1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .shrink = ubifs_shrinker, 53 .seeks = DEFAULT_SEEKS, 54 }; 55 56 /** 57 * validate_inode - validate inode. 58 * @c: UBIFS file-system description object 59 * @inode: the inode to validate 60 * 61 * This is a helper function for 'ubifs_iget()' which validates various fields 62 * of a newly built inode to make sure they contain sane values and prevent 63 * possible vulnerabilities. Returns zero if the inode is all right and 64 * a non-zero error code if not. 65 */ 66 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 67 { 68 int err; 69 const struct ubifs_inode *ui = ubifs_inode(inode); 70 71 if (inode->i_size > c->max_inode_sz) { 72 ubifs_err("inode is too large (%lld)", 73 (long long)inode->i_size); 74 return 1; 75 } 76 77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 78 ubifs_err("unknown compression type %d", ui->compr_type); 79 return 2; 80 } 81 82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 83 return 3; 84 85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 86 return 4; 87 88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG) 89 return 5; 90 91 if (!ubifs_compr_present(ui->compr_type)) { 92 ubifs_warn("inode %lu uses '%s' compression, but it was not " 93 "compiled in", inode->i_ino, 94 ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir_size(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= (S_NOCMTIME | S_NOATIME); 132 inode->i_nlink = le32_to_cpu(ino->nlink); 133 inode->i_uid = le32_to_cpu(ino->uid); 134 inode->i_gid = le32_to_cpu(ino->gid); 135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 141 inode->i_mode = le32_to_cpu(ino->mode); 142 inode->i_size = le64_to_cpu(ino->size); 143 144 ui->data_len = le32_to_cpu(ino->data_len); 145 ui->flags = le32_to_cpu(ino->flags); 146 ui->compr_type = le16_to_cpu(ino->compr_type); 147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 149 ui->xattr_size = le32_to_cpu(ino->xattr_size); 150 ui->xattr_names = le32_to_cpu(ino->xattr_names); 151 ui->synced_i_size = ui->ui_size = inode->i_size; 152 153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 154 155 err = validate_inode(c, inode); 156 if (err) 157 goto out_invalid; 158 159 /* Disable read-ahead */ 160 inode->i_mapping->backing_dev_info = &c->bdi; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err); 249 dbg_dump_node(c, ino); 250 dbg_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 INIT_LIST_HEAD(&inode->i_dentry); 280 kmem_cache_free(ubifs_inode_slab, ui); 281 } 282 283 static void ubifs_destroy_inode(struct inode *inode) 284 { 285 struct ubifs_inode *ui = ubifs_inode(inode); 286 287 kfree(ui->data); 288 call_rcu(&inode->i_rcu, ubifs_i_callback); 289 } 290 291 /* 292 * Note, Linux write-back code calls this without 'i_mutex'. 293 */ 294 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 295 { 296 int err = 0; 297 struct ubifs_info *c = inode->i_sb->s_fs_info; 298 struct ubifs_inode *ui = ubifs_inode(inode); 299 300 ubifs_assert(!ui->xattr); 301 if (is_bad_inode(inode)) 302 return 0; 303 304 mutex_lock(&ui->ui_mutex); 305 /* 306 * Due to races between write-back forced by budgeting 307 * (see 'sync_some_inodes()') and pdflush write-back, the inode may 308 * have already been synchronized, do not do this again. This might 309 * also happen if it was synchronized in an VFS operation, e.g. 310 * 'ubifs_link()'. 311 */ 312 if (!ui->dirty) { 313 mutex_unlock(&ui->ui_mutex); 314 return 0; 315 } 316 317 /* 318 * As an optimization, do not write orphan inodes to the media just 319 * because this is not needed. 320 */ 321 dbg_gen("inode %lu, mode %#x, nlink %u", 322 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 323 if (inode->i_nlink) { 324 err = ubifs_jnl_write_inode(c, inode); 325 if (err) 326 ubifs_err("can't write inode %lu, error %d", 327 inode->i_ino, err); 328 else 329 err = dbg_check_inode_size(c, inode, ui->ui_size); 330 } 331 332 ui->dirty = 0; 333 mutex_unlock(&ui->ui_mutex); 334 ubifs_release_dirty_inode_budget(c, ui); 335 return err; 336 } 337 338 static void ubifs_evict_inode(struct inode *inode) 339 { 340 int err; 341 struct ubifs_info *c = inode->i_sb->s_fs_info; 342 struct ubifs_inode *ui = ubifs_inode(inode); 343 344 if (ui->xattr) 345 /* 346 * Extended attribute inode deletions are fully handled in 347 * 'ubifs_removexattr()'. These inodes are special and have 348 * limited usage, so there is nothing to do here. 349 */ 350 goto out; 351 352 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 353 ubifs_assert(!atomic_read(&inode->i_count)); 354 355 truncate_inode_pages(&inode->i_data, 0); 356 357 if (inode->i_nlink) 358 goto done; 359 360 if (is_bad_inode(inode)) 361 goto out; 362 363 ui->ui_size = inode->i_size = 0; 364 err = ubifs_jnl_delete_inode(c, inode); 365 if (err) 366 /* 367 * Worst case we have a lost orphan inode wasting space, so a 368 * simple error message is OK here. 369 */ 370 ubifs_err("can't delete inode %lu, error %d", 371 inode->i_ino, err); 372 373 out: 374 if (ui->dirty) 375 ubifs_release_dirty_inode_budget(c, ui); 376 else { 377 /* We've deleted something - clean the "no space" flags */ 378 c->nospace = c->nospace_rp = 0; 379 smp_wmb(); 380 } 381 done: 382 end_writeback(inode); 383 } 384 385 static void ubifs_dirty_inode(struct inode *inode) 386 { 387 struct ubifs_inode *ui = ubifs_inode(inode); 388 389 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 390 if (!ui->dirty) { 391 ui->dirty = 1; 392 dbg_gen("inode %lu", inode->i_ino); 393 } 394 } 395 396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 397 { 398 struct ubifs_info *c = dentry->d_sb->s_fs_info; 399 unsigned long long free; 400 __le32 *uuid = (__le32 *)c->uuid; 401 402 free = ubifs_get_free_space(c); 403 dbg_gen("free space %lld bytes (%lld blocks)", 404 free, free >> UBIFS_BLOCK_SHIFT); 405 406 buf->f_type = UBIFS_SUPER_MAGIC; 407 buf->f_bsize = UBIFS_BLOCK_SIZE; 408 buf->f_blocks = c->block_cnt; 409 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 410 if (free > c->report_rp_size) 411 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 412 else 413 buf->f_bavail = 0; 414 buf->f_files = 0; 415 buf->f_ffree = 0; 416 buf->f_namelen = UBIFS_MAX_NLEN; 417 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 418 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 419 ubifs_assert(buf->f_bfree <= c->block_cnt); 420 return 0; 421 } 422 423 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt) 424 { 425 struct ubifs_info *c = mnt->mnt_sb->s_fs_info; 426 427 if (c->mount_opts.unmount_mode == 2) 428 seq_printf(s, ",fast_unmount"); 429 else if (c->mount_opts.unmount_mode == 1) 430 seq_printf(s, ",norm_unmount"); 431 432 if (c->mount_opts.bulk_read == 2) 433 seq_printf(s, ",bulk_read"); 434 else if (c->mount_opts.bulk_read == 1) 435 seq_printf(s, ",no_bulk_read"); 436 437 if (c->mount_opts.chk_data_crc == 2) 438 seq_printf(s, ",chk_data_crc"); 439 else if (c->mount_opts.chk_data_crc == 1) 440 seq_printf(s, ",no_chk_data_crc"); 441 442 if (c->mount_opts.override_compr) { 443 seq_printf(s, ",compr=%s", 444 ubifs_compr_name(c->mount_opts.compr_type)); 445 } 446 447 return 0; 448 } 449 450 static int ubifs_sync_fs(struct super_block *sb, int wait) 451 { 452 int i, err; 453 struct ubifs_info *c = sb->s_fs_info; 454 455 /* 456 * Zero @wait is just an advisory thing to help the file system shove 457 * lots of data into the queues, and there will be the second 458 * '->sync_fs()' call, with non-zero @wait. 459 */ 460 if (!wait) 461 return 0; 462 463 /* 464 * Synchronize write buffers, because 'ubifs_run_commit()' does not 465 * do this if it waits for an already running commit. 466 */ 467 for (i = 0; i < c->jhead_cnt; i++) { 468 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 469 if (err) 470 return err; 471 } 472 473 /* 474 * Strictly speaking, it is not necessary to commit the journal here, 475 * synchronizing write-buffers would be enough. But committing makes 476 * UBIFS free space predictions much more accurate, so we want to let 477 * the user be able to get more accurate results of 'statfs()' after 478 * they synchronize the file system. 479 */ 480 err = ubifs_run_commit(c); 481 if (err) 482 return err; 483 484 return ubi_sync(c->vi.ubi_num); 485 } 486 487 /** 488 * init_constants_early - initialize UBIFS constants. 489 * @c: UBIFS file-system description object 490 * 491 * This function initialize UBIFS constants which do not need the superblock to 492 * be read. It also checks that the UBI volume satisfies basic UBIFS 493 * requirements. Returns zero in case of success and a negative error code in 494 * case of failure. 495 */ 496 static int init_constants_early(struct ubifs_info *c) 497 { 498 if (c->vi.corrupted) { 499 ubifs_warn("UBI volume is corrupted - read-only mode"); 500 c->ro_media = 1; 501 } 502 503 if (c->di.ro_mode) { 504 ubifs_msg("read-only UBI device"); 505 c->ro_media = 1; 506 } 507 508 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 509 ubifs_msg("static UBI volume - read-only mode"); 510 c->ro_media = 1; 511 } 512 513 c->leb_cnt = c->vi.size; 514 c->leb_size = c->vi.usable_leb_size; 515 c->half_leb_size = c->leb_size / 2; 516 c->min_io_size = c->di.min_io_size; 517 c->min_io_shift = fls(c->min_io_size) - 1; 518 519 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 520 ubifs_err("too small LEBs (%d bytes), min. is %d bytes", 521 c->leb_size, UBIFS_MIN_LEB_SZ); 522 return -EINVAL; 523 } 524 525 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 526 ubifs_err("too few LEBs (%d), min. is %d", 527 c->leb_cnt, UBIFS_MIN_LEB_CNT); 528 return -EINVAL; 529 } 530 531 if (!is_power_of_2(c->min_io_size)) { 532 ubifs_err("bad min. I/O size %d", c->min_io_size); 533 return -EINVAL; 534 } 535 536 /* 537 * UBIFS aligns all node to 8-byte boundary, so to make function in 538 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 539 * less than 8. 540 */ 541 if (c->min_io_size < 8) { 542 c->min_io_size = 8; 543 c->min_io_shift = 3; 544 } 545 546 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 547 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 548 549 /* 550 * Initialize node length ranges which are mostly needed for node 551 * length validation. 552 */ 553 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 554 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 555 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 556 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 557 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 558 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 559 560 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 561 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 562 c->ranges[UBIFS_ORPH_NODE].min_len = 563 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 564 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 565 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 566 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 567 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 568 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 569 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 570 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 571 /* 572 * Minimum indexing node size is amended later when superblock is 573 * read and the key length is known. 574 */ 575 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 576 /* 577 * Maximum indexing node size is amended later when superblock is 578 * read and the fanout is known. 579 */ 580 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 581 582 /* 583 * Initialize dead and dark LEB space watermarks. See gc.c for comments 584 * about these values. 585 */ 586 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 587 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 588 589 /* 590 * Calculate how many bytes would be wasted at the end of LEB if it was 591 * fully filled with data nodes of maximum size. This is used in 592 * calculations when reporting free space. 593 */ 594 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 595 596 /* Buffer size for bulk-reads */ 597 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 598 if (c->max_bu_buf_len > c->leb_size) 599 c->max_bu_buf_len = c->leb_size; 600 return 0; 601 } 602 603 /** 604 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 605 * @c: UBIFS file-system description object 606 * @lnum: LEB the write-buffer was synchronized to 607 * @free: how many free bytes left in this LEB 608 * @pad: how many bytes were padded 609 * 610 * This is a callback function which is called by the I/O unit when the 611 * write-buffer is synchronized. We need this to correctly maintain space 612 * accounting in bud logical eraseblocks. This function returns zero in case of 613 * success and a negative error code in case of failure. 614 * 615 * This function actually belongs to the journal, but we keep it here because 616 * we want to keep it static. 617 */ 618 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 619 { 620 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 621 } 622 623 /* 624 * init_constants_sb - initialize UBIFS constants. 625 * @c: UBIFS file-system description object 626 * 627 * This is a helper function which initializes various UBIFS constants after 628 * the superblock has been read. It also checks various UBIFS parameters and 629 * makes sure they are all right. Returns zero in case of success and a 630 * negative error code in case of failure. 631 */ 632 static int init_constants_sb(struct ubifs_info *c) 633 { 634 int tmp, err; 635 long long tmp64; 636 637 c->main_bytes = (long long)c->main_lebs * c->leb_size; 638 c->max_znode_sz = sizeof(struct ubifs_znode) + 639 c->fanout * sizeof(struct ubifs_zbranch); 640 641 tmp = ubifs_idx_node_sz(c, 1); 642 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 643 c->min_idx_node_sz = ALIGN(tmp, 8); 644 645 tmp = ubifs_idx_node_sz(c, c->fanout); 646 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 647 c->max_idx_node_sz = ALIGN(tmp, 8); 648 649 /* Make sure LEB size is large enough to fit full commit */ 650 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 651 tmp = ALIGN(tmp, c->min_io_size); 652 if (tmp > c->leb_size) { 653 dbg_err("too small LEB size %d, at least %d needed", 654 c->leb_size, tmp); 655 return -EINVAL; 656 } 657 658 /* 659 * Make sure that the log is large enough to fit reference nodes for 660 * all buds plus one reserved LEB. 661 */ 662 tmp64 = c->max_bud_bytes + c->leb_size - 1; 663 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 664 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 665 tmp /= c->leb_size; 666 tmp += 1; 667 if (c->log_lebs < tmp) { 668 dbg_err("too small log %d LEBs, required min. %d LEBs", 669 c->log_lebs, tmp); 670 return -EINVAL; 671 } 672 673 /* 674 * When budgeting we assume worst-case scenarios when the pages are not 675 * be compressed and direntries are of the maximum size. 676 * 677 * Note, data, which may be stored in inodes is budgeted separately, so 678 * it is not included into 'c->inode_budget'. 679 */ 680 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 681 c->inode_budget = UBIFS_INO_NODE_SZ; 682 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ; 683 684 /* 685 * When the amount of flash space used by buds becomes 686 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 687 * The writers are unblocked when the commit is finished. To avoid 688 * writers to be blocked UBIFS initiates background commit in advance, 689 * when number of bud bytes becomes above the limit defined below. 690 */ 691 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 692 693 /* 694 * Ensure minimum journal size. All the bytes in the journal heads are 695 * considered to be used, when calculating the current journal usage. 696 * Consequently, if the journal is too small, UBIFS will treat it as 697 * always full. 698 */ 699 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 700 if (c->bg_bud_bytes < tmp64) 701 c->bg_bud_bytes = tmp64; 702 if (c->max_bud_bytes < tmp64 + c->leb_size) 703 c->max_bud_bytes = tmp64 + c->leb_size; 704 705 err = ubifs_calc_lpt_geom(c); 706 if (err) 707 return err; 708 709 /* Initialize effective LEB size used in budgeting calculations */ 710 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 711 return 0; 712 } 713 714 /* 715 * init_constants_master - initialize UBIFS constants. 716 * @c: UBIFS file-system description object 717 * 718 * This is a helper function which initializes various UBIFS constants after 719 * the master node has been read. It also checks various UBIFS parameters and 720 * makes sure they are all right. 721 */ 722 static void init_constants_master(struct ubifs_info *c) 723 { 724 long long tmp64; 725 726 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 727 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 728 729 /* 730 * Calculate total amount of FS blocks. This number is not used 731 * internally because it does not make much sense for UBIFS, but it is 732 * necessary to report something for the 'statfs()' call. 733 * 734 * Subtract the LEB reserved for GC, the LEB which is reserved for 735 * deletions, minimum LEBs for the index, and assume only one journal 736 * head is available. 737 */ 738 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 739 tmp64 *= (long long)c->leb_size - c->leb_overhead; 740 tmp64 = ubifs_reported_space(c, tmp64); 741 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 742 } 743 744 /** 745 * take_gc_lnum - reserve GC LEB. 746 * @c: UBIFS file-system description object 747 * 748 * This function ensures that the LEB reserved for garbage collection is marked 749 * as "taken" in lprops. We also have to set free space to LEB size and dirty 750 * space to zero, because lprops may contain out-of-date information if the 751 * file-system was un-mounted before it has been committed. This function 752 * returns zero in case of success and a negative error code in case of 753 * failure. 754 */ 755 static int take_gc_lnum(struct ubifs_info *c) 756 { 757 int err; 758 759 if (c->gc_lnum == -1) { 760 ubifs_err("no LEB for GC"); 761 return -EINVAL; 762 } 763 764 /* And we have to tell lprops that this LEB is taken */ 765 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 766 LPROPS_TAKEN, 0, 0); 767 return err; 768 } 769 770 /** 771 * alloc_wbufs - allocate write-buffers. 772 * @c: UBIFS file-system description object 773 * 774 * This helper function allocates and initializes UBIFS write-buffers. Returns 775 * zero in case of success and %-ENOMEM in case of failure. 776 */ 777 static int alloc_wbufs(struct ubifs_info *c) 778 { 779 int i, err; 780 781 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead), 782 GFP_KERNEL); 783 if (!c->jheads) 784 return -ENOMEM; 785 786 /* Initialize journal heads */ 787 for (i = 0; i < c->jhead_cnt; i++) { 788 INIT_LIST_HEAD(&c->jheads[i].buds_list); 789 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 790 if (err) 791 return err; 792 793 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 794 c->jheads[i].wbuf.jhead = i; 795 } 796 797 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM; 798 /* 799 * Garbage Collector head likely contains long-term data and 800 * does not need to be synchronized by timer. 801 */ 802 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM; 803 c->jheads[GCHD].wbuf.no_timer = 1; 804 805 return 0; 806 } 807 808 /** 809 * free_wbufs - free write-buffers. 810 * @c: UBIFS file-system description object 811 */ 812 static void free_wbufs(struct ubifs_info *c) 813 { 814 int i; 815 816 if (c->jheads) { 817 for (i = 0; i < c->jhead_cnt; i++) { 818 kfree(c->jheads[i].wbuf.buf); 819 kfree(c->jheads[i].wbuf.inodes); 820 } 821 kfree(c->jheads); 822 c->jheads = NULL; 823 } 824 } 825 826 /** 827 * free_orphans - free orphans. 828 * @c: UBIFS file-system description object 829 */ 830 static void free_orphans(struct ubifs_info *c) 831 { 832 struct ubifs_orphan *orph; 833 834 while (c->orph_dnext) { 835 orph = c->orph_dnext; 836 c->orph_dnext = orph->dnext; 837 list_del(&orph->list); 838 kfree(orph); 839 } 840 841 while (!list_empty(&c->orph_list)) { 842 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 843 list_del(&orph->list); 844 kfree(orph); 845 dbg_err("orphan list not empty at unmount"); 846 } 847 848 vfree(c->orph_buf); 849 c->orph_buf = NULL; 850 } 851 852 /** 853 * free_buds - free per-bud objects. 854 * @c: UBIFS file-system description object 855 */ 856 static void free_buds(struct ubifs_info *c) 857 { 858 struct rb_node *this = c->buds.rb_node; 859 struct ubifs_bud *bud; 860 861 while (this) { 862 if (this->rb_left) 863 this = this->rb_left; 864 else if (this->rb_right) 865 this = this->rb_right; 866 else { 867 bud = rb_entry(this, struct ubifs_bud, rb); 868 this = rb_parent(this); 869 if (this) { 870 if (this->rb_left == &bud->rb) 871 this->rb_left = NULL; 872 else 873 this->rb_right = NULL; 874 } 875 kfree(bud); 876 } 877 } 878 } 879 880 /** 881 * check_volume_empty - check if the UBI volume is empty. 882 * @c: UBIFS file-system description object 883 * 884 * This function checks if the UBIFS volume is empty by looking if its LEBs are 885 * mapped or not. The result of checking is stored in the @c->empty variable. 886 * Returns zero in case of success and a negative error code in case of 887 * failure. 888 */ 889 static int check_volume_empty(struct ubifs_info *c) 890 { 891 int lnum, err; 892 893 c->empty = 1; 894 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 895 err = ubi_is_mapped(c->ubi, lnum); 896 if (unlikely(err < 0)) 897 return err; 898 if (err == 1) { 899 c->empty = 0; 900 break; 901 } 902 903 cond_resched(); 904 } 905 906 return 0; 907 } 908 909 /* 910 * UBIFS mount options. 911 * 912 * Opt_fast_unmount: do not run a journal commit before un-mounting 913 * Opt_norm_unmount: run a journal commit before un-mounting 914 * Opt_bulk_read: enable bulk-reads 915 * Opt_no_bulk_read: disable bulk-reads 916 * Opt_chk_data_crc: check CRCs when reading data nodes 917 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 918 * Opt_override_compr: override default compressor 919 * Opt_err: just end of array marker 920 */ 921 enum { 922 Opt_fast_unmount, 923 Opt_norm_unmount, 924 Opt_bulk_read, 925 Opt_no_bulk_read, 926 Opt_chk_data_crc, 927 Opt_no_chk_data_crc, 928 Opt_override_compr, 929 Opt_err, 930 }; 931 932 static const match_table_t tokens = { 933 {Opt_fast_unmount, "fast_unmount"}, 934 {Opt_norm_unmount, "norm_unmount"}, 935 {Opt_bulk_read, "bulk_read"}, 936 {Opt_no_bulk_read, "no_bulk_read"}, 937 {Opt_chk_data_crc, "chk_data_crc"}, 938 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 939 {Opt_override_compr, "compr=%s"}, 940 {Opt_err, NULL}, 941 }; 942 943 /** 944 * parse_standard_option - parse a standard mount option. 945 * @option: the option to parse 946 * 947 * Normally, standard mount options like "sync" are passed to file-systems as 948 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 949 * be present in the options string. This function tries to deal with this 950 * situation and parse standard options. Returns 0 if the option was not 951 * recognized, and the corresponding integer flag if it was. 952 * 953 * UBIFS is only interested in the "sync" option, so do not check for anything 954 * else. 955 */ 956 static int parse_standard_option(const char *option) 957 { 958 ubifs_msg("parse %s", option); 959 if (!strcmp(option, "sync")) 960 return MS_SYNCHRONOUS; 961 return 0; 962 } 963 964 /** 965 * ubifs_parse_options - parse mount parameters. 966 * @c: UBIFS file-system description object 967 * @options: parameters to parse 968 * @is_remount: non-zero if this is FS re-mount 969 * 970 * This function parses UBIFS mount options and returns zero in case success 971 * and a negative error code in case of failure. 972 */ 973 static int ubifs_parse_options(struct ubifs_info *c, char *options, 974 int is_remount) 975 { 976 char *p; 977 substring_t args[MAX_OPT_ARGS]; 978 979 if (!options) 980 return 0; 981 982 while ((p = strsep(&options, ","))) { 983 int token; 984 985 if (!*p) 986 continue; 987 988 token = match_token(p, tokens, args); 989 switch (token) { 990 /* 991 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 992 * We accept them in order to be backward-compatible. But this 993 * should be removed at some point. 994 */ 995 case Opt_fast_unmount: 996 c->mount_opts.unmount_mode = 2; 997 break; 998 case Opt_norm_unmount: 999 c->mount_opts.unmount_mode = 1; 1000 break; 1001 case Opt_bulk_read: 1002 c->mount_opts.bulk_read = 2; 1003 c->bulk_read = 1; 1004 break; 1005 case Opt_no_bulk_read: 1006 c->mount_opts.bulk_read = 1; 1007 c->bulk_read = 0; 1008 break; 1009 case Opt_chk_data_crc: 1010 c->mount_opts.chk_data_crc = 2; 1011 c->no_chk_data_crc = 0; 1012 break; 1013 case Opt_no_chk_data_crc: 1014 c->mount_opts.chk_data_crc = 1; 1015 c->no_chk_data_crc = 1; 1016 break; 1017 case Opt_override_compr: 1018 { 1019 char *name = match_strdup(&args[0]); 1020 1021 if (!name) 1022 return -ENOMEM; 1023 if (!strcmp(name, "none")) 1024 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1025 else if (!strcmp(name, "lzo")) 1026 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1027 else if (!strcmp(name, "zlib")) 1028 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1029 else { 1030 ubifs_err("unknown compressor \"%s\"", name); 1031 kfree(name); 1032 return -EINVAL; 1033 } 1034 kfree(name); 1035 c->mount_opts.override_compr = 1; 1036 c->default_compr = c->mount_opts.compr_type; 1037 break; 1038 } 1039 default: 1040 { 1041 unsigned long flag; 1042 struct super_block *sb = c->vfs_sb; 1043 1044 flag = parse_standard_option(p); 1045 if (!flag) { 1046 ubifs_err("unrecognized mount option \"%s\" " 1047 "or missing value", p); 1048 return -EINVAL; 1049 } 1050 sb->s_flags |= flag; 1051 break; 1052 } 1053 } 1054 } 1055 1056 return 0; 1057 } 1058 1059 /** 1060 * destroy_journal - destroy journal data structures. 1061 * @c: UBIFS file-system description object 1062 * 1063 * This function destroys journal data structures including those that may have 1064 * been created by recovery functions. 1065 */ 1066 static void destroy_journal(struct ubifs_info *c) 1067 { 1068 while (!list_empty(&c->unclean_leb_list)) { 1069 struct ubifs_unclean_leb *ucleb; 1070 1071 ucleb = list_entry(c->unclean_leb_list.next, 1072 struct ubifs_unclean_leb, list); 1073 list_del(&ucleb->list); 1074 kfree(ucleb); 1075 } 1076 while (!list_empty(&c->old_buds)) { 1077 struct ubifs_bud *bud; 1078 1079 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1080 list_del(&bud->list); 1081 kfree(bud); 1082 } 1083 ubifs_destroy_idx_gc(c); 1084 ubifs_destroy_size_tree(c); 1085 ubifs_tnc_close(c); 1086 free_buds(c); 1087 } 1088 1089 /** 1090 * bu_init - initialize bulk-read information. 1091 * @c: UBIFS file-system description object 1092 */ 1093 static void bu_init(struct ubifs_info *c) 1094 { 1095 ubifs_assert(c->bulk_read == 1); 1096 1097 if (c->bu.buf) 1098 return; /* Already initialized */ 1099 1100 again: 1101 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1102 if (!c->bu.buf) { 1103 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1104 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1105 goto again; 1106 } 1107 1108 /* Just disable bulk-read */ 1109 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, " 1110 "disabling it", c->max_bu_buf_len); 1111 c->mount_opts.bulk_read = 1; 1112 c->bulk_read = 0; 1113 return; 1114 } 1115 } 1116 1117 /** 1118 * check_free_space - check if there is enough free space to mount. 1119 * @c: UBIFS file-system description object 1120 * 1121 * This function makes sure UBIFS has enough free space to be mounted in 1122 * read/write mode. UBIFS must always have some free space to allow deletions. 1123 */ 1124 static int check_free_space(struct ubifs_info *c) 1125 { 1126 ubifs_assert(c->dark_wm > 0); 1127 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1128 ubifs_err("insufficient free space to mount in read/write mode"); 1129 dbg_dump_budg(c); 1130 dbg_dump_lprops(c); 1131 return -ENOSPC; 1132 } 1133 return 0; 1134 } 1135 1136 /** 1137 * mount_ubifs - mount UBIFS file-system. 1138 * @c: UBIFS file-system description object 1139 * 1140 * This function mounts UBIFS file system. Returns zero in case of success and 1141 * a negative error code in case of failure. 1142 * 1143 * Note, the function does not de-allocate resources it it fails half way 1144 * through, and the caller has to do this instead. 1145 */ 1146 static int mount_ubifs(struct ubifs_info *c) 1147 { 1148 int err; 1149 long long x; 1150 size_t sz; 1151 1152 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1153 err = init_constants_early(c); 1154 if (err) 1155 return err; 1156 1157 err = ubifs_debugging_init(c); 1158 if (err) 1159 return err; 1160 1161 err = check_volume_empty(c); 1162 if (err) 1163 goto out_free; 1164 1165 if (c->empty && (c->ro_mount || c->ro_media)) { 1166 /* 1167 * This UBI volume is empty, and read-only, or the file system 1168 * is mounted read-only - we cannot format it. 1169 */ 1170 ubifs_err("can't format empty UBI volume: read-only %s", 1171 c->ro_media ? "UBI volume" : "mount"); 1172 err = -EROFS; 1173 goto out_free; 1174 } 1175 1176 if (c->ro_media && !c->ro_mount) { 1177 ubifs_err("cannot mount read-write - read-only media"); 1178 err = -EROFS; 1179 goto out_free; 1180 } 1181 1182 /* 1183 * The requirement for the buffer is that it should fit indexing B-tree 1184 * height amount of integers. We assume the height if the TNC tree will 1185 * never exceed 64. 1186 */ 1187 err = -ENOMEM; 1188 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1189 if (!c->bottom_up_buf) 1190 goto out_free; 1191 1192 c->sbuf = vmalloc(c->leb_size); 1193 if (!c->sbuf) 1194 goto out_free; 1195 1196 if (!c->ro_mount) { 1197 c->ileb_buf = vmalloc(c->leb_size); 1198 if (!c->ileb_buf) 1199 goto out_free; 1200 } 1201 1202 if (c->bulk_read == 1) 1203 bu_init(c); 1204 1205 /* 1206 * We have to check all CRCs, even for data nodes, when we mount the FS 1207 * (specifically, when we are replaying). 1208 */ 1209 c->always_chk_crc = 1; 1210 1211 err = ubifs_read_superblock(c); 1212 if (err) 1213 goto out_free; 1214 1215 /* 1216 * Make sure the compressor which is set as default in the superblock 1217 * or overridden by mount options is actually compiled in. 1218 */ 1219 if (!ubifs_compr_present(c->default_compr)) { 1220 ubifs_err("'compressor \"%s\" is not compiled in", 1221 ubifs_compr_name(c->default_compr)); 1222 err = -ENOTSUPP; 1223 goto out_free; 1224 } 1225 1226 err = init_constants_sb(c); 1227 if (err) 1228 goto out_free; 1229 1230 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1231 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1232 c->cbuf = kmalloc(sz, GFP_NOFS); 1233 if (!c->cbuf) { 1234 err = -ENOMEM; 1235 goto out_free; 1236 } 1237 1238 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1239 if (!c->ro_mount) { 1240 err = alloc_wbufs(c); 1241 if (err) 1242 goto out_cbuf; 1243 1244 /* Create background thread */ 1245 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1246 if (IS_ERR(c->bgt)) { 1247 err = PTR_ERR(c->bgt); 1248 c->bgt = NULL; 1249 ubifs_err("cannot spawn \"%s\", error %d", 1250 c->bgt_name, err); 1251 goto out_wbufs; 1252 } 1253 wake_up_process(c->bgt); 1254 } 1255 1256 err = ubifs_read_master(c); 1257 if (err) 1258 goto out_master; 1259 1260 init_constants_master(c); 1261 1262 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1263 ubifs_msg("recovery needed"); 1264 c->need_recovery = 1; 1265 if (!c->ro_mount) { 1266 err = ubifs_recover_inl_heads(c, c->sbuf); 1267 if (err) 1268 goto out_master; 1269 } 1270 } else if (!c->ro_mount) { 1271 /* 1272 * Set the "dirty" flag so that if we reboot uncleanly we 1273 * will notice this immediately on the next mount. 1274 */ 1275 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1276 err = ubifs_write_master(c); 1277 if (err) 1278 goto out_master; 1279 } 1280 1281 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1282 if (err) 1283 goto out_lpt; 1284 1285 err = dbg_check_idx_size(c, c->old_idx_sz); 1286 if (err) 1287 goto out_lpt; 1288 1289 err = ubifs_replay_journal(c); 1290 if (err) 1291 goto out_journal; 1292 1293 /* Calculate 'min_idx_lebs' after journal replay */ 1294 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1295 1296 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1297 if (err) 1298 goto out_orphans; 1299 1300 if (!c->ro_mount) { 1301 int lnum; 1302 1303 err = check_free_space(c); 1304 if (err) 1305 goto out_orphans; 1306 1307 /* Check for enough log space */ 1308 lnum = c->lhead_lnum + 1; 1309 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1310 lnum = UBIFS_LOG_LNUM; 1311 if (lnum == c->ltail_lnum) { 1312 err = ubifs_consolidate_log(c); 1313 if (err) 1314 goto out_orphans; 1315 } 1316 1317 if (c->need_recovery) { 1318 err = ubifs_recover_size(c); 1319 if (err) 1320 goto out_orphans; 1321 err = ubifs_rcvry_gc_commit(c); 1322 if (err) 1323 goto out_orphans; 1324 } else { 1325 err = take_gc_lnum(c); 1326 if (err) 1327 goto out_orphans; 1328 1329 /* 1330 * GC LEB may contain garbage if there was an unclean 1331 * reboot, and it should be un-mapped. 1332 */ 1333 err = ubifs_leb_unmap(c, c->gc_lnum); 1334 if (err) 1335 goto out_orphans; 1336 } 1337 1338 err = dbg_check_lprops(c); 1339 if (err) 1340 goto out_orphans; 1341 } else if (c->need_recovery) { 1342 err = ubifs_recover_size(c); 1343 if (err) 1344 goto out_orphans; 1345 } else { 1346 /* 1347 * Even if we mount read-only, we have to set space in GC LEB 1348 * to proper value because this affects UBIFS free space 1349 * reporting. We do not want to have a situation when 1350 * re-mounting from R/O to R/W changes amount of free space. 1351 */ 1352 err = take_gc_lnum(c); 1353 if (err) 1354 goto out_orphans; 1355 } 1356 1357 spin_lock(&ubifs_infos_lock); 1358 list_add_tail(&c->infos_list, &ubifs_infos); 1359 spin_unlock(&ubifs_infos_lock); 1360 1361 if (c->need_recovery) { 1362 if (c->ro_mount) 1363 ubifs_msg("recovery deferred"); 1364 else { 1365 c->need_recovery = 0; 1366 ubifs_msg("recovery completed"); 1367 /* 1368 * GC LEB has to be empty and taken at this point. But 1369 * the journal head LEBs may also be accounted as 1370 * "empty taken" if they are empty. 1371 */ 1372 ubifs_assert(c->lst.taken_empty_lebs > 0); 1373 } 1374 } else 1375 ubifs_assert(c->lst.taken_empty_lebs > 0); 1376 1377 err = dbg_check_filesystem(c); 1378 if (err) 1379 goto out_infos; 1380 1381 err = dbg_debugfs_init_fs(c); 1382 if (err) 1383 goto out_infos; 1384 1385 c->always_chk_crc = 0; 1386 1387 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", 1388 c->vi.ubi_num, c->vi.vol_id, c->vi.name); 1389 if (c->ro_mount) 1390 ubifs_msg("mounted read-only"); 1391 x = (long long)c->main_lebs * c->leb_size; 1392 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d " 1393 "LEBs)", x, x >> 10, x >> 20, c->main_lebs); 1394 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1395 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d " 1396 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt); 1397 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)", 1398 c->fmt_version, c->ro_compat_version, 1399 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1400 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr)); 1401 ubifs_msg("reserved for root: %llu bytes (%llu KiB)", 1402 c->report_rp_size, c->report_rp_size >> 10); 1403 1404 dbg_msg("compiled on: " __DATE__ " at " __TIME__); 1405 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); 1406 dbg_msg("LEB size: %d bytes (%d KiB)", 1407 c->leb_size, c->leb_size >> 10); 1408 dbg_msg("data journal heads: %d", 1409 c->jhead_cnt - NONDATA_JHEADS_CNT); 1410 dbg_msg("UUID: %pUB", c->uuid); 1411 dbg_msg("big_lpt %d", c->big_lpt); 1412 dbg_msg("log LEBs: %d (%d - %d)", 1413 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1414 dbg_msg("LPT area LEBs: %d (%d - %d)", 1415 c->lpt_lebs, c->lpt_first, c->lpt_last); 1416 dbg_msg("orphan area LEBs: %d (%d - %d)", 1417 c->orph_lebs, c->orph_first, c->orph_last); 1418 dbg_msg("main area LEBs: %d (%d - %d)", 1419 c->main_lebs, c->main_first, c->leb_cnt - 1); 1420 dbg_msg("index LEBs: %d", c->lst.idx_lebs); 1421 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)", 1422 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20); 1423 dbg_msg("key hash type: %d", c->key_hash_type); 1424 dbg_msg("tree fanout: %d", c->fanout); 1425 dbg_msg("reserved GC LEB: %d", c->gc_lnum); 1426 dbg_msg("first main LEB: %d", c->main_first); 1427 dbg_msg("max. znode size %d", c->max_znode_sz); 1428 dbg_msg("max. index node size %d", c->max_idx_node_sz); 1429 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu", 1430 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1431 dbg_msg("node sizes: trun %zu, sb %zu, master %zu", 1432 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1433 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", 1434 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1435 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", 1436 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1437 UBIFS_MAX_DENT_NODE_SZ); 1438 dbg_msg("dead watermark: %d", c->dead_wm); 1439 dbg_msg("dark watermark: %d", c->dark_wm); 1440 dbg_msg("LEB overhead: %d", c->leb_overhead); 1441 x = (long long)c->main_lebs * c->dark_wm; 1442 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)", 1443 x, x >> 10, x >> 20); 1444 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1445 c->max_bud_bytes, c->max_bud_bytes >> 10, 1446 c->max_bud_bytes >> 20); 1447 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1448 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1449 c->bg_bud_bytes >> 20); 1450 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)", 1451 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1452 dbg_msg("max. seq. number: %llu", c->max_sqnum); 1453 dbg_msg("commit number: %llu", c->cmt_no); 1454 1455 return 0; 1456 1457 out_infos: 1458 spin_lock(&ubifs_infos_lock); 1459 list_del(&c->infos_list); 1460 spin_unlock(&ubifs_infos_lock); 1461 out_orphans: 1462 free_orphans(c); 1463 out_journal: 1464 destroy_journal(c); 1465 out_lpt: 1466 ubifs_lpt_free(c, 0); 1467 out_master: 1468 kfree(c->mst_node); 1469 kfree(c->rcvrd_mst_node); 1470 if (c->bgt) 1471 kthread_stop(c->bgt); 1472 out_wbufs: 1473 free_wbufs(c); 1474 out_cbuf: 1475 kfree(c->cbuf); 1476 out_free: 1477 kfree(c->bu.buf); 1478 vfree(c->ileb_buf); 1479 vfree(c->sbuf); 1480 kfree(c->bottom_up_buf); 1481 ubifs_debugging_exit(c); 1482 return err; 1483 } 1484 1485 /** 1486 * ubifs_umount - un-mount UBIFS file-system. 1487 * @c: UBIFS file-system description object 1488 * 1489 * Note, this function is called to free allocated resourced when un-mounting, 1490 * as well as free resources when an error occurred while we were half way 1491 * through mounting (error path cleanup function). So it has to make sure the 1492 * resource was actually allocated before freeing it. 1493 */ 1494 static void ubifs_umount(struct ubifs_info *c) 1495 { 1496 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1497 c->vi.vol_id); 1498 1499 dbg_debugfs_exit_fs(c); 1500 spin_lock(&ubifs_infos_lock); 1501 list_del(&c->infos_list); 1502 spin_unlock(&ubifs_infos_lock); 1503 1504 if (c->bgt) 1505 kthread_stop(c->bgt); 1506 1507 destroy_journal(c); 1508 free_wbufs(c); 1509 free_orphans(c); 1510 ubifs_lpt_free(c, 0); 1511 1512 kfree(c->cbuf); 1513 kfree(c->rcvrd_mst_node); 1514 kfree(c->mst_node); 1515 kfree(c->bu.buf); 1516 vfree(c->ileb_buf); 1517 vfree(c->sbuf); 1518 kfree(c->bottom_up_buf); 1519 ubifs_debugging_exit(c); 1520 } 1521 1522 /** 1523 * ubifs_remount_rw - re-mount in read-write mode. 1524 * @c: UBIFS file-system description object 1525 * 1526 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1527 * mode. This function allocates the needed resources and re-mounts UBIFS in 1528 * read-write mode. 1529 */ 1530 static int ubifs_remount_rw(struct ubifs_info *c) 1531 { 1532 int err, lnum; 1533 1534 if (c->rw_incompat) { 1535 ubifs_err("the file-system is not R/W-compatible"); 1536 ubifs_msg("on-flash format version is w%d/r%d, but software " 1537 "only supports up to version w%d/r%d", c->fmt_version, 1538 c->ro_compat_version, UBIFS_FORMAT_VERSION, 1539 UBIFS_RO_COMPAT_VERSION); 1540 return -EROFS; 1541 } 1542 1543 mutex_lock(&c->umount_mutex); 1544 dbg_save_space_info(c); 1545 c->remounting_rw = 1; 1546 c->always_chk_crc = 1; 1547 1548 err = check_free_space(c); 1549 if (err) 1550 goto out; 1551 1552 if (c->old_leb_cnt != c->leb_cnt) { 1553 struct ubifs_sb_node *sup; 1554 1555 sup = ubifs_read_sb_node(c); 1556 if (IS_ERR(sup)) { 1557 err = PTR_ERR(sup); 1558 goto out; 1559 } 1560 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1561 err = ubifs_write_sb_node(c, sup); 1562 if (err) 1563 goto out; 1564 } 1565 1566 if (c->need_recovery) { 1567 ubifs_msg("completing deferred recovery"); 1568 err = ubifs_write_rcvrd_mst_node(c); 1569 if (err) 1570 goto out; 1571 err = ubifs_recover_size(c); 1572 if (err) 1573 goto out; 1574 err = ubifs_clean_lebs(c, c->sbuf); 1575 if (err) 1576 goto out; 1577 err = ubifs_recover_inl_heads(c, c->sbuf); 1578 if (err) 1579 goto out; 1580 } else { 1581 /* A readonly mount is not allowed to have orphans */ 1582 ubifs_assert(c->tot_orphans == 0); 1583 err = ubifs_clear_orphans(c); 1584 if (err) 1585 goto out; 1586 } 1587 1588 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1589 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1590 err = ubifs_write_master(c); 1591 if (err) 1592 goto out; 1593 } 1594 1595 c->ileb_buf = vmalloc(c->leb_size); 1596 if (!c->ileb_buf) { 1597 err = -ENOMEM; 1598 goto out; 1599 } 1600 1601 err = ubifs_lpt_init(c, 0, 1); 1602 if (err) 1603 goto out; 1604 1605 err = alloc_wbufs(c); 1606 if (err) 1607 goto out; 1608 1609 ubifs_create_buds_lists(c); 1610 1611 /* Create background thread */ 1612 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1613 if (IS_ERR(c->bgt)) { 1614 err = PTR_ERR(c->bgt); 1615 c->bgt = NULL; 1616 ubifs_err("cannot spawn \"%s\", error %d", 1617 c->bgt_name, err); 1618 goto out; 1619 } 1620 wake_up_process(c->bgt); 1621 1622 c->orph_buf = vmalloc(c->leb_size); 1623 if (!c->orph_buf) { 1624 err = -ENOMEM; 1625 goto out; 1626 } 1627 1628 /* Check for enough log space */ 1629 lnum = c->lhead_lnum + 1; 1630 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1631 lnum = UBIFS_LOG_LNUM; 1632 if (lnum == c->ltail_lnum) { 1633 err = ubifs_consolidate_log(c); 1634 if (err) 1635 goto out; 1636 } 1637 1638 if (c->need_recovery) 1639 err = ubifs_rcvry_gc_commit(c); 1640 else 1641 err = ubifs_leb_unmap(c, c->gc_lnum); 1642 if (err) 1643 goto out; 1644 1645 if (c->need_recovery) { 1646 c->need_recovery = 0; 1647 ubifs_msg("deferred recovery completed"); 1648 } 1649 1650 dbg_gen("re-mounted read-write"); 1651 c->ro_mount = 0; 1652 c->remounting_rw = 0; 1653 c->always_chk_crc = 0; 1654 err = dbg_check_space_info(c); 1655 mutex_unlock(&c->umount_mutex); 1656 return err; 1657 1658 out: 1659 vfree(c->orph_buf); 1660 c->orph_buf = NULL; 1661 if (c->bgt) { 1662 kthread_stop(c->bgt); 1663 c->bgt = NULL; 1664 } 1665 free_wbufs(c); 1666 vfree(c->ileb_buf); 1667 c->ileb_buf = NULL; 1668 ubifs_lpt_free(c, 1); 1669 c->remounting_rw = 0; 1670 c->always_chk_crc = 0; 1671 mutex_unlock(&c->umount_mutex); 1672 return err; 1673 } 1674 1675 /** 1676 * ubifs_remount_ro - re-mount in read-only mode. 1677 * @c: UBIFS file-system description object 1678 * 1679 * We assume VFS has stopped writing. Possibly the background thread could be 1680 * running a commit, however kthread_stop will wait in that case. 1681 */ 1682 static void ubifs_remount_ro(struct ubifs_info *c) 1683 { 1684 int i, err; 1685 1686 ubifs_assert(!c->need_recovery); 1687 ubifs_assert(!c->ro_mount); 1688 1689 mutex_lock(&c->umount_mutex); 1690 if (c->bgt) { 1691 kthread_stop(c->bgt); 1692 c->bgt = NULL; 1693 } 1694 1695 dbg_save_space_info(c); 1696 1697 for (i = 0; i < c->jhead_cnt; i++) 1698 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1699 1700 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1701 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1702 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1703 err = ubifs_write_master(c); 1704 if (err) 1705 ubifs_ro_mode(c, err); 1706 1707 free_wbufs(c); 1708 vfree(c->orph_buf); 1709 c->orph_buf = NULL; 1710 vfree(c->ileb_buf); 1711 c->ileb_buf = NULL; 1712 ubifs_lpt_free(c, 1); 1713 c->ro_mount = 1; 1714 err = dbg_check_space_info(c); 1715 if (err) 1716 ubifs_ro_mode(c, err); 1717 mutex_unlock(&c->umount_mutex); 1718 } 1719 1720 static void ubifs_put_super(struct super_block *sb) 1721 { 1722 int i; 1723 struct ubifs_info *c = sb->s_fs_info; 1724 1725 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num, 1726 c->vi.vol_id); 1727 1728 /* 1729 * The following asserts are only valid if there has not been a failure 1730 * of the media. For example, there will be dirty inodes if we failed 1731 * to write them back because of I/O errors. 1732 */ 1733 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0); 1734 ubifs_assert(c->budg_idx_growth == 0); 1735 ubifs_assert(c->budg_dd_growth == 0); 1736 ubifs_assert(c->budg_data_growth == 0); 1737 1738 /* 1739 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1740 * and file system un-mount. Namely, it prevents the shrinker from 1741 * picking this superblock for shrinking - it will be just skipped if 1742 * the mutex is locked. 1743 */ 1744 mutex_lock(&c->umount_mutex); 1745 if (!c->ro_mount) { 1746 /* 1747 * First of all kill the background thread to make sure it does 1748 * not interfere with un-mounting and freeing resources. 1749 */ 1750 if (c->bgt) { 1751 kthread_stop(c->bgt); 1752 c->bgt = NULL; 1753 } 1754 1755 /* 1756 * On fatal errors c->ro_error is set to 1, in which case we do 1757 * not write the master node. 1758 */ 1759 if (!c->ro_error) { 1760 int err; 1761 1762 /* Synchronize write-buffers */ 1763 for (i = 0; i < c->jhead_cnt; i++) 1764 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1765 1766 /* 1767 * We are being cleanly unmounted which means the 1768 * orphans were killed - indicate this in the master 1769 * node. Also save the reserved GC LEB number. 1770 */ 1771 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1772 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1773 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1774 err = ubifs_write_master(c); 1775 if (err) 1776 /* 1777 * Recovery will attempt to fix the master area 1778 * next mount, so we just print a message and 1779 * continue to unmount normally. 1780 */ 1781 ubifs_err("failed to write master node, " 1782 "error %d", err); 1783 } else { 1784 for (i = 0; i < c->jhead_cnt; i++) 1785 /* Make sure write-buffer timers are canceled */ 1786 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1787 } 1788 } 1789 1790 ubifs_umount(c); 1791 bdi_destroy(&c->bdi); 1792 ubi_close_volume(c->ubi); 1793 mutex_unlock(&c->umount_mutex); 1794 kfree(c); 1795 } 1796 1797 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1798 { 1799 int err; 1800 struct ubifs_info *c = sb->s_fs_info; 1801 1802 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1803 1804 err = ubifs_parse_options(c, data, 1); 1805 if (err) { 1806 ubifs_err("invalid or unknown remount parameter"); 1807 return err; 1808 } 1809 1810 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1811 if (c->ro_error) { 1812 ubifs_msg("cannot re-mount R/W due to prior errors"); 1813 return -EROFS; 1814 } 1815 if (c->ro_media) { 1816 ubifs_msg("cannot re-mount R/W - UBI volume is R/O"); 1817 return -EROFS; 1818 } 1819 err = ubifs_remount_rw(c); 1820 if (err) 1821 return err; 1822 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1823 if (c->ro_error) { 1824 ubifs_msg("cannot re-mount R/O due to prior errors"); 1825 return -EROFS; 1826 } 1827 ubifs_remount_ro(c); 1828 } 1829 1830 if (c->bulk_read == 1) 1831 bu_init(c); 1832 else { 1833 dbg_gen("disable bulk-read"); 1834 kfree(c->bu.buf); 1835 c->bu.buf = NULL; 1836 } 1837 1838 ubifs_assert(c->lst.taken_empty_lebs > 0); 1839 return 0; 1840 } 1841 1842 const struct super_operations ubifs_super_operations = { 1843 .alloc_inode = ubifs_alloc_inode, 1844 .destroy_inode = ubifs_destroy_inode, 1845 .put_super = ubifs_put_super, 1846 .write_inode = ubifs_write_inode, 1847 .evict_inode = ubifs_evict_inode, 1848 .statfs = ubifs_statfs, 1849 .dirty_inode = ubifs_dirty_inode, 1850 .remount_fs = ubifs_remount_fs, 1851 .show_options = ubifs_show_options, 1852 .sync_fs = ubifs_sync_fs, 1853 }; 1854 1855 /** 1856 * open_ubi - parse UBI device name string and open the UBI device. 1857 * @name: UBI volume name 1858 * @mode: UBI volume open mode 1859 * 1860 * The primary method of mounting UBIFS is by specifying the UBI volume 1861 * character device node path. However, UBIFS may also be mounted withoug any 1862 * character device node using one of the following methods: 1863 * 1864 * o ubiX_Y - mount UBI device number X, volume Y; 1865 * o ubiY - mount UBI device number 0, volume Y; 1866 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1867 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1868 * 1869 * Alternative '!' separator may be used instead of ':' (because some shells 1870 * like busybox may interpret ':' as an NFS host name separator). This function 1871 * returns UBI volume description object in case of success and a negative 1872 * error code in case of failure. 1873 */ 1874 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1875 { 1876 struct ubi_volume_desc *ubi; 1877 int dev, vol; 1878 char *endptr; 1879 1880 /* First, try to open using the device node path method */ 1881 ubi = ubi_open_volume_path(name, mode); 1882 if (!IS_ERR(ubi)) 1883 return ubi; 1884 1885 /* Try the "nodev" method */ 1886 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1887 return ERR_PTR(-EINVAL); 1888 1889 /* ubi:NAME method */ 1890 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1891 return ubi_open_volume_nm(0, name + 4, mode); 1892 1893 if (!isdigit(name[3])) 1894 return ERR_PTR(-EINVAL); 1895 1896 dev = simple_strtoul(name + 3, &endptr, 0); 1897 1898 /* ubiY method */ 1899 if (*endptr == '\0') 1900 return ubi_open_volume(0, dev, mode); 1901 1902 /* ubiX_Y method */ 1903 if (*endptr == '_' && isdigit(endptr[1])) { 1904 vol = simple_strtoul(endptr + 1, &endptr, 0); 1905 if (*endptr != '\0') 1906 return ERR_PTR(-EINVAL); 1907 return ubi_open_volume(dev, vol, mode); 1908 } 1909 1910 /* ubiX:NAME method */ 1911 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1912 return ubi_open_volume_nm(dev, ++endptr, mode); 1913 1914 return ERR_PTR(-EINVAL); 1915 } 1916 1917 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1918 { 1919 struct ubi_volume_desc *ubi = sb->s_fs_info; 1920 struct ubifs_info *c; 1921 struct inode *root; 1922 int err; 1923 1924 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1925 if (!c) 1926 return -ENOMEM; 1927 1928 spin_lock_init(&c->cnt_lock); 1929 spin_lock_init(&c->cs_lock); 1930 spin_lock_init(&c->buds_lock); 1931 spin_lock_init(&c->space_lock); 1932 spin_lock_init(&c->orphan_lock); 1933 init_rwsem(&c->commit_sem); 1934 mutex_init(&c->lp_mutex); 1935 mutex_init(&c->tnc_mutex); 1936 mutex_init(&c->log_mutex); 1937 mutex_init(&c->mst_mutex); 1938 mutex_init(&c->umount_mutex); 1939 mutex_init(&c->bu_mutex); 1940 init_waitqueue_head(&c->cmt_wq); 1941 c->buds = RB_ROOT; 1942 c->old_idx = RB_ROOT; 1943 c->size_tree = RB_ROOT; 1944 c->orph_tree = RB_ROOT; 1945 INIT_LIST_HEAD(&c->infos_list); 1946 INIT_LIST_HEAD(&c->idx_gc); 1947 INIT_LIST_HEAD(&c->replay_list); 1948 INIT_LIST_HEAD(&c->replay_buds); 1949 INIT_LIST_HEAD(&c->uncat_list); 1950 INIT_LIST_HEAD(&c->empty_list); 1951 INIT_LIST_HEAD(&c->freeable_list); 1952 INIT_LIST_HEAD(&c->frdi_idx_list); 1953 INIT_LIST_HEAD(&c->unclean_leb_list); 1954 INIT_LIST_HEAD(&c->old_buds); 1955 INIT_LIST_HEAD(&c->orph_list); 1956 INIT_LIST_HEAD(&c->orph_new); 1957 1958 c->vfs_sb = sb; 1959 c->highest_inum = UBIFS_FIRST_INO; 1960 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1961 1962 ubi_get_volume_info(ubi, &c->vi); 1963 ubi_get_device_info(c->vi.ubi_num, &c->di); 1964 1965 /* Re-open the UBI device in read-write mode */ 1966 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 1967 if (IS_ERR(c->ubi)) { 1968 err = PTR_ERR(c->ubi); 1969 goto out_free; 1970 } 1971 1972 /* 1973 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 1974 * UBIFS, I/O is not deferred, it is done immediately in readpage, 1975 * which means the user would have to wait not just for their own I/O 1976 * but the read-ahead I/O as well i.e. completely pointless. 1977 * 1978 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 1979 */ 1980 c->bdi.name = "ubifs", 1981 c->bdi.capabilities = BDI_CAP_MAP_COPY; 1982 c->bdi.unplug_io_fn = default_unplug_io_fn; 1983 err = bdi_init(&c->bdi); 1984 if (err) 1985 goto out_close; 1986 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 1987 c->vi.ubi_num, c->vi.vol_id); 1988 if (err) 1989 goto out_bdi; 1990 1991 err = ubifs_parse_options(c, data, 0); 1992 if (err) 1993 goto out_bdi; 1994 1995 sb->s_bdi = &c->bdi; 1996 sb->s_fs_info = c; 1997 sb->s_magic = UBIFS_SUPER_MAGIC; 1998 sb->s_blocksize = UBIFS_BLOCK_SIZE; 1999 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2000 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2001 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2002 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2003 sb->s_op = &ubifs_super_operations; 2004 2005 mutex_lock(&c->umount_mutex); 2006 err = mount_ubifs(c); 2007 if (err) { 2008 ubifs_assert(err < 0); 2009 goto out_unlock; 2010 } 2011 2012 /* Read the root inode */ 2013 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2014 if (IS_ERR(root)) { 2015 err = PTR_ERR(root); 2016 goto out_umount; 2017 } 2018 2019 sb->s_root = d_alloc_root(root); 2020 if (!sb->s_root) 2021 goto out_iput; 2022 2023 mutex_unlock(&c->umount_mutex); 2024 return 0; 2025 2026 out_iput: 2027 iput(root); 2028 out_umount: 2029 ubifs_umount(c); 2030 out_unlock: 2031 mutex_unlock(&c->umount_mutex); 2032 out_bdi: 2033 bdi_destroy(&c->bdi); 2034 out_close: 2035 ubi_close_volume(c->ubi); 2036 out_free: 2037 kfree(c); 2038 return err; 2039 } 2040 2041 static int sb_test(struct super_block *sb, void *data) 2042 { 2043 dev_t *dev = data; 2044 struct ubifs_info *c = sb->s_fs_info; 2045 2046 return c->vi.cdev == *dev; 2047 } 2048 2049 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2050 const char *name, void *data) 2051 { 2052 struct ubi_volume_desc *ubi; 2053 struct ubi_volume_info vi; 2054 struct super_block *sb; 2055 int err; 2056 2057 dbg_gen("name %s, flags %#x", name, flags); 2058 2059 /* 2060 * Get UBI device number and volume ID. Mount it read-only so far 2061 * because this might be a new mount point, and UBI allows only one 2062 * read-write user at a time. 2063 */ 2064 ubi = open_ubi(name, UBI_READONLY); 2065 if (IS_ERR(ubi)) { 2066 dbg_err("cannot open \"%s\", error %d", 2067 name, (int)PTR_ERR(ubi)); 2068 return ERR_CAST(ubi); 2069 } 2070 ubi_get_volume_info(ubi, &vi); 2071 2072 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id); 2073 2074 sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev); 2075 if (IS_ERR(sb)) { 2076 err = PTR_ERR(sb); 2077 goto out_close; 2078 } 2079 2080 if (sb->s_root) { 2081 struct ubifs_info *c1 = sb->s_fs_info; 2082 2083 /* A new mount point for already mounted UBIFS */ 2084 dbg_gen("this ubi volume is already mounted"); 2085 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2086 err = -EBUSY; 2087 goto out_deact; 2088 } 2089 } else { 2090 sb->s_flags = flags; 2091 /* 2092 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is 2093 * replaced by 'c'. 2094 */ 2095 sb->s_fs_info = ubi; 2096 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2097 if (err) 2098 goto out_deact; 2099 /* We do not support atime */ 2100 sb->s_flags |= MS_ACTIVE | MS_NOATIME; 2101 } 2102 2103 /* 'fill_super()' opens ubi again so we must close it here */ 2104 ubi_close_volume(ubi); 2105 2106 return dget(sb->s_root); 2107 2108 out_deact: 2109 deactivate_locked_super(sb); 2110 out_close: 2111 ubi_close_volume(ubi); 2112 return ERR_PTR(err); 2113 } 2114 2115 static struct file_system_type ubifs_fs_type = { 2116 .name = "ubifs", 2117 .owner = THIS_MODULE, 2118 .mount = ubifs_mount, 2119 .kill_sb = kill_anon_super, 2120 }; 2121 2122 /* 2123 * Inode slab cache constructor. 2124 */ 2125 static void inode_slab_ctor(void *obj) 2126 { 2127 struct ubifs_inode *ui = obj; 2128 inode_init_once(&ui->vfs_inode); 2129 } 2130 2131 static int __init ubifs_init(void) 2132 { 2133 int err; 2134 2135 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2136 2137 /* Make sure node sizes are 8-byte aligned */ 2138 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2139 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2140 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2141 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2142 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2143 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2144 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2145 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2146 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2147 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2148 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2149 2150 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2151 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2152 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2153 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2154 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2155 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2156 2157 /* Check min. node size */ 2158 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2159 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2160 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2161 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2162 2163 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2164 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2165 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2166 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2167 2168 /* Defined node sizes */ 2169 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2170 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2171 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2172 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2173 2174 /* 2175 * We use 2 bit wide bit-fields to store compression type, which should 2176 * be amended if more compressors are added. The bit-fields are: 2177 * @compr_type in 'struct ubifs_inode', @default_compr in 2178 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2179 */ 2180 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2181 2182 /* 2183 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to 2184 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2185 */ 2186 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { 2187 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires" 2188 " at least 4096 bytes", 2189 (unsigned int)PAGE_CACHE_SIZE); 2190 return -EINVAL; 2191 } 2192 2193 err = register_filesystem(&ubifs_fs_type); 2194 if (err) { 2195 ubifs_err("cannot register file system, error %d", err); 2196 return err; 2197 } 2198 2199 err = -ENOMEM; 2200 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2201 sizeof(struct ubifs_inode), 0, 2202 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, 2203 &inode_slab_ctor); 2204 if (!ubifs_inode_slab) 2205 goto out_reg; 2206 2207 register_shrinker(&ubifs_shrinker_info); 2208 2209 err = ubifs_compressors_init(); 2210 if (err) 2211 goto out_shrinker; 2212 2213 err = dbg_debugfs_init(); 2214 if (err) 2215 goto out_compr; 2216 2217 return 0; 2218 2219 out_compr: 2220 ubifs_compressors_exit(); 2221 out_shrinker: 2222 unregister_shrinker(&ubifs_shrinker_info); 2223 kmem_cache_destroy(ubifs_inode_slab); 2224 out_reg: 2225 unregister_filesystem(&ubifs_fs_type); 2226 return err; 2227 } 2228 /* late_initcall to let compressors initialize first */ 2229 late_initcall(ubifs_init); 2230 2231 static void __exit ubifs_exit(void) 2232 { 2233 ubifs_assert(list_empty(&ubifs_infos)); 2234 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2235 2236 dbg_debugfs_exit(); 2237 ubifs_compressors_exit(); 2238 unregister_shrinker(&ubifs_shrinker_info); 2239 kmem_cache_destroy(ubifs_inode_slab); 2240 unregister_filesystem(&ubifs_fs_type); 2241 } 2242 module_exit(ubifs_exit); 2243 2244 MODULE_LICENSE("GPL"); 2245 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2246 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2247 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2248