1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 static struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(c, ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= S_NOCMTIME; 132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 133 inode->i_flags |= S_NOATIME; 134 #endif 135 set_nlink(inode, le32_to_cpu(ino->nlink)); 136 i_uid_write(inode, le32_to_cpu(ino->uid)); 137 i_gid_write(inode, le32_to_cpu(ino->gid)); 138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 144 inode->i_mode = le32_to_cpu(ino->mode); 145 inode->i_size = le64_to_cpu(ino->size); 146 147 ui->data_len = le32_to_cpu(ino->data_len); 148 ui->flags = le32_to_cpu(ino->flags); 149 ui->compr_type = le16_to_cpu(ino->compr_type); 150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 152 ui->xattr_size = le32_to_cpu(ino->xattr_size); 153 ui->xattr_names = le32_to_cpu(ino->xattr_names); 154 ui->synced_i_size = ui->ui_size = inode->i_size; 155 156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 157 158 err = validate_inode(c, inode); 159 if (err) 160 goto out_invalid; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 249 ubifs_dump_node(c, ino); 250 ubifs_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 kmem_cache_free(ubifs_inode_slab, ui); 280 } 281 282 static void ubifs_destroy_inode(struct inode *inode) 283 { 284 struct ubifs_inode *ui = ubifs_inode(inode); 285 286 kfree(ui->data); 287 call_rcu(&inode->i_rcu, ubifs_i_callback); 288 } 289 290 /* 291 * Note, Linux write-back code calls this without 'i_mutex'. 292 */ 293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 294 { 295 int err = 0; 296 struct ubifs_info *c = inode->i_sb->s_fs_info; 297 struct ubifs_inode *ui = ubifs_inode(inode); 298 299 ubifs_assert(c, !ui->xattr); 300 if (is_bad_inode(inode)) 301 return 0; 302 303 mutex_lock(&ui->ui_mutex); 304 /* 305 * Due to races between write-back forced by budgeting 306 * (see 'sync_some_inodes()') and background write-back, the inode may 307 * have already been synchronized, do not do this again. This might 308 * also happen if it was synchronized in an VFS operation, e.g. 309 * 'ubifs_link()'. 310 */ 311 if (!ui->dirty) { 312 mutex_unlock(&ui->ui_mutex); 313 return 0; 314 } 315 316 /* 317 * As an optimization, do not write orphan inodes to the media just 318 * because this is not needed. 319 */ 320 dbg_gen("inode %lu, mode %#x, nlink %u", 321 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 322 if (inode->i_nlink) { 323 err = ubifs_jnl_write_inode(c, inode); 324 if (err) 325 ubifs_err(c, "can't write inode %lu, error %d", 326 inode->i_ino, err); 327 else 328 err = dbg_check_inode_size(c, inode, ui->ui_size); 329 } 330 331 ui->dirty = 0; 332 mutex_unlock(&ui->ui_mutex); 333 ubifs_release_dirty_inode_budget(c, ui); 334 return err; 335 } 336 337 static void ubifs_evict_inode(struct inode *inode) 338 { 339 int err; 340 struct ubifs_info *c = inode->i_sb->s_fs_info; 341 struct ubifs_inode *ui = ubifs_inode(inode); 342 343 if (ui->xattr) 344 /* 345 * Extended attribute inode deletions are fully handled in 346 * 'ubifs_removexattr()'. These inodes are special and have 347 * limited usage, so there is nothing to do here. 348 */ 349 goto out; 350 351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 352 ubifs_assert(c, !atomic_read(&inode->i_count)); 353 354 truncate_inode_pages_final(&inode->i_data); 355 356 if (inode->i_nlink) 357 goto done; 358 359 if (is_bad_inode(inode)) 360 goto out; 361 362 ui->ui_size = inode->i_size = 0; 363 err = ubifs_jnl_delete_inode(c, inode); 364 if (err) 365 /* 366 * Worst case we have a lost orphan inode wasting space, so a 367 * simple error message is OK here. 368 */ 369 ubifs_err(c, "can't delete inode %lu, error %d", 370 inode->i_ino, err); 371 372 out: 373 if (ui->dirty) 374 ubifs_release_dirty_inode_budget(c, ui); 375 else { 376 /* We've deleted something - clean the "no space" flags */ 377 c->bi.nospace = c->bi.nospace_rp = 0; 378 smp_wmb(); 379 } 380 done: 381 clear_inode(inode); 382 fscrypt_put_encryption_info(inode); 383 } 384 385 static void ubifs_dirty_inode(struct inode *inode, int flags) 386 { 387 struct ubifs_info *c = inode->i_sb->s_fs_info; 388 struct ubifs_inode *ui = ubifs_inode(inode); 389 390 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 391 if (!ui->dirty) { 392 ui->dirty = 1; 393 dbg_gen("inode %lu", inode->i_ino); 394 } 395 } 396 397 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 398 { 399 struct ubifs_info *c = dentry->d_sb->s_fs_info; 400 unsigned long long free; 401 __le32 *uuid = (__le32 *)c->uuid; 402 403 free = ubifs_get_free_space(c); 404 dbg_gen("free space %lld bytes (%lld blocks)", 405 free, free >> UBIFS_BLOCK_SHIFT); 406 407 buf->f_type = UBIFS_SUPER_MAGIC; 408 buf->f_bsize = UBIFS_BLOCK_SIZE; 409 buf->f_blocks = c->block_cnt; 410 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 411 if (free > c->report_rp_size) 412 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 413 else 414 buf->f_bavail = 0; 415 buf->f_files = 0; 416 buf->f_ffree = 0; 417 buf->f_namelen = UBIFS_MAX_NLEN; 418 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 419 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 420 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 421 return 0; 422 } 423 424 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 425 { 426 struct ubifs_info *c = root->d_sb->s_fs_info; 427 428 if (c->mount_opts.unmount_mode == 2) 429 seq_puts(s, ",fast_unmount"); 430 else if (c->mount_opts.unmount_mode == 1) 431 seq_puts(s, ",norm_unmount"); 432 433 if (c->mount_opts.bulk_read == 2) 434 seq_puts(s, ",bulk_read"); 435 else if (c->mount_opts.bulk_read == 1) 436 seq_puts(s, ",no_bulk_read"); 437 438 if (c->mount_opts.chk_data_crc == 2) 439 seq_puts(s, ",chk_data_crc"); 440 else if (c->mount_opts.chk_data_crc == 1) 441 seq_puts(s, ",no_chk_data_crc"); 442 443 if (c->mount_opts.override_compr) { 444 seq_printf(s, ",compr=%s", 445 ubifs_compr_name(c, c->mount_opts.compr_type)); 446 } 447 448 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 449 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 450 451 return 0; 452 } 453 454 static int ubifs_sync_fs(struct super_block *sb, int wait) 455 { 456 int i, err; 457 struct ubifs_info *c = sb->s_fs_info; 458 459 /* 460 * Zero @wait is just an advisory thing to help the file system shove 461 * lots of data into the queues, and there will be the second 462 * '->sync_fs()' call, with non-zero @wait. 463 */ 464 if (!wait) 465 return 0; 466 467 /* 468 * Synchronize write buffers, because 'ubifs_run_commit()' does not 469 * do this if it waits for an already running commit. 470 */ 471 for (i = 0; i < c->jhead_cnt; i++) { 472 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 473 if (err) 474 return err; 475 } 476 477 /* 478 * Strictly speaking, it is not necessary to commit the journal here, 479 * synchronizing write-buffers would be enough. But committing makes 480 * UBIFS free space predictions much more accurate, so we want to let 481 * the user be able to get more accurate results of 'statfs()' after 482 * they synchronize the file system. 483 */ 484 err = ubifs_run_commit(c); 485 if (err) 486 return err; 487 488 return ubi_sync(c->vi.ubi_num); 489 } 490 491 /** 492 * init_constants_early - initialize UBIFS constants. 493 * @c: UBIFS file-system description object 494 * 495 * This function initialize UBIFS constants which do not need the superblock to 496 * be read. It also checks that the UBI volume satisfies basic UBIFS 497 * requirements. Returns zero in case of success and a negative error code in 498 * case of failure. 499 */ 500 static int init_constants_early(struct ubifs_info *c) 501 { 502 if (c->vi.corrupted) { 503 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 504 c->ro_media = 1; 505 } 506 507 if (c->di.ro_mode) { 508 ubifs_msg(c, "read-only UBI device"); 509 c->ro_media = 1; 510 } 511 512 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 513 ubifs_msg(c, "static UBI volume - read-only mode"); 514 c->ro_media = 1; 515 } 516 517 c->leb_cnt = c->vi.size; 518 c->leb_size = c->vi.usable_leb_size; 519 c->leb_start = c->di.leb_start; 520 c->half_leb_size = c->leb_size / 2; 521 c->min_io_size = c->di.min_io_size; 522 c->min_io_shift = fls(c->min_io_size) - 1; 523 c->max_write_size = c->di.max_write_size; 524 c->max_write_shift = fls(c->max_write_size) - 1; 525 526 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 527 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 528 c->leb_size, UBIFS_MIN_LEB_SZ); 529 return -EINVAL; 530 } 531 532 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 533 ubifs_errc(c, "too few LEBs (%d), min. is %d", 534 c->leb_cnt, UBIFS_MIN_LEB_CNT); 535 return -EINVAL; 536 } 537 538 if (!is_power_of_2(c->min_io_size)) { 539 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 540 return -EINVAL; 541 } 542 543 /* 544 * Maximum write size has to be greater or equivalent to min. I/O 545 * size, and be multiple of min. I/O size. 546 */ 547 if (c->max_write_size < c->min_io_size || 548 c->max_write_size % c->min_io_size || 549 !is_power_of_2(c->max_write_size)) { 550 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 551 c->max_write_size, c->min_io_size); 552 return -EINVAL; 553 } 554 555 /* 556 * UBIFS aligns all node to 8-byte boundary, so to make function in 557 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 558 * less than 8. 559 */ 560 if (c->min_io_size < 8) { 561 c->min_io_size = 8; 562 c->min_io_shift = 3; 563 if (c->max_write_size < c->min_io_size) { 564 c->max_write_size = c->min_io_size; 565 c->max_write_shift = c->min_io_shift; 566 } 567 } 568 569 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 570 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 571 572 /* 573 * Initialize node length ranges which are mostly needed for node 574 * length validation. 575 */ 576 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 577 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 578 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 579 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 580 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 581 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 582 583 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 584 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 585 c->ranges[UBIFS_ORPH_NODE].min_len = 586 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 587 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 588 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 589 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 590 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 591 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 592 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 593 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 594 /* 595 * Minimum indexing node size is amended later when superblock is 596 * read and the key length is known. 597 */ 598 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 599 /* 600 * Maximum indexing node size is amended later when superblock is 601 * read and the fanout is known. 602 */ 603 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 604 605 /* 606 * Initialize dead and dark LEB space watermarks. See gc.c for comments 607 * about these values. 608 */ 609 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 610 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 611 612 /* 613 * Calculate how many bytes would be wasted at the end of LEB if it was 614 * fully filled with data nodes of maximum size. This is used in 615 * calculations when reporting free space. 616 */ 617 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 618 619 /* Buffer size for bulk-reads */ 620 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 621 if (c->max_bu_buf_len > c->leb_size) 622 c->max_bu_buf_len = c->leb_size; 623 return 0; 624 } 625 626 /** 627 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 628 * @c: UBIFS file-system description object 629 * @lnum: LEB the write-buffer was synchronized to 630 * @free: how many free bytes left in this LEB 631 * @pad: how many bytes were padded 632 * 633 * This is a callback function which is called by the I/O unit when the 634 * write-buffer is synchronized. We need this to correctly maintain space 635 * accounting in bud logical eraseblocks. This function returns zero in case of 636 * success and a negative error code in case of failure. 637 * 638 * This function actually belongs to the journal, but we keep it here because 639 * we want to keep it static. 640 */ 641 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 642 { 643 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 644 } 645 646 /* 647 * init_constants_sb - initialize UBIFS constants. 648 * @c: UBIFS file-system description object 649 * 650 * This is a helper function which initializes various UBIFS constants after 651 * the superblock has been read. It also checks various UBIFS parameters and 652 * makes sure they are all right. Returns zero in case of success and a 653 * negative error code in case of failure. 654 */ 655 static int init_constants_sb(struct ubifs_info *c) 656 { 657 int tmp, err; 658 long long tmp64; 659 660 c->main_bytes = (long long)c->main_lebs * c->leb_size; 661 c->max_znode_sz = sizeof(struct ubifs_znode) + 662 c->fanout * sizeof(struct ubifs_zbranch); 663 664 tmp = ubifs_idx_node_sz(c, 1); 665 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 666 c->min_idx_node_sz = ALIGN(tmp, 8); 667 668 tmp = ubifs_idx_node_sz(c, c->fanout); 669 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 670 c->max_idx_node_sz = ALIGN(tmp, 8); 671 672 /* Make sure LEB size is large enough to fit full commit */ 673 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 674 tmp = ALIGN(tmp, c->min_io_size); 675 if (tmp > c->leb_size) { 676 ubifs_err(c, "too small LEB size %d, at least %d needed", 677 c->leb_size, tmp); 678 return -EINVAL; 679 } 680 681 /* 682 * Make sure that the log is large enough to fit reference nodes for 683 * all buds plus one reserved LEB. 684 */ 685 tmp64 = c->max_bud_bytes + c->leb_size - 1; 686 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 687 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 688 tmp /= c->leb_size; 689 tmp += 1; 690 if (c->log_lebs < tmp) { 691 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 692 c->log_lebs, tmp); 693 return -EINVAL; 694 } 695 696 /* 697 * When budgeting we assume worst-case scenarios when the pages are not 698 * be compressed and direntries are of the maximum size. 699 * 700 * Note, data, which may be stored in inodes is budgeted separately, so 701 * it is not included into 'c->bi.inode_budget'. 702 */ 703 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 704 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 705 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 706 707 /* 708 * When the amount of flash space used by buds becomes 709 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 710 * The writers are unblocked when the commit is finished. To avoid 711 * writers to be blocked UBIFS initiates background commit in advance, 712 * when number of bud bytes becomes above the limit defined below. 713 */ 714 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 715 716 /* 717 * Ensure minimum journal size. All the bytes in the journal heads are 718 * considered to be used, when calculating the current journal usage. 719 * Consequently, if the journal is too small, UBIFS will treat it as 720 * always full. 721 */ 722 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 723 if (c->bg_bud_bytes < tmp64) 724 c->bg_bud_bytes = tmp64; 725 if (c->max_bud_bytes < tmp64 + c->leb_size) 726 c->max_bud_bytes = tmp64 + c->leb_size; 727 728 err = ubifs_calc_lpt_geom(c); 729 if (err) 730 return err; 731 732 /* Initialize effective LEB size used in budgeting calculations */ 733 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 734 return 0; 735 } 736 737 /* 738 * init_constants_master - initialize UBIFS constants. 739 * @c: UBIFS file-system description object 740 * 741 * This is a helper function which initializes various UBIFS constants after 742 * the master node has been read. It also checks various UBIFS parameters and 743 * makes sure they are all right. 744 */ 745 static void init_constants_master(struct ubifs_info *c) 746 { 747 long long tmp64; 748 749 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 750 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 751 752 /* 753 * Calculate total amount of FS blocks. This number is not used 754 * internally because it does not make much sense for UBIFS, but it is 755 * necessary to report something for the 'statfs()' call. 756 * 757 * Subtract the LEB reserved for GC, the LEB which is reserved for 758 * deletions, minimum LEBs for the index, and assume only one journal 759 * head is available. 760 */ 761 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 762 tmp64 *= (long long)c->leb_size - c->leb_overhead; 763 tmp64 = ubifs_reported_space(c, tmp64); 764 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 765 } 766 767 /** 768 * take_gc_lnum - reserve GC LEB. 769 * @c: UBIFS file-system description object 770 * 771 * This function ensures that the LEB reserved for garbage collection is marked 772 * as "taken" in lprops. We also have to set free space to LEB size and dirty 773 * space to zero, because lprops may contain out-of-date information if the 774 * file-system was un-mounted before it has been committed. This function 775 * returns zero in case of success and a negative error code in case of 776 * failure. 777 */ 778 static int take_gc_lnum(struct ubifs_info *c) 779 { 780 int err; 781 782 if (c->gc_lnum == -1) { 783 ubifs_err(c, "no LEB for GC"); 784 return -EINVAL; 785 } 786 787 /* And we have to tell lprops that this LEB is taken */ 788 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 789 LPROPS_TAKEN, 0, 0); 790 return err; 791 } 792 793 /** 794 * alloc_wbufs - allocate write-buffers. 795 * @c: UBIFS file-system description object 796 * 797 * This helper function allocates and initializes UBIFS write-buffers. Returns 798 * zero in case of success and %-ENOMEM in case of failure. 799 */ 800 static int alloc_wbufs(struct ubifs_info *c) 801 { 802 int i, err; 803 804 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 805 GFP_KERNEL); 806 if (!c->jheads) 807 return -ENOMEM; 808 809 /* Initialize journal heads */ 810 for (i = 0; i < c->jhead_cnt; i++) { 811 INIT_LIST_HEAD(&c->jheads[i].buds_list); 812 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 813 if (err) 814 return err; 815 816 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 817 c->jheads[i].wbuf.jhead = i; 818 c->jheads[i].grouped = 1; 819 } 820 821 /* 822 * Garbage Collector head does not need to be synchronized by timer. 823 * Also GC head nodes are not grouped. 824 */ 825 c->jheads[GCHD].wbuf.no_timer = 1; 826 c->jheads[GCHD].grouped = 0; 827 828 return 0; 829 } 830 831 /** 832 * free_wbufs - free write-buffers. 833 * @c: UBIFS file-system description object 834 */ 835 static void free_wbufs(struct ubifs_info *c) 836 { 837 int i; 838 839 if (c->jheads) { 840 for (i = 0; i < c->jhead_cnt; i++) { 841 kfree(c->jheads[i].wbuf.buf); 842 kfree(c->jheads[i].wbuf.inodes); 843 } 844 kfree(c->jheads); 845 c->jheads = NULL; 846 } 847 } 848 849 /** 850 * free_orphans - free orphans. 851 * @c: UBIFS file-system description object 852 */ 853 static void free_orphans(struct ubifs_info *c) 854 { 855 struct ubifs_orphan *orph; 856 857 while (c->orph_dnext) { 858 orph = c->orph_dnext; 859 c->orph_dnext = orph->dnext; 860 list_del(&orph->list); 861 kfree(orph); 862 } 863 864 while (!list_empty(&c->orph_list)) { 865 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 866 list_del(&orph->list); 867 kfree(orph); 868 ubifs_err(c, "orphan list not empty at unmount"); 869 } 870 871 vfree(c->orph_buf); 872 c->orph_buf = NULL; 873 } 874 875 /** 876 * free_buds - free per-bud objects. 877 * @c: UBIFS file-system description object 878 */ 879 static void free_buds(struct ubifs_info *c) 880 { 881 struct ubifs_bud *bud, *n; 882 883 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 884 kfree(bud); 885 } 886 887 /** 888 * check_volume_empty - check if the UBI volume is empty. 889 * @c: UBIFS file-system description object 890 * 891 * This function checks if the UBIFS volume is empty by looking if its LEBs are 892 * mapped or not. The result of checking is stored in the @c->empty variable. 893 * Returns zero in case of success and a negative error code in case of 894 * failure. 895 */ 896 static int check_volume_empty(struct ubifs_info *c) 897 { 898 int lnum, err; 899 900 c->empty = 1; 901 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 902 err = ubifs_is_mapped(c, lnum); 903 if (unlikely(err < 0)) 904 return err; 905 if (err == 1) { 906 c->empty = 0; 907 break; 908 } 909 910 cond_resched(); 911 } 912 913 return 0; 914 } 915 916 /* 917 * UBIFS mount options. 918 * 919 * Opt_fast_unmount: do not run a journal commit before un-mounting 920 * Opt_norm_unmount: run a journal commit before un-mounting 921 * Opt_bulk_read: enable bulk-reads 922 * Opt_no_bulk_read: disable bulk-reads 923 * Opt_chk_data_crc: check CRCs when reading data nodes 924 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 925 * Opt_override_compr: override default compressor 926 * Opt_assert: set ubifs_assert() action 927 * Opt_err: just end of array marker 928 */ 929 enum { 930 Opt_fast_unmount, 931 Opt_norm_unmount, 932 Opt_bulk_read, 933 Opt_no_bulk_read, 934 Opt_chk_data_crc, 935 Opt_no_chk_data_crc, 936 Opt_override_compr, 937 Opt_assert, 938 Opt_ignore, 939 Opt_err, 940 }; 941 942 static const match_table_t tokens = { 943 {Opt_fast_unmount, "fast_unmount"}, 944 {Opt_norm_unmount, "norm_unmount"}, 945 {Opt_bulk_read, "bulk_read"}, 946 {Opt_no_bulk_read, "no_bulk_read"}, 947 {Opt_chk_data_crc, "chk_data_crc"}, 948 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 949 {Opt_override_compr, "compr=%s"}, 950 {Opt_ignore, "ubi=%s"}, 951 {Opt_ignore, "vol=%s"}, 952 {Opt_assert, "assert=%s"}, 953 {Opt_err, NULL}, 954 }; 955 956 /** 957 * parse_standard_option - parse a standard mount option. 958 * @option: the option to parse 959 * 960 * Normally, standard mount options like "sync" are passed to file-systems as 961 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 962 * be present in the options string. This function tries to deal with this 963 * situation and parse standard options. Returns 0 if the option was not 964 * recognized, and the corresponding integer flag if it was. 965 * 966 * UBIFS is only interested in the "sync" option, so do not check for anything 967 * else. 968 */ 969 static int parse_standard_option(const char *option) 970 { 971 972 pr_notice("UBIFS: parse %s\n", option); 973 if (!strcmp(option, "sync")) 974 return SB_SYNCHRONOUS; 975 return 0; 976 } 977 978 /** 979 * ubifs_parse_options - parse mount parameters. 980 * @c: UBIFS file-system description object 981 * @options: parameters to parse 982 * @is_remount: non-zero if this is FS re-mount 983 * 984 * This function parses UBIFS mount options and returns zero in case success 985 * and a negative error code in case of failure. 986 */ 987 static int ubifs_parse_options(struct ubifs_info *c, char *options, 988 int is_remount) 989 { 990 char *p; 991 substring_t args[MAX_OPT_ARGS]; 992 993 if (!options) 994 return 0; 995 996 while ((p = strsep(&options, ","))) { 997 int token; 998 999 if (!*p) 1000 continue; 1001 1002 token = match_token(p, tokens, args); 1003 switch (token) { 1004 /* 1005 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1006 * We accept them in order to be backward-compatible. But this 1007 * should be removed at some point. 1008 */ 1009 case Opt_fast_unmount: 1010 c->mount_opts.unmount_mode = 2; 1011 break; 1012 case Opt_norm_unmount: 1013 c->mount_opts.unmount_mode = 1; 1014 break; 1015 case Opt_bulk_read: 1016 c->mount_opts.bulk_read = 2; 1017 c->bulk_read = 1; 1018 break; 1019 case Opt_no_bulk_read: 1020 c->mount_opts.bulk_read = 1; 1021 c->bulk_read = 0; 1022 break; 1023 case Opt_chk_data_crc: 1024 c->mount_opts.chk_data_crc = 2; 1025 c->no_chk_data_crc = 0; 1026 break; 1027 case Opt_no_chk_data_crc: 1028 c->mount_opts.chk_data_crc = 1; 1029 c->no_chk_data_crc = 1; 1030 break; 1031 case Opt_override_compr: 1032 { 1033 char *name = match_strdup(&args[0]); 1034 1035 if (!name) 1036 return -ENOMEM; 1037 if (!strcmp(name, "none")) 1038 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1039 else if (!strcmp(name, "lzo")) 1040 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1041 else if (!strcmp(name, "zlib")) 1042 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1043 else { 1044 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1045 kfree(name); 1046 return -EINVAL; 1047 } 1048 kfree(name); 1049 c->mount_opts.override_compr = 1; 1050 c->default_compr = c->mount_opts.compr_type; 1051 break; 1052 } 1053 case Opt_assert: 1054 { 1055 char *act = match_strdup(&args[0]); 1056 1057 if (!act) 1058 return -ENOMEM; 1059 if (!strcmp(act, "report")) 1060 c->assert_action = ASSACT_REPORT; 1061 else if (!strcmp(act, "read-only")) 1062 c->assert_action = ASSACT_RO; 1063 else if (!strcmp(act, "panic")) 1064 c->assert_action = ASSACT_PANIC; 1065 else { 1066 ubifs_err(c, "unknown assert action \"%s\"", act); 1067 kfree(act); 1068 return -EINVAL; 1069 } 1070 kfree(act); 1071 break; 1072 } 1073 case Opt_ignore: 1074 break; 1075 default: 1076 { 1077 unsigned long flag; 1078 struct super_block *sb = c->vfs_sb; 1079 1080 flag = parse_standard_option(p); 1081 if (!flag) { 1082 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1083 p); 1084 return -EINVAL; 1085 } 1086 sb->s_flags |= flag; 1087 break; 1088 } 1089 } 1090 } 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * destroy_journal - destroy journal data structures. 1097 * @c: UBIFS file-system description object 1098 * 1099 * This function destroys journal data structures including those that may have 1100 * been created by recovery functions. 1101 */ 1102 static void destroy_journal(struct ubifs_info *c) 1103 { 1104 while (!list_empty(&c->unclean_leb_list)) { 1105 struct ubifs_unclean_leb *ucleb; 1106 1107 ucleb = list_entry(c->unclean_leb_list.next, 1108 struct ubifs_unclean_leb, list); 1109 list_del(&ucleb->list); 1110 kfree(ucleb); 1111 } 1112 while (!list_empty(&c->old_buds)) { 1113 struct ubifs_bud *bud; 1114 1115 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1116 list_del(&bud->list); 1117 kfree(bud); 1118 } 1119 ubifs_destroy_idx_gc(c); 1120 ubifs_destroy_size_tree(c); 1121 ubifs_tnc_close(c); 1122 free_buds(c); 1123 } 1124 1125 /** 1126 * bu_init - initialize bulk-read information. 1127 * @c: UBIFS file-system description object 1128 */ 1129 static void bu_init(struct ubifs_info *c) 1130 { 1131 ubifs_assert(c, c->bulk_read == 1); 1132 1133 if (c->bu.buf) 1134 return; /* Already initialized */ 1135 1136 again: 1137 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1138 if (!c->bu.buf) { 1139 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1140 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1141 goto again; 1142 } 1143 1144 /* Just disable bulk-read */ 1145 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1146 c->max_bu_buf_len); 1147 c->mount_opts.bulk_read = 1; 1148 c->bulk_read = 0; 1149 return; 1150 } 1151 } 1152 1153 /** 1154 * check_free_space - check if there is enough free space to mount. 1155 * @c: UBIFS file-system description object 1156 * 1157 * This function makes sure UBIFS has enough free space to be mounted in 1158 * read/write mode. UBIFS must always have some free space to allow deletions. 1159 */ 1160 static int check_free_space(struct ubifs_info *c) 1161 { 1162 ubifs_assert(c, c->dark_wm > 0); 1163 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1164 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1165 ubifs_dump_budg(c, &c->bi); 1166 ubifs_dump_lprops(c); 1167 return -ENOSPC; 1168 } 1169 return 0; 1170 } 1171 1172 /** 1173 * mount_ubifs - mount UBIFS file-system. 1174 * @c: UBIFS file-system description object 1175 * 1176 * This function mounts UBIFS file system. Returns zero in case of success and 1177 * a negative error code in case of failure. 1178 */ 1179 static int mount_ubifs(struct ubifs_info *c) 1180 { 1181 int err; 1182 long long x, y; 1183 size_t sz; 1184 1185 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1186 /* Suppress error messages while probing if SB_SILENT is set */ 1187 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1188 1189 err = init_constants_early(c); 1190 if (err) 1191 return err; 1192 1193 err = ubifs_debugging_init(c); 1194 if (err) 1195 return err; 1196 1197 err = check_volume_empty(c); 1198 if (err) 1199 goto out_free; 1200 1201 if (c->empty && (c->ro_mount || c->ro_media)) { 1202 /* 1203 * This UBI volume is empty, and read-only, or the file system 1204 * is mounted read-only - we cannot format it. 1205 */ 1206 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1207 c->ro_media ? "UBI volume" : "mount"); 1208 err = -EROFS; 1209 goto out_free; 1210 } 1211 1212 if (c->ro_media && !c->ro_mount) { 1213 ubifs_err(c, "cannot mount read-write - read-only media"); 1214 err = -EROFS; 1215 goto out_free; 1216 } 1217 1218 /* 1219 * The requirement for the buffer is that it should fit indexing B-tree 1220 * height amount of integers. We assume the height if the TNC tree will 1221 * never exceed 64. 1222 */ 1223 err = -ENOMEM; 1224 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1225 GFP_KERNEL); 1226 if (!c->bottom_up_buf) 1227 goto out_free; 1228 1229 c->sbuf = vmalloc(c->leb_size); 1230 if (!c->sbuf) 1231 goto out_free; 1232 1233 if (!c->ro_mount) { 1234 c->ileb_buf = vmalloc(c->leb_size); 1235 if (!c->ileb_buf) 1236 goto out_free; 1237 } 1238 1239 if (c->bulk_read == 1) 1240 bu_init(c); 1241 1242 if (!c->ro_mount) { 1243 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1244 UBIFS_CIPHER_BLOCK_SIZE, 1245 GFP_KERNEL); 1246 if (!c->write_reserve_buf) 1247 goto out_free; 1248 } 1249 1250 c->mounting = 1; 1251 1252 err = ubifs_read_superblock(c); 1253 if (err) 1254 goto out_free; 1255 1256 c->probing = 0; 1257 1258 /* 1259 * Make sure the compressor which is set as default in the superblock 1260 * or overridden by mount options is actually compiled in. 1261 */ 1262 if (!ubifs_compr_present(c, c->default_compr)) { 1263 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1264 ubifs_compr_name(c, c->default_compr)); 1265 err = -ENOTSUPP; 1266 goto out_free; 1267 } 1268 1269 err = init_constants_sb(c); 1270 if (err) 1271 goto out_free; 1272 1273 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1274 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1275 c->cbuf = kmalloc(sz, GFP_NOFS); 1276 if (!c->cbuf) { 1277 err = -ENOMEM; 1278 goto out_free; 1279 } 1280 1281 err = alloc_wbufs(c); 1282 if (err) 1283 goto out_cbuf; 1284 1285 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1286 if (!c->ro_mount) { 1287 /* Create background thread */ 1288 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1289 if (IS_ERR(c->bgt)) { 1290 err = PTR_ERR(c->bgt); 1291 c->bgt = NULL; 1292 ubifs_err(c, "cannot spawn \"%s\", error %d", 1293 c->bgt_name, err); 1294 goto out_wbufs; 1295 } 1296 wake_up_process(c->bgt); 1297 } 1298 1299 err = ubifs_read_master(c); 1300 if (err) 1301 goto out_master; 1302 1303 init_constants_master(c); 1304 1305 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1306 ubifs_msg(c, "recovery needed"); 1307 c->need_recovery = 1; 1308 } 1309 1310 if (c->need_recovery && !c->ro_mount) { 1311 err = ubifs_recover_inl_heads(c, c->sbuf); 1312 if (err) 1313 goto out_master; 1314 } 1315 1316 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1317 if (err) 1318 goto out_master; 1319 1320 if (!c->ro_mount && c->space_fixup) { 1321 err = ubifs_fixup_free_space(c); 1322 if (err) 1323 goto out_lpt; 1324 } 1325 1326 if (!c->ro_mount && !c->need_recovery) { 1327 /* 1328 * Set the "dirty" flag so that if we reboot uncleanly we 1329 * will notice this immediately on the next mount. 1330 */ 1331 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1332 err = ubifs_write_master(c); 1333 if (err) 1334 goto out_lpt; 1335 } 1336 1337 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1338 if (err) 1339 goto out_lpt; 1340 1341 err = ubifs_replay_journal(c); 1342 if (err) 1343 goto out_journal; 1344 1345 /* Calculate 'min_idx_lebs' after journal replay */ 1346 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1347 1348 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1349 if (err) 1350 goto out_orphans; 1351 1352 if (!c->ro_mount) { 1353 int lnum; 1354 1355 err = check_free_space(c); 1356 if (err) 1357 goto out_orphans; 1358 1359 /* Check for enough log space */ 1360 lnum = c->lhead_lnum + 1; 1361 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1362 lnum = UBIFS_LOG_LNUM; 1363 if (lnum == c->ltail_lnum) { 1364 err = ubifs_consolidate_log(c); 1365 if (err) 1366 goto out_orphans; 1367 } 1368 1369 if (c->need_recovery) { 1370 err = ubifs_recover_size(c); 1371 if (err) 1372 goto out_orphans; 1373 err = ubifs_rcvry_gc_commit(c); 1374 if (err) 1375 goto out_orphans; 1376 } else { 1377 err = take_gc_lnum(c); 1378 if (err) 1379 goto out_orphans; 1380 1381 /* 1382 * GC LEB may contain garbage if there was an unclean 1383 * reboot, and it should be un-mapped. 1384 */ 1385 err = ubifs_leb_unmap(c, c->gc_lnum); 1386 if (err) 1387 goto out_orphans; 1388 } 1389 1390 err = dbg_check_lprops(c); 1391 if (err) 1392 goto out_orphans; 1393 } else if (c->need_recovery) { 1394 err = ubifs_recover_size(c); 1395 if (err) 1396 goto out_orphans; 1397 } else { 1398 /* 1399 * Even if we mount read-only, we have to set space in GC LEB 1400 * to proper value because this affects UBIFS free space 1401 * reporting. We do not want to have a situation when 1402 * re-mounting from R/O to R/W changes amount of free space. 1403 */ 1404 err = take_gc_lnum(c); 1405 if (err) 1406 goto out_orphans; 1407 } 1408 1409 spin_lock(&ubifs_infos_lock); 1410 list_add_tail(&c->infos_list, &ubifs_infos); 1411 spin_unlock(&ubifs_infos_lock); 1412 1413 if (c->need_recovery) { 1414 if (c->ro_mount) 1415 ubifs_msg(c, "recovery deferred"); 1416 else { 1417 c->need_recovery = 0; 1418 ubifs_msg(c, "recovery completed"); 1419 /* 1420 * GC LEB has to be empty and taken at this point. But 1421 * the journal head LEBs may also be accounted as 1422 * "empty taken" if they are empty. 1423 */ 1424 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1425 } 1426 } else 1427 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1428 1429 err = dbg_check_filesystem(c); 1430 if (err) 1431 goto out_infos; 1432 1433 err = dbg_debugfs_init_fs(c); 1434 if (err) 1435 goto out_infos; 1436 1437 c->mounting = 0; 1438 1439 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1440 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1441 c->ro_mount ? ", R/O mode" : ""); 1442 x = (long long)c->main_lebs * c->leb_size; 1443 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1444 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1445 c->leb_size, c->leb_size >> 10, c->min_io_size, 1446 c->max_write_size); 1447 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1448 x, x >> 20, c->main_lebs, 1449 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1450 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1451 c->report_rp_size, c->report_rp_size >> 10); 1452 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1453 c->fmt_version, c->ro_compat_version, 1454 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1455 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1456 1457 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1458 dbg_gen("data journal heads: %d", 1459 c->jhead_cnt - NONDATA_JHEADS_CNT); 1460 dbg_gen("log LEBs: %d (%d - %d)", 1461 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1462 dbg_gen("LPT area LEBs: %d (%d - %d)", 1463 c->lpt_lebs, c->lpt_first, c->lpt_last); 1464 dbg_gen("orphan area LEBs: %d (%d - %d)", 1465 c->orph_lebs, c->orph_first, c->orph_last); 1466 dbg_gen("main area LEBs: %d (%d - %d)", 1467 c->main_lebs, c->main_first, c->leb_cnt - 1); 1468 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1469 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1470 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1471 c->bi.old_idx_sz >> 20); 1472 dbg_gen("key hash type: %d", c->key_hash_type); 1473 dbg_gen("tree fanout: %d", c->fanout); 1474 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1475 dbg_gen("max. znode size %d", c->max_znode_sz); 1476 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1477 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1478 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1479 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1480 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1481 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1482 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1483 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1484 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1485 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1486 dbg_gen("dead watermark: %d", c->dead_wm); 1487 dbg_gen("dark watermark: %d", c->dark_wm); 1488 dbg_gen("LEB overhead: %d", c->leb_overhead); 1489 x = (long long)c->main_lebs * c->dark_wm; 1490 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1491 x, x >> 10, x >> 20); 1492 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1493 c->max_bud_bytes, c->max_bud_bytes >> 10, 1494 c->max_bud_bytes >> 20); 1495 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1496 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1497 c->bg_bud_bytes >> 20); 1498 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1499 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1500 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1501 dbg_gen("commit number: %llu", c->cmt_no); 1502 1503 return 0; 1504 1505 out_infos: 1506 spin_lock(&ubifs_infos_lock); 1507 list_del(&c->infos_list); 1508 spin_unlock(&ubifs_infos_lock); 1509 out_orphans: 1510 free_orphans(c); 1511 out_journal: 1512 destroy_journal(c); 1513 out_lpt: 1514 ubifs_lpt_free(c, 0); 1515 out_master: 1516 kfree(c->mst_node); 1517 kfree(c->rcvrd_mst_node); 1518 if (c->bgt) 1519 kthread_stop(c->bgt); 1520 out_wbufs: 1521 free_wbufs(c); 1522 out_cbuf: 1523 kfree(c->cbuf); 1524 out_free: 1525 kfree(c->write_reserve_buf); 1526 kfree(c->bu.buf); 1527 vfree(c->ileb_buf); 1528 vfree(c->sbuf); 1529 kfree(c->bottom_up_buf); 1530 ubifs_debugging_exit(c); 1531 return err; 1532 } 1533 1534 /** 1535 * ubifs_umount - un-mount UBIFS file-system. 1536 * @c: UBIFS file-system description object 1537 * 1538 * Note, this function is called to free allocated resourced when un-mounting, 1539 * as well as free resources when an error occurred while we were half way 1540 * through mounting (error path cleanup function). So it has to make sure the 1541 * resource was actually allocated before freeing it. 1542 */ 1543 static void ubifs_umount(struct ubifs_info *c) 1544 { 1545 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1546 c->vi.vol_id); 1547 1548 dbg_debugfs_exit_fs(c); 1549 spin_lock(&ubifs_infos_lock); 1550 list_del(&c->infos_list); 1551 spin_unlock(&ubifs_infos_lock); 1552 1553 if (c->bgt) 1554 kthread_stop(c->bgt); 1555 1556 destroy_journal(c); 1557 free_wbufs(c); 1558 free_orphans(c); 1559 ubifs_lpt_free(c, 0); 1560 1561 kfree(c->cbuf); 1562 kfree(c->rcvrd_mst_node); 1563 kfree(c->mst_node); 1564 kfree(c->write_reserve_buf); 1565 kfree(c->bu.buf); 1566 vfree(c->ileb_buf); 1567 vfree(c->sbuf); 1568 kfree(c->bottom_up_buf); 1569 ubifs_debugging_exit(c); 1570 } 1571 1572 /** 1573 * ubifs_remount_rw - re-mount in read-write mode. 1574 * @c: UBIFS file-system description object 1575 * 1576 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1577 * mode. This function allocates the needed resources and re-mounts UBIFS in 1578 * read-write mode. 1579 */ 1580 static int ubifs_remount_rw(struct ubifs_info *c) 1581 { 1582 int err, lnum; 1583 1584 if (c->rw_incompat) { 1585 ubifs_err(c, "the file-system is not R/W-compatible"); 1586 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1587 c->fmt_version, c->ro_compat_version, 1588 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1589 return -EROFS; 1590 } 1591 1592 mutex_lock(&c->umount_mutex); 1593 dbg_save_space_info(c); 1594 c->remounting_rw = 1; 1595 c->ro_mount = 0; 1596 1597 if (c->space_fixup) { 1598 err = ubifs_fixup_free_space(c); 1599 if (err) 1600 goto out; 1601 } 1602 1603 err = check_free_space(c); 1604 if (err) 1605 goto out; 1606 1607 if (c->old_leb_cnt != c->leb_cnt) { 1608 struct ubifs_sb_node *sup; 1609 1610 sup = ubifs_read_sb_node(c); 1611 if (IS_ERR(sup)) { 1612 err = PTR_ERR(sup); 1613 goto out; 1614 } 1615 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1616 err = ubifs_write_sb_node(c, sup); 1617 kfree(sup); 1618 if (err) 1619 goto out; 1620 } 1621 1622 if (c->need_recovery) { 1623 ubifs_msg(c, "completing deferred recovery"); 1624 err = ubifs_write_rcvrd_mst_node(c); 1625 if (err) 1626 goto out; 1627 err = ubifs_recover_size(c); 1628 if (err) 1629 goto out; 1630 err = ubifs_clean_lebs(c, c->sbuf); 1631 if (err) 1632 goto out; 1633 err = ubifs_recover_inl_heads(c, c->sbuf); 1634 if (err) 1635 goto out; 1636 } else { 1637 /* A readonly mount is not allowed to have orphans */ 1638 ubifs_assert(c, c->tot_orphans == 0); 1639 err = ubifs_clear_orphans(c); 1640 if (err) 1641 goto out; 1642 } 1643 1644 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1645 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1646 err = ubifs_write_master(c); 1647 if (err) 1648 goto out; 1649 } 1650 1651 c->ileb_buf = vmalloc(c->leb_size); 1652 if (!c->ileb_buf) { 1653 err = -ENOMEM; 1654 goto out; 1655 } 1656 1657 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1658 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1659 if (!c->write_reserve_buf) { 1660 err = -ENOMEM; 1661 goto out; 1662 } 1663 1664 err = ubifs_lpt_init(c, 0, 1); 1665 if (err) 1666 goto out; 1667 1668 /* Create background thread */ 1669 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1670 if (IS_ERR(c->bgt)) { 1671 err = PTR_ERR(c->bgt); 1672 c->bgt = NULL; 1673 ubifs_err(c, "cannot spawn \"%s\", error %d", 1674 c->bgt_name, err); 1675 goto out; 1676 } 1677 wake_up_process(c->bgt); 1678 1679 c->orph_buf = vmalloc(c->leb_size); 1680 if (!c->orph_buf) { 1681 err = -ENOMEM; 1682 goto out; 1683 } 1684 1685 /* Check for enough log space */ 1686 lnum = c->lhead_lnum + 1; 1687 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1688 lnum = UBIFS_LOG_LNUM; 1689 if (lnum == c->ltail_lnum) { 1690 err = ubifs_consolidate_log(c); 1691 if (err) 1692 goto out; 1693 } 1694 1695 if (c->need_recovery) 1696 err = ubifs_rcvry_gc_commit(c); 1697 else 1698 err = ubifs_leb_unmap(c, c->gc_lnum); 1699 if (err) 1700 goto out; 1701 1702 dbg_gen("re-mounted read-write"); 1703 c->remounting_rw = 0; 1704 1705 if (c->need_recovery) { 1706 c->need_recovery = 0; 1707 ubifs_msg(c, "deferred recovery completed"); 1708 } else { 1709 /* 1710 * Do not run the debugging space check if the were doing 1711 * recovery, because when we saved the information we had the 1712 * file-system in a state where the TNC and lprops has been 1713 * modified in memory, but all the I/O operations (including a 1714 * commit) were deferred. So the file-system was in 1715 * "non-committed" state. Now the file-system is in committed 1716 * state, and of course the amount of free space will change 1717 * because, for example, the old index size was imprecise. 1718 */ 1719 err = dbg_check_space_info(c); 1720 } 1721 1722 mutex_unlock(&c->umount_mutex); 1723 return err; 1724 1725 out: 1726 c->ro_mount = 1; 1727 vfree(c->orph_buf); 1728 c->orph_buf = NULL; 1729 if (c->bgt) { 1730 kthread_stop(c->bgt); 1731 c->bgt = NULL; 1732 } 1733 free_wbufs(c); 1734 kfree(c->write_reserve_buf); 1735 c->write_reserve_buf = NULL; 1736 vfree(c->ileb_buf); 1737 c->ileb_buf = NULL; 1738 ubifs_lpt_free(c, 1); 1739 c->remounting_rw = 0; 1740 mutex_unlock(&c->umount_mutex); 1741 return err; 1742 } 1743 1744 /** 1745 * ubifs_remount_ro - re-mount in read-only mode. 1746 * @c: UBIFS file-system description object 1747 * 1748 * We assume VFS has stopped writing. Possibly the background thread could be 1749 * running a commit, however kthread_stop will wait in that case. 1750 */ 1751 static void ubifs_remount_ro(struct ubifs_info *c) 1752 { 1753 int i, err; 1754 1755 ubifs_assert(c, !c->need_recovery); 1756 ubifs_assert(c, !c->ro_mount); 1757 1758 mutex_lock(&c->umount_mutex); 1759 if (c->bgt) { 1760 kthread_stop(c->bgt); 1761 c->bgt = NULL; 1762 } 1763 1764 dbg_save_space_info(c); 1765 1766 for (i = 0; i < c->jhead_cnt; i++) { 1767 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1768 if (err) 1769 ubifs_ro_mode(c, err); 1770 } 1771 1772 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1773 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1774 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1775 err = ubifs_write_master(c); 1776 if (err) 1777 ubifs_ro_mode(c, err); 1778 1779 vfree(c->orph_buf); 1780 c->orph_buf = NULL; 1781 kfree(c->write_reserve_buf); 1782 c->write_reserve_buf = NULL; 1783 vfree(c->ileb_buf); 1784 c->ileb_buf = NULL; 1785 ubifs_lpt_free(c, 1); 1786 c->ro_mount = 1; 1787 err = dbg_check_space_info(c); 1788 if (err) 1789 ubifs_ro_mode(c, err); 1790 mutex_unlock(&c->umount_mutex); 1791 } 1792 1793 static void ubifs_put_super(struct super_block *sb) 1794 { 1795 int i; 1796 struct ubifs_info *c = sb->s_fs_info; 1797 1798 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1799 1800 /* 1801 * The following asserts are only valid if there has not been a failure 1802 * of the media. For example, there will be dirty inodes if we failed 1803 * to write them back because of I/O errors. 1804 */ 1805 if (!c->ro_error) { 1806 ubifs_assert(c, c->bi.idx_growth == 0); 1807 ubifs_assert(c, c->bi.dd_growth == 0); 1808 ubifs_assert(c, c->bi.data_growth == 0); 1809 } 1810 1811 /* 1812 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1813 * and file system un-mount. Namely, it prevents the shrinker from 1814 * picking this superblock for shrinking - it will be just skipped if 1815 * the mutex is locked. 1816 */ 1817 mutex_lock(&c->umount_mutex); 1818 if (!c->ro_mount) { 1819 /* 1820 * First of all kill the background thread to make sure it does 1821 * not interfere with un-mounting and freeing resources. 1822 */ 1823 if (c->bgt) { 1824 kthread_stop(c->bgt); 1825 c->bgt = NULL; 1826 } 1827 1828 /* 1829 * On fatal errors c->ro_error is set to 1, in which case we do 1830 * not write the master node. 1831 */ 1832 if (!c->ro_error) { 1833 int err; 1834 1835 /* Synchronize write-buffers */ 1836 for (i = 0; i < c->jhead_cnt; i++) { 1837 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1838 if (err) 1839 ubifs_ro_mode(c, err); 1840 } 1841 1842 /* 1843 * We are being cleanly unmounted which means the 1844 * orphans were killed - indicate this in the master 1845 * node. Also save the reserved GC LEB number. 1846 */ 1847 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1848 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1849 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1850 err = ubifs_write_master(c); 1851 if (err) 1852 /* 1853 * Recovery will attempt to fix the master area 1854 * next mount, so we just print a message and 1855 * continue to unmount normally. 1856 */ 1857 ubifs_err(c, "failed to write master node, error %d", 1858 err); 1859 } else { 1860 for (i = 0; i < c->jhead_cnt; i++) 1861 /* Make sure write-buffer timers are canceled */ 1862 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1863 } 1864 } 1865 1866 ubifs_umount(c); 1867 ubi_close_volume(c->ubi); 1868 mutex_unlock(&c->umount_mutex); 1869 } 1870 1871 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1872 { 1873 int err; 1874 struct ubifs_info *c = sb->s_fs_info; 1875 1876 sync_filesystem(sb); 1877 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1878 1879 err = ubifs_parse_options(c, data, 1); 1880 if (err) { 1881 ubifs_err(c, "invalid or unknown remount parameter"); 1882 return err; 1883 } 1884 1885 if (c->ro_mount && !(*flags & SB_RDONLY)) { 1886 if (c->ro_error) { 1887 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1888 return -EROFS; 1889 } 1890 if (c->ro_media) { 1891 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1892 return -EROFS; 1893 } 1894 err = ubifs_remount_rw(c); 1895 if (err) 1896 return err; 1897 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 1898 if (c->ro_error) { 1899 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1900 return -EROFS; 1901 } 1902 ubifs_remount_ro(c); 1903 } 1904 1905 if (c->bulk_read == 1) 1906 bu_init(c); 1907 else { 1908 dbg_gen("disable bulk-read"); 1909 mutex_lock(&c->bu_mutex); 1910 kfree(c->bu.buf); 1911 c->bu.buf = NULL; 1912 mutex_unlock(&c->bu_mutex); 1913 } 1914 1915 if (!c->need_recovery) 1916 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1917 1918 return 0; 1919 } 1920 1921 const struct super_operations ubifs_super_operations = { 1922 .alloc_inode = ubifs_alloc_inode, 1923 .destroy_inode = ubifs_destroy_inode, 1924 .put_super = ubifs_put_super, 1925 .write_inode = ubifs_write_inode, 1926 .evict_inode = ubifs_evict_inode, 1927 .statfs = ubifs_statfs, 1928 .dirty_inode = ubifs_dirty_inode, 1929 .remount_fs = ubifs_remount_fs, 1930 .show_options = ubifs_show_options, 1931 .sync_fs = ubifs_sync_fs, 1932 }; 1933 1934 /** 1935 * open_ubi - parse UBI device name string and open the UBI device. 1936 * @name: UBI volume name 1937 * @mode: UBI volume open mode 1938 * 1939 * The primary method of mounting UBIFS is by specifying the UBI volume 1940 * character device node path. However, UBIFS may also be mounted withoug any 1941 * character device node using one of the following methods: 1942 * 1943 * o ubiX_Y - mount UBI device number X, volume Y; 1944 * o ubiY - mount UBI device number 0, volume Y; 1945 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1946 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1947 * 1948 * Alternative '!' separator may be used instead of ':' (because some shells 1949 * like busybox may interpret ':' as an NFS host name separator). This function 1950 * returns UBI volume description object in case of success and a negative 1951 * error code in case of failure. 1952 */ 1953 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1954 { 1955 struct ubi_volume_desc *ubi; 1956 int dev, vol; 1957 char *endptr; 1958 1959 if (!name || !*name) 1960 return ERR_PTR(-EINVAL); 1961 1962 /* First, try to open using the device node path method */ 1963 ubi = ubi_open_volume_path(name, mode); 1964 if (!IS_ERR(ubi)) 1965 return ubi; 1966 1967 /* Try the "nodev" method */ 1968 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1969 return ERR_PTR(-EINVAL); 1970 1971 /* ubi:NAME method */ 1972 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1973 return ubi_open_volume_nm(0, name + 4, mode); 1974 1975 if (!isdigit(name[3])) 1976 return ERR_PTR(-EINVAL); 1977 1978 dev = simple_strtoul(name + 3, &endptr, 0); 1979 1980 /* ubiY method */ 1981 if (*endptr == '\0') 1982 return ubi_open_volume(0, dev, mode); 1983 1984 /* ubiX_Y method */ 1985 if (*endptr == '_' && isdigit(endptr[1])) { 1986 vol = simple_strtoul(endptr + 1, &endptr, 0); 1987 if (*endptr != '\0') 1988 return ERR_PTR(-EINVAL); 1989 return ubi_open_volume(dev, vol, mode); 1990 } 1991 1992 /* ubiX:NAME method */ 1993 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1994 return ubi_open_volume_nm(dev, ++endptr, mode); 1995 1996 return ERR_PTR(-EINVAL); 1997 } 1998 1999 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2000 { 2001 struct ubifs_info *c; 2002 2003 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2004 if (c) { 2005 spin_lock_init(&c->cnt_lock); 2006 spin_lock_init(&c->cs_lock); 2007 spin_lock_init(&c->buds_lock); 2008 spin_lock_init(&c->space_lock); 2009 spin_lock_init(&c->orphan_lock); 2010 init_rwsem(&c->commit_sem); 2011 mutex_init(&c->lp_mutex); 2012 mutex_init(&c->tnc_mutex); 2013 mutex_init(&c->log_mutex); 2014 mutex_init(&c->umount_mutex); 2015 mutex_init(&c->bu_mutex); 2016 mutex_init(&c->write_reserve_mutex); 2017 init_waitqueue_head(&c->cmt_wq); 2018 c->buds = RB_ROOT; 2019 c->old_idx = RB_ROOT; 2020 c->size_tree = RB_ROOT; 2021 c->orph_tree = RB_ROOT; 2022 INIT_LIST_HEAD(&c->infos_list); 2023 INIT_LIST_HEAD(&c->idx_gc); 2024 INIT_LIST_HEAD(&c->replay_list); 2025 INIT_LIST_HEAD(&c->replay_buds); 2026 INIT_LIST_HEAD(&c->uncat_list); 2027 INIT_LIST_HEAD(&c->empty_list); 2028 INIT_LIST_HEAD(&c->freeable_list); 2029 INIT_LIST_HEAD(&c->frdi_idx_list); 2030 INIT_LIST_HEAD(&c->unclean_leb_list); 2031 INIT_LIST_HEAD(&c->old_buds); 2032 INIT_LIST_HEAD(&c->orph_list); 2033 INIT_LIST_HEAD(&c->orph_new); 2034 c->no_chk_data_crc = 1; 2035 c->assert_action = ASSACT_RO; 2036 2037 c->highest_inum = UBIFS_FIRST_INO; 2038 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2039 2040 ubi_get_volume_info(ubi, &c->vi); 2041 ubi_get_device_info(c->vi.ubi_num, &c->di); 2042 } 2043 return c; 2044 } 2045 2046 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2047 { 2048 struct ubifs_info *c = sb->s_fs_info; 2049 struct inode *root; 2050 int err; 2051 2052 c->vfs_sb = sb; 2053 /* Re-open the UBI device in read-write mode */ 2054 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2055 if (IS_ERR(c->ubi)) { 2056 err = PTR_ERR(c->ubi); 2057 goto out; 2058 } 2059 2060 err = ubifs_parse_options(c, data, 0); 2061 if (err) 2062 goto out_close; 2063 2064 /* 2065 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2066 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2067 * which means the user would have to wait not just for their own I/O 2068 * but the read-ahead I/O as well i.e. completely pointless. 2069 * 2070 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2071 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2072 * writeback happening. 2073 */ 2074 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2075 c->vi.vol_id); 2076 if (err) 2077 goto out_close; 2078 2079 sb->s_fs_info = c; 2080 sb->s_magic = UBIFS_SUPER_MAGIC; 2081 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2082 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2083 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2084 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2085 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2086 sb->s_op = &ubifs_super_operations; 2087 #ifdef CONFIG_UBIFS_FS_XATTR 2088 sb->s_xattr = ubifs_xattr_handlers; 2089 #endif 2090 #ifdef CONFIG_UBIFS_FS_ENCRYPTION 2091 sb->s_cop = &ubifs_crypt_operations; 2092 #endif 2093 2094 mutex_lock(&c->umount_mutex); 2095 err = mount_ubifs(c); 2096 if (err) { 2097 ubifs_assert(c, err < 0); 2098 goto out_unlock; 2099 } 2100 2101 /* Read the root inode */ 2102 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2103 if (IS_ERR(root)) { 2104 err = PTR_ERR(root); 2105 goto out_umount; 2106 } 2107 2108 sb->s_root = d_make_root(root); 2109 if (!sb->s_root) { 2110 err = -ENOMEM; 2111 goto out_umount; 2112 } 2113 2114 mutex_unlock(&c->umount_mutex); 2115 return 0; 2116 2117 out_umount: 2118 ubifs_umount(c); 2119 out_unlock: 2120 mutex_unlock(&c->umount_mutex); 2121 out_close: 2122 ubi_close_volume(c->ubi); 2123 out: 2124 return err; 2125 } 2126 2127 static int sb_test(struct super_block *sb, void *data) 2128 { 2129 struct ubifs_info *c1 = data; 2130 struct ubifs_info *c = sb->s_fs_info; 2131 2132 return c->vi.cdev == c1->vi.cdev; 2133 } 2134 2135 static int sb_set(struct super_block *sb, void *data) 2136 { 2137 sb->s_fs_info = data; 2138 return set_anon_super(sb, NULL); 2139 } 2140 2141 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2142 const char *name, void *data) 2143 { 2144 struct ubi_volume_desc *ubi; 2145 struct ubifs_info *c; 2146 struct super_block *sb; 2147 int err; 2148 2149 dbg_gen("name %s, flags %#x", name, flags); 2150 2151 /* 2152 * Get UBI device number and volume ID. Mount it read-only so far 2153 * because this might be a new mount point, and UBI allows only one 2154 * read-write user at a time. 2155 */ 2156 ubi = open_ubi(name, UBI_READONLY); 2157 if (IS_ERR(ubi)) { 2158 if (!(flags & SB_SILENT)) 2159 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2160 current->pid, name, (int)PTR_ERR(ubi)); 2161 return ERR_CAST(ubi); 2162 } 2163 2164 c = alloc_ubifs_info(ubi); 2165 if (!c) { 2166 err = -ENOMEM; 2167 goto out_close; 2168 } 2169 2170 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2171 2172 sb = sget(fs_type, sb_test, sb_set, flags, c); 2173 if (IS_ERR(sb)) { 2174 err = PTR_ERR(sb); 2175 kfree(c); 2176 goto out_close; 2177 } 2178 2179 if (sb->s_root) { 2180 struct ubifs_info *c1 = sb->s_fs_info; 2181 kfree(c); 2182 /* A new mount point for already mounted UBIFS */ 2183 dbg_gen("this ubi volume is already mounted"); 2184 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2185 err = -EBUSY; 2186 goto out_deact; 2187 } 2188 } else { 2189 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2190 if (err) 2191 goto out_deact; 2192 /* We do not support atime */ 2193 sb->s_flags |= SB_ACTIVE; 2194 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 2195 sb->s_flags |= SB_NOATIME; 2196 #else 2197 ubifs_msg(c, "full atime support is enabled."); 2198 #endif 2199 } 2200 2201 /* 'fill_super()' opens ubi again so we must close it here */ 2202 ubi_close_volume(ubi); 2203 2204 return dget(sb->s_root); 2205 2206 out_deact: 2207 deactivate_locked_super(sb); 2208 out_close: 2209 ubi_close_volume(ubi); 2210 return ERR_PTR(err); 2211 } 2212 2213 static void kill_ubifs_super(struct super_block *s) 2214 { 2215 struct ubifs_info *c = s->s_fs_info; 2216 kill_anon_super(s); 2217 kfree(c); 2218 } 2219 2220 static struct file_system_type ubifs_fs_type = { 2221 .name = "ubifs", 2222 .owner = THIS_MODULE, 2223 .mount = ubifs_mount, 2224 .kill_sb = kill_ubifs_super, 2225 }; 2226 MODULE_ALIAS_FS("ubifs"); 2227 2228 /* 2229 * Inode slab cache constructor. 2230 */ 2231 static void inode_slab_ctor(void *obj) 2232 { 2233 struct ubifs_inode *ui = obj; 2234 inode_init_once(&ui->vfs_inode); 2235 } 2236 2237 static int __init ubifs_init(void) 2238 { 2239 int err; 2240 2241 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2242 2243 /* Make sure node sizes are 8-byte aligned */ 2244 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2245 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2246 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2247 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2248 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2249 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2250 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2251 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2252 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2253 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2254 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2255 2256 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2257 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2258 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2259 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2260 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2261 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2262 2263 /* Check min. node size */ 2264 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2265 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2266 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2267 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2268 2269 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2270 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2271 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2272 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2273 2274 /* Defined node sizes */ 2275 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2276 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2277 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2278 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2279 2280 /* 2281 * We use 2 bit wide bit-fields to store compression type, which should 2282 * be amended if more compressors are added. The bit-fields are: 2283 * @compr_type in 'struct ubifs_inode', @default_compr in 2284 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2285 */ 2286 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2287 2288 /* 2289 * We require that PAGE_SIZE is greater-than-or-equal-to 2290 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2291 */ 2292 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2293 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2294 current->pid, (unsigned int)PAGE_SIZE); 2295 return -EINVAL; 2296 } 2297 2298 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2299 sizeof(struct ubifs_inode), 0, 2300 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2301 SLAB_ACCOUNT, &inode_slab_ctor); 2302 if (!ubifs_inode_slab) 2303 return -ENOMEM; 2304 2305 err = register_shrinker(&ubifs_shrinker_info); 2306 if (err) 2307 goto out_slab; 2308 2309 err = ubifs_compressors_init(); 2310 if (err) 2311 goto out_shrinker; 2312 2313 err = dbg_debugfs_init(); 2314 if (err) 2315 goto out_compr; 2316 2317 err = register_filesystem(&ubifs_fs_type); 2318 if (err) { 2319 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2320 current->pid, err); 2321 goto out_dbg; 2322 } 2323 return 0; 2324 2325 out_dbg: 2326 dbg_debugfs_exit(); 2327 out_compr: 2328 ubifs_compressors_exit(); 2329 out_shrinker: 2330 unregister_shrinker(&ubifs_shrinker_info); 2331 out_slab: 2332 kmem_cache_destroy(ubifs_inode_slab); 2333 return err; 2334 } 2335 /* late_initcall to let compressors initialize first */ 2336 late_initcall(ubifs_init); 2337 2338 static void __exit ubifs_exit(void) 2339 { 2340 WARN_ON(list_empty(&ubifs_infos)); 2341 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2342 2343 dbg_debugfs_exit(); 2344 ubifs_compressors_exit(); 2345 unregister_shrinker(&ubifs_shrinker_info); 2346 2347 /* 2348 * Make sure all delayed rcu free inodes are flushed before we 2349 * destroy cache. 2350 */ 2351 rcu_barrier(); 2352 kmem_cache_destroy(ubifs_inode_slab); 2353 unregister_filesystem(&ubifs_fs_type); 2354 } 2355 module_exit(ubifs_exit); 2356 2357 MODULE_LICENSE("GPL"); 2358 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2359 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2360 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2361