xref: /openbmc/linux/fs/ubifs/super.c (revision 384740dc)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include "ubifs.h"
38 
39 /* Slab cache for UBIFS inodes */
40 struct kmem_cache *ubifs_inode_slab;
41 
42 /* UBIFS TNC shrinker description */
43 static struct shrinker ubifs_shrinker_info = {
44 	.shrink = ubifs_shrinker,
45 	.seeks = DEFAULT_SEEKS,
46 };
47 
48 /**
49  * validate_inode - validate inode.
50  * @c: UBIFS file-system description object
51  * @inode: the inode to validate
52  *
53  * This is a helper function for 'ubifs_iget()' which validates various fields
54  * of a newly built inode to make sure they contain sane values and prevent
55  * possible vulnerabilities. Returns zero if the inode is all right and
56  * a non-zero error code if not.
57  */
58 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
59 {
60 	int err;
61 	const struct ubifs_inode *ui = ubifs_inode(inode);
62 
63 	if (inode->i_size > c->max_inode_sz) {
64 		ubifs_err("inode is too large (%lld)",
65 			  (long long)inode->i_size);
66 		return 1;
67 	}
68 
69 	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
70 		ubifs_err("unknown compression type %d", ui->compr_type);
71 		return 2;
72 	}
73 
74 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
75 		return 3;
76 
77 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
78 		return 4;
79 
80 	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
81 		return 5;
82 
83 	if (!ubifs_compr_present(ui->compr_type)) {
84 		ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 			   "compiled in", inode->i_ino,
86 			   ubifs_compr_name(ui->compr_type));
87 	}
88 
89 	err = dbg_check_dir_size(c, inode);
90 	return err;
91 }
92 
93 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
94 {
95 	int err;
96 	union ubifs_key key;
97 	struct ubifs_ino_node *ino;
98 	struct ubifs_info *c = sb->s_fs_info;
99 	struct inode *inode;
100 	struct ubifs_inode *ui;
101 
102 	dbg_gen("inode %lu", inum);
103 
104 	inode = iget_locked(sb, inum);
105 	if (!inode)
106 		return ERR_PTR(-ENOMEM);
107 	if (!(inode->i_state & I_NEW))
108 		return inode;
109 	ui = ubifs_inode(inode);
110 
111 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
112 	if (!ino) {
113 		err = -ENOMEM;
114 		goto out;
115 	}
116 
117 	ino_key_init(c, &key, inode->i_ino);
118 
119 	err = ubifs_tnc_lookup(c, &key, ino);
120 	if (err)
121 		goto out_ino;
122 
123 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
124 	inode->i_nlink = le32_to_cpu(ino->nlink);
125 	inode->i_uid   = le32_to_cpu(ino->uid);
126 	inode->i_gid   = le32_to_cpu(ino->gid);
127 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 	inode->i_mode = le32_to_cpu(ino->mode);
134 	inode->i_size = le64_to_cpu(ino->size);
135 
136 	ui->data_len    = le32_to_cpu(ino->data_len);
137 	ui->flags       = le32_to_cpu(ino->flags);
138 	ui->compr_type  = le16_to_cpu(ino->compr_type);
139 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 	ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147 	err = validate_inode(c, inode);
148 	if (err)
149 		goto out_invalid;
150 
151 	/* Disable read-ahead */
152 	inode->i_mapping->backing_dev_info = &c->bdi;
153 
154 	switch (inode->i_mode & S_IFMT) {
155 	case S_IFREG:
156 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
157 		inode->i_op = &ubifs_file_inode_operations;
158 		inode->i_fop = &ubifs_file_operations;
159 		if (ui->xattr) {
160 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
161 			if (!ui->data) {
162 				err = -ENOMEM;
163 				goto out_ino;
164 			}
165 			memcpy(ui->data, ino->data, ui->data_len);
166 			((char *)ui->data)[ui->data_len] = '\0';
167 		} else if (ui->data_len != 0) {
168 			err = 10;
169 			goto out_invalid;
170 		}
171 		break;
172 	case S_IFDIR:
173 		inode->i_op  = &ubifs_dir_inode_operations;
174 		inode->i_fop = &ubifs_dir_operations;
175 		if (ui->data_len != 0) {
176 			err = 11;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFLNK:
181 		inode->i_op = &ubifs_symlink_inode_operations;
182 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 			err = 12;
184 			goto out_invalid;
185 		}
186 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
187 		if (!ui->data) {
188 			err = -ENOMEM;
189 			goto out_ino;
190 		}
191 		memcpy(ui->data, ino->data, ui->data_len);
192 		((char *)ui->data)[ui->data_len] = '\0';
193 		break;
194 	case S_IFBLK:
195 	case S_IFCHR:
196 	{
197 		dev_t rdev;
198 		union ubifs_dev_desc *dev;
199 
200 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
201 		if (!ui->data) {
202 			err = -ENOMEM;
203 			goto out_ino;
204 		}
205 
206 		dev = (union ubifs_dev_desc *)ino->data;
207 		if (ui->data_len == sizeof(dev->new))
208 			rdev = new_decode_dev(le32_to_cpu(dev->new));
209 		else if (ui->data_len == sizeof(dev->huge))
210 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
211 		else {
212 			err = 13;
213 			goto out_invalid;
214 		}
215 		memcpy(ui->data, ino->data, ui->data_len);
216 		inode->i_op = &ubifs_file_inode_operations;
217 		init_special_inode(inode, inode->i_mode, rdev);
218 		break;
219 	}
220 	case S_IFSOCK:
221 	case S_IFIFO:
222 		inode->i_op = &ubifs_file_inode_operations;
223 		init_special_inode(inode, inode->i_mode, 0);
224 		if (ui->data_len != 0) {
225 			err = 14;
226 			goto out_invalid;
227 		}
228 		break;
229 	default:
230 		err = 15;
231 		goto out_invalid;
232 	}
233 
234 	kfree(ino);
235 	ubifs_set_inode_flags(inode);
236 	unlock_new_inode(inode);
237 	return inode;
238 
239 out_invalid:
240 	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
241 	dbg_dump_node(c, ino);
242 	dbg_dump_inode(c, inode);
243 	err = -EINVAL;
244 out_ino:
245 	kfree(ino);
246 out:
247 	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
248 	iget_failed(inode);
249 	return ERR_PTR(err);
250 }
251 
252 static struct inode *ubifs_alloc_inode(struct super_block *sb)
253 {
254 	struct ubifs_inode *ui;
255 
256 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 	if (!ui)
258 		return NULL;
259 
260 	memset((void *)ui + sizeof(struct inode), 0,
261 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
262 	mutex_init(&ui->ui_mutex);
263 	spin_lock_init(&ui->ui_lock);
264 	return &ui->vfs_inode;
265 };
266 
267 static void ubifs_destroy_inode(struct inode *inode)
268 {
269 	struct ubifs_inode *ui = ubifs_inode(inode);
270 
271 	kfree(ui->data);
272 	kmem_cache_free(ubifs_inode_slab, inode);
273 }
274 
275 /*
276  * Note, Linux write-back code calls this without 'i_mutex'.
277  */
278 static int ubifs_write_inode(struct inode *inode, int wait)
279 {
280 	int err = 0;
281 	struct ubifs_info *c = inode->i_sb->s_fs_info;
282 	struct ubifs_inode *ui = ubifs_inode(inode);
283 
284 	ubifs_assert(!ui->xattr);
285 	if (is_bad_inode(inode))
286 		return 0;
287 
288 	mutex_lock(&ui->ui_mutex);
289 	/*
290 	 * Due to races between write-back forced by budgeting
291 	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 	 * have already been synchronized, do not do this again. This might
293 	 * also happen if it was synchronized in an VFS operation, e.g.
294 	 * 'ubifs_link()'.
295 	 */
296 	if (!ui->dirty) {
297 		mutex_unlock(&ui->ui_mutex);
298 		return 0;
299 	}
300 
301 	/*
302 	 * As an optimization, do not write orphan inodes to the media just
303 	 * because this is not needed.
304 	 */
305 	dbg_gen("inode %lu, mode %#x, nlink %u",
306 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 	if (inode->i_nlink) {
308 		err = ubifs_jnl_write_inode(c, inode);
309 		if (err)
310 			ubifs_err("can't write inode %lu, error %d",
311 				  inode->i_ino, err);
312 	}
313 
314 	ui->dirty = 0;
315 	mutex_unlock(&ui->ui_mutex);
316 	ubifs_release_dirty_inode_budget(c, ui);
317 	return err;
318 }
319 
320 static void ubifs_delete_inode(struct inode *inode)
321 {
322 	int err;
323 	struct ubifs_info *c = inode->i_sb->s_fs_info;
324 	struct ubifs_inode *ui = ubifs_inode(inode);
325 
326 	if (ui->xattr)
327 		/*
328 		 * Extended attribute inode deletions are fully handled in
329 		 * 'ubifs_removexattr()'. These inodes are special and have
330 		 * limited usage, so there is nothing to do here.
331 		 */
332 		goto out;
333 
334 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
335 	ubifs_assert(!atomic_read(&inode->i_count));
336 	ubifs_assert(inode->i_nlink == 0);
337 
338 	truncate_inode_pages(&inode->i_data, 0);
339 	if (is_bad_inode(inode))
340 		goto out;
341 
342 	ui->ui_size = inode->i_size = 0;
343 	err = ubifs_jnl_delete_inode(c, inode);
344 	if (err)
345 		/*
346 		 * Worst case we have a lost orphan inode wasting space, so a
347 		 * simple error message is OK here.
348 		 */
349 		ubifs_err("can't delete inode %lu, error %d",
350 			  inode->i_ino, err);
351 
352 out:
353 	if (ui->dirty)
354 		ubifs_release_dirty_inode_budget(c, ui);
355 	clear_inode(inode);
356 }
357 
358 static void ubifs_dirty_inode(struct inode *inode)
359 {
360 	struct ubifs_inode *ui = ubifs_inode(inode);
361 
362 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
363 	if (!ui->dirty) {
364 		ui->dirty = 1;
365 		dbg_gen("inode %lu",  inode->i_ino);
366 	}
367 }
368 
369 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
370 {
371 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
372 	unsigned long long free;
373 	__le32 *uuid = (__le32 *)c->uuid;
374 
375 	free = ubifs_get_free_space(c);
376 	dbg_gen("free space %lld bytes (%lld blocks)",
377 		free, free >> UBIFS_BLOCK_SHIFT);
378 
379 	buf->f_type = UBIFS_SUPER_MAGIC;
380 	buf->f_bsize = UBIFS_BLOCK_SIZE;
381 	buf->f_blocks = c->block_cnt;
382 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
383 	if (free > c->report_rp_size)
384 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
385 	else
386 		buf->f_bavail = 0;
387 	buf->f_files = 0;
388 	buf->f_ffree = 0;
389 	buf->f_namelen = UBIFS_MAX_NLEN;
390 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
391 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
392 	return 0;
393 }
394 
395 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
396 {
397 	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
398 
399 	if (c->mount_opts.unmount_mode == 2)
400 		seq_printf(s, ",fast_unmount");
401 	else if (c->mount_opts.unmount_mode == 1)
402 		seq_printf(s, ",norm_unmount");
403 
404 	return 0;
405 }
406 
407 static int ubifs_sync_fs(struct super_block *sb, int wait)
408 {
409 	struct ubifs_info *c = sb->s_fs_info;
410 	int i, ret = 0, err;
411 
412 	if (c->jheads)
413 		for (i = 0; i < c->jhead_cnt; i++) {
414 			err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
415 			if (err && !ret)
416 				ret = err;
417 		}
418 	/*
419 	 * We ought to call sync for c->ubi but it does not have one. If it had
420 	 * it would in turn call mtd->sync, however mtd operations are
421 	 * synchronous anyway, so we don't lose any sleep here.
422 	 */
423 	return ret;
424 }
425 
426 /**
427  * init_constants_early - initialize UBIFS constants.
428  * @c: UBIFS file-system description object
429  *
430  * This function initialize UBIFS constants which do not need the superblock to
431  * be read. It also checks that the UBI volume satisfies basic UBIFS
432  * requirements. Returns zero in case of success and a negative error code in
433  * case of failure.
434  */
435 static int init_constants_early(struct ubifs_info *c)
436 {
437 	if (c->vi.corrupted) {
438 		ubifs_warn("UBI volume is corrupted - read-only mode");
439 		c->ro_media = 1;
440 	}
441 
442 	if (c->di.ro_mode) {
443 		ubifs_msg("read-only UBI device");
444 		c->ro_media = 1;
445 	}
446 
447 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
448 		ubifs_msg("static UBI volume - read-only mode");
449 		c->ro_media = 1;
450 	}
451 
452 	c->leb_cnt = c->vi.size;
453 	c->leb_size = c->vi.usable_leb_size;
454 	c->half_leb_size = c->leb_size / 2;
455 	c->min_io_size = c->di.min_io_size;
456 	c->min_io_shift = fls(c->min_io_size) - 1;
457 
458 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
459 		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
460 			  c->leb_size, UBIFS_MIN_LEB_SZ);
461 		return -EINVAL;
462 	}
463 
464 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
465 		ubifs_err("too few LEBs (%d), min. is %d",
466 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
467 		return -EINVAL;
468 	}
469 
470 	if (!is_power_of_2(c->min_io_size)) {
471 		ubifs_err("bad min. I/O size %d", c->min_io_size);
472 		return -EINVAL;
473 	}
474 
475 	/*
476 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
477 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
478 	 * less than 8.
479 	 */
480 	if (c->min_io_size < 8) {
481 		c->min_io_size = 8;
482 		c->min_io_shift = 3;
483 	}
484 
485 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
486 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
487 
488 	/*
489 	 * Initialize node length ranges which are mostly needed for node
490 	 * length validation.
491 	 */
492 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
493 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
494 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
495 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
496 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
497 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
498 
499 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
500 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
501 	c->ranges[UBIFS_ORPH_NODE].min_len =
502 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
503 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
504 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
505 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
506 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
507 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
508 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
509 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
510 	/*
511 	 * Minimum indexing node size is amended later when superblock is
512 	 * read and the key length is known.
513 	 */
514 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
515 	/*
516 	 * Maximum indexing node size is amended later when superblock is
517 	 * read and the fanout is known.
518 	 */
519 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
520 
521 	/*
522 	 * Initialize dead and dark LEB space watermarks.
523 	 *
524 	 * Dead space is the space which cannot be used. Its watermark is
525 	 * equivalent to min. I/O unit or minimum node size if it is greater
526 	 * then min. I/O unit.
527 	 *
528 	 * Dark space is the space which might be used, or might not, depending
529 	 * on which node should be written to the LEB. Its watermark is
530 	 * equivalent to maximum UBIFS node size.
531 	 */
532 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
533 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
534 
535 	/*
536 	 * Calculate how many bytes would be wasted at the end of LEB if it was
537 	 * fully filled with data nodes of maximum size. This is used in
538 	 * calculations when reporting free space.
539 	 */
540 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
541 	return 0;
542 }
543 
544 /**
545  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
546  * @c: UBIFS file-system description object
547  * @lnum: LEB the write-buffer was synchronized to
548  * @free: how many free bytes left in this LEB
549  * @pad: how many bytes were padded
550  *
551  * This is a callback function which is called by the I/O unit when the
552  * write-buffer is synchronized. We need this to correctly maintain space
553  * accounting in bud logical eraseblocks. This function returns zero in case of
554  * success and a negative error code in case of failure.
555  *
556  * This function actually belongs to the journal, but we keep it here because
557  * we want to keep it static.
558  */
559 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
560 {
561 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
562 }
563 
564 /*
565  * init_constants_late - initialize UBIFS constants.
566  * @c: UBIFS file-system description object
567  *
568  * This is a helper function which initializes various UBIFS constants after
569  * the superblock has been read. It also checks various UBIFS parameters and
570  * makes sure they are all right. Returns zero in case of success and a
571  * negative error code in case of failure.
572  */
573 static int init_constants_late(struct ubifs_info *c)
574 {
575 	int tmp, err;
576 	uint64_t tmp64;
577 
578 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
579 	c->max_znode_sz = sizeof(struct ubifs_znode) +
580 				c->fanout * sizeof(struct ubifs_zbranch);
581 
582 	tmp = ubifs_idx_node_sz(c, 1);
583 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
584 	c->min_idx_node_sz = ALIGN(tmp, 8);
585 
586 	tmp = ubifs_idx_node_sz(c, c->fanout);
587 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
588 	c->max_idx_node_sz = ALIGN(tmp, 8);
589 
590 	/* Make sure LEB size is large enough to fit full commit */
591 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
592 	tmp = ALIGN(tmp, c->min_io_size);
593 	if (tmp > c->leb_size) {
594 		dbg_err("too small LEB size %d, at least %d needed",
595 			c->leb_size, tmp);
596 		return -EINVAL;
597 	}
598 
599 	/*
600 	 * Make sure that the log is large enough to fit reference nodes for
601 	 * all buds plus one reserved LEB.
602 	 */
603 	tmp64 = c->max_bud_bytes;
604 	tmp = do_div(tmp64, c->leb_size);
605 	c->max_bud_cnt = tmp64 + !!tmp;
606 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
607 	tmp /= c->leb_size;
608 	tmp += 1;
609 	if (c->log_lebs < tmp) {
610 		dbg_err("too small log %d LEBs, required min. %d LEBs",
611 			c->log_lebs, tmp);
612 		return -EINVAL;
613 	}
614 
615 	/*
616 	 * When budgeting we assume worst-case scenarios when the pages are not
617 	 * be compressed and direntries are of the maximum size.
618 	 *
619 	 * Note, data, which may be stored in inodes is budgeted separately, so
620 	 * it is not included into 'c->inode_budget'.
621 	 */
622 	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
623 	c->inode_budget = UBIFS_INO_NODE_SZ;
624 	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
625 
626 	/*
627 	 * When the amount of flash space used by buds becomes
628 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
629 	 * The writers are unblocked when the commit is finished. To avoid
630 	 * writers to be blocked UBIFS initiates background commit in advance,
631 	 * when number of bud bytes becomes above the limit defined below.
632 	 */
633 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
634 
635 	/*
636 	 * Ensure minimum journal size. All the bytes in the journal heads are
637 	 * considered to be used, when calculating the current journal usage.
638 	 * Consequently, if the journal is too small, UBIFS will treat it as
639 	 * always full.
640 	 */
641 	tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
642 	if (c->bg_bud_bytes < tmp64)
643 		c->bg_bud_bytes = tmp64;
644 	if (c->max_bud_bytes < tmp64 + c->leb_size)
645 		c->max_bud_bytes = tmp64 + c->leb_size;
646 
647 	err = ubifs_calc_lpt_geom(c);
648 	if (err)
649 		return err;
650 
651 	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
652 
653 	/*
654 	 * Calculate total amount of FS blocks. This number is not used
655 	 * internally because it does not make much sense for UBIFS, but it is
656 	 * necessary to report something for the 'statfs()' call.
657 	 *
658 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
659 	 * deletions, and assume only one journal head is available.
660 	 */
661 	tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
662 	tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
663 	tmp64 = ubifs_reported_space(c, tmp64);
664 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
665 
666 	return 0;
667 }
668 
669 /**
670  * take_gc_lnum - reserve GC LEB.
671  * @c: UBIFS file-system description object
672  *
673  * This function ensures that the LEB reserved for garbage collection is
674  * unmapped and is marked as "taken" in lprops. We also have to set free space
675  * to LEB size and dirty space to zero, because lprops may contain out-of-date
676  * information if the file-system was un-mounted before it has been committed.
677  * This function returns zero in case of success and a negative error code in
678  * case of failure.
679  */
680 static int take_gc_lnum(struct ubifs_info *c)
681 {
682 	int err;
683 
684 	if (c->gc_lnum == -1) {
685 		ubifs_err("no LEB for GC");
686 		return -EINVAL;
687 	}
688 
689 	err = ubifs_leb_unmap(c, c->gc_lnum);
690 	if (err)
691 		return err;
692 
693 	/* And we have to tell lprops that this LEB is taken */
694 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
695 				  LPROPS_TAKEN, 0, 0);
696 	return err;
697 }
698 
699 /**
700  * alloc_wbufs - allocate write-buffers.
701  * @c: UBIFS file-system description object
702  *
703  * This helper function allocates and initializes UBIFS write-buffers. Returns
704  * zero in case of success and %-ENOMEM in case of failure.
705  */
706 static int alloc_wbufs(struct ubifs_info *c)
707 {
708 	int i, err;
709 
710 	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
711 			   GFP_KERNEL);
712 	if (!c->jheads)
713 		return -ENOMEM;
714 
715 	/* Initialize journal heads */
716 	for (i = 0; i < c->jhead_cnt; i++) {
717 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
718 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
719 		if (err)
720 			return err;
721 
722 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
723 		c->jheads[i].wbuf.jhead = i;
724 	}
725 
726 	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
727 	/*
728 	 * Garbage Collector head likely contains long-term data and
729 	 * does not need to be synchronized by timer.
730 	 */
731 	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
732 	c->jheads[GCHD].wbuf.timeout = 0;
733 
734 	return 0;
735 }
736 
737 /**
738  * free_wbufs - free write-buffers.
739  * @c: UBIFS file-system description object
740  */
741 static void free_wbufs(struct ubifs_info *c)
742 {
743 	int i;
744 
745 	if (c->jheads) {
746 		for (i = 0; i < c->jhead_cnt; i++) {
747 			kfree(c->jheads[i].wbuf.buf);
748 			kfree(c->jheads[i].wbuf.inodes);
749 		}
750 		kfree(c->jheads);
751 		c->jheads = NULL;
752 	}
753 }
754 
755 /**
756  * free_orphans - free orphans.
757  * @c: UBIFS file-system description object
758  */
759 static void free_orphans(struct ubifs_info *c)
760 {
761 	struct ubifs_orphan *orph;
762 
763 	while (c->orph_dnext) {
764 		orph = c->orph_dnext;
765 		c->orph_dnext = orph->dnext;
766 		list_del(&orph->list);
767 		kfree(orph);
768 	}
769 
770 	while (!list_empty(&c->orph_list)) {
771 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
772 		list_del(&orph->list);
773 		kfree(orph);
774 		dbg_err("orphan list not empty at unmount");
775 	}
776 
777 	vfree(c->orph_buf);
778 	c->orph_buf = NULL;
779 }
780 
781 /**
782  * free_buds - free per-bud objects.
783  * @c: UBIFS file-system description object
784  */
785 static void free_buds(struct ubifs_info *c)
786 {
787 	struct rb_node *this = c->buds.rb_node;
788 	struct ubifs_bud *bud;
789 
790 	while (this) {
791 		if (this->rb_left)
792 			this = this->rb_left;
793 		else if (this->rb_right)
794 			this = this->rb_right;
795 		else {
796 			bud = rb_entry(this, struct ubifs_bud, rb);
797 			this = rb_parent(this);
798 			if (this) {
799 				if (this->rb_left == &bud->rb)
800 					this->rb_left = NULL;
801 				else
802 					this->rb_right = NULL;
803 			}
804 			kfree(bud);
805 		}
806 	}
807 }
808 
809 /**
810  * check_volume_empty - check if the UBI volume is empty.
811  * @c: UBIFS file-system description object
812  *
813  * This function checks if the UBIFS volume is empty by looking if its LEBs are
814  * mapped or not. The result of checking is stored in the @c->empty variable.
815  * Returns zero in case of success and a negative error code in case of
816  * failure.
817  */
818 static int check_volume_empty(struct ubifs_info *c)
819 {
820 	int lnum, err;
821 
822 	c->empty = 1;
823 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
824 		err = ubi_is_mapped(c->ubi, lnum);
825 		if (unlikely(err < 0))
826 			return err;
827 		if (err == 1) {
828 			c->empty = 0;
829 			break;
830 		}
831 
832 		cond_resched();
833 	}
834 
835 	return 0;
836 }
837 
838 /*
839  * UBIFS mount options.
840  *
841  * Opt_fast_unmount: do not run a journal commit before un-mounting
842  * Opt_norm_unmount: run a journal commit before un-mounting
843  * Opt_err: just end of array marker
844  */
845 enum {
846 	Opt_fast_unmount,
847 	Opt_norm_unmount,
848 	Opt_err,
849 };
850 
851 static match_table_t tokens = {
852 	{Opt_fast_unmount, "fast_unmount"},
853 	{Opt_norm_unmount, "norm_unmount"},
854 	{Opt_err, NULL},
855 };
856 
857 /**
858  * ubifs_parse_options - parse mount parameters.
859  * @c: UBIFS file-system description object
860  * @options: parameters to parse
861  * @is_remount: non-zero if this is FS re-mount
862  *
863  * This function parses UBIFS mount options and returns zero in case success
864  * and a negative error code in case of failure.
865  */
866 static int ubifs_parse_options(struct ubifs_info *c, char *options,
867 			       int is_remount)
868 {
869 	char *p;
870 	substring_t args[MAX_OPT_ARGS];
871 
872 	if (!options)
873 		return 0;
874 
875 	while ((p = strsep(&options, ","))) {
876 		int token;
877 
878 		if (!*p)
879 			continue;
880 
881 		token = match_token(p, tokens, args);
882 		switch (token) {
883 		case Opt_fast_unmount:
884 			c->mount_opts.unmount_mode = 2;
885 			c->fast_unmount = 1;
886 			break;
887 		case Opt_norm_unmount:
888 			c->mount_opts.unmount_mode = 1;
889 			c->fast_unmount = 0;
890 			break;
891 		default:
892 			ubifs_err("unrecognized mount option \"%s\" "
893 				  "or missing value", p);
894 			return -EINVAL;
895 		}
896 	}
897 
898 	return 0;
899 }
900 
901 /**
902  * destroy_journal - destroy journal data structures.
903  * @c: UBIFS file-system description object
904  *
905  * This function destroys journal data structures including those that may have
906  * been created by recovery functions.
907  */
908 static void destroy_journal(struct ubifs_info *c)
909 {
910 	while (!list_empty(&c->unclean_leb_list)) {
911 		struct ubifs_unclean_leb *ucleb;
912 
913 		ucleb = list_entry(c->unclean_leb_list.next,
914 				   struct ubifs_unclean_leb, list);
915 		list_del(&ucleb->list);
916 		kfree(ucleb);
917 	}
918 	while (!list_empty(&c->old_buds)) {
919 		struct ubifs_bud *bud;
920 
921 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
922 		list_del(&bud->list);
923 		kfree(bud);
924 	}
925 	ubifs_destroy_idx_gc(c);
926 	ubifs_destroy_size_tree(c);
927 	ubifs_tnc_close(c);
928 	free_buds(c);
929 }
930 
931 /**
932  * mount_ubifs - mount UBIFS file-system.
933  * @c: UBIFS file-system description object
934  *
935  * This function mounts UBIFS file system. Returns zero in case of success and
936  * a negative error code in case of failure.
937  *
938  * Note, the function does not de-allocate resources it it fails half way
939  * through, and the caller has to do this instead.
940  */
941 static int mount_ubifs(struct ubifs_info *c)
942 {
943 	struct super_block *sb = c->vfs_sb;
944 	int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
945 	long long x;
946 	size_t sz;
947 
948 	err = init_constants_early(c);
949 	if (err)
950 		return err;
951 
952 #ifdef CONFIG_UBIFS_FS_DEBUG
953 	c->dbg_buf = vmalloc(c->leb_size);
954 	if (!c->dbg_buf)
955 		return -ENOMEM;
956 #endif
957 
958 	err = check_volume_empty(c);
959 	if (err)
960 		goto out_free;
961 
962 	if (c->empty && (mounted_read_only || c->ro_media)) {
963 		/*
964 		 * This UBI volume is empty, and read-only, or the file system
965 		 * is mounted read-only - we cannot format it.
966 		 */
967 		ubifs_err("can't format empty UBI volume: read-only %s",
968 			  c->ro_media ? "UBI volume" : "mount");
969 		err = -EROFS;
970 		goto out_free;
971 	}
972 
973 	if (c->ro_media && !mounted_read_only) {
974 		ubifs_err("cannot mount read-write - read-only media");
975 		err = -EROFS;
976 		goto out_free;
977 	}
978 
979 	/*
980 	 * The requirement for the buffer is that it should fit indexing B-tree
981 	 * height amount of integers. We assume the height if the TNC tree will
982 	 * never exceed 64.
983 	 */
984 	err = -ENOMEM;
985 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
986 	if (!c->bottom_up_buf)
987 		goto out_free;
988 
989 	c->sbuf = vmalloc(c->leb_size);
990 	if (!c->sbuf)
991 		goto out_free;
992 
993 	if (!mounted_read_only) {
994 		c->ileb_buf = vmalloc(c->leb_size);
995 		if (!c->ileb_buf)
996 			goto out_free;
997 	}
998 
999 	err = ubifs_read_superblock(c);
1000 	if (err)
1001 		goto out_free;
1002 
1003 	/*
1004 	 * Make sure the compressor which is set as the default on in the
1005 	 * superblock was actually compiled in.
1006 	 */
1007 	if (!ubifs_compr_present(c->default_compr)) {
1008 		ubifs_warn("'%s' compressor is set by superblock, but not "
1009 			   "compiled in", ubifs_compr_name(c->default_compr));
1010 		c->default_compr = UBIFS_COMPR_NONE;
1011 	}
1012 
1013 	dbg_failure_mode_registration(c);
1014 
1015 	err = init_constants_late(c);
1016 	if (err)
1017 		goto out_dereg;
1018 
1019 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1020 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1021 	c->cbuf = kmalloc(sz, GFP_NOFS);
1022 	if (!c->cbuf) {
1023 		err = -ENOMEM;
1024 		goto out_dereg;
1025 	}
1026 
1027 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1028 	if (!mounted_read_only) {
1029 		err = alloc_wbufs(c);
1030 		if (err)
1031 			goto out_cbuf;
1032 
1033 		/* Create background thread */
1034 		c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1035 		if (!c->bgt)
1036 			c->bgt = ERR_PTR(-EINVAL);
1037 		if (IS_ERR(c->bgt)) {
1038 			err = PTR_ERR(c->bgt);
1039 			c->bgt = NULL;
1040 			ubifs_err("cannot spawn \"%s\", error %d",
1041 				  c->bgt_name, err);
1042 			goto out_wbufs;
1043 		}
1044 		wake_up_process(c->bgt);
1045 	}
1046 
1047 	err = ubifs_read_master(c);
1048 	if (err)
1049 		goto out_master;
1050 
1051 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1052 		ubifs_msg("recovery needed");
1053 		c->need_recovery = 1;
1054 		if (!mounted_read_only) {
1055 			err = ubifs_recover_inl_heads(c, c->sbuf);
1056 			if (err)
1057 				goto out_master;
1058 		}
1059 	} else if (!mounted_read_only) {
1060 		/*
1061 		 * Set the "dirty" flag so that if we reboot uncleanly we
1062 		 * will notice this immediately on the next mount.
1063 		 */
1064 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1065 		err = ubifs_write_master(c);
1066 		if (err)
1067 			goto out_master;
1068 	}
1069 
1070 	err = ubifs_lpt_init(c, 1, !mounted_read_only);
1071 	if (err)
1072 		goto out_lpt;
1073 
1074 	err = dbg_check_idx_size(c, c->old_idx_sz);
1075 	if (err)
1076 		goto out_lpt;
1077 
1078 	err = ubifs_replay_journal(c);
1079 	if (err)
1080 		goto out_journal;
1081 
1082 	err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1083 	if (err)
1084 		goto out_orphans;
1085 
1086 	if (!mounted_read_only) {
1087 		int lnum;
1088 
1089 		/* Check for enough free space */
1090 		if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1091 			ubifs_err("insufficient available space");
1092 			err = -EINVAL;
1093 			goto out_orphans;
1094 		}
1095 
1096 		/* Check for enough log space */
1097 		lnum = c->lhead_lnum + 1;
1098 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1099 			lnum = UBIFS_LOG_LNUM;
1100 		if (lnum == c->ltail_lnum) {
1101 			err = ubifs_consolidate_log(c);
1102 			if (err)
1103 				goto out_orphans;
1104 		}
1105 
1106 		if (c->need_recovery) {
1107 			err = ubifs_recover_size(c);
1108 			if (err)
1109 				goto out_orphans;
1110 			err = ubifs_rcvry_gc_commit(c);
1111 		} else
1112 			err = take_gc_lnum(c);
1113 		if (err)
1114 			goto out_orphans;
1115 
1116 		err = dbg_check_lprops(c);
1117 		if (err)
1118 			goto out_orphans;
1119 	} else if (c->need_recovery) {
1120 		err = ubifs_recover_size(c);
1121 		if (err)
1122 			goto out_orphans;
1123 	}
1124 
1125 	spin_lock(&ubifs_infos_lock);
1126 	list_add_tail(&c->infos_list, &ubifs_infos);
1127 	spin_unlock(&ubifs_infos_lock);
1128 
1129 	if (c->need_recovery) {
1130 		if (mounted_read_only)
1131 			ubifs_msg("recovery deferred");
1132 		else {
1133 			c->need_recovery = 0;
1134 			ubifs_msg("recovery completed");
1135 		}
1136 	}
1137 
1138 	err = dbg_check_filesystem(c);
1139 	if (err)
1140 		goto out_infos;
1141 
1142 	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1143 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1144 	if (mounted_read_only)
1145 		ubifs_msg("mounted read-only");
1146 	x = (long long)c->main_lebs * c->leb_size;
1147 	ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1148 		  x, x >> 10, x >> 20, c->main_lebs);
1149 	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1150 	ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1151 		  x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1152 	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1153 	ubifs_msg("media format %d, latest format %d",
1154 		  c->fmt_version, UBIFS_FORMAT_VERSION);
1155 
1156 	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1157 	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1158 	dbg_msg("LEB size:            %d bytes (%d KiB)",
1159 		c->leb_size, c->leb_size / 1024);
1160 	dbg_msg("data journal heads:  %d",
1161 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1162 	dbg_msg("UUID:                %02X%02X%02X%02X-%02X%02X"
1163 	       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1164 	       c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1165 	       c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1166 	       c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1167 	       c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1168 	dbg_msg("fast unmount:        %d", c->fast_unmount);
1169 	dbg_msg("big_lpt              %d", c->big_lpt);
1170 	dbg_msg("log LEBs:            %d (%d - %d)",
1171 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1172 	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1173 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1174 	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1175 		c->orph_lebs, c->orph_first, c->orph_last);
1176 	dbg_msg("main area LEBs:      %d (%d - %d)",
1177 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1178 	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1179 	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1180 		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1181 	dbg_msg("key hash type:       %d", c->key_hash_type);
1182 	dbg_msg("tree fanout:         %d", c->fanout);
1183 	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1184 	dbg_msg("first main LEB:      %d", c->main_first);
1185 	dbg_msg("dead watermark:      %d", c->dead_wm);
1186 	dbg_msg("dark watermark:      %d", c->dark_wm);
1187 	x = (long long)c->main_lebs * c->dark_wm;
1188 	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1189 		x, x >> 10, x >> 20);
1190 	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1191 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1192 		c->max_bud_bytes >> 20);
1193 	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1194 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1195 		c->bg_bud_bytes >> 20);
1196 	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1197 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1198 	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1199 	dbg_msg("commit number:       %llu", c->cmt_no);
1200 
1201 	return 0;
1202 
1203 out_infos:
1204 	spin_lock(&ubifs_infos_lock);
1205 	list_del(&c->infos_list);
1206 	spin_unlock(&ubifs_infos_lock);
1207 out_orphans:
1208 	free_orphans(c);
1209 out_journal:
1210 	destroy_journal(c);
1211 out_lpt:
1212 	ubifs_lpt_free(c, 0);
1213 out_master:
1214 	kfree(c->mst_node);
1215 	kfree(c->rcvrd_mst_node);
1216 	if (c->bgt)
1217 		kthread_stop(c->bgt);
1218 out_wbufs:
1219 	free_wbufs(c);
1220 out_cbuf:
1221 	kfree(c->cbuf);
1222 out_dereg:
1223 	dbg_failure_mode_deregistration(c);
1224 out_free:
1225 	vfree(c->ileb_buf);
1226 	vfree(c->sbuf);
1227 	kfree(c->bottom_up_buf);
1228 	UBIFS_DBG(vfree(c->dbg_buf));
1229 	return err;
1230 }
1231 
1232 /**
1233  * ubifs_umount - un-mount UBIFS file-system.
1234  * @c: UBIFS file-system description object
1235  *
1236  * Note, this function is called to free allocated resourced when un-mounting,
1237  * as well as free resources when an error occurred while we were half way
1238  * through mounting (error path cleanup function). So it has to make sure the
1239  * resource was actually allocated before freeing it.
1240  */
1241 static void ubifs_umount(struct ubifs_info *c)
1242 {
1243 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1244 		c->vi.vol_id);
1245 
1246 	spin_lock(&ubifs_infos_lock);
1247 	list_del(&c->infos_list);
1248 	spin_unlock(&ubifs_infos_lock);
1249 
1250 	if (c->bgt)
1251 		kthread_stop(c->bgt);
1252 
1253 	destroy_journal(c);
1254 	free_wbufs(c);
1255 	free_orphans(c);
1256 	ubifs_lpt_free(c, 0);
1257 
1258 	kfree(c->cbuf);
1259 	kfree(c->rcvrd_mst_node);
1260 	kfree(c->mst_node);
1261 	vfree(c->sbuf);
1262 	kfree(c->bottom_up_buf);
1263 	UBIFS_DBG(vfree(c->dbg_buf));
1264 	vfree(c->ileb_buf);
1265 	dbg_failure_mode_deregistration(c);
1266 }
1267 
1268 /**
1269  * ubifs_remount_rw - re-mount in read-write mode.
1270  * @c: UBIFS file-system description object
1271  *
1272  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1273  * mode. This function allocates the needed resources and re-mounts UBIFS in
1274  * read-write mode.
1275  */
1276 static int ubifs_remount_rw(struct ubifs_info *c)
1277 {
1278 	int err, lnum;
1279 
1280 	if (c->ro_media)
1281 		return -EINVAL;
1282 
1283 	mutex_lock(&c->umount_mutex);
1284 	c->remounting_rw = 1;
1285 
1286 	/* Check for enough free space */
1287 	if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1288 		ubifs_err("insufficient available space");
1289 		err = -EINVAL;
1290 		goto out;
1291 	}
1292 
1293 	if (c->old_leb_cnt != c->leb_cnt) {
1294 		struct ubifs_sb_node *sup;
1295 
1296 		sup = ubifs_read_sb_node(c);
1297 		if (IS_ERR(sup)) {
1298 			err = PTR_ERR(sup);
1299 			goto out;
1300 		}
1301 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1302 		err = ubifs_write_sb_node(c, sup);
1303 		if (err)
1304 			goto out;
1305 	}
1306 
1307 	if (c->need_recovery) {
1308 		ubifs_msg("completing deferred recovery");
1309 		err = ubifs_write_rcvrd_mst_node(c);
1310 		if (err)
1311 			goto out;
1312 		err = ubifs_recover_size(c);
1313 		if (err)
1314 			goto out;
1315 		err = ubifs_clean_lebs(c, c->sbuf);
1316 		if (err)
1317 			goto out;
1318 		err = ubifs_recover_inl_heads(c, c->sbuf);
1319 		if (err)
1320 			goto out;
1321 	}
1322 
1323 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1324 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1325 		err = ubifs_write_master(c);
1326 		if (err)
1327 			goto out;
1328 	}
1329 
1330 	c->ileb_buf = vmalloc(c->leb_size);
1331 	if (!c->ileb_buf) {
1332 		err = -ENOMEM;
1333 		goto out;
1334 	}
1335 
1336 	err = ubifs_lpt_init(c, 0, 1);
1337 	if (err)
1338 		goto out;
1339 
1340 	err = alloc_wbufs(c);
1341 	if (err)
1342 		goto out;
1343 
1344 	ubifs_create_buds_lists(c);
1345 
1346 	/* Create background thread */
1347 	c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1348 	if (!c->bgt)
1349 		c->bgt = ERR_PTR(-EINVAL);
1350 	if (IS_ERR(c->bgt)) {
1351 		err = PTR_ERR(c->bgt);
1352 		c->bgt = NULL;
1353 		ubifs_err("cannot spawn \"%s\", error %d",
1354 			  c->bgt_name, err);
1355 		return err;
1356 	}
1357 	wake_up_process(c->bgt);
1358 
1359 	c->orph_buf = vmalloc(c->leb_size);
1360 	if (!c->orph_buf)
1361 		return -ENOMEM;
1362 
1363 	/* Check for enough log space */
1364 	lnum = c->lhead_lnum + 1;
1365 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1366 		lnum = UBIFS_LOG_LNUM;
1367 	if (lnum == c->ltail_lnum) {
1368 		err = ubifs_consolidate_log(c);
1369 		if (err)
1370 			goto out;
1371 	}
1372 
1373 	if (c->need_recovery)
1374 		err = ubifs_rcvry_gc_commit(c);
1375 	else
1376 		err = take_gc_lnum(c);
1377 	if (err)
1378 		goto out;
1379 
1380 	if (c->need_recovery) {
1381 		c->need_recovery = 0;
1382 		ubifs_msg("deferred recovery completed");
1383 	}
1384 
1385 	dbg_gen("re-mounted read-write");
1386 	c->vfs_sb->s_flags &= ~MS_RDONLY;
1387 	c->remounting_rw = 0;
1388 	mutex_unlock(&c->umount_mutex);
1389 	return 0;
1390 
1391 out:
1392 	vfree(c->orph_buf);
1393 	c->orph_buf = NULL;
1394 	if (c->bgt) {
1395 		kthread_stop(c->bgt);
1396 		c->bgt = NULL;
1397 	}
1398 	free_wbufs(c);
1399 	vfree(c->ileb_buf);
1400 	c->ileb_buf = NULL;
1401 	ubifs_lpt_free(c, 1);
1402 	c->remounting_rw = 0;
1403 	mutex_unlock(&c->umount_mutex);
1404 	return err;
1405 }
1406 
1407 /**
1408  * commit_on_unmount - commit the journal when un-mounting.
1409  * @c: UBIFS file-system description object
1410  *
1411  * This function is called during un-mounting and it commits the journal unless
1412  * the "fast unmount" mode is enabled. It also avoids committing the journal if
1413  * it contains too few data.
1414  *
1415  * Sometimes recovery requires the journal to be committed at least once, and
1416  * this function takes care about this.
1417  */
1418 static void commit_on_unmount(struct ubifs_info *c)
1419 {
1420 	if (!c->fast_unmount) {
1421 		long long bud_bytes;
1422 
1423 		spin_lock(&c->buds_lock);
1424 		bud_bytes = c->bud_bytes;
1425 		spin_unlock(&c->buds_lock);
1426 		if (bud_bytes > c->leb_size)
1427 			ubifs_run_commit(c);
1428 	}
1429 }
1430 
1431 /**
1432  * ubifs_remount_ro - re-mount in read-only mode.
1433  * @c: UBIFS file-system description object
1434  *
1435  * We rely on VFS to have stopped writing. Possibly the background thread could
1436  * be running a commit, however kthread_stop will wait in that case.
1437  */
1438 static void ubifs_remount_ro(struct ubifs_info *c)
1439 {
1440 	int i, err;
1441 
1442 	ubifs_assert(!c->need_recovery);
1443 	commit_on_unmount(c);
1444 
1445 	mutex_lock(&c->umount_mutex);
1446 	if (c->bgt) {
1447 		kthread_stop(c->bgt);
1448 		c->bgt = NULL;
1449 	}
1450 
1451 	for (i = 0; i < c->jhead_cnt; i++) {
1452 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1453 		del_timer_sync(&c->jheads[i].wbuf.timer);
1454 	}
1455 
1456 	if (!c->ro_media) {
1457 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1458 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1459 		c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1460 		err = ubifs_write_master(c);
1461 		if (err)
1462 			ubifs_ro_mode(c, err);
1463 	}
1464 
1465 	ubifs_destroy_idx_gc(c);
1466 	free_wbufs(c);
1467 	vfree(c->orph_buf);
1468 	c->orph_buf = NULL;
1469 	vfree(c->ileb_buf);
1470 	c->ileb_buf = NULL;
1471 	ubifs_lpt_free(c, 1);
1472 	mutex_unlock(&c->umount_mutex);
1473 }
1474 
1475 static void ubifs_put_super(struct super_block *sb)
1476 {
1477 	int i;
1478 	struct ubifs_info *c = sb->s_fs_info;
1479 
1480 	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1481 		  c->vi.vol_id);
1482 	/*
1483 	 * The following asserts are only valid if there has not been a failure
1484 	 * of the media. For example, there will be dirty inodes if we failed
1485 	 * to write them back because of I/O errors.
1486 	 */
1487 	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1488 	ubifs_assert(c->budg_idx_growth == 0);
1489 	ubifs_assert(c->budg_dd_growth == 0);
1490 	ubifs_assert(c->budg_data_growth == 0);
1491 
1492 	/*
1493 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1494 	 * and file system un-mount. Namely, it prevents the shrinker from
1495 	 * picking this superblock for shrinking - it will be just skipped if
1496 	 * the mutex is locked.
1497 	 */
1498 	mutex_lock(&c->umount_mutex);
1499 	if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1500 		/*
1501 		 * First of all kill the background thread to make sure it does
1502 		 * not interfere with un-mounting and freeing resources.
1503 		 */
1504 		if (c->bgt) {
1505 			kthread_stop(c->bgt);
1506 			c->bgt = NULL;
1507 		}
1508 
1509 		/* Synchronize write-buffers */
1510 		if (c->jheads)
1511 			for (i = 0; i < c->jhead_cnt; i++) {
1512 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1513 				del_timer_sync(&c->jheads[i].wbuf.timer);
1514 			}
1515 
1516 		/*
1517 		 * On fatal errors c->ro_media is set to 1, in which case we do
1518 		 * not write the master node.
1519 		 */
1520 		if (!c->ro_media) {
1521 			/*
1522 			 * We are being cleanly unmounted which means the
1523 			 * orphans were killed - indicate this in the master
1524 			 * node. Also save the reserved GC LEB number.
1525 			 */
1526 			int err;
1527 
1528 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1529 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1530 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1531 			err = ubifs_write_master(c);
1532 			if (err)
1533 				/*
1534 				 * Recovery will attempt to fix the master area
1535 				 * next mount, so we just print a message and
1536 				 * continue to unmount normally.
1537 				 */
1538 				ubifs_err("failed to write master node, "
1539 					  "error %d", err);
1540 		}
1541 	}
1542 
1543 	ubifs_umount(c);
1544 	bdi_destroy(&c->bdi);
1545 	ubi_close_volume(c->ubi);
1546 	mutex_unlock(&c->umount_mutex);
1547 	kfree(c);
1548 }
1549 
1550 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1551 {
1552 	int err;
1553 	struct ubifs_info *c = sb->s_fs_info;
1554 
1555 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1556 
1557 	err = ubifs_parse_options(c, data, 1);
1558 	if (err) {
1559 		ubifs_err("invalid or unknown remount parameter");
1560 		return err;
1561 	}
1562 	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1563 		err = ubifs_remount_rw(c);
1564 		if (err)
1565 			return err;
1566 	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1567 		ubifs_remount_ro(c);
1568 
1569 	return 0;
1570 }
1571 
1572 struct super_operations ubifs_super_operations = {
1573 	.alloc_inode   = ubifs_alloc_inode,
1574 	.destroy_inode = ubifs_destroy_inode,
1575 	.put_super     = ubifs_put_super,
1576 	.write_inode   = ubifs_write_inode,
1577 	.delete_inode  = ubifs_delete_inode,
1578 	.statfs        = ubifs_statfs,
1579 	.dirty_inode   = ubifs_dirty_inode,
1580 	.remount_fs    = ubifs_remount_fs,
1581 	.show_options  = ubifs_show_options,
1582 	.sync_fs       = ubifs_sync_fs,
1583 };
1584 
1585 /**
1586  * open_ubi - parse UBI device name string and open the UBI device.
1587  * @name: UBI volume name
1588  * @mode: UBI volume open mode
1589  *
1590  * There are several ways to specify UBI volumes when mounting UBIFS:
1591  * o ubiX_Y    - UBI device number X, volume Y;
1592  * o ubiY      - UBI device number 0, volume Y;
1593  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1594  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1595  *
1596  * Alternative '!' separator may be used instead of ':' (because some shells
1597  * like busybox may interpret ':' as an NFS host name separator). This function
1598  * returns ubi volume object in case of success and a negative error code in
1599  * case of failure.
1600  */
1601 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1602 {
1603 	int dev, vol;
1604 	char *endptr;
1605 
1606 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1607 		return ERR_PTR(-EINVAL);
1608 
1609 	/* ubi:NAME method */
1610 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1611 		return ubi_open_volume_nm(0, name + 4, mode);
1612 
1613 	if (!isdigit(name[3]))
1614 		return ERR_PTR(-EINVAL);
1615 
1616 	dev = simple_strtoul(name + 3, &endptr, 0);
1617 
1618 	/* ubiY method */
1619 	if (*endptr == '\0')
1620 		return ubi_open_volume(0, dev, mode);
1621 
1622 	/* ubiX_Y method */
1623 	if (*endptr == '_' && isdigit(endptr[1])) {
1624 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1625 		if (*endptr != '\0')
1626 			return ERR_PTR(-EINVAL);
1627 		return ubi_open_volume(dev, vol, mode);
1628 	}
1629 
1630 	/* ubiX:NAME method */
1631 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1632 		return ubi_open_volume_nm(dev, ++endptr, mode);
1633 
1634 	return ERR_PTR(-EINVAL);
1635 }
1636 
1637 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1638 {
1639 	struct ubi_volume_desc *ubi = sb->s_fs_info;
1640 	struct ubifs_info *c;
1641 	struct inode *root;
1642 	int err;
1643 
1644 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1645 	if (!c)
1646 		return -ENOMEM;
1647 
1648 	spin_lock_init(&c->cnt_lock);
1649 	spin_lock_init(&c->cs_lock);
1650 	spin_lock_init(&c->buds_lock);
1651 	spin_lock_init(&c->space_lock);
1652 	spin_lock_init(&c->orphan_lock);
1653 	init_rwsem(&c->commit_sem);
1654 	mutex_init(&c->lp_mutex);
1655 	mutex_init(&c->tnc_mutex);
1656 	mutex_init(&c->log_mutex);
1657 	mutex_init(&c->mst_mutex);
1658 	mutex_init(&c->umount_mutex);
1659 	init_waitqueue_head(&c->cmt_wq);
1660 	c->buds = RB_ROOT;
1661 	c->old_idx = RB_ROOT;
1662 	c->size_tree = RB_ROOT;
1663 	c->orph_tree = RB_ROOT;
1664 	INIT_LIST_HEAD(&c->infos_list);
1665 	INIT_LIST_HEAD(&c->idx_gc);
1666 	INIT_LIST_HEAD(&c->replay_list);
1667 	INIT_LIST_HEAD(&c->replay_buds);
1668 	INIT_LIST_HEAD(&c->uncat_list);
1669 	INIT_LIST_HEAD(&c->empty_list);
1670 	INIT_LIST_HEAD(&c->freeable_list);
1671 	INIT_LIST_HEAD(&c->frdi_idx_list);
1672 	INIT_LIST_HEAD(&c->unclean_leb_list);
1673 	INIT_LIST_HEAD(&c->old_buds);
1674 	INIT_LIST_HEAD(&c->orph_list);
1675 	INIT_LIST_HEAD(&c->orph_new);
1676 
1677 	c->highest_inum = UBIFS_FIRST_INO;
1678 	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1679 
1680 	ubi_get_volume_info(ubi, &c->vi);
1681 	ubi_get_device_info(c->vi.ubi_num, &c->di);
1682 
1683 	/* Re-open the UBI device in read-write mode */
1684 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1685 	if (IS_ERR(c->ubi)) {
1686 		err = PTR_ERR(c->ubi);
1687 		goto out_free;
1688 	}
1689 
1690 	/*
1691 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1692 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1693 	 * which means the user would have to wait not just for their own I/O
1694 	 * but the read-ahead I/O as well i.e. completely pointless.
1695 	 *
1696 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1697 	 */
1698 	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1699 	c->bdi.unplug_io_fn = default_unplug_io_fn;
1700 	err  = bdi_init(&c->bdi);
1701 	if (err)
1702 		goto out_close;
1703 
1704 	err = ubifs_parse_options(c, data, 0);
1705 	if (err)
1706 		goto out_bdi;
1707 
1708 	c->vfs_sb = sb;
1709 
1710 	sb->s_fs_info = c;
1711 	sb->s_magic = UBIFS_SUPER_MAGIC;
1712 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1713 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1714 	sb->s_dev = c->vi.cdev;
1715 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1716 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
1717 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1718 	sb->s_op = &ubifs_super_operations;
1719 
1720 	mutex_lock(&c->umount_mutex);
1721 	err = mount_ubifs(c);
1722 	if (err) {
1723 		ubifs_assert(err < 0);
1724 		goto out_unlock;
1725 	}
1726 
1727 	/* Read the root inode */
1728 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
1729 	if (IS_ERR(root)) {
1730 		err = PTR_ERR(root);
1731 		goto out_umount;
1732 	}
1733 
1734 	sb->s_root = d_alloc_root(root);
1735 	if (!sb->s_root)
1736 		goto out_iput;
1737 
1738 	mutex_unlock(&c->umount_mutex);
1739 
1740 	return 0;
1741 
1742 out_iput:
1743 	iput(root);
1744 out_umount:
1745 	ubifs_umount(c);
1746 out_unlock:
1747 	mutex_unlock(&c->umount_mutex);
1748 out_bdi:
1749 	bdi_destroy(&c->bdi);
1750 out_close:
1751 	ubi_close_volume(c->ubi);
1752 out_free:
1753 	kfree(c);
1754 	return err;
1755 }
1756 
1757 static int sb_test(struct super_block *sb, void *data)
1758 {
1759 	dev_t *dev = data;
1760 
1761 	return sb->s_dev == *dev;
1762 }
1763 
1764 static int sb_set(struct super_block *sb, void *data)
1765 {
1766 	dev_t *dev = data;
1767 
1768 	sb->s_dev = *dev;
1769 	return 0;
1770 }
1771 
1772 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1773 			const char *name, void *data, struct vfsmount *mnt)
1774 {
1775 	struct ubi_volume_desc *ubi;
1776 	struct ubi_volume_info vi;
1777 	struct super_block *sb;
1778 	int err;
1779 
1780 	dbg_gen("name %s, flags %#x", name, flags);
1781 
1782 	/*
1783 	 * Get UBI device number and volume ID. Mount it read-only so far
1784 	 * because this might be a new mount point, and UBI allows only one
1785 	 * read-write user at a time.
1786 	 */
1787 	ubi = open_ubi(name, UBI_READONLY);
1788 	if (IS_ERR(ubi)) {
1789 		ubifs_err("cannot open \"%s\", error %d",
1790 			  name, (int)PTR_ERR(ubi));
1791 		return PTR_ERR(ubi);
1792 	}
1793 	ubi_get_volume_info(ubi, &vi);
1794 
1795 	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1796 
1797 	sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1798 	if (IS_ERR(sb)) {
1799 		err = PTR_ERR(sb);
1800 		goto out_close;
1801 	}
1802 
1803 	if (sb->s_root) {
1804 		/* A new mount point for already mounted UBIFS */
1805 		dbg_gen("this ubi volume is already mounted");
1806 		if ((flags ^ sb->s_flags) & MS_RDONLY) {
1807 			err = -EBUSY;
1808 			goto out_deact;
1809 		}
1810 	} else {
1811 		sb->s_flags = flags;
1812 		/*
1813 		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1814 		 * replaced by 'c'.
1815 		 */
1816 		sb->s_fs_info = ubi;
1817 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1818 		if (err)
1819 			goto out_deact;
1820 		/* We do not support atime */
1821 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1822 	}
1823 
1824 	/* 'fill_super()' opens ubi again so we must close it here */
1825 	ubi_close_volume(ubi);
1826 
1827 	return simple_set_mnt(mnt, sb);
1828 
1829 out_deact:
1830 	up_write(&sb->s_umount);
1831 	deactivate_super(sb);
1832 out_close:
1833 	ubi_close_volume(ubi);
1834 	return err;
1835 }
1836 
1837 static void ubifs_kill_sb(struct super_block *sb)
1838 {
1839 	struct ubifs_info *c = sb->s_fs_info;
1840 
1841 	/*
1842 	 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1843 	 * in order to be outside BKL.
1844 	 */
1845 	if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1846 		commit_on_unmount(c);
1847 	/* The un-mount routine is actually done in put_super() */
1848 	generic_shutdown_super(sb);
1849 }
1850 
1851 static struct file_system_type ubifs_fs_type = {
1852 	.name    = "ubifs",
1853 	.owner   = THIS_MODULE,
1854 	.get_sb  = ubifs_get_sb,
1855 	.kill_sb = ubifs_kill_sb
1856 };
1857 
1858 /*
1859  * Inode slab cache constructor.
1860  */
1861 static void inode_slab_ctor(void *obj)
1862 {
1863 	struct ubifs_inode *ui = obj;
1864 	inode_init_once(&ui->vfs_inode);
1865 }
1866 
1867 static int __init ubifs_init(void)
1868 {
1869 	int err;
1870 
1871 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1872 
1873 	/* Make sure node sizes are 8-byte aligned */
1874 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
1875 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
1876 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1877 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1878 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1879 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1880 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
1881 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
1882 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
1883 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
1884 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1885 
1886 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1887 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1888 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1889 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
1890 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
1891 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
1892 
1893 	/* Check min. node size */
1894 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
1895 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1896 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1897 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1898 
1899 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1900 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1901 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1902 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
1903 
1904 	/* Defined node sizes */
1905 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
1906 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1907 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1908 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1909 
1910 	/*
1911 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1912 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1913 	 */
1914 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1915 		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1916 			  " at least 4096 bytes",
1917 			  (unsigned int)PAGE_CACHE_SIZE);
1918 		return -EINVAL;
1919 	}
1920 
1921 	err = register_filesystem(&ubifs_fs_type);
1922 	if (err) {
1923 		ubifs_err("cannot register file system, error %d", err);
1924 		return err;
1925 	}
1926 
1927 	err = -ENOMEM;
1928 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1929 				sizeof(struct ubifs_inode), 0,
1930 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1931 				&inode_slab_ctor);
1932 	if (!ubifs_inode_slab)
1933 		goto out_reg;
1934 
1935 	register_shrinker(&ubifs_shrinker_info);
1936 
1937 	err = ubifs_compressors_init();
1938 	if (err)
1939 		goto out_compr;
1940 
1941 	return 0;
1942 
1943 out_compr:
1944 	unregister_shrinker(&ubifs_shrinker_info);
1945 	kmem_cache_destroy(ubifs_inode_slab);
1946 out_reg:
1947 	unregister_filesystem(&ubifs_fs_type);
1948 	return err;
1949 }
1950 /* late_initcall to let compressors initialize first */
1951 late_initcall(ubifs_init);
1952 
1953 static void __exit ubifs_exit(void)
1954 {
1955 	ubifs_assert(list_empty(&ubifs_infos));
1956 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1957 
1958 	ubifs_compressors_exit();
1959 	unregister_shrinker(&ubifs_shrinker_info);
1960 	kmem_cache_destroy(ubifs_inode_slab);
1961 	unregister_filesystem(&ubifs_fs_type);
1962 }
1963 module_exit(ubifs_exit);
1964 
1965 MODULE_LICENSE("GPL");
1966 MODULE_VERSION(__stringify(UBIFS_VERSION));
1967 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1968 MODULE_DESCRIPTION("UBIFS - UBI File System");
1969