xref: /openbmc/linux/fs/ubifs/super.c (revision 4800cd83)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.shrink = ubifs_shrinker,
53 	.seeks = DEFAULT_SEEKS,
54 };
55 
56 /**
57  * validate_inode - validate inode.
58  * @c: UBIFS file-system description object
59  * @inode: the inode to validate
60  *
61  * This is a helper function for 'ubifs_iget()' which validates various fields
62  * of a newly built inode to make sure they contain sane values and prevent
63  * possible vulnerabilities. Returns zero if the inode is all right and
64  * a non-zero error code if not.
65  */
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67 {
68 	int err;
69 	const struct ubifs_inode *ui = ubifs_inode(inode);
70 
71 	if (inode->i_size > c->max_inode_sz) {
72 		ubifs_err("inode is too large (%lld)",
73 			  (long long)inode->i_size);
74 		return 1;
75 	}
76 
77 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 		ubifs_err("unknown compression type %d", ui->compr_type);
79 		return 2;
80 	}
81 
82 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 		return 3;
84 
85 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 		return 4;
87 
88 	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89 		return 5;
90 
91 	if (!ubifs_compr_present(ui->compr_type)) {
92 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 			   "compiled in", inode->i_ino,
94 			   ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir_size(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	inode->i_nlink = le32_to_cpu(ino->nlink);
133 	inode->i_uid   = le32_to_cpu(ino->uid);
134 	inode->i_gid   = le32_to_cpu(ino->gid);
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	/* Disable read-ahead */
160 	inode->i_mapping->backing_dev_info = &c->bdi;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 	dbg_dump_node(c, ino);
250 	dbg_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	INIT_LIST_HEAD(&inode->i_dentry);
280 	kmem_cache_free(ubifs_inode_slab, ui);
281 }
282 
283 static void ubifs_destroy_inode(struct inode *inode)
284 {
285 	struct ubifs_inode *ui = ubifs_inode(inode);
286 
287 	kfree(ui->data);
288 	call_rcu(&inode->i_rcu, ubifs_i_callback);
289 }
290 
291 /*
292  * Note, Linux write-back code calls this without 'i_mutex'.
293  */
294 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
295 {
296 	int err = 0;
297 	struct ubifs_info *c = inode->i_sb->s_fs_info;
298 	struct ubifs_inode *ui = ubifs_inode(inode);
299 
300 	ubifs_assert(!ui->xattr);
301 	if (is_bad_inode(inode))
302 		return 0;
303 
304 	mutex_lock(&ui->ui_mutex);
305 	/*
306 	 * Due to races between write-back forced by budgeting
307 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
308 	 * have already been synchronized, do not do this again. This might
309 	 * also happen if it was synchronized in an VFS operation, e.g.
310 	 * 'ubifs_link()'.
311 	 */
312 	if (!ui->dirty) {
313 		mutex_unlock(&ui->ui_mutex);
314 		return 0;
315 	}
316 
317 	/*
318 	 * As an optimization, do not write orphan inodes to the media just
319 	 * because this is not needed.
320 	 */
321 	dbg_gen("inode %lu, mode %#x, nlink %u",
322 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
323 	if (inode->i_nlink) {
324 		err = ubifs_jnl_write_inode(c, inode);
325 		if (err)
326 			ubifs_err("can't write inode %lu, error %d",
327 				  inode->i_ino, err);
328 		else
329 			err = dbg_check_inode_size(c, inode, ui->ui_size);
330 	}
331 
332 	ui->dirty = 0;
333 	mutex_unlock(&ui->ui_mutex);
334 	ubifs_release_dirty_inode_budget(c, ui);
335 	return err;
336 }
337 
338 static void ubifs_evict_inode(struct inode *inode)
339 {
340 	int err;
341 	struct ubifs_info *c = inode->i_sb->s_fs_info;
342 	struct ubifs_inode *ui = ubifs_inode(inode);
343 
344 	if (ui->xattr)
345 		/*
346 		 * Extended attribute inode deletions are fully handled in
347 		 * 'ubifs_removexattr()'. These inodes are special and have
348 		 * limited usage, so there is nothing to do here.
349 		 */
350 		goto out;
351 
352 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
353 	ubifs_assert(!atomic_read(&inode->i_count));
354 
355 	truncate_inode_pages(&inode->i_data, 0);
356 
357 	if (inode->i_nlink)
358 		goto done;
359 
360 	if (is_bad_inode(inode))
361 		goto out;
362 
363 	ui->ui_size = inode->i_size = 0;
364 	err = ubifs_jnl_delete_inode(c, inode);
365 	if (err)
366 		/*
367 		 * Worst case we have a lost orphan inode wasting space, so a
368 		 * simple error message is OK here.
369 		 */
370 		ubifs_err("can't delete inode %lu, error %d",
371 			  inode->i_ino, err);
372 
373 out:
374 	if (ui->dirty)
375 		ubifs_release_dirty_inode_budget(c, ui);
376 	else {
377 		/* We've deleted something - clean the "no space" flags */
378 		c->nospace = c->nospace_rp = 0;
379 		smp_wmb();
380 	}
381 done:
382 	end_writeback(inode);
383 }
384 
385 static void ubifs_dirty_inode(struct inode *inode)
386 {
387 	struct ubifs_inode *ui = ubifs_inode(inode);
388 
389 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
390 	if (!ui->dirty) {
391 		ui->dirty = 1;
392 		dbg_gen("inode %lu",  inode->i_ino);
393 	}
394 }
395 
396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397 {
398 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
399 	unsigned long long free;
400 	__le32 *uuid = (__le32 *)c->uuid;
401 
402 	free = ubifs_get_free_space(c);
403 	dbg_gen("free space %lld bytes (%lld blocks)",
404 		free, free >> UBIFS_BLOCK_SHIFT);
405 
406 	buf->f_type = UBIFS_SUPER_MAGIC;
407 	buf->f_bsize = UBIFS_BLOCK_SIZE;
408 	buf->f_blocks = c->block_cnt;
409 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
410 	if (free > c->report_rp_size)
411 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
412 	else
413 		buf->f_bavail = 0;
414 	buf->f_files = 0;
415 	buf->f_ffree = 0;
416 	buf->f_namelen = UBIFS_MAX_NLEN;
417 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
418 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
419 	ubifs_assert(buf->f_bfree <= c->block_cnt);
420 	return 0;
421 }
422 
423 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
424 {
425 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
426 
427 	if (c->mount_opts.unmount_mode == 2)
428 		seq_printf(s, ",fast_unmount");
429 	else if (c->mount_opts.unmount_mode == 1)
430 		seq_printf(s, ",norm_unmount");
431 
432 	if (c->mount_opts.bulk_read == 2)
433 		seq_printf(s, ",bulk_read");
434 	else if (c->mount_opts.bulk_read == 1)
435 		seq_printf(s, ",no_bulk_read");
436 
437 	if (c->mount_opts.chk_data_crc == 2)
438 		seq_printf(s, ",chk_data_crc");
439 	else if (c->mount_opts.chk_data_crc == 1)
440 		seq_printf(s, ",no_chk_data_crc");
441 
442 	if (c->mount_opts.override_compr) {
443 		seq_printf(s, ",compr=%s",
444 			   ubifs_compr_name(c->mount_opts.compr_type));
445 	}
446 
447 	return 0;
448 }
449 
450 static int ubifs_sync_fs(struct super_block *sb, int wait)
451 {
452 	int i, err;
453 	struct ubifs_info *c = sb->s_fs_info;
454 
455 	/*
456 	 * Zero @wait is just an advisory thing to help the file system shove
457 	 * lots of data into the queues, and there will be the second
458 	 * '->sync_fs()' call, with non-zero @wait.
459 	 */
460 	if (!wait)
461 		return 0;
462 
463 	/*
464 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
465 	 * do this if it waits for an already running commit.
466 	 */
467 	for (i = 0; i < c->jhead_cnt; i++) {
468 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
469 		if (err)
470 			return err;
471 	}
472 
473 	/*
474 	 * Strictly speaking, it is not necessary to commit the journal here,
475 	 * synchronizing write-buffers would be enough. But committing makes
476 	 * UBIFS free space predictions much more accurate, so we want to let
477 	 * the user be able to get more accurate results of 'statfs()' after
478 	 * they synchronize the file system.
479 	 */
480 	err = ubifs_run_commit(c);
481 	if (err)
482 		return err;
483 
484 	return ubi_sync(c->vi.ubi_num);
485 }
486 
487 /**
488  * init_constants_early - initialize UBIFS constants.
489  * @c: UBIFS file-system description object
490  *
491  * This function initialize UBIFS constants which do not need the superblock to
492  * be read. It also checks that the UBI volume satisfies basic UBIFS
493  * requirements. Returns zero in case of success and a negative error code in
494  * case of failure.
495  */
496 static int init_constants_early(struct ubifs_info *c)
497 {
498 	if (c->vi.corrupted) {
499 		ubifs_warn("UBI volume is corrupted - read-only mode");
500 		c->ro_media = 1;
501 	}
502 
503 	if (c->di.ro_mode) {
504 		ubifs_msg("read-only UBI device");
505 		c->ro_media = 1;
506 	}
507 
508 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
509 		ubifs_msg("static UBI volume - read-only mode");
510 		c->ro_media = 1;
511 	}
512 
513 	c->leb_cnt = c->vi.size;
514 	c->leb_size = c->vi.usable_leb_size;
515 	c->half_leb_size = c->leb_size / 2;
516 	c->min_io_size = c->di.min_io_size;
517 	c->min_io_shift = fls(c->min_io_size) - 1;
518 
519 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
520 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
521 			  c->leb_size, UBIFS_MIN_LEB_SZ);
522 		return -EINVAL;
523 	}
524 
525 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
526 		ubifs_err("too few LEBs (%d), min. is %d",
527 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
528 		return -EINVAL;
529 	}
530 
531 	if (!is_power_of_2(c->min_io_size)) {
532 		ubifs_err("bad min. I/O size %d", c->min_io_size);
533 		return -EINVAL;
534 	}
535 
536 	/*
537 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
538 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
539 	 * less than 8.
540 	 */
541 	if (c->min_io_size < 8) {
542 		c->min_io_size = 8;
543 		c->min_io_shift = 3;
544 	}
545 
546 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
547 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
548 
549 	/*
550 	 * Initialize node length ranges which are mostly needed for node
551 	 * length validation.
552 	 */
553 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
554 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
555 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
556 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
557 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
558 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
559 
560 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
561 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
562 	c->ranges[UBIFS_ORPH_NODE].min_len =
563 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
564 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
565 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
566 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
567 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
568 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
569 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
570 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
571 	/*
572 	 * Minimum indexing node size is amended later when superblock is
573 	 * read and the key length is known.
574 	 */
575 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
576 	/*
577 	 * Maximum indexing node size is amended later when superblock is
578 	 * read and the fanout is known.
579 	 */
580 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
581 
582 	/*
583 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
584 	 * about these values.
585 	 */
586 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
587 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
588 
589 	/*
590 	 * Calculate how many bytes would be wasted at the end of LEB if it was
591 	 * fully filled with data nodes of maximum size. This is used in
592 	 * calculations when reporting free space.
593 	 */
594 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
595 
596 	/* Buffer size for bulk-reads */
597 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
598 	if (c->max_bu_buf_len > c->leb_size)
599 		c->max_bu_buf_len = c->leb_size;
600 	return 0;
601 }
602 
603 /**
604  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
605  * @c: UBIFS file-system description object
606  * @lnum: LEB the write-buffer was synchronized to
607  * @free: how many free bytes left in this LEB
608  * @pad: how many bytes were padded
609  *
610  * This is a callback function which is called by the I/O unit when the
611  * write-buffer is synchronized. We need this to correctly maintain space
612  * accounting in bud logical eraseblocks. This function returns zero in case of
613  * success and a negative error code in case of failure.
614  *
615  * This function actually belongs to the journal, but we keep it here because
616  * we want to keep it static.
617  */
618 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
619 {
620 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
621 }
622 
623 /*
624  * init_constants_sb - initialize UBIFS constants.
625  * @c: UBIFS file-system description object
626  *
627  * This is a helper function which initializes various UBIFS constants after
628  * the superblock has been read. It also checks various UBIFS parameters and
629  * makes sure they are all right. Returns zero in case of success and a
630  * negative error code in case of failure.
631  */
632 static int init_constants_sb(struct ubifs_info *c)
633 {
634 	int tmp, err;
635 	long long tmp64;
636 
637 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
638 	c->max_znode_sz = sizeof(struct ubifs_znode) +
639 				c->fanout * sizeof(struct ubifs_zbranch);
640 
641 	tmp = ubifs_idx_node_sz(c, 1);
642 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
643 	c->min_idx_node_sz = ALIGN(tmp, 8);
644 
645 	tmp = ubifs_idx_node_sz(c, c->fanout);
646 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
647 	c->max_idx_node_sz = ALIGN(tmp, 8);
648 
649 	/* Make sure LEB size is large enough to fit full commit */
650 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
651 	tmp = ALIGN(tmp, c->min_io_size);
652 	if (tmp > c->leb_size) {
653 		dbg_err("too small LEB size %d, at least %d needed",
654 			c->leb_size, tmp);
655 		return -EINVAL;
656 	}
657 
658 	/*
659 	 * Make sure that the log is large enough to fit reference nodes for
660 	 * all buds plus one reserved LEB.
661 	 */
662 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
663 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
664 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
665 	tmp /= c->leb_size;
666 	tmp += 1;
667 	if (c->log_lebs < tmp) {
668 		dbg_err("too small log %d LEBs, required min. %d LEBs",
669 			c->log_lebs, tmp);
670 		return -EINVAL;
671 	}
672 
673 	/*
674 	 * When budgeting we assume worst-case scenarios when the pages are not
675 	 * be compressed and direntries are of the maximum size.
676 	 *
677 	 * Note, data, which may be stored in inodes is budgeted separately, so
678 	 * it is not included into 'c->inode_budget'.
679 	 */
680 	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
681 	c->inode_budget = UBIFS_INO_NODE_SZ;
682 	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
683 
684 	/*
685 	 * When the amount of flash space used by buds becomes
686 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
687 	 * The writers are unblocked when the commit is finished. To avoid
688 	 * writers to be blocked UBIFS initiates background commit in advance,
689 	 * when number of bud bytes becomes above the limit defined below.
690 	 */
691 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
692 
693 	/*
694 	 * Ensure minimum journal size. All the bytes in the journal heads are
695 	 * considered to be used, when calculating the current journal usage.
696 	 * Consequently, if the journal is too small, UBIFS will treat it as
697 	 * always full.
698 	 */
699 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
700 	if (c->bg_bud_bytes < tmp64)
701 		c->bg_bud_bytes = tmp64;
702 	if (c->max_bud_bytes < tmp64 + c->leb_size)
703 		c->max_bud_bytes = tmp64 + c->leb_size;
704 
705 	err = ubifs_calc_lpt_geom(c);
706 	if (err)
707 		return err;
708 
709 	/* Initialize effective LEB size used in budgeting calculations */
710 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
711 	return 0;
712 }
713 
714 /*
715  * init_constants_master - initialize UBIFS constants.
716  * @c: UBIFS file-system description object
717  *
718  * This is a helper function which initializes various UBIFS constants after
719  * the master node has been read. It also checks various UBIFS parameters and
720  * makes sure they are all right.
721  */
722 static void init_constants_master(struct ubifs_info *c)
723 {
724 	long long tmp64;
725 
726 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
727 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
728 
729 	/*
730 	 * Calculate total amount of FS blocks. This number is not used
731 	 * internally because it does not make much sense for UBIFS, but it is
732 	 * necessary to report something for the 'statfs()' call.
733 	 *
734 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
735 	 * deletions, minimum LEBs for the index, and assume only one journal
736 	 * head is available.
737 	 */
738 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
739 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
740 	tmp64 = ubifs_reported_space(c, tmp64);
741 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
742 }
743 
744 /**
745  * take_gc_lnum - reserve GC LEB.
746  * @c: UBIFS file-system description object
747  *
748  * This function ensures that the LEB reserved for garbage collection is marked
749  * as "taken" in lprops. We also have to set free space to LEB size and dirty
750  * space to zero, because lprops may contain out-of-date information if the
751  * file-system was un-mounted before it has been committed. This function
752  * returns zero in case of success and a negative error code in case of
753  * failure.
754  */
755 static int take_gc_lnum(struct ubifs_info *c)
756 {
757 	int err;
758 
759 	if (c->gc_lnum == -1) {
760 		ubifs_err("no LEB for GC");
761 		return -EINVAL;
762 	}
763 
764 	/* And we have to tell lprops that this LEB is taken */
765 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
766 				  LPROPS_TAKEN, 0, 0);
767 	return err;
768 }
769 
770 /**
771  * alloc_wbufs - allocate write-buffers.
772  * @c: UBIFS file-system description object
773  *
774  * This helper function allocates and initializes UBIFS write-buffers. Returns
775  * zero in case of success and %-ENOMEM in case of failure.
776  */
777 static int alloc_wbufs(struct ubifs_info *c)
778 {
779 	int i, err;
780 
781 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
782 			   GFP_KERNEL);
783 	if (!c->jheads)
784 		return -ENOMEM;
785 
786 	/* Initialize journal heads */
787 	for (i = 0; i < c->jhead_cnt; i++) {
788 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
789 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
790 		if (err)
791 			return err;
792 
793 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
794 		c->jheads[i].wbuf.jhead = i;
795 	}
796 
797 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
798 	/*
799 	 * Garbage Collector head likely contains long-term data and
800 	 * does not need to be synchronized by timer.
801 	 */
802 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
803 	c->jheads[GCHD].wbuf.no_timer = 1;
804 
805 	return 0;
806 }
807 
808 /**
809  * free_wbufs - free write-buffers.
810  * @c: UBIFS file-system description object
811  */
812 static void free_wbufs(struct ubifs_info *c)
813 {
814 	int i;
815 
816 	if (c->jheads) {
817 		for (i = 0; i < c->jhead_cnt; i++) {
818 			kfree(c->jheads[i].wbuf.buf);
819 			kfree(c->jheads[i].wbuf.inodes);
820 		}
821 		kfree(c->jheads);
822 		c->jheads = NULL;
823 	}
824 }
825 
826 /**
827  * free_orphans - free orphans.
828  * @c: UBIFS file-system description object
829  */
830 static void free_orphans(struct ubifs_info *c)
831 {
832 	struct ubifs_orphan *orph;
833 
834 	while (c->orph_dnext) {
835 		orph = c->orph_dnext;
836 		c->orph_dnext = orph->dnext;
837 		list_del(&orph->list);
838 		kfree(orph);
839 	}
840 
841 	while (!list_empty(&c->orph_list)) {
842 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
843 		list_del(&orph->list);
844 		kfree(orph);
845 		dbg_err("orphan list not empty at unmount");
846 	}
847 
848 	vfree(c->orph_buf);
849 	c->orph_buf = NULL;
850 }
851 
852 /**
853  * free_buds - free per-bud objects.
854  * @c: UBIFS file-system description object
855  */
856 static void free_buds(struct ubifs_info *c)
857 {
858 	struct rb_node *this = c->buds.rb_node;
859 	struct ubifs_bud *bud;
860 
861 	while (this) {
862 		if (this->rb_left)
863 			this = this->rb_left;
864 		else if (this->rb_right)
865 			this = this->rb_right;
866 		else {
867 			bud = rb_entry(this, struct ubifs_bud, rb);
868 			this = rb_parent(this);
869 			if (this) {
870 				if (this->rb_left == &bud->rb)
871 					this->rb_left = NULL;
872 				else
873 					this->rb_right = NULL;
874 			}
875 			kfree(bud);
876 		}
877 	}
878 }
879 
880 /**
881  * check_volume_empty - check if the UBI volume is empty.
882  * @c: UBIFS file-system description object
883  *
884  * This function checks if the UBIFS volume is empty by looking if its LEBs are
885  * mapped or not. The result of checking is stored in the @c->empty variable.
886  * Returns zero in case of success and a negative error code in case of
887  * failure.
888  */
889 static int check_volume_empty(struct ubifs_info *c)
890 {
891 	int lnum, err;
892 
893 	c->empty = 1;
894 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
895 		err = ubi_is_mapped(c->ubi, lnum);
896 		if (unlikely(err < 0))
897 			return err;
898 		if (err == 1) {
899 			c->empty = 0;
900 			break;
901 		}
902 
903 		cond_resched();
904 	}
905 
906 	return 0;
907 }
908 
909 /*
910  * UBIFS mount options.
911  *
912  * Opt_fast_unmount: do not run a journal commit before un-mounting
913  * Opt_norm_unmount: run a journal commit before un-mounting
914  * Opt_bulk_read: enable bulk-reads
915  * Opt_no_bulk_read: disable bulk-reads
916  * Opt_chk_data_crc: check CRCs when reading data nodes
917  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
918  * Opt_override_compr: override default compressor
919  * Opt_err: just end of array marker
920  */
921 enum {
922 	Opt_fast_unmount,
923 	Opt_norm_unmount,
924 	Opt_bulk_read,
925 	Opt_no_bulk_read,
926 	Opt_chk_data_crc,
927 	Opt_no_chk_data_crc,
928 	Opt_override_compr,
929 	Opt_err,
930 };
931 
932 static const match_table_t tokens = {
933 	{Opt_fast_unmount, "fast_unmount"},
934 	{Opt_norm_unmount, "norm_unmount"},
935 	{Opt_bulk_read, "bulk_read"},
936 	{Opt_no_bulk_read, "no_bulk_read"},
937 	{Opt_chk_data_crc, "chk_data_crc"},
938 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
939 	{Opt_override_compr, "compr=%s"},
940 	{Opt_err, NULL},
941 };
942 
943 /**
944  * parse_standard_option - parse a standard mount option.
945  * @option: the option to parse
946  *
947  * Normally, standard mount options like "sync" are passed to file-systems as
948  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
949  * be present in the options string. This function tries to deal with this
950  * situation and parse standard options. Returns 0 if the option was not
951  * recognized, and the corresponding integer flag if it was.
952  *
953  * UBIFS is only interested in the "sync" option, so do not check for anything
954  * else.
955  */
956 static int parse_standard_option(const char *option)
957 {
958 	ubifs_msg("parse %s", option);
959 	if (!strcmp(option, "sync"))
960 		return MS_SYNCHRONOUS;
961 	return 0;
962 }
963 
964 /**
965  * ubifs_parse_options - parse mount parameters.
966  * @c: UBIFS file-system description object
967  * @options: parameters to parse
968  * @is_remount: non-zero if this is FS re-mount
969  *
970  * This function parses UBIFS mount options and returns zero in case success
971  * and a negative error code in case of failure.
972  */
973 static int ubifs_parse_options(struct ubifs_info *c, char *options,
974 			       int is_remount)
975 {
976 	char *p;
977 	substring_t args[MAX_OPT_ARGS];
978 
979 	if (!options)
980 		return 0;
981 
982 	while ((p = strsep(&options, ","))) {
983 		int token;
984 
985 		if (!*p)
986 			continue;
987 
988 		token = match_token(p, tokens, args);
989 		switch (token) {
990 		/*
991 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
992 		 * We accept them in order to be backward-compatible. But this
993 		 * should be removed at some point.
994 		 */
995 		case Opt_fast_unmount:
996 			c->mount_opts.unmount_mode = 2;
997 			break;
998 		case Opt_norm_unmount:
999 			c->mount_opts.unmount_mode = 1;
1000 			break;
1001 		case Opt_bulk_read:
1002 			c->mount_opts.bulk_read = 2;
1003 			c->bulk_read = 1;
1004 			break;
1005 		case Opt_no_bulk_read:
1006 			c->mount_opts.bulk_read = 1;
1007 			c->bulk_read = 0;
1008 			break;
1009 		case Opt_chk_data_crc:
1010 			c->mount_opts.chk_data_crc = 2;
1011 			c->no_chk_data_crc = 0;
1012 			break;
1013 		case Opt_no_chk_data_crc:
1014 			c->mount_opts.chk_data_crc = 1;
1015 			c->no_chk_data_crc = 1;
1016 			break;
1017 		case Opt_override_compr:
1018 		{
1019 			char *name = match_strdup(&args[0]);
1020 
1021 			if (!name)
1022 				return -ENOMEM;
1023 			if (!strcmp(name, "none"))
1024 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1025 			else if (!strcmp(name, "lzo"))
1026 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1027 			else if (!strcmp(name, "zlib"))
1028 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1029 			else {
1030 				ubifs_err("unknown compressor \"%s\"", name);
1031 				kfree(name);
1032 				return -EINVAL;
1033 			}
1034 			kfree(name);
1035 			c->mount_opts.override_compr = 1;
1036 			c->default_compr = c->mount_opts.compr_type;
1037 			break;
1038 		}
1039 		default:
1040 		{
1041 			unsigned long flag;
1042 			struct super_block *sb = c->vfs_sb;
1043 
1044 			flag = parse_standard_option(p);
1045 			if (!flag) {
1046 				ubifs_err("unrecognized mount option \"%s\" "
1047 					  "or missing value", p);
1048 				return -EINVAL;
1049 			}
1050 			sb->s_flags |= flag;
1051 			break;
1052 		}
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 /**
1060  * destroy_journal - destroy journal data structures.
1061  * @c: UBIFS file-system description object
1062  *
1063  * This function destroys journal data structures including those that may have
1064  * been created by recovery functions.
1065  */
1066 static void destroy_journal(struct ubifs_info *c)
1067 {
1068 	while (!list_empty(&c->unclean_leb_list)) {
1069 		struct ubifs_unclean_leb *ucleb;
1070 
1071 		ucleb = list_entry(c->unclean_leb_list.next,
1072 				   struct ubifs_unclean_leb, list);
1073 		list_del(&ucleb->list);
1074 		kfree(ucleb);
1075 	}
1076 	while (!list_empty(&c->old_buds)) {
1077 		struct ubifs_bud *bud;
1078 
1079 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1080 		list_del(&bud->list);
1081 		kfree(bud);
1082 	}
1083 	ubifs_destroy_idx_gc(c);
1084 	ubifs_destroy_size_tree(c);
1085 	ubifs_tnc_close(c);
1086 	free_buds(c);
1087 }
1088 
1089 /**
1090  * bu_init - initialize bulk-read information.
1091  * @c: UBIFS file-system description object
1092  */
1093 static void bu_init(struct ubifs_info *c)
1094 {
1095 	ubifs_assert(c->bulk_read == 1);
1096 
1097 	if (c->bu.buf)
1098 		return; /* Already initialized */
1099 
1100 again:
1101 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1102 	if (!c->bu.buf) {
1103 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1104 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1105 			goto again;
1106 		}
1107 
1108 		/* Just disable bulk-read */
1109 		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1110 			   "disabling it", c->max_bu_buf_len);
1111 		c->mount_opts.bulk_read = 1;
1112 		c->bulk_read = 0;
1113 		return;
1114 	}
1115 }
1116 
1117 /**
1118  * check_free_space - check if there is enough free space to mount.
1119  * @c: UBIFS file-system description object
1120  *
1121  * This function makes sure UBIFS has enough free space to be mounted in
1122  * read/write mode. UBIFS must always have some free space to allow deletions.
1123  */
1124 static int check_free_space(struct ubifs_info *c)
1125 {
1126 	ubifs_assert(c->dark_wm > 0);
1127 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1128 		ubifs_err("insufficient free space to mount in read/write mode");
1129 		dbg_dump_budg(c);
1130 		dbg_dump_lprops(c);
1131 		return -ENOSPC;
1132 	}
1133 	return 0;
1134 }
1135 
1136 /**
1137  * mount_ubifs - mount UBIFS file-system.
1138  * @c: UBIFS file-system description object
1139  *
1140  * This function mounts UBIFS file system. Returns zero in case of success and
1141  * a negative error code in case of failure.
1142  *
1143  * Note, the function does not de-allocate resources it it fails half way
1144  * through, and the caller has to do this instead.
1145  */
1146 static int mount_ubifs(struct ubifs_info *c)
1147 {
1148 	int err;
1149 	long long x;
1150 	size_t sz;
1151 
1152 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1153 	err = init_constants_early(c);
1154 	if (err)
1155 		return err;
1156 
1157 	err = ubifs_debugging_init(c);
1158 	if (err)
1159 		return err;
1160 
1161 	err = check_volume_empty(c);
1162 	if (err)
1163 		goto out_free;
1164 
1165 	if (c->empty && (c->ro_mount || c->ro_media)) {
1166 		/*
1167 		 * This UBI volume is empty, and read-only, or the file system
1168 		 * is mounted read-only - we cannot format it.
1169 		 */
1170 		ubifs_err("can't format empty UBI volume: read-only %s",
1171 			  c->ro_media ? "UBI volume" : "mount");
1172 		err = -EROFS;
1173 		goto out_free;
1174 	}
1175 
1176 	if (c->ro_media && !c->ro_mount) {
1177 		ubifs_err("cannot mount read-write - read-only media");
1178 		err = -EROFS;
1179 		goto out_free;
1180 	}
1181 
1182 	/*
1183 	 * The requirement for the buffer is that it should fit indexing B-tree
1184 	 * height amount of integers. We assume the height if the TNC tree will
1185 	 * never exceed 64.
1186 	 */
1187 	err = -ENOMEM;
1188 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1189 	if (!c->bottom_up_buf)
1190 		goto out_free;
1191 
1192 	c->sbuf = vmalloc(c->leb_size);
1193 	if (!c->sbuf)
1194 		goto out_free;
1195 
1196 	if (!c->ro_mount) {
1197 		c->ileb_buf = vmalloc(c->leb_size);
1198 		if (!c->ileb_buf)
1199 			goto out_free;
1200 	}
1201 
1202 	if (c->bulk_read == 1)
1203 		bu_init(c);
1204 
1205 	/*
1206 	 * We have to check all CRCs, even for data nodes, when we mount the FS
1207 	 * (specifically, when we are replaying).
1208 	 */
1209 	c->always_chk_crc = 1;
1210 
1211 	err = ubifs_read_superblock(c);
1212 	if (err)
1213 		goto out_free;
1214 
1215 	/*
1216 	 * Make sure the compressor which is set as default in the superblock
1217 	 * or overridden by mount options is actually compiled in.
1218 	 */
1219 	if (!ubifs_compr_present(c->default_compr)) {
1220 		ubifs_err("'compressor \"%s\" is not compiled in",
1221 			  ubifs_compr_name(c->default_compr));
1222 		err = -ENOTSUPP;
1223 		goto out_free;
1224 	}
1225 
1226 	err = init_constants_sb(c);
1227 	if (err)
1228 		goto out_free;
1229 
1230 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1231 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1232 	c->cbuf = kmalloc(sz, GFP_NOFS);
1233 	if (!c->cbuf) {
1234 		err = -ENOMEM;
1235 		goto out_free;
1236 	}
1237 
1238 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1239 	if (!c->ro_mount) {
1240 		err = alloc_wbufs(c);
1241 		if (err)
1242 			goto out_cbuf;
1243 
1244 		/* Create background thread */
1245 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1246 		if (IS_ERR(c->bgt)) {
1247 			err = PTR_ERR(c->bgt);
1248 			c->bgt = NULL;
1249 			ubifs_err("cannot spawn \"%s\", error %d",
1250 				  c->bgt_name, err);
1251 			goto out_wbufs;
1252 		}
1253 		wake_up_process(c->bgt);
1254 	}
1255 
1256 	err = ubifs_read_master(c);
1257 	if (err)
1258 		goto out_master;
1259 
1260 	init_constants_master(c);
1261 
1262 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1263 		ubifs_msg("recovery needed");
1264 		c->need_recovery = 1;
1265 		if (!c->ro_mount) {
1266 			err = ubifs_recover_inl_heads(c, c->sbuf);
1267 			if (err)
1268 				goto out_master;
1269 		}
1270 	} else if (!c->ro_mount) {
1271 		/*
1272 		 * Set the "dirty" flag so that if we reboot uncleanly we
1273 		 * will notice this immediately on the next mount.
1274 		 */
1275 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1276 		err = ubifs_write_master(c);
1277 		if (err)
1278 			goto out_master;
1279 	}
1280 
1281 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1282 	if (err)
1283 		goto out_lpt;
1284 
1285 	err = dbg_check_idx_size(c, c->old_idx_sz);
1286 	if (err)
1287 		goto out_lpt;
1288 
1289 	err = ubifs_replay_journal(c);
1290 	if (err)
1291 		goto out_journal;
1292 
1293 	/* Calculate 'min_idx_lebs' after journal replay */
1294 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1295 
1296 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1297 	if (err)
1298 		goto out_orphans;
1299 
1300 	if (!c->ro_mount) {
1301 		int lnum;
1302 
1303 		err = check_free_space(c);
1304 		if (err)
1305 			goto out_orphans;
1306 
1307 		/* Check for enough log space */
1308 		lnum = c->lhead_lnum + 1;
1309 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1310 			lnum = UBIFS_LOG_LNUM;
1311 		if (lnum == c->ltail_lnum) {
1312 			err = ubifs_consolidate_log(c);
1313 			if (err)
1314 				goto out_orphans;
1315 		}
1316 
1317 		if (c->need_recovery) {
1318 			err = ubifs_recover_size(c);
1319 			if (err)
1320 				goto out_orphans;
1321 			err = ubifs_rcvry_gc_commit(c);
1322 			if (err)
1323 				goto out_orphans;
1324 		} else {
1325 			err = take_gc_lnum(c);
1326 			if (err)
1327 				goto out_orphans;
1328 
1329 			/*
1330 			 * GC LEB may contain garbage if there was an unclean
1331 			 * reboot, and it should be un-mapped.
1332 			 */
1333 			err = ubifs_leb_unmap(c, c->gc_lnum);
1334 			if (err)
1335 				goto out_orphans;
1336 		}
1337 
1338 		err = dbg_check_lprops(c);
1339 		if (err)
1340 			goto out_orphans;
1341 	} else if (c->need_recovery) {
1342 		err = ubifs_recover_size(c);
1343 		if (err)
1344 			goto out_orphans;
1345 	} else {
1346 		/*
1347 		 * Even if we mount read-only, we have to set space in GC LEB
1348 		 * to proper value because this affects UBIFS free space
1349 		 * reporting. We do not want to have a situation when
1350 		 * re-mounting from R/O to R/W changes amount of free space.
1351 		 */
1352 		err = take_gc_lnum(c);
1353 		if (err)
1354 			goto out_orphans;
1355 	}
1356 
1357 	spin_lock(&ubifs_infos_lock);
1358 	list_add_tail(&c->infos_list, &ubifs_infos);
1359 	spin_unlock(&ubifs_infos_lock);
1360 
1361 	if (c->need_recovery) {
1362 		if (c->ro_mount)
1363 			ubifs_msg("recovery deferred");
1364 		else {
1365 			c->need_recovery = 0;
1366 			ubifs_msg("recovery completed");
1367 			/*
1368 			 * GC LEB has to be empty and taken at this point. But
1369 			 * the journal head LEBs may also be accounted as
1370 			 * "empty taken" if they are empty.
1371 			 */
1372 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1373 		}
1374 	} else
1375 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1376 
1377 	err = dbg_check_filesystem(c);
1378 	if (err)
1379 		goto out_infos;
1380 
1381 	err = dbg_debugfs_init_fs(c);
1382 	if (err)
1383 		goto out_infos;
1384 
1385 	c->always_chk_crc = 0;
1386 
1387 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1388 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1389 	if (c->ro_mount)
1390 		ubifs_msg("mounted read-only");
1391 	x = (long long)c->main_lebs * c->leb_size;
1392 	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1393 		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1394 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1395 	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1396 		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1397 	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1398 		  c->fmt_version, c->ro_compat_version,
1399 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1400 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1401 	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1402 		c->report_rp_size, c->report_rp_size >> 10);
1403 
1404 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1405 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1406 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1407 		c->leb_size, c->leb_size >> 10);
1408 	dbg_msg("data journal heads:  %d",
1409 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1410 	dbg_msg("UUID:                %pUB", c->uuid);
1411 	dbg_msg("big_lpt              %d", c->big_lpt);
1412 	dbg_msg("log LEBs:            %d (%d - %d)",
1413 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1414 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1415 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1416 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1417 		c->orph_lebs, c->orph_first, c->orph_last);
1418 	dbg_msg("main area LEBs:      %d (%d - %d)",
1419 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1420 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1421 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1422 		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1423 	dbg_msg("key hash type:       %d", c->key_hash_type);
1424 	dbg_msg("tree fanout:         %d", c->fanout);
1425 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1426 	dbg_msg("first main LEB:      %d", c->main_first);
1427 	dbg_msg("max. znode size      %d", c->max_znode_sz);
1428 	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1429 	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1430 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1431 	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1432 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1433 	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1434 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1435 	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu",
1436 	        UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1437 		UBIFS_MAX_DENT_NODE_SZ);
1438 	dbg_msg("dead watermark:      %d", c->dead_wm);
1439 	dbg_msg("dark watermark:      %d", c->dark_wm);
1440 	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1441 	x = (long long)c->main_lebs * c->dark_wm;
1442 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1443 		x, x >> 10, x >> 20);
1444 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1445 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1446 		c->max_bud_bytes >> 20);
1447 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1448 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1449 		c->bg_bud_bytes >> 20);
1450 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1451 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1452 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1453 	dbg_msg("commit number:       %llu", c->cmt_no);
1454 
1455 	return 0;
1456 
1457 out_infos:
1458 	spin_lock(&ubifs_infos_lock);
1459 	list_del(&c->infos_list);
1460 	spin_unlock(&ubifs_infos_lock);
1461 out_orphans:
1462 	free_orphans(c);
1463 out_journal:
1464 	destroy_journal(c);
1465 out_lpt:
1466 	ubifs_lpt_free(c, 0);
1467 out_master:
1468 	kfree(c->mst_node);
1469 	kfree(c->rcvrd_mst_node);
1470 	if (c->bgt)
1471 		kthread_stop(c->bgt);
1472 out_wbufs:
1473 	free_wbufs(c);
1474 out_cbuf:
1475 	kfree(c->cbuf);
1476 out_free:
1477 	kfree(c->bu.buf);
1478 	vfree(c->ileb_buf);
1479 	vfree(c->sbuf);
1480 	kfree(c->bottom_up_buf);
1481 	ubifs_debugging_exit(c);
1482 	return err;
1483 }
1484 
1485 /**
1486  * ubifs_umount - un-mount UBIFS file-system.
1487  * @c: UBIFS file-system description object
1488  *
1489  * Note, this function is called to free allocated resourced when un-mounting,
1490  * as well as free resources when an error occurred while we were half way
1491  * through mounting (error path cleanup function). So it has to make sure the
1492  * resource was actually allocated before freeing it.
1493  */
1494 static void ubifs_umount(struct ubifs_info *c)
1495 {
1496 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1497 		c->vi.vol_id);
1498 
1499 	dbg_debugfs_exit_fs(c);
1500 	spin_lock(&ubifs_infos_lock);
1501 	list_del(&c->infos_list);
1502 	spin_unlock(&ubifs_infos_lock);
1503 
1504 	if (c->bgt)
1505 		kthread_stop(c->bgt);
1506 
1507 	destroy_journal(c);
1508 	free_wbufs(c);
1509 	free_orphans(c);
1510 	ubifs_lpt_free(c, 0);
1511 
1512 	kfree(c->cbuf);
1513 	kfree(c->rcvrd_mst_node);
1514 	kfree(c->mst_node);
1515 	kfree(c->bu.buf);
1516 	vfree(c->ileb_buf);
1517 	vfree(c->sbuf);
1518 	kfree(c->bottom_up_buf);
1519 	ubifs_debugging_exit(c);
1520 }
1521 
1522 /**
1523  * ubifs_remount_rw - re-mount in read-write mode.
1524  * @c: UBIFS file-system description object
1525  *
1526  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1527  * mode. This function allocates the needed resources and re-mounts UBIFS in
1528  * read-write mode.
1529  */
1530 static int ubifs_remount_rw(struct ubifs_info *c)
1531 {
1532 	int err, lnum;
1533 
1534 	if (c->rw_incompat) {
1535 		ubifs_err("the file-system is not R/W-compatible");
1536 		ubifs_msg("on-flash format version is w%d/r%d, but software "
1537 			  "only supports up to version w%d/r%d", c->fmt_version,
1538 			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1539 			  UBIFS_RO_COMPAT_VERSION);
1540 		return -EROFS;
1541 	}
1542 
1543 	mutex_lock(&c->umount_mutex);
1544 	dbg_save_space_info(c);
1545 	c->remounting_rw = 1;
1546 	c->always_chk_crc = 1;
1547 
1548 	err = check_free_space(c);
1549 	if (err)
1550 		goto out;
1551 
1552 	if (c->old_leb_cnt != c->leb_cnt) {
1553 		struct ubifs_sb_node *sup;
1554 
1555 		sup = ubifs_read_sb_node(c);
1556 		if (IS_ERR(sup)) {
1557 			err = PTR_ERR(sup);
1558 			goto out;
1559 		}
1560 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1561 		err = ubifs_write_sb_node(c, sup);
1562 		if (err)
1563 			goto out;
1564 	}
1565 
1566 	if (c->need_recovery) {
1567 		ubifs_msg("completing deferred recovery");
1568 		err = ubifs_write_rcvrd_mst_node(c);
1569 		if (err)
1570 			goto out;
1571 		err = ubifs_recover_size(c);
1572 		if (err)
1573 			goto out;
1574 		err = ubifs_clean_lebs(c, c->sbuf);
1575 		if (err)
1576 			goto out;
1577 		err = ubifs_recover_inl_heads(c, c->sbuf);
1578 		if (err)
1579 			goto out;
1580 	} else {
1581 		/* A readonly mount is not allowed to have orphans */
1582 		ubifs_assert(c->tot_orphans == 0);
1583 		err = ubifs_clear_orphans(c);
1584 		if (err)
1585 			goto out;
1586 	}
1587 
1588 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1589 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1590 		err = ubifs_write_master(c);
1591 		if (err)
1592 			goto out;
1593 	}
1594 
1595 	c->ileb_buf = vmalloc(c->leb_size);
1596 	if (!c->ileb_buf) {
1597 		err = -ENOMEM;
1598 		goto out;
1599 	}
1600 
1601 	err = ubifs_lpt_init(c, 0, 1);
1602 	if (err)
1603 		goto out;
1604 
1605 	err = alloc_wbufs(c);
1606 	if (err)
1607 		goto out;
1608 
1609 	ubifs_create_buds_lists(c);
1610 
1611 	/* Create background thread */
1612 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1613 	if (IS_ERR(c->bgt)) {
1614 		err = PTR_ERR(c->bgt);
1615 		c->bgt = NULL;
1616 		ubifs_err("cannot spawn \"%s\", error %d",
1617 			  c->bgt_name, err);
1618 		goto out;
1619 	}
1620 	wake_up_process(c->bgt);
1621 
1622 	c->orph_buf = vmalloc(c->leb_size);
1623 	if (!c->orph_buf) {
1624 		err = -ENOMEM;
1625 		goto out;
1626 	}
1627 
1628 	/* Check for enough log space */
1629 	lnum = c->lhead_lnum + 1;
1630 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1631 		lnum = UBIFS_LOG_LNUM;
1632 	if (lnum == c->ltail_lnum) {
1633 		err = ubifs_consolidate_log(c);
1634 		if (err)
1635 			goto out;
1636 	}
1637 
1638 	if (c->need_recovery)
1639 		err = ubifs_rcvry_gc_commit(c);
1640 	else
1641 		err = ubifs_leb_unmap(c, c->gc_lnum);
1642 	if (err)
1643 		goto out;
1644 
1645 	if (c->need_recovery) {
1646 		c->need_recovery = 0;
1647 		ubifs_msg("deferred recovery completed");
1648 	}
1649 
1650 	dbg_gen("re-mounted read-write");
1651 	c->ro_mount = 0;
1652 	c->remounting_rw = 0;
1653 	c->always_chk_crc = 0;
1654 	err = dbg_check_space_info(c);
1655 	mutex_unlock(&c->umount_mutex);
1656 	return err;
1657 
1658 out:
1659 	vfree(c->orph_buf);
1660 	c->orph_buf = NULL;
1661 	if (c->bgt) {
1662 		kthread_stop(c->bgt);
1663 		c->bgt = NULL;
1664 	}
1665 	free_wbufs(c);
1666 	vfree(c->ileb_buf);
1667 	c->ileb_buf = NULL;
1668 	ubifs_lpt_free(c, 1);
1669 	c->remounting_rw = 0;
1670 	c->always_chk_crc = 0;
1671 	mutex_unlock(&c->umount_mutex);
1672 	return err;
1673 }
1674 
1675 /**
1676  * ubifs_remount_ro - re-mount in read-only mode.
1677  * @c: UBIFS file-system description object
1678  *
1679  * We assume VFS has stopped writing. Possibly the background thread could be
1680  * running a commit, however kthread_stop will wait in that case.
1681  */
1682 static void ubifs_remount_ro(struct ubifs_info *c)
1683 {
1684 	int i, err;
1685 
1686 	ubifs_assert(!c->need_recovery);
1687 	ubifs_assert(!c->ro_mount);
1688 
1689 	mutex_lock(&c->umount_mutex);
1690 	if (c->bgt) {
1691 		kthread_stop(c->bgt);
1692 		c->bgt = NULL;
1693 	}
1694 
1695 	dbg_save_space_info(c);
1696 
1697 	for (i = 0; i < c->jhead_cnt; i++)
1698 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1699 
1700 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1701 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1702 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1703 	err = ubifs_write_master(c);
1704 	if (err)
1705 		ubifs_ro_mode(c, err);
1706 
1707 	free_wbufs(c);
1708 	vfree(c->orph_buf);
1709 	c->orph_buf = NULL;
1710 	vfree(c->ileb_buf);
1711 	c->ileb_buf = NULL;
1712 	ubifs_lpt_free(c, 1);
1713 	c->ro_mount = 1;
1714 	err = dbg_check_space_info(c);
1715 	if (err)
1716 		ubifs_ro_mode(c, err);
1717 	mutex_unlock(&c->umount_mutex);
1718 }
1719 
1720 static void ubifs_put_super(struct super_block *sb)
1721 {
1722 	int i;
1723 	struct ubifs_info *c = sb->s_fs_info;
1724 
1725 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1726 		  c->vi.vol_id);
1727 
1728 	/*
1729 	 * The following asserts are only valid if there has not been a failure
1730 	 * of the media. For example, there will be dirty inodes if we failed
1731 	 * to write them back because of I/O errors.
1732 	 */
1733 	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1734 	ubifs_assert(c->budg_idx_growth == 0);
1735 	ubifs_assert(c->budg_dd_growth == 0);
1736 	ubifs_assert(c->budg_data_growth == 0);
1737 
1738 	/*
1739 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1740 	 * and file system un-mount. Namely, it prevents the shrinker from
1741 	 * picking this superblock for shrinking - it will be just skipped if
1742 	 * the mutex is locked.
1743 	 */
1744 	mutex_lock(&c->umount_mutex);
1745 	if (!c->ro_mount) {
1746 		/*
1747 		 * First of all kill the background thread to make sure it does
1748 		 * not interfere with un-mounting and freeing resources.
1749 		 */
1750 		if (c->bgt) {
1751 			kthread_stop(c->bgt);
1752 			c->bgt = NULL;
1753 		}
1754 
1755 		/*
1756 		 * On fatal errors c->ro_error is set to 1, in which case we do
1757 		 * not write the master node.
1758 		 */
1759 		if (!c->ro_error) {
1760 			int err;
1761 
1762 			/* Synchronize write-buffers */
1763 			for (i = 0; i < c->jhead_cnt; i++)
1764 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1765 
1766 			/*
1767 			 * We are being cleanly unmounted which means the
1768 			 * orphans were killed - indicate this in the master
1769 			 * node. Also save the reserved GC LEB number.
1770 			 */
1771 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1772 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1773 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1774 			err = ubifs_write_master(c);
1775 			if (err)
1776 				/*
1777 				 * Recovery will attempt to fix the master area
1778 				 * next mount, so we just print a message and
1779 				 * continue to unmount normally.
1780 				 */
1781 				ubifs_err("failed to write master node, "
1782 					  "error %d", err);
1783 		} else {
1784 			for (i = 0; i < c->jhead_cnt; i++)
1785 				/* Make sure write-buffer timers are canceled */
1786 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1787 		}
1788 	}
1789 
1790 	ubifs_umount(c);
1791 	bdi_destroy(&c->bdi);
1792 	ubi_close_volume(c->ubi);
1793 	mutex_unlock(&c->umount_mutex);
1794 	kfree(c);
1795 }
1796 
1797 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1798 {
1799 	int err;
1800 	struct ubifs_info *c = sb->s_fs_info;
1801 
1802 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1803 
1804 	err = ubifs_parse_options(c, data, 1);
1805 	if (err) {
1806 		ubifs_err("invalid or unknown remount parameter");
1807 		return err;
1808 	}
1809 
1810 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1811 		if (c->ro_error) {
1812 			ubifs_msg("cannot re-mount R/W due to prior errors");
1813 			return -EROFS;
1814 		}
1815 		if (c->ro_media) {
1816 			ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1817 			return -EROFS;
1818 		}
1819 		err = ubifs_remount_rw(c);
1820 		if (err)
1821 			return err;
1822 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1823 		if (c->ro_error) {
1824 			ubifs_msg("cannot re-mount R/O due to prior errors");
1825 			return -EROFS;
1826 		}
1827 		ubifs_remount_ro(c);
1828 	}
1829 
1830 	if (c->bulk_read == 1)
1831 		bu_init(c);
1832 	else {
1833 		dbg_gen("disable bulk-read");
1834 		kfree(c->bu.buf);
1835 		c->bu.buf = NULL;
1836 	}
1837 
1838 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1839 	return 0;
1840 }
1841 
1842 const struct super_operations ubifs_super_operations = {
1843 	.alloc_inode   = ubifs_alloc_inode,
1844 	.destroy_inode = ubifs_destroy_inode,
1845 	.put_super     = ubifs_put_super,
1846 	.write_inode   = ubifs_write_inode,
1847 	.evict_inode   = ubifs_evict_inode,
1848 	.statfs        = ubifs_statfs,
1849 	.dirty_inode   = ubifs_dirty_inode,
1850 	.remount_fs    = ubifs_remount_fs,
1851 	.show_options  = ubifs_show_options,
1852 	.sync_fs       = ubifs_sync_fs,
1853 };
1854 
1855 /**
1856  * open_ubi - parse UBI device name string and open the UBI device.
1857  * @name: UBI volume name
1858  * @mode: UBI volume open mode
1859  *
1860  * The primary method of mounting UBIFS is by specifying the UBI volume
1861  * character device node path. However, UBIFS may also be mounted withoug any
1862  * character device node using one of the following methods:
1863  *
1864  * o ubiX_Y    - mount UBI device number X, volume Y;
1865  * o ubiY      - mount UBI device number 0, volume Y;
1866  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1867  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1868  *
1869  * Alternative '!' separator may be used instead of ':' (because some shells
1870  * like busybox may interpret ':' as an NFS host name separator). This function
1871  * returns UBI volume description object in case of success and a negative
1872  * error code in case of failure.
1873  */
1874 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1875 {
1876 	struct ubi_volume_desc *ubi;
1877 	int dev, vol;
1878 	char *endptr;
1879 
1880 	/* First, try to open using the device node path method */
1881 	ubi = ubi_open_volume_path(name, mode);
1882 	if (!IS_ERR(ubi))
1883 		return ubi;
1884 
1885 	/* Try the "nodev" method */
1886 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1887 		return ERR_PTR(-EINVAL);
1888 
1889 	/* ubi:NAME method */
1890 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1891 		return ubi_open_volume_nm(0, name + 4, mode);
1892 
1893 	if (!isdigit(name[3]))
1894 		return ERR_PTR(-EINVAL);
1895 
1896 	dev = simple_strtoul(name + 3, &endptr, 0);
1897 
1898 	/* ubiY method */
1899 	if (*endptr == '\0')
1900 		return ubi_open_volume(0, dev, mode);
1901 
1902 	/* ubiX_Y method */
1903 	if (*endptr == '_' && isdigit(endptr[1])) {
1904 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1905 		if (*endptr != '\0')
1906 			return ERR_PTR(-EINVAL);
1907 		return ubi_open_volume(dev, vol, mode);
1908 	}
1909 
1910 	/* ubiX:NAME method */
1911 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1912 		return ubi_open_volume_nm(dev, ++endptr, mode);
1913 
1914 	return ERR_PTR(-EINVAL);
1915 }
1916 
1917 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1918 {
1919 	struct ubi_volume_desc *ubi = sb->s_fs_info;
1920 	struct ubifs_info *c;
1921 	struct inode *root;
1922 	int err;
1923 
1924 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1925 	if (!c)
1926 		return -ENOMEM;
1927 
1928 	spin_lock_init(&c->cnt_lock);
1929 	spin_lock_init(&c->cs_lock);
1930 	spin_lock_init(&c->buds_lock);
1931 	spin_lock_init(&c->space_lock);
1932 	spin_lock_init(&c->orphan_lock);
1933 	init_rwsem(&c->commit_sem);
1934 	mutex_init(&c->lp_mutex);
1935 	mutex_init(&c->tnc_mutex);
1936 	mutex_init(&c->log_mutex);
1937 	mutex_init(&c->mst_mutex);
1938 	mutex_init(&c->umount_mutex);
1939 	mutex_init(&c->bu_mutex);
1940 	init_waitqueue_head(&c->cmt_wq);
1941 	c->buds = RB_ROOT;
1942 	c->old_idx = RB_ROOT;
1943 	c->size_tree = RB_ROOT;
1944 	c->orph_tree = RB_ROOT;
1945 	INIT_LIST_HEAD(&c->infos_list);
1946 	INIT_LIST_HEAD(&c->idx_gc);
1947 	INIT_LIST_HEAD(&c->replay_list);
1948 	INIT_LIST_HEAD(&c->replay_buds);
1949 	INIT_LIST_HEAD(&c->uncat_list);
1950 	INIT_LIST_HEAD(&c->empty_list);
1951 	INIT_LIST_HEAD(&c->freeable_list);
1952 	INIT_LIST_HEAD(&c->frdi_idx_list);
1953 	INIT_LIST_HEAD(&c->unclean_leb_list);
1954 	INIT_LIST_HEAD(&c->old_buds);
1955 	INIT_LIST_HEAD(&c->orph_list);
1956 	INIT_LIST_HEAD(&c->orph_new);
1957 
1958 	c->vfs_sb = sb;
1959 	c->highest_inum = UBIFS_FIRST_INO;
1960 	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1961 
1962 	ubi_get_volume_info(ubi, &c->vi);
1963 	ubi_get_device_info(c->vi.ubi_num, &c->di);
1964 
1965 	/* Re-open the UBI device in read-write mode */
1966 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1967 	if (IS_ERR(c->ubi)) {
1968 		err = PTR_ERR(c->ubi);
1969 		goto out_free;
1970 	}
1971 
1972 	/*
1973 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1974 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1975 	 * which means the user would have to wait not just for their own I/O
1976 	 * but the read-ahead I/O as well i.e. completely pointless.
1977 	 *
1978 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1979 	 */
1980 	c->bdi.name = "ubifs",
1981 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1982 	c->bdi.unplug_io_fn = default_unplug_io_fn;
1983 	err  = bdi_init(&c->bdi);
1984 	if (err)
1985 		goto out_close;
1986 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1987 			   c->vi.ubi_num, c->vi.vol_id);
1988 	if (err)
1989 		goto out_bdi;
1990 
1991 	err = ubifs_parse_options(c, data, 0);
1992 	if (err)
1993 		goto out_bdi;
1994 
1995 	sb->s_bdi = &c->bdi;
1996 	sb->s_fs_info = c;
1997 	sb->s_magic = UBIFS_SUPER_MAGIC;
1998 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1999 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2000 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2001 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2002 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2003 	sb->s_op = &ubifs_super_operations;
2004 
2005 	mutex_lock(&c->umount_mutex);
2006 	err = mount_ubifs(c);
2007 	if (err) {
2008 		ubifs_assert(err < 0);
2009 		goto out_unlock;
2010 	}
2011 
2012 	/* Read the root inode */
2013 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2014 	if (IS_ERR(root)) {
2015 		err = PTR_ERR(root);
2016 		goto out_umount;
2017 	}
2018 
2019 	sb->s_root = d_alloc_root(root);
2020 	if (!sb->s_root)
2021 		goto out_iput;
2022 
2023 	mutex_unlock(&c->umount_mutex);
2024 	return 0;
2025 
2026 out_iput:
2027 	iput(root);
2028 out_umount:
2029 	ubifs_umount(c);
2030 out_unlock:
2031 	mutex_unlock(&c->umount_mutex);
2032 out_bdi:
2033 	bdi_destroy(&c->bdi);
2034 out_close:
2035 	ubi_close_volume(c->ubi);
2036 out_free:
2037 	kfree(c);
2038 	return err;
2039 }
2040 
2041 static int sb_test(struct super_block *sb, void *data)
2042 {
2043 	dev_t *dev = data;
2044 	struct ubifs_info *c = sb->s_fs_info;
2045 
2046 	return c->vi.cdev == *dev;
2047 }
2048 
2049 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2050 			const char *name, void *data)
2051 {
2052 	struct ubi_volume_desc *ubi;
2053 	struct ubi_volume_info vi;
2054 	struct super_block *sb;
2055 	int err;
2056 
2057 	dbg_gen("name %s, flags %#x", name, flags);
2058 
2059 	/*
2060 	 * Get UBI device number and volume ID. Mount it read-only so far
2061 	 * because this might be a new mount point, and UBI allows only one
2062 	 * read-write user at a time.
2063 	 */
2064 	ubi = open_ubi(name, UBI_READONLY);
2065 	if (IS_ERR(ubi)) {
2066 		dbg_err("cannot open \"%s\", error %d",
2067 			name, (int)PTR_ERR(ubi));
2068 		return ERR_CAST(ubi);
2069 	}
2070 	ubi_get_volume_info(ubi, &vi);
2071 
2072 	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2073 
2074 	sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2075 	if (IS_ERR(sb)) {
2076 		err = PTR_ERR(sb);
2077 		goto out_close;
2078 	}
2079 
2080 	if (sb->s_root) {
2081 		struct ubifs_info *c1 = sb->s_fs_info;
2082 
2083 		/* A new mount point for already mounted UBIFS */
2084 		dbg_gen("this ubi volume is already mounted");
2085 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2086 			err = -EBUSY;
2087 			goto out_deact;
2088 		}
2089 	} else {
2090 		sb->s_flags = flags;
2091 		/*
2092 		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2093 		 * replaced by 'c'.
2094 		 */
2095 		sb->s_fs_info = ubi;
2096 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2097 		if (err)
2098 			goto out_deact;
2099 		/* We do not support atime */
2100 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2101 	}
2102 
2103 	/* 'fill_super()' opens ubi again so we must close it here */
2104 	ubi_close_volume(ubi);
2105 
2106 	return dget(sb->s_root);
2107 
2108 out_deact:
2109 	deactivate_locked_super(sb);
2110 out_close:
2111 	ubi_close_volume(ubi);
2112 	return ERR_PTR(err);
2113 }
2114 
2115 static struct file_system_type ubifs_fs_type = {
2116 	.name    = "ubifs",
2117 	.owner   = THIS_MODULE,
2118 	.mount   = ubifs_mount,
2119 	.kill_sb = kill_anon_super,
2120 };
2121 
2122 /*
2123  * Inode slab cache constructor.
2124  */
2125 static void inode_slab_ctor(void *obj)
2126 {
2127 	struct ubifs_inode *ui = obj;
2128 	inode_init_once(&ui->vfs_inode);
2129 }
2130 
2131 static int __init ubifs_init(void)
2132 {
2133 	int err;
2134 
2135 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2136 
2137 	/* Make sure node sizes are 8-byte aligned */
2138 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2139 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2140 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2141 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2142 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2143 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2144 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2145 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2146 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2147 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2148 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2149 
2150 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2151 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2152 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2153 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2154 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2155 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2156 
2157 	/* Check min. node size */
2158 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2159 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2160 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2161 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2162 
2163 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2164 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2165 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2166 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2167 
2168 	/* Defined node sizes */
2169 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2170 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2171 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2172 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2173 
2174 	/*
2175 	 * We use 2 bit wide bit-fields to store compression type, which should
2176 	 * be amended if more compressors are added. The bit-fields are:
2177 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2178 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2179 	 */
2180 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2181 
2182 	/*
2183 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2184 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2185 	 */
2186 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2187 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2188 			  " at least 4096 bytes",
2189 			  (unsigned int)PAGE_CACHE_SIZE);
2190 		return -EINVAL;
2191 	}
2192 
2193 	err = register_filesystem(&ubifs_fs_type);
2194 	if (err) {
2195 		ubifs_err("cannot register file system, error %d", err);
2196 		return err;
2197 	}
2198 
2199 	err = -ENOMEM;
2200 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2201 				sizeof(struct ubifs_inode), 0,
2202 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2203 				&inode_slab_ctor);
2204 	if (!ubifs_inode_slab)
2205 		goto out_reg;
2206 
2207 	register_shrinker(&ubifs_shrinker_info);
2208 
2209 	err = ubifs_compressors_init();
2210 	if (err)
2211 		goto out_shrinker;
2212 
2213 	err = dbg_debugfs_init();
2214 	if (err)
2215 		goto out_compr;
2216 
2217 	return 0;
2218 
2219 out_compr:
2220 	ubifs_compressors_exit();
2221 out_shrinker:
2222 	unregister_shrinker(&ubifs_shrinker_info);
2223 	kmem_cache_destroy(ubifs_inode_slab);
2224 out_reg:
2225 	unregister_filesystem(&ubifs_fs_type);
2226 	return err;
2227 }
2228 /* late_initcall to let compressors initialize first */
2229 late_initcall(ubifs_init);
2230 
2231 static void __exit ubifs_exit(void)
2232 {
2233 	ubifs_assert(list_empty(&ubifs_infos));
2234 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2235 
2236 	dbg_debugfs_exit();
2237 	ubifs_compressors_exit();
2238 	unregister_shrinker(&ubifs_shrinker_info);
2239 	kmem_cache_destroy(ubifs_inode_slab);
2240 	unregister_filesystem(&ubifs_fs_type);
2241 }
2242 module_exit(ubifs_exit);
2243 
2244 MODULE_LICENSE("GPL");
2245 MODULE_VERSION(__stringify(UBIFS_VERSION));
2246 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2247 MODULE_DESCRIPTION("UBIFS - UBI File System");
2248