounted as
1391 			 * "empty taken" if they are empty.
1392 			 */
1393 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1394 		}
1395 	} else
1396 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1397 
1398 	err = dbg_check_filesystem(c);
1399 	if (err)
1400 		goto out_infos;
1401 
1402 	err = dbg_debugfs_init_fs(c);
1403 	if (err)
1404 		goto out_infos;
1405 
1406 	c->mounting = 0;
1407 
1408 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1409 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1410 		  c->ro_mount ? ", R/O mode" : "");
1411 	x = (long long)c->main_lebs * c->leb_size;
1412 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1413 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1414 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1415 		  c->max_write_size);
1416 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1417 		  x, x >> 20, c->main_lebs,
1418 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1419 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1420 		  c->report_rp_size, c->report_rp_size >> 10);
1421 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1422 		  c->fmt_version, c->ro_compat_version,
1423 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1424 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1425 
1426 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1427 	dbg_gen("data journal heads:  %d",
1428 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1429 	dbg_gen("log LEBs:            %d (%d - %d)",
1430 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1431 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1432 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1433 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1434 		c->orph_lebs, c->orph_first, c->orph_last);
1435 	dbg_gen("main area LEBs:      %d (%d - %d)",
1436 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1437 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1438 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1439 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1440 		c->bi.old_idx_sz >> 20);
1441 	dbg_gen("key hash type:       %d", c->key_hash_type);
1442 	dbg_gen("tree fanout:         %d", c->fanout);
1443 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1444 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1445 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1446 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1447 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1448 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1449 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1450 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1451 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1452 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1453 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1454 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1455 	dbg_gen("dead watermark:      %d", c->dead_wm);
1456 	dbg_gen("dark watermark:      %d", c->dark_wm);
1457 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1458 	x = (long long)c->main_lebs * c->dark_wm;
1459 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1460 		x, x >> 10, x >> 20);
1461 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1462 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1463 		c->max_bud_bytes >> 20);
1464 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1465 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1466 		c->bg_bud_bytes >> 20);
1467 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1468 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1469 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1470 	dbg_gen("commit number:       %llu", c->cmt_no);
1471 
1472 	return 0;
1473 
1474 out_infos:
1475 	spin_lock(&ubifs_infos_lock);
1476 	list_del(&c->infos_list);
1477 	spin_unlock(&ubifs_infos_lock);
1478 out_orphans:
1479 	free_orphans(c);
1480 out_journal:
1481 	destroy_journal(c);
1482 out_lpt:
1483 	ubifs_lpt_free(c, 0);
1484 out_master:
1485 	kfree(c->mst_node);
1486 	kfree(c->rcvrd_mst_node);
1487 	if (c->bgt)
1488 		kthread_stop(c->bgt);
1489 out_wbufs:
1490 	free_wbufs(c);
1491 out_cbuf:
1492 	kfree(c->cbuf);
1493 out_free:
1494 	kfree(c->write_reserve_buf);
1495 	kfree(c->bu.buf);
1496 	vfree(c->ileb_buf);
1497 	vfree(c->sbuf);
1498 	kfree(c->bottom_up_buf);
1499 	ubifs_debugging_exit(c);
1500 	return err;
1501 }
1502 
1503 /**
1504  * ubifs_umount - un-mount UBIFS file-system.
1505  * @c: UBIFS file-system description object
1506  *
1507  * Note, this function is called to free allocated resourced when un-mounting,
1508  * as well as free resources when an error occurred while we were half way
1509  * through mounting (error path cleanup function). So it has to make sure the
1510  * resource was actually allocated before freeing it.
1511  */
1512 static void ubifs_umount(struct ubifs_info *c)
1513 {
1514 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1515 		c->vi.vol_id);
1516 
1517 	dbg_debugfs_exit_fs(c);
1518 	spin_lock(&ubifs_infos_lock);
1519 	list_del(&c->infos_list);
1520 	spin_unlock(&ubifs_infos_lock);
1521 
1522 	if (c->bgt)
1523 		kthread_stop(c->bgt);
1524 
1525 	destroy_journal(c);
1526 	free_wbufs(c);
1527 	free_orphans(c);
1528 	ubifs_lpt_free(c, 0);
1529 
1530 	kfree(c->cbuf);
1531 	kfree(c->rcvrd_mst_node);
1532 	kfree(c->mst_node);
1533 	kfree(c->write_reserve_buf);
1534 	kfree(c->bu.buf);
1535 	vfree(c->ileb_buf);
1536 	vfree(c->sbuf);
1537 	kfree(c->bottom_up_buf);
1538 	ubifs_debugging_exit(c);
1539 }
1540 
1541 /**
1542  * ubifs_remount_rw - re-mount in read-write mode.
1543  * @c: UBIFS file-system description object
1544  *
1545  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1546  * mode. This function allocates the needed resources and re-mounts UBIFS in
1547  * read-write mode.
1548  */
1549 static int ubifs_remount_rw(struct ubifs_info *c)
1550 {
1551 	int err, lnum;
1552 
1553 	if (c->rw_incompat) {
1554 		ubifs_err(c, "the file-system is not R/W-compatible");
1555 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1556 			  c->fmt_version, c->ro_compat_version,
1557 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1558 		return -EROFS;
1559 	}
1560 
1561 	mutex_lock(&c->umount_mutex);
1562 	dbg_save_space_info(c);
1563 	c->remounting_rw = 1;
1564 	c->ro_mount = 0;
1565 
1566 	if (c->space_fixup) {
1567 		err = ubifs_fixup_free_space(c);
1568 		if (err)
1569 			goto out;
1570 	}
1571 
1572 	err = check_free_space(c);
1573 	if (err)
1574 		goto out;
1575 
1576 	if (c->old_leb_cnt != c->leb_cnt) {
1577 		struct ubifs_sb_node *sup;
1578 
1579 		sup = ubifs_read_sb_node(c);
1580 		if (IS_ERR(sup)) {
1581 			err = PTR_ERR(sup);
1582 			goto out;
1583 		}
1584 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1585 		err = ubifs_write_sb_node(c, sup);
1586 		kfree(sup);
1587 		if (err)
1588 			goto out;
1589 	}
1590 
1591 	if (c->need_recovery) {
1592 		ubifs_msg(c, "completing deferred recovery");
1593 		err = ubifs_write_rcvrd_mst_node(c);
1594 		if (err)
1595 			goto out;
1596 		err = ubifs_recover_size(c);
1597 		if (err)
1598 			goto out;
1599 		err = ubifs_clean_lebs(c, c->sbuf);
1600 		if (err)
1601 			goto out;
1602 		err = ubifs_recover_inl_heads(c, c->sbuf);
1603 		if (err)
1604 			goto out;
1605 	} else {
1606 		/* A readonly mount is not allowed to have orphans */
1607 		ubifs_assert(c->tot_orphans == 0);
1608 		err = ubifs_clear_orphans(c);
1609 		if (err)
1610 			goto out;
1611 	}
1612 
1613 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1614 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1615 		err = ubifs_write_master(c);
1616 		if (err)
1617 			goto out;
1618 	}
1619 
1620 	c->ileb_buf = vmalloc(c->leb_size);
1621 	if (!c->ileb_buf) {
1622 		err = -ENOMEM;
1623 		goto out;
1624 	}
1625 
1626 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1627 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1628 	if (!c->write_reserve_buf) {
1629 		err = -ENOMEM;
1630 		goto out;
1631 	}
1632 
1633 	err = ubifs_lpt_init(c, 0, 1);
1634 	if (err)
1635 		goto out;
1636 
1637 	/* Create background thread */
1638 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1639 	if (IS_ERR(c->bgt)) {
1640 		err = PTR_ERR(c->bgt);
1641 		c->bgt = NULL;
1642 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1643 			  c->bgt_name, err);
1644 		goto out;
1645 	}
1646 	wake_up_process(c->bgt);
1647 
1648 	c->orph_buf = vmalloc(c->leb_size);
1649 	if (!c->orph_buf) {
1650 		err = -ENOMEM;
1651 		goto out;
1652 	}
1653 
1654 	/* Check for enough log space */
1655 	lnum = c->lhead_lnum + 1;
1656 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1657 		lnum = UBIFS_LOG_LNUM;
1658 	if (lnum == c->ltail_lnum) {
1659 		err = ubifs_consolidate_log(c);
1660 		if (err)
1661 			goto out;
1662 	}
1663 
1664 	if (c->need_recovery)
1665 		err = ubifs_rcvry_gc_commit(c);
1666 	else
1667 		err = ubifs_leb_unmap(c, c->gc_lnum);
1668 	if (err)
1669 		goto out;
1670 
1671 	dbg_gen("re-mounted read-write");
1672 	c->remounting_rw = 0;
1673 
1674 	if (c->need_recovery) {
1675 		c->need_recovery = 0;
1676 		ubifs_msg(c, "deferred recovery completed");
1677 	} else {
1678 		/*
1679 		 * Do not run the debugging space check if the were doing
1680 		 * recovery, because when we saved the information we had the
1681 		 * file-system in a state where the TNC and lprops has been
1682 		 * modified in memory, but all the I/O operations (including a
1683 		 * commit) were deferred. So the file-system was in
1684 		 * "non-committed" state. Now the file-system is in committed
1685 		 * state, and of course the amount of free space will change
1686 		 * because, for example, the old index size was imprecise.
1687 		 */
1688 		err = dbg_check_space_info(c);
1689 	}
1690 
1691 	mutex_unlock(&c->umount_mutex);
1692 	return err;
1693 
1694 out:
1695 	c->ro_mount = 1;
1696 	vfree(c->orph_buf);
1697 	c->orph_buf = NULL;
1698 	if (c->bgt) {
1699 		kthread_stop(c->bgt);
1700 		c->bgt = NULL;
1701 	}
1702 	free_wbufs(c);
1703 	kfree(c->write_reserve_buf);
1704 	c->write_reserve_buf = NULL;
1705 	vfree(c->ileb_buf);
1706 	c->ileb_buf = NULL;
1707 	ubifs_lpt_free(c, 1);
1708 	c->remounting_rw = 0;
1709 	mutex_unlock(&c->umount_mutex);
1710 	return err;
1711 }
1712 
1713 /**
1714  * ubifs_remount_ro - re-mount in read-only mode.
1715  * @c: UBIFS file-system description object
1716  *
1717  * We assume VFS has stopped writing. Possibly the background thread could be
1718  * running a commit, however kthread_stop will wait in that case.
1719  */
1720 static void ubifs_remount_ro(struct ubifs_info *c)
1721 {
1722 	int i, err;
1723 
1724 	ubifs_assert(!c->need_recovery);
1725 	ubifs_assert(!c->ro_mount);
1726 
1727 	mutex_lock(&c->umount_mutex);
1728 	if (c->bgt) {
1729 		kthread_stop(c->bgt);
1730 		c->bgt = NULL;
1731 	}
1732 
1733 	dbg_save_space_info(c);
1734 
1735 	for (i = 0; i < c->jhead_cnt; i++)
1736 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1737 
1738 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1739 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1740 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1741 	err = ubifs_write_master(c);
1742 	if (err)
1743 		ubifs_ro_mode(c, err);
1744 
1745 	vfree(c->orph_buf);
1746 	c->orph_buf = NULL;
1747 	kfree(c->write_reserve_buf);
1748 	c->write_reserve_buf = NULL;
1749 	vfree(c->ileb_buf);
1750 	c->ileb_buf = NULL;
1751 	ubifs_lpt_free(c, 1);
1752 	c->ro_mount = 1;
1753 	err = dbg_check_space_info(c);
1754 	if (err)
1755 		ubifs_ro_mode(c, err);
1756 	mutex_unlock(&c->umount_mutex);
1757 }
1758 
1759 static void ubifs_put_super(struct super_block *sb)
1760 {
1761 	int i;
1762 	struct ubifs_info *c = sb->s_fs_info;
1763 
1764 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1765 
1766 	/*
1767 	 * The following asserts are only valid if there has not been a failure
1768 	 * of the media. For example, there will be dirty inodes if we failed
1769 	 * to write them back because of I/O errors.
1770 	 */
1771 	if (!c->ro_error) {
1772 		ubifs_assert(c->bi.idx_growth == 0);
1773 		ubifs_assert(c->bi.dd_growth == 0);
1774 		ubifs_assert(c->bi.data_growth == 0);
1775 	}
1776 
1777 	/*
1778 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1779 	 * and file system un-mount. Namely, it prevents the shrinker from
1780 	 * picking this superblock for shrinking - it will be just skipped if
1781 	 * the mutex is locked.
1782 	 */
1783 	mutex_lock(&c->umount_mutex);
1784 	if (!c->ro_mount) {
1785 		/*
1786 		 * First of all kill the background thread to make sure it does
1787 		 * not interfere with un-mounting and freeing resources.
1788 		 */
1789 		if (c->bgt) {
1790 			kthread_stop(c->bgt);
1791 			c->bgt = NULL;
1792 		}
1793 
1794 		/*
1795 		 * On fatal errors c->ro_error is set to 1, in which case we do
1796 		 * not write the master node.
1797 		 */
1798 		if (!c->ro_error) {
1799 			int err;
1800 
1801 			/* Synchronize write-buffers */
1802 			for (i = 0; i < c->jhead_cnt; i++)
1803 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1804 
1805 			/*
1806 			 * We are being cleanly unmounted which means the
1807 			 * orphans were killed - indicate this in the master
1808 			 * node. Also save the reserved GC LEB number.
1809 			 */
1810 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1811 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1812 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1813 			err = ubifs_write_master(c);
1814 			if (err)
1815 				/*
1816 				 * Recovery will attempt to fix the master area
1817 				 * next mount, so we just print a message and
1818 				 * continue to unmount normally.
1819 				 */
1820 				ubifs_err(c, "failed to write master node, error %d",
1821 					  err);
1822 		} else {
1823 			for (i = 0; i < c->jhead_cnt; i++)
1824 				/* Make sure write-buffer timers are canceled */
1825 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1826 		}
1827 	}
1828 
1829 	ubifs_umount(c);
1830 	bdi_destroy(&c->bdi);
1831 	ubi_close_volume(c->ubi);
1832 	mutex_unlock(&c->umount_mutex);
1833 }
1834 
1835 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1836 {
1837 	int err;
1838 	struct ubifs_info *c = sb->s_fs_info;
1839 
1840 	sync_filesystem(sb);
1841 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1842 
1843 	err = ubifs_parse_options(c, data, 1);
1844 	if (err) {
1845 		ubifs_err(c, "invalid or unknown remount parameter");
1846 		return err;
1847 	}
1848 
1849 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1850 		if (c->ro_error) {
1851 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1852 			return -EROFS;
1853 		}
1854 		if (c->ro_media) {
1855 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1856 			return -EROFS;
1857 		}
1858 		err = ubifs_remount_rw(c);
1859 		if (err)
1860 			return err;
1861 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1862 		if (c->ro_error) {
1863 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1864 			return -EROFS;
1865 		}
1866 		ubifs_remount_ro(c);
1867 	}
1868 
1869 	if (c->bulk_read == 1)
1870 		bu_init(c);
1871 	else {
1872 		dbg_gen("disable bulk-read");
1873 		kfree(c->bu.buf);
1874 		c->bu.buf = NULL;
1875 	}
1876 
1877 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1878 	return 0;
1879 }
1880 
1881 const struct super_operations ubifs_super_operations = {
1882 	.alloc_inode   = ubifs_alloc_inode,
1883 	.destroy_inode = ubifs_destroy_inode,
1884 	.put_super     = ubifs_put_super,
1885 	.write_inode   = ubifs_write_inode,
1886 	.evict_inode   = ubifs_evict_inode,
1887 	.statfs        = ubifs_statfs,
1888 	.dirty_inode   = ubifs_dirty_inode,
1889 	.remount_fs    = ubifs_remount_fs,
1890 	.show_options  = ubifs_show_options,
1891 	.sync_fs       = ubifs_sync_fs,
1892 };
1893 
1894 /**
1895  * open_ubi - parse UBI device name string and open the UBI device.
1896  * @name: UBI volume name
1897  * @mode: UBI volume open mode
1898  *
1899  * The primary method of mounting UBIFS is by specifying the UBI volume
1900  * character device node path. However, UBIFS may also be mounted withoug any
1901  * character device node using one of the following methods:
1902  *
1903  * o ubiX_Y    - mount UBI device number X, volume Y;
1904  * o ubiY      - mount UBI device number 0, volume Y;
1905  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1906  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1907  *
1908  * Alternative '!' separator may be used instead of ':' (because some shells
1909  * like busybox may interpret ':' as an NFS host name separator). This function
1910  * returns UBI volume description object in case of success and a negative
1911  * error code in case of failure.
1912  */
1913 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1914 {
1915 	struct ubi_volume_desc *ubi;
1916 	int dev, vol;
1917 	char *endptr;
1918 
1919 	/* First, try to open using the device node path method */
1920 	ubi = ubi_open_volume_path(name, mode);
1921 	if (!IS_ERR(ubi))
1922 		return ubi;
1923 
1924 	/* Try the "nodev" method */
1925 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1926 		return ERR_PTR(-EINVAL);
1927 
1928 	/* ubi:NAME method */
1929 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1930 		return ubi_open_volume_nm(0, name + 4, mode);
1931 
1932 	if (!isdigit(name[3]))
1933 		return ERR_PTR(-EINVAL);
1934 
1935 	dev = simple_strtoul(name + 3, &endptr, 0);
1936 
1937 	/* ubiY method */
1938 	if (*endptr == '\0')
1939 		return ubi_open_volume(0, dev, mode);
1940 
1941 	/* ubiX_Y method */
1942 	if (*endptr == '_' && isdigit(endptr[1])) {
1943 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1944 		if (*endptr != '\0')
1945 			return ERR_PTR(-EINVAL);
1946 		return ubi_open_volume(dev, vol, mode);
1947 	}
1948 
1949 	/* ubiX:NAME method */
1950 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1951 		return ubi_open_volume_nm(dev, ++endptr, mode);
1952 
1953 	return ERR_PTR(-EINVAL);
1954 }
1955 
1956 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1957 {
1958 	struct ubifs_info *c;
1959 
1960 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1961 	if (c) {
1962 		spin_lock_init(&c->cnt_lock);
1963 		spin_lock_init(&c->cs_lock);
1964 		spin_lock_init(&c->buds_lock);
1965 		spin_lock_init(&c->space_lock);
1966 		spin_lock_init(&c->orphan_lock);
1967 		init_rwsem(&c->commit_sem);
1968 		mutex_init(&c->lp_mutex);
1969 		mutex_init(&c->tnc_mutex);
1970 		mutex_init(&c->log_mutex);
1971 		mutex_init(&c->umount_mutex);
1972 		mutex_init(&c->bu_mutex);
1973 		mutex_init(&c->write_reserve_mutex);
1974 		init_waitqueue_head(&c->cmt_wq);
1975 		c->buds = RB_ROOT;
1976 		c->old_idx = RB_ROOT;
1977 		c->size_tree = RB_ROOT;
1978 		c->orph_tree = RB_ROOT;
1979 		INIT_LIST_HEAD(&c->infos_list);
1980 		INIT_LIST_HEAD(&c->idx_gc);
1981 		INIT_LIST_HEAD(&c->replay_list);
1982 		INIT_LIST_HEAD(&c->replay_buds);
1983 		INIT_LIST_HEAD(&c->uncat_list);
1984 		INIT_LIST_HEAD(&c->empty_list);
1985 		INIT_LIST_HEAD(&c->freeable_list);
1986 		INIT_LIST_HEAD(&c->frdi_idx_list);
1987 		INIT_LIST_HEAD(&c->unclean_leb_list);
1988 		INIT_LIST_HEAD(&c->old_buds);
1989 		INIT_LIST_HEAD(&c->orph_list);
1990 		INIT_LIST_HEAD(&c->orph_new);
1991 		c->no_chk_data_crc = 1;
1992 
1993 		c->highest_inum = UBIFS_FIRST_INO;
1994 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1995 
1996 		ubi_get_volume_info(ubi, &c->vi);
1997 		ubi_get_device_info(c->vi.ubi_num, &c->di);
1998 	}
1999 	return c;
2000 }
2001 
2002 #ifndef CONFIG_UBIFS_FS_ENCRYPTION
2003 const struct fscrypt_operations ubifs_crypt_operations = {
2004 	.is_encrypted		= __ubifs_crypt_is_encrypted,
2005 };
2006 #endif
2007 
2008 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2009 {
2010 	struct ubifs_info *c = sb->s_fs_info;
2011 	struct inode *root;
2012 	int err;
2013 
2014 	c->vfs_sb = sb;
2015 	/* Re-open the UBI device in read-write mode */
2016 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2017 	if (IS_ERR(c->ubi)) {
2018 		err = PTR_ERR(c->ubi);
2019 		goto out;
2020 	}
2021 
2022 	/*
2023 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2024 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2025 	 * which means the user would have to wait not just for their own I/O
2026 	 * but the read-ahead I/O as well i.e. completely pointless.
2027 	 *
2028 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2029 	 */
2030 	c->bdi.name = "ubifs",
2031 	c->bdi.capabilities = 0;
2032 	err  = bdi_init(&c->bdi);
2033 	if (err)
2034 		goto out_close;
2035 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2036 			   c->vi.ubi_num, c->vi.vol_id);
2037 	if (err)
2038 		goto out_bdi;
2039 
2040 	err = ubifs_parse_options(c, data, 0);
2041 	if (err)
2042 		goto out_bdi;
2043 
2044 	sb->s_bdi = &c->bdi;
2045 	sb->s_fs_info = c;
2046 	sb->s_magic = UBIFS_SUPER_MAGIC;
2047 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2048 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2049 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2050 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2051 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2052 	sb->s_op = &ubifs_super_operations;
2053 	sb->s_xattr = ubifs_xattr_handlers;
2054 	sb->s_cop = &ubifs_crypt_operations;
2055 
2056 	mutex_lock(&c->umount_mutex);
2057 	err = mount_ubifs(c);
2058 	if (err) {
2059 		ubifs_assert(err < 0);
2060 		goto out_unlock;
2061 	}
2062 
2063 	/* Read the root inode */
2064 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2065 	if (IS_ERR(root)) {
2066 		err = PTR_ERR(root);
2067 		goto out_umount;
2068 	}
2069 
2070 	sb->s_root = d_make_root(root);
2071 	if (!sb->s_root) {
2072 		err = -ENOMEM;
2073 		goto out_umount;
2074 	}
2075 
2076 	mutex_unlock(&c->umount_mutex);
2077 	return 0;
2078 
2079 out_umount:
2080 	ubifs_umount(c);
2081 out_unlock:
2082 	mutex_unlock(&c->umount_mutex);
2083 out_bdi:
2084 	bdi_destroy(&c->bdi);
2085 out_close:
2086 	ubi_close_volume(c->ubi);
2087 out:
2088 	return err;
2089 }
2090 
2091 static int sb_test(struct super_block *sb, void *data)
2092 {
2093 	struct ubifs_info *c1 = data;
2094 	struct ubifs_info *c = sb->s_fs_info;
2095 
2096 	return c->vi.cdev == c1->vi.cdev;
2097 }
2098 
2099 static int sb_set(struct super_block *sb, void *data)
2100 {
2101 	sb->s_fs_info = data;
2102 	return set_anon_super(sb, NULL);
2103 }
2104 
2105 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2106 			const char *name, void *data)
2107 {
2108 	struct ubi_volume_desc *ubi;
2109 	struct ubifs_info *c;
2110 	struct super_block *sb;
2111 	int err;
2112 
2113 	dbg_gen("name %s, flags %#x", name, flags);
2114 
2115 	/*
2116 	 * Get UBI device number and volume ID. Mount it read-only so far
2117 	 * because this might be a new mount point, and UBI allows only one
2118 	 * read-write user at a time.
2119 	 */
2120 	ubi = open_ubi(name, UBI_READONLY);
2121 	if (IS_ERR(ubi)) {
2122 		if (!(flags & MS_SILENT))
2123 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2124 			       current->pid, name, (int)PTR_ERR(ubi));
2125 		return ERR_CAST(ubi);
2126 	}
2127 
2128 	c = alloc_ubifs_info(ubi);
2129 	if (!c) {
2130 		err = -ENOMEM;
2131 		goto out_close;
2132 	}
2133 
2134 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2135 
2136 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2137 	if (IS_ERR(sb)) {
2138 		err = PTR_ERR(sb);
2139 		kfree(c);
2140 		goto out_close;
2141 	}
2142 
2143 	if (sb->s_root) {
2144 		struct ubifs_info *c1 = sb->s_fs_info;
2145 		kfree(c);
2146 		/* A new mount point for already mounted UBIFS */
2147 		dbg_gen("this ubi volume is already mounted");
2148 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2149 			err = -EBUSY;
2150 			goto out_deact;
2151 		}
2152 	} else {
2153 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2154 		if (err)
2155 			goto out_deact;
2156 		/* We do not support atime */
2157 		sb->s_flags |= MS_ACTIVE;
2158 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2159 		sb->s_flags |= MS_NOATIME;
2160 #else
2161 		ubifs_msg(c, "full atime support is enabled.");
2162 #endif
2163 	}
2164 
2165 	/* 'fill_super()' opens ubi again so we must close it here */
2166 	ubi_close_volume(ubi);
2167 
2168 	return dget(sb->s_root);
2169 
2170 out_deact:
2171 	deactivate_locked_super(sb);
2172 out_close:
2173 	ubi_close_volume(ubi);
2174 	return ERR_PTR(err);
2175 }
2176 
2177 static void kill_ubifs_super(struct super_block *s)
2178 {
2179 	struct ubifs_info *c = s->s_fs_info;
2180 	kill_anon_super(s);
2181 	kfree(c);
2182 }
2183 
2184 static struct file_system_type ubifs_fs_type = {
2185 	.name    = "ubifs",
2186 	.owner   = THIS_MODULE,
2187 	.mount   = ubifs_mount,
2188 	.kill_sb = kill_ubifs_super,
2189 };
2190 MODULE_ALIAS_FS("ubifs");
2191 
2192 /*
2193  * Inode slab cache constructor.
2194  */
2195 static void inode_slab_ctor(void *obj)
2196 {
2197 	struct ubifs_inode *ui = obj;
2198 	inode_init_once(&ui->vfs_inode);
2199 }
2200 
2201 static int __init ubifs_init(void)
2202 {
2203 	int err;
2204 
2205 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2206 
2207 	/* Make sure node sizes are 8-byte aligned */
2208 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2209 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2210 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2211 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2212 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2213 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2214 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2215 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2216 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2217 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2218 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2219 
2220 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2221 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2222 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2223 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2224 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2225 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2226 
2227 	/* Check min. node size */
2228 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2229 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2230 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2231 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2232 
2233 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2234 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2235 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2236 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2237 
2238 	/* Defined node sizes */
2239 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2240 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2241 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2242 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2243 
2244 	/*
2245 	 * We use 2 bit wide bit-fields to store compression type, which should
2246 	 * be amended if more compressors are added. The bit-fields are:
2247 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2248 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2249 	 */
2250 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2251 
2252 	/*
2253 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2254 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2255 	 */
2256 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2257 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2258 		       current->pid, (unsigned int)PAGE_SIZE);
2259 		return -EINVAL;
2260 	}
2261 
2262 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2263 				sizeof(struct ubifs_inode), 0,
2264 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2265 				SLAB_ACCOUNT, &inode_slab_ctor);
2266 	if (!ubifs_inode_slab)
2267 		return -ENOMEM;
2268 
2269 	err = register_shrinker(&ubifs_shrinker_info);
2270 	if (err)
2271 		goto out_slab;
2272 
2273 	err = ubifs_compressors_init();
2274 	if (err)
2275 		goto out_shrinker;
2276 
2277 	err = dbg_debugfs_init();
2278 	if (err)
2279 		goto out_compr;
2280 
2281 	err = register_filesystem(&ubifs_fs_type);
2282 	if (err) {
2283 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2284 		       current->pid, err);
2285 		goto out_dbg;
2286 	}
2287 	return 0;
2288 
2289 out_dbg:
2290 	dbg_debugfs_exit();
2291 out_compr:
2292 	ubifs_compressors_exit();
2293 out_shrinker:
2294 	unregister_shrinker(&ubifs_shrinker_info);
2295 out_slab:
2296 	kmem_cache_destroy(ubifs_inode_slab);
2297 	return err;
2298 }
2299 /* late_initcall to let compressors initialize first */
2300 late_initcall(ubifs_init);
2301 
2302 static void __exit ubifs_exit(void)
2303 {
2304 	ubifs_assert(list_empty(&ubifs_infos));
2305 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2306 
2307 	dbg_debugfs_exit();
2308 	ubifs_compressors_exit();
2309 	unregister_shrinker(&ubifs_shrinker_info);
2310 
2311 	/*
2312 	 * Make sure all delayed rcu free inodes are flushed before we
2313 	 * destroy cache.
2314 	 */
2315 	rcu_barrier();
2316 	kmem_cache_destroy(ubifs_inode_slab);
2317 	unregister_filesystem(&ubifs_fs_type);
2318 }
2319 module_exit(ubifs_exit);
2320 
2321 MODULE_LICENSE("GPL");
2322 MODULE_VERSION(__stringify(UBIFS_VERSION));
2323 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2324 MODULE_DESCRIPTION("UBIFS - UBI File System");
2325