1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= S_NOCMTIME; 132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 133 inode->i_flags |= S_NOATIME; 134 #endif 135 set_nlink(inode, le32_to_cpu(ino->nlink)); 136 i_uid_write(inode, le32_to_cpu(ino->uid)); 137 i_gid_write(inode, le32_to_cpu(ino->gid)); 138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 144 inode->i_mode = le32_to_cpu(ino->mode); 145 inode->i_size = le64_to_cpu(ino->size); 146 147 ui->data_len = le32_to_cpu(ino->data_len); 148 ui->flags = le32_to_cpu(ino->flags); 149 ui->compr_type = le16_to_cpu(ino->compr_type); 150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 152 ui->xattr_size = le32_to_cpu(ino->xattr_size); 153 ui->xattr_names = le32_to_cpu(ino->xattr_names); 154 ui->synced_i_size = ui->ui_size = inode->i_size; 155 156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 157 158 err = validate_inode(c, inode); 159 if (err) 160 goto out_invalid; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 inode->i_link = ui->data; 202 break; 203 case S_IFBLK: 204 case S_IFCHR: 205 { 206 dev_t rdev; 207 union ubifs_dev_desc *dev; 208 209 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 210 if (!ui->data) { 211 err = -ENOMEM; 212 goto out_ino; 213 } 214 215 dev = (union ubifs_dev_desc *)ino->data; 216 if (ui->data_len == sizeof(dev->new)) 217 rdev = new_decode_dev(le32_to_cpu(dev->new)); 218 else if (ui->data_len == sizeof(dev->huge)) 219 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 220 else { 221 err = 13; 222 goto out_invalid; 223 } 224 memcpy(ui->data, ino->data, ui->data_len); 225 inode->i_op = &ubifs_file_inode_operations; 226 init_special_inode(inode, inode->i_mode, rdev); 227 break; 228 } 229 case S_IFSOCK: 230 case S_IFIFO: 231 inode->i_op = &ubifs_file_inode_operations; 232 init_special_inode(inode, inode->i_mode, 0); 233 if (ui->data_len != 0) { 234 err = 14; 235 goto out_invalid; 236 } 237 break; 238 default: 239 err = 15; 240 goto out_invalid; 241 } 242 243 kfree(ino); 244 ubifs_set_inode_flags(inode); 245 unlock_new_inode(inode); 246 return inode; 247 248 out_invalid: 249 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 250 ubifs_dump_node(c, ino); 251 ubifs_dump_inode(c, inode); 252 err = -EINVAL; 253 out_ino: 254 kfree(ino); 255 out: 256 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 257 iget_failed(inode); 258 return ERR_PTR(err); 259 } 260 261 static struct inode *ubifs_alloc_inode(struct super_block *sb) 262 { 263 struct ubifs_inode *ui; 264 265 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 266 if (!ui) 267 return NULL; 268 269 memset((void *)ui + sizeof(struct inode), 0, 270 sizeof(struct ubifs_inode) - sizeof(struct inode)); 271 mutex_init(&ui->ui_mutex); 272 spin_lock_init(&ui->ui_lock); 273 return &ui->vfs_inode; 274 }; 275 276 static void ubifs_i_callback(struct rcu_head *head) 277 { 278 struct inode *inode = container_of(head, struct inode, i_rcu); 279 struct ubifs_inode *ui = ubifs_inode(inode); 280 kmem_cache_free(ubifs_inode_slab, ui); 281 } 282 283 static void ubifs_destroy_inode(struct inode *inode) 284 { 285 struct ubifs_inode *ui = ubifs_inode(inode); 286 287 kfree(ui->data); 288 call_rcu(&inode->i_rcu, ubifs_i_callback); 289 } 290 291 /* 292 * Note, Linux write-back code calls this without 'i_mutex'. 293 */ 294 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 295 { 296 int err = 0; 297 struct ubifs_info *c = inode->i_sb->s_fs_info; 298 struct ubifs_inode *ui = ubifs_inode(inode); 299 300 ubifs_assert(!ui->xattr); 301 if (is_bad_inode(inode)) 302 return 0; 303 304 mutex_lock(&ui->ui_mutex); 305 /* 306 * Due to races between write-back forced by budgeting 307 * (see 'sync_some_inodes()') and background write-back, the inode may 308 * have already been synchronized, do not do this again. This might 309 * also happen if it was synchronized in an VFS operation, e.g. 310 * 'ubifs_link()'. 311 */ 312 if (!ui->dirty) { 313 mutex_unlock(&ui->ui_mutex); 314 return 0; 315 } 316 317 /* 318 * As an optimization, do not write orphan inodes to the media just 319 * because this is not needed. 320 */ 321 dbg_gen("inode %lu, mode %#x, nlink %u", 322 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 323 if (inode->i_nlink) { 324 err = ubifs_jnl_write_inode(c, inode); 325 if (err) 326 ubifs_err(c, "can't write inode %lu, error %d", 327 inode->i_ino, err); 328 else 329 err = dbg_check_inode_size(c, inode, ui->ui_size); 330 } 331 332 ui->dirty = 0; 333 mutex_unlock(&ui->ui_mutex); 334 ubifs_release_dirty_inode_budget(c, ui); 335 return err; 336 } 337 338 static void ubifs_evict_inode(struct inode *inode) 339 { 340 int err; 341 struct ubifs_info *c = inode->i_sb->s_fs_info; 342 struct ubifs_inode *ui = ubifs_inode(inode); 343 344 if (ui->xattr) 345 /* 346 * Extended attribute inode deletions are fully handled in 347 * 'ubifs_removexattr()'. These inodes are special and have 348 * limited usage, so there is nothing to do here. 349 */ 350 goto out; 351 352 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 353 ubifs_assert(!atomic_read(&inode->i_count)); 354 355 truncate_inode_pages_final(&inode->i_data); 356 357 if (inode->i_nlink) 358 goto done; 359 360 if (is_bad_inode(inode)) 361 goto out; 362 363 ui->ui_size = inode->i_size = 0; 364 err = ubifs_jnl_delete_inode(c, inode); 365 if (err) 366 /* 367 * Worst case we have a lost orphan inode wasting space, so a 368 * simple error message is OK here. 369 */ 370 ubifs_err(c, "can't delete inode %lu, error %d", 371 inode->i_ino, err); 372 373 out: 374 if (ui->dirty) 375 ubifs_release_dirty_inode_budget(c, ui); 376 else { 377 /* We've deleted something - clean the "no space" flags */ 378 c->bi.nospace = c->bi.nospace_rp = 0; 379 smp_wmb(); 380 } 381 done: 382 clear_inode(inode); 383 } 384 385 static void ubifs_dirty_inode(struct inode *inode, int flags) 386 { 387 struct ubifs_inode *ui = ubifs_inode(inode); 388 389 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 390 if (!ui->dirty) { 391 ui->dirty = 1; 392 dbg_gen("inode %lu", inode->i_ino); 393 } 394 } 395 396 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 397 { 398 struct ubifs_info *c = dentry->d_sb->s_fs_info; 399 unsigned long long free; 400 __le32 *uuid = (__le32 *)c->uuid; 401 402 free = ubifs_get_free_space(c); 403 dbg_gen("free space %lld bytes (%lld blocks)", 404 free, free >> UBIFS_BLOCK_SHIFT); 405 406 buf->f_type = UBIFS_SUPER_MAGIC; 407 buf->f_bsize = UBIFS_BLOCK_SIZE; 408 buf->f_blocks = c->block_cnt; 409 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 410 if (free > c->report_rp_size) 411 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 412 else 413 buf->f_bavail = 0; 414 buf->f_files = 0; 415 buf->f_ffree = 0; 416 buf->f_namelen = UBIFS_MAX_NLEN; 417 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 418 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 419 ubifs_assert(buf->f_bfree <= c->block_cnt); 420 return 0; 421 } 422 423 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 424 { 425 struct ubifs_info *c = root->d_sb->s_fs_info; 426 427 if (c->mount_opts.unmount_mode == 2) 428 seq_puts(s, ",fast_unmount"); 429 else if (c->mount_opts.unmount_mode == 1) 430 seq_puts(s, ",norm_unmount"); 431 432 if (c->mount_opts.bulk_read == 2) 433 seq_puts(s, ",bulk_read"); 434 else if (c->mount_opts.bulk_read == 1) 435 seq_puts(s, ",no_bulk_read"); 436 437 if (c->mount_opts.chk_data_crc == 2) 438 seq_puts(s, ",chk_data_crc"); 439 else if (c->mount_opts.chk_data_crc == 1) 440 seq_puts(s, ",no_chk_data_crc"); 441 442 if (c->mount_opts.override_compr) { 443 seq_printf(s, ",compr=%s", 444 ubifs_compr_name(c->mount_opts.compr_type)); 445 } 446 447 return 0; 448 } 449 450 static int ubifs_sync_fs(struct super_block *sb, int wait) 451 { 452 int i, err; 453 struct ubifs_info *c = sb->s_fs_info; 454 455 /* 456 * Zero @wait is just an advisory thing to help the file system shove 457 * lots of data into the queues, and there will be the second 458 * '->sync_fs()' call, with non-zero @wait. 459 */ 460 if (!wait) 461 return 0; 462 463 /* 464 * Synchronize write buffers, because 'ubifs_run_commit()' does not 465 * do this if it waits for an already running commit. 466 */ 467 for (i = 0; i < c->jhead_cnt; i++) { 468 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 469 if (err) 470 return err; 471 } 472 473 /* 474 * Strictly speaking, it is not necessary to commit the journal here, 475 * synchronizing write-buffers would be enough. But committing makes 476 * UBIFS free space predictions much more accurate, so we want to let 477 * the user be able to get more accurate results of 'statfs()' after 478 * they synchronize the file system. 479 */ 480 err = ubifs_run_commit(c); 481 if (err) 482 return err; 483 484 return ubi_sync(c->vi.ubi_num); 485 } 486 487 /** 488 * init_constants_early - initialize UBIFS constants. 489 * @c: UBIFS file-system description object 490 * 491 * This function initialize UBIFS constants which do not need the superblock to 492 * be read. It also checks that the UBI volume satisfies basic UBIFS 493 * requirements. Returns zero in case of success and a negative error code in 494 * case of failure. 495 */ 496 static int init_constants_early(struct ubifs_info *c) 497 { 498 if (c->vi.corrupted) { 499 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 500 c->ro_media = 1; 501 } 502 503 if (c->di.ro_mode) { 504 ubifs_msg(c, "read-only UBI device"); 505 c->ro_media = 1; 506 } 507 508 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 509 ubifs_msg(c, "static UBI volume - read-only mode"); 510 c->ro_media = 1; 511 } 512 513 c->leb_cnt = c->vi.size; 514 c->leb_size = c->vi.usable_leb_size; 515 c->leb_start = c->di.leb_start; 516 c->half_leb_size = c->leb_size / 2; 517 c->min_io_size = c->di.min_io_size; 518 c->min_io_shift = fls(c->min_io_size) - 1; 519 c->max_write_size = c->di.max_write_size; 520 c->max_write_shift = fls(c->max_write_size) - 1; 521 522 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 523 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", 524 c->leb_size, UBIFS_MIN_LEB_SZ); 525 return -EINVAL; 526 } 527 528 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 529 ubifs_err(c, "too few LEBs (%d), min. is %d", 530 c->leb_cnt, UBIFS_MIN_LEB_CNT); 531 return -EINVAL; 532 } 533 534 if (!is_power_of_2(c->min_io_size)) { 535 ubifs_err(c, "bad min. I/O size %d", c->min_io_size); 536 return -EINVAL; 537 } 538 539 /* 540 * Maximum write size has to be greater or equivalent to min. I/O 541 * size, and be multiple of min. I/O size. 542 */ 543 if (c->max_write_size < c->min_io_size || 544 c->max_write_size % c->min_io_size || 545 !is_power_of_2(c->max_write_size)) { 546 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", 547 c->max_write_size, c->min_io_size); 548 return -EINVAL; 549 } 550 551 /* 552 * UBIFS aligns all node to 8-byte boundary, so to make function in 553 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 554 * less than 8. 555 */ 556 if (c->min_io_size < 8) { 557 c->min_io_size = 8; 558 c->min_io_shift = 3; 559 if (c->max_write_size < c->min_io_size) { 560 c->max_write_size = c->min_io_size; 561 c->max_write_shift = c->min_io_shift; 562 } 563 } 564 565 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 566 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 567 568 /* 569 * Initialize node length ranges which are mostly needed for node 570 * length validation. 571 */ 572 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 573 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 574 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 575 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 576 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 577 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 578 579 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 580 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 581 c->ranges[UBIFS_ORPH_NODE].min_len = 582 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 583 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 584 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 585 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 586 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 587 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 588 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 589 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 590 /* 591 * Minimum indexing node size is amended later when superblock is 592 * read and the key length is known. 593 */ 594 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 595 /* 596 * Maximum indexing node size is amended later when superblock is 597 * read and the fanout is known. 598 */ 599 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 600 601 /* 602 * Initialize dead and dark LEB space watermarks. See gc.c for comments 603 * about these values. 604 */ 605 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 606 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 607 608 /* 609 * Calculate how many bytes would be wasted at the end of LEB if it was 610 * fully filled with data nodes of maximum size. This is used in 611 * calculations when reporting free space. 612 */ 613 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 614 615 /* Buffer size for bulk-reads */ 616 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 617 if (c->max_bu_buf_len > c->leb_size) 618 c->max_bu_buf_len = c->leb_size; 619 return 0; 620 } 621 622 /** 623 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 624 * @c: UBIFS file-system description object 625 * @lnum: LEB the write-buffer was synchronized to 626 * @free: how many free bytes left in this LEB 627 * @pad: how many bytes were padded 628 * 629 * This is a callback function which is called by the I/O unit when the 630 * write-buffer is synchronized. We need this to correctly maintain space 631 * accounting in bud logical eraseblocks. This function returns zero in case of 632 * success and a negative error code in case of failure. 633 * 634 * This function actually belongs to the journal, but we keep it here because 635 * we want to keep it static. 636 */ 637 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 638 { 639 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 640 } 641 642 /* 643 * init_constants_sb - initialize UBIFS constants. 644 * @c: UBIFS file-system description object 645 * 646 * This is a helper function which initializes various UBIFS constants after 647 * the superblock has been read. It also checks various UBIFS parameters and 648 * makes sure they are all right. Returns zero in case of success and a 649 * negative error code in case of failure. 650 */ 651 static int init_constants_sb(struct ubifs_info *c) 652 { 653 int tmp, err; 654 long long tmp64; 655 656 c->main_bytes = (long long)c->main_lebs * c->leb_size; 657 c->max_znode_sz = sizeof(struct ubifs_znode) + 658 c->fanout * sizeof(struct ubifs_zbranch); 659 660 tmp = ubifs_idx_node_sz(c, 1); 661 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 662 c->min_idx_node_sz = ALIGN(tmp, 8); 663 664 tmp = ubifs_idx_node_sz(c, c->fanout); 665 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 666 c->max_idx_node_sz = ALIGN(tmp, 8); 667 668 /* Make sure LEB size is large enough to fit full commit */ 669 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 670 tmp = ALIGN(tmp, c->min_io_size); 671 if (tmp > c->leb_size) { 672 ubifs_err(c, "too small LEB size %d, at least %d needed", 673 c->leb_size, tmp); 674 return -EINVAL; 675 } 676 677 /* 678 * Make sure that the log is large enough to fit reference nodes for 679 * all buds plus one reserved LEB. 680 */ 681 tmp64 = c->max_bud_bytes + c->leb_size - 1; 682 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 683 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 684 tmp /= c->leb_size; 685 tmp += 1; 686 if (c->log_lebs < tmp) { 687 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 688 c->log_lebs, tmp); 689 return -EINVAL; 690 } 691 692 /* 693 * When budgeting we assume worst-case scenarios when the pages are not 694 * be compressed and direntries are of the maximum size. 695 * 696 * Note, data, which may be stored in inodes is budgeted separately, so 697 * it is not included into 'c->bi.inode_budget'. 698 */ 699 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 700 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 701 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 702 703 /* 704 * When the amount of flash space used by buds becomes 705 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 706 * The writers are unblocked when the commit is finished. To avoid 707 * writers to be blocked UBIFS initiates background commit in advance, 708 * when number of bud bytes becomes above the limit defined below. 709 */ 710 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 711 712 /* 713 * Ensure minimum journal size. All the bytes in the journal heads are 714 * considered to be used, when calculating the current journal usage. 715 * Consequently, if the journal is too small, UBIFS will treat it as 716 * always full. 717 */ 718 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 719 if (c->bg_bud_bytes < tmp64) 720 c->bg_bud_bytes = tmp64; 721 if (c->max_bud_bytes < tmp64 + c->leb_size) 722 c->max_bud_bytes = tmp64 + c->leb_size; 723 724 err = ubifs_calc_lpt_geom(c); 725 if (err) 726 return err; 727 728 /* Initialize effective LEB size used in budgeting calculations */ 729 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 730 return 0; 731 } 732 733 /* 734 * init_constants_master - initialize UBIFS constants. 735 * @c: UBIFS file-system description object 736 * 737 * This is a helper function which initializes various UBIFS constants after 738 * the master node has been read. It also checks various UBIFS parameters and 739 * makes sure they are all right. 740 */ 741 static void init_constants_master(struct ubifs_info *c) 742 { 743 long long tmp64; 744 745 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 746 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 747 748 /* 749 * Calculate total amount of FS blocks. This number is not used 750 * internally because it does not make much sense for UBIFS, but it is 751 * necessary to report something for the 'statfs()' call. 752 * 753 * Subtract the LEB reserved for GC, the LEB which is reserved for 754 * deletions, minimum LEBs for the index, and assume only one journal 755 * head is available. 756 */ 757 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 758 tmp64 *= (long long)c->leb_size - c->leb_overhead; 759 tmp64 = ubifs_reported_space(c, tmp64); 760 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 761 } 762 763 /** 764 * take_gc_lnum - reserve GC LEB. 765 * @c: UBIFS file-system description object 766 * 767 * This function ensures that the LEB reserved for garbage collection is marked 768 * as "taken" in lprops. We also have to set free space to LEB size and dirty 769 * space to zero, because lprops may contain out-of-date information if the 770 * file-system was un-mounted before it has been committed. This function 771 * returns zero in case of success and a negative error code in case of 772 * failure. 773 */ 774 static int take_gc_lnum(struct ubifs_info *c) 775 { 776 int err; 777 778 if (c->gc_lnum == -1) { 779 ubifs_err(c, "no LEB for GC"); 780 return -EINVAL; 781 } 782 783 /* And we have to tell lprops that this LEB is taken */ 784 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 785 LPROPS_TAKEN, 0, 0); 786 return err; 787 } 788 789 /** 790 * alloc_wbufs - allocate write-buffers. 791 * @c: UBIFS file-system description object 792 * 793 * This helper function allocates and initializes UBIFS write-buffers. Returns 794 * zero in case of success and %-ENOMEM in case of failure. 795 */ 796 static int alloc_wbufs(struct ubifs_info *c) 797 { 798 int i, err; 799 800 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 801 GFP_KERNEL); 802 if (!c->jheads) 803 return -ENOMEM; 804 805 /* Initialize journal heads */ 806 for (i = 0; i < c->jhead_cnt; i++) { 807 INIT_LIST_HEAD(&c->jheads[i].buds_list); 808 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 809 if (err) 810 return err; 811 812 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 813 c->jheads[i].wbuf.jhead = i; 814 c->jheads[i].grouped = 1; 815 } 816 817 /* 818 * Garbage Collector head does not need to be synchronized by timer. 819 * Also GC head nodes are not grouped. 820 */ 821 c->jheads[GCHD].wbuf.no_timer = 1; 822 c->jheads[GCHD].grouped = 0; 823 824 return 0; 825 } 826 827 /** 828 * free_wbufs - free write-buffers. 829 * @c: UBIFS file-system description object 830 */ 831 static void free_wbufs(struct ubifs_info *c) 832 { 833 int i; 834 835 if (c->jheads) { 836 for (i = 0; i < c->jhead_cnt; i++) { 837 kfree(c->jheads[i].wbuf.buf); 838 kfree(c->jheads[i].wbuf.inodes); 839 } 840 kfree(c->jheads); 841 c->jheads = NULL; 842 } 843 } 844 845 /** 846 * free_orphans - free orphans. 847 * @c: UBIFS file-system description object 848 */ 849 static void free_orphans(struct ubifs_info *c) 850 { 851 struct ubifs_orphan *orph; 852 853 while (c->orph_dnext) { 854 orph = c->orph_dnext; 855 c->orph_dnext = orph->dnext; 856 list_del(&orph->list); 857 kfree(orph); 858 } 859 860 while (!list_empty(&c->orph_list)) { 861 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 862 list_del(&orph->list); 863 kfree(orph); 864 ubifs_err(c, "orphan list not empty at unmount"); 865 } 866 867 vfree(c->orph_buf); 868 c->orph_buf = NULL; 869 } 870 871 /** 872 * free_buds - free per-bud objects. 873 * @c: UBIFS file-system description object 874 */ 875 static void free_buds(struct ubifs_info *c) 876 { 877 struct ubifs_bud *bud, *n; 878 879 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 880 kfree(bud); 881 } 882 883 /** 884 * check_volume_empty - check if the UBI volume is empty. 885 * @c: UBIFS file-system description object 886 * 887 * This function checks if the UBIFS volume is empty by looking if its LEBs are 888 * mapped or not. The result of checking is stored in the @c->empty variable. 889 * Returns zero in case of success and a negative error code in case of 890 * failure. 891 */ 892 static int check_volume_empty(struct ubifs_info *c) 893 { 894 int lnum, err; 895 896 c->empty = 1; 897 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 898 err = ubifs_is_mapped(c, lnum); 899 if (unlikely(err < 0)) 900 return err; 901 if (err == 1) { 902 c->empty = 0; 903 break; 904 } 905 906 cond_resched(); 907 } 908 909 return 0; 910 } 911 912 /* 913 * UBIFS mount options. 914 * 915 * Opt_fast_unmount: do not run a journal commit before un-mounting 916 * Opt_norm_unmount: run a journal commit before un-mounting 917 * Opt_bulk_read: enable bulk-reads 918 * Opt_no_bulk_read: disable bulk-reads 919 * Opt_chk_data_crc: check CRCs when reading data nodes 920 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 921 * Opt_override_compr: override default compressor 922 * Opt_err: just end of array marker 923 */ 924 enum { 925 Opt_fast_unmount, 926 Opt_norm_unmount, 927 Opt_bulk_read, 928 Opt_no_bulk_read, 929 Opt_chk_data_crc, 930 Opt_no_chk_data_crc, 931 Opt_override_compr, 932 Opt_err, 933 }; 934 935 static const match_table_t tokens = { 936 {Opt_fast_unmount, "fast_unmount"}, 937 {Opt_norm_unmount, "norm_unmount"}, 938 {Opt_bulk_read, "bulk_read"}, 939 {Opt_no_bulk_read, "no_bulk_read"}, 940 {Opt_chk_data_crc, "chk_data_crc"}, 941 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 942 {Opt_override_compr, "compr=%s"}, 943 {Opt_err, NULL}, 944 }; 945 946 /** 947 * parse_standard_option - parse a standard mount option. 948 * @option: the option to parse 949 * 950 * Normally, standard mount options like "sync" are passed to file-systems as 951 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 952 * be present in the options string. This function tries to deal with this 953 * situation and parse standard options. Returns 0 if the option was not 954 * recognized, and the corresponding integer flag if it was. 955 * 956 * UBIFS is only interested in the "sync" option, so do not check for anything 957 * else. 958 */ 959 static int parse_standard_option(const char *option) 960 { 961 962 pr_notice("UBIFS: parse %s\n", option); 963 if (!strcmp(option, "sync")) 964 return MS_SYNCHRONOUS; 965 return 0; 966 } 967 968 /** 969 * ubifs_parse_options - parse mount parameters. 970 * @c: UBIFS file-system description object 971 * @options: parameters to parse 972 * @is_remount: non-zero if this is FS re-mount 973 * 974 * This function parses UBIFS mount options and returns zero in case success 975 * and a negative error code in case of failure. 976 */ 977 static int ubifs_parse_options(struct ubifs_info *c, char *options, 978 int is_remount) 979 { 980 char *p; 981 substring_t args[MAX_OPT_ARGS]; 982 983 if (!options) 984 return 0; 985 986 while ((p = strsep(&options, ","))) { 987 int token; 988 989 if (!*p) 990 continue; 991 992 token = match_token(p, tokens, args); 993 switch (token) { 994 /* 995 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 996 * We accept them in order to be backward-compatible. But this 997 * should be removed at some point. 998 */ 999 case Opt_fast_unmount: 1000 c->mount_opts.unmount_mode = 2; 1001 break; 1002 case Opt_norm_unmount: 1003 c->mount_opts.unmount_mode = 1; 1004 break; 1005 case Opt_bulk_read: 1006 c->mount_opts.bulk_read = 2; 1007 c->bulk_read = 1; 1008 break; 1009 case Opt_no_bulk_read: 1010 c->mount_opts.bulk_read = 1; 1011 c->bulk_read = 0; 1012 break; 1013 case Opt_chk_data_crc: 1014 c->mount_opts.chk_data_crc = 2; 1015 c->no_chk_data_crc = 0; 1016 break; 1017 case Opt_no_chk_data_crc: 1018 c->mount_opts.chk_data_crc = 1; 1019 c->no_chk_data_crc = 1; 1020 break; 1021 case Opt_override_compr: 1022 { 1023 char *name = match_strdup(&args[0]); 1024 1025 if (!name) 1026 return -ENOMEM; 1027 if (!strcmp(name, "none")) 1028 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1029 else if (!strcmp(name, "lzo")) 1030 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1031 else if (!strcmp(name, "zlib")) 1032 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1033 else { 1034 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1035 kfree(name); 1036 return -EINVAL; 1037 } 1038 kfree(name); 1039 c->mount_opts.override_compr = 1; 1040 c->default_compr = c->mount_opts.compr_type; 1041 break; 1042 } 1043 default: 1044 { 1045 unsigned long flag; 1046 struct super_block *sb = c->vfs_sb; 1047 1048 flag = parse_standard_option(p); 1049 if (!flag) { 1050 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1051 p); 1052 return -EINVAL; 1053 } 1054 sb->s_flags |= flag; 1055 break; 1056 } 1057 } 1058 } 1059 1060 return 0; 1061 } 1062 1063 /** 1064 * destroy_journal - destroy journal data structures. 1065 * @c: UBIFS file-system description object 1066 * 1067 * This function destroys journal data structures including those that may have 1068 * been created by recovery functions. 1069 */ 1070 static void destroy_journal(struct ubifs_info *c) 1071 { 1072 while (!list_empty(&c->unclean_leb_list)) { 1073 struct ubifs_unclean_leb *ucleb; 1074 1075 ucleb = list_entry(c->unclean_leb_list.next, 1076 struct ubifs_unclean_leb, list); 1077 list_del(&ucleb->list); 1078 kfree(ucleb); 1079 } 1080 while (!list_empty(&c->old_buds)) { 1081 struct ubifs_bud *bud; 1082 1083 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1084 list_del(&bud->list); 1085 kfree(bud); 1086 } 1087 ubifs_destroy_idx_gc(c); 1088 ubifs_destroy_size_tree(c); 1089 ubifs_tnc_close(c); 1090 free_buds(c); 1091 } 1092 1093 /** 1094 * bu_init - initialize bulk-read information. 1095 * @c: UBIFS file-system description object 1096 */ 1097 static void bu_init(struct ubifs_info *c) 1098 { 1099 ubifs_assert(c->bulk_read == 1); 1100 1101 if (c->bu.buf) 1102 return; /* Already initialized */ 1103 1104 again: 1105 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1106 if (!c->bu.buf) { 1107 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1108 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1109 goto again; 1110 } 1111 1112 /* Just disable bulk-read */ 1113 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1114 c->max_bu_buf_len); 1115 c->mount_opts.bulk_read = 1; 1116 c->bulk_read = 0; 1117 return; 1118 } 1119 } 1120 1121 /** 1122 * check_free_space - check if there is enough free space to mount. 1123 * @c: UBIFS file-system description object 1124 * 1125 * This function makes sure UBIFS has enough free space to be mounted in 1126 * read/write mode. UBIFS must always have some free space to allow deletions. 1127 */ 1128 static int check_free_space(struct ubifs_info *c) 1129 { 1130 ubifs_assert(c->dark_wm > 0); 1131 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1132 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1133 ubifs_dump_budg(c, &c->bi); 1134 ubifs_dump_lprops(c); 1135 return -ENOSPC; 1136 } 1137 return 0; 1138 } 1139 1140 /** 1141 * mount_ubifs - mount UBIFS file-system. 1142 * @c: UBIFS file-system description object 1143 * 1144 * This function mounts UBIFS file system. Returns zero in case of success and 1145 * a negative error code in case of failure. 1146 */ 1147 static int mount_ubifs(struct ubifs_info *c) 1148 { 1149 int err; 1150 long long x, y; 1151 size_t sz; 1152 1153 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1154 /* Suppress error messages while probing if MS_SILENT is set */ 1155 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1156 1157 err = init_constants_early(c); 1158 if (err) 1159 return err; 1160 1161 err = ubifs_debugging_init(c); 1162 if (err) 1163 return err; 1164 1165 err = check_volume_empty(c); 1166 if (err) 1167 goto out_free; 1168 1169 if (c->empty && (c->ro_mount || c->ro_media)) { 1170 /* 1171 * This UBI volume is empty, and read-only, or the file system 1172 * is mounted read-only - we cannot format it. 1173 */ 1174 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1175 c->ro_media ? "UBI volume" : "mount"); 1176 err = -EROFS; 1177 goto out_free; 1178 } 1179 1180 if (c->ro_media && !c->ro_mount) { 1181 ubifs_err(c, "cannot mount read-write - read-only media"); 1182 err = -EROFS; 1183 goto out_free; 1184 } 1185 1186 /* 1187 * The requirement for the buffer is that it should fit indexing B-tree 1188 * height amount of integers. We assume the height if the TNC tree will 1189 * never exceed 64. 1190 */ 1191 err = -ENOMEM; 1192 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1193 if (!c->bottom_up_buf) 1194 goto out_free; 1195 1196 c->sbuf = vmalloc(c->leb_size); 1197 if (!c->sbuf) 1198 goto out_free; 1199 1200 if (!c->ro_mount) { 1201 c->ileb_buf = vmalloc(c->leb_size); 1202 if (!c->ileb_buf) 1203 goto out_free; 1204 } 1205 1206 if (c->bulk_read == 1) 1207 bu_init(c); 1208 1209 if (!c->ro_mount) { 1210 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, 1211 GFP_KERNEL); 1212 if (!c->write_reserve_buf) 1213 goto out_free; 1214 } 1215 1216 c->mounting = 1; 1217 1218 err = ubifs_read_superblock(c); 1219 if (err) 1220 goto out_free; 1221 1222 c->probing = 0; 1223 1224 /* 1225 * Make sure the compressor which is set as default in the superblock 1226 * or overridden by mount options is actually compiled in. 1227 */ 1228 if (!ubifs_compr_present(c->default_compr)) { 1229 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1230 ubifs_compr_name(c->default_compr)); 1231 err = -ENOTSUPP; 1232 goto out_free; 1233 } 1234 1235 err = init_constants_sb(c); 1236 if (err) 1237 goto out_free; 1238 1239 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1240 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1241 c->cbuf = kmalloc(sz, GFP_NOFS); 1242 if (!c->cbuf) { 1243 err = -ENOMEM; 1244 goto out_free; 1245 } 1246 1247 err = alloc_wbufs(c); 1248 if (err) 1249 goto out_cbuf; 1250 1251 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1252 if (!c->ro_mount) { 1253 /* Create background thread */ 1254 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1255 if (IS_ERR(c->bgt)) { 1256 err = PTR_ERR(c->bgt); 1257 c->bgt = NULL; 1258 ubifs_err(c, "cannot spawn \"%s\", error %d", 1259 c->bgt_name, err); 1260 goto out_wbufs; 1261 } 1262 wake_up_process(c->bgt); 1263 } 1264 1265 err = ubifs_read_master(c); 1266 if (err) 1267 goto out_master; 1268 1269 init_constants_master(c); 1270 1271 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1272 ubifs_msg(c, "recovery needed"); 1273 c->need_recovery = 1; 1274 } 1275 1276 if (c->need_recovery && !c->ro_mount) { 1277 err = ubifs_recover_inl_heads(c, c->sbuf); 1278 if (err) 1279 goto out_master; 1280 } 1281 1282 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1283 if (err) 1284 goto out_master; 1285 1286 if (!c->ro_mount && c->space_fixup) { 1287 err = ubifs_fixup_free_space(c); 1288 if (err) 1289 goto out_lpt; 1290 } 1291 1292 if (!c->ro_mount && !c->need_recovery) { 1293 /* 1294 * Set the "dirty" flag so that if we reboot uncleanly we 1295 * will notice this immediately on the next mount. 1296 */ 1297 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1298 err = ubifs_write_master(c); 1299 if (err) 1300 goto out_lpt; 1301 } 1302 1303 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1304 if (err) 1305 goto out_lpt; 1306 1307 err = ubifs_replay_journal(c); 1308 if (err) 1309 goto out_journal; 1310 1311 /* Calculate 'min_idx_lebs' after journal replay */ 1312 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1313 1314 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1315 if (err) 1316 goto out_orphans; 1317 1318 if (!c->ro_mount) { 1319 int lnum; 1320 1321 err = check_free_space(c); 1322 if (err) 1323 goto out_orphans; 1324 1325 /* Check for enough log space */ 1326 lnum = c->lhead_lnum + 1; 1327 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1328 lnum = UBIFS_LOG_LNUM; 1329 if (lnum == c->ltail_lnum) { 1330 err = ubifs_consolidate_log(c); 1331 if (err) 1332 goto out_orphans; 1333 } 1334 1335 if (c->need_recovery) { 1336 err = ubifs_recover_size(c); 1337 if (err) 1338 goto out_orphans; 1339 err = ubifs_rcvry_gc_commit(c); 1340 if (err) 1341 goto out_orphans; 1342 } else { 1343 err = take_gc_lnum(c); 1344 if (err) 1345 goto out_orphans; 1346 1347 /* 1348 * GC LEB may contain garbage if there was an unclean 1349 * reboot, and it should be un-mapped. 1350 */ 1351 err = ubifs_leb_unmap(c, c->gc_lnum); 1352 if (err) 1353 goto out_orphans; 1354 } 1355 1356 err = dbg_check_lprops(c); 1357 if (err) 1358 goto out_orphans; 1359 } else if (c->need_recovery) { 1360 err = ubifs_recover_size(c); 1361 if (err) 1362 goto out_orphans; 1363 } else { 1364 /* 1365 * Even if we mount read-only, we have to set space in GC LEB 1366 * to proper value because this affects UBIFS free space 1367 * reporting. We do not want to have a situation when 1368 * re-mounting from R/O to R/W changes amount of free space. 1369 */ 1370 err = take_gc_lnum(c); 1371 if (err) 1372 goto out_orphans; 1373 } 1374 1375 spin_lock(&ubifs_infos_lock); 1376 list_add_tail(&c->infos_list, &ubifs_infos); 1377 spin_unlock(&ubifs_infos_lock); 1378 1379 if (c->need_recovery) { 1380 if (c->ro_mount) 1381 ubifs_msg(c, "recovery deferred"); 1382 else { 1383 c->need_recovery = 0; 1384 ubifs_msg(c, "recovery completed"); 1385 /* 1386 * GC LEB has to be empty and taken at this point. But 1387 * the journal head LEBs may also be accounted as 1388 * "empty taken" if they are empty. 1389 */ 1390 ubifs_assert(c->lst.taken_empty_lebs > 0); 1391 } 1392 } else 1393 ubifs_assert(c->lst.taken_empty_lebs > 0); 1394 1395 err = dbg_check_filesystem(c); 1396 if (err) 1397 goto out_infos; 1398 1399 err = dbg_debugfs_init_fs(c); 1400 if (err) 1401 goto out_infos; 1402 1403 c->mounting = 0; 1404 1405 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1406 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1407 c->ro_mount ? ", R/O mode" : ""); 1408 x = (long long)c->main_lebs * c->leb_size; 1409 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1410 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1411 c->leb_size, c->leb_size >> 10, c->min_io_size, 1412 c->max_write_size); 1413 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1414 x, x >> 20, c->main_lebs, 1415 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1416 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1417 c->report_rp_size, c->report_rp_size >> 10); 1418 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1419 c->fmt_version, c->ro_compat_version, 1420 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1421 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1422 1423 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1424 dbg_gen("data journal heads: %d", 1425 c->jhead_cnt - NONDATA_JHEADS_CNT); 1426 dbg_gen("log LEBs: %d (%d - %d)", 1427 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1428 dbg_gen("LPT area LEBs: %d (%d - %d)", 1429 c->lpt_lebs, c->lpt_first, c->lpt_last); 1430 dbg_gen("orphan area LEBs: %d (%d - %d)", 1431 c->orph_lebs, c->orph_first, c->orph_last); 1432 dbg_gen("main area LEBs: %d (%d - %d)", 1433 c->main_lebs, c->main_first, c->leb_cnt - 1); 1434 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1435 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1436 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1437 c->bi.old_idx_sz >> 20); 1438 dbg_gen("key hash type: %d", c->key_hash_type); 1439 dbg_gen("tree fanout: %d", c->fanout); 1440 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1441 dbg_gen("max. znode size %d", c->max_znode_sz); 1442 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1443 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1444 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1445 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1446 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1447 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1448 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1449 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1450 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1451 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1452 dbg_gen("dead watermark: %d", c->dead_wm); 1453 dbg_gen("dark watermark: %d", c->dark_wm); 1454 dbg_gen("LEB overhead: %d", c->leb_overhead); 1455 x = (long long)c->main_lebs * c->dark_wm; 1456 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1457 x, x >> 10, x >> 20); 1458 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1459 c->max_bud_bytes, c->max_bud_bytes >> 10, 1460 c->max_bud_bytes >> 20); 1461 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1462 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1463 c->bg_bud_bytes >> 20); 1464 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1465 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1466 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1467 dbg_gen("commit number: %llu", c->cmt_no); 1468 1469 return 0; 1470 1471 out_infos: 1472 spin_lock(&ubifs_infos_lock); 1473 list_del(&c->infos_list); 1474 spin_unlock(&ubifs_infos_lock); 1475 out_orphans: 1476 free_orphans(c); 1477 out_journal: 1478 destroy_journal(c); 1479 out_lpt: 1480 ubifs_lpt_free(c, 0); 1481 out_master: 1482 kfree(c->mst_node); 1483 kfree(c->rcvrd_mst_node); 1484 if (c->bgt) 1485 kthread_stop(c->bgt); 1486 out_wbufs: 1487 free_wbufs(c); 1488 out_cbuf: 1489 kfree(c->cbuf); 1490 out_free: 1491 kfree(c->write_reserve_buf); 1492 kfree(c->bu.buf); 1493 vfree(c->ileb_buf); 1494 vfree(c->sbuf); 1495 kfree(c->bottom_up_buf); 1496 ubifs_debugging_exit(c); 1497 return err; 1498 } 1499 1500 /** 1501 * ubifs_umount - un-mount UBIFS file-system. 1502 * @c: UBIFS file-system description object 1503 * 1504 * Note, this function is called to free allocated resourced when un-mounting, 1505 * as well as free resources when an error occurred while we were half way 1506 * through mounting (error path cleanup function). So it has to make sure the 1507 * resource was actually allocated before freeing it. 1508 */ 1509 static void ubifs_umount(struct ubifs_info *c) 1510 { 1511 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1512 c->vi.vol_id); 1513 1514 dbg_debugfs_exit_fs(c); 1515 spin_lock(&ubifs_infos_lock); 1516 list_del(&c->infos_list); 1517 spin_unlock(&ubifs_infos_lock); 1518 1519 if (c->bgt) 1520 kthread_stop(c->bgt); 1521 1522 destroy_journal(c); 1523 free_wbufs(c); 1524 free_orphans(c); 1525 ubifs_lpt_free(c, 0); 1526 1527 kfree(c->cbuf); 1528 kfree(c->rcvrd_mst_node); 1529 kfree(c->mst_node); 1530 kfree(c->write_reserve_buf); 1531 kfree(c->bu.buf); 1532 vfree(c->ileb_buf); 1533 vfree(c->sbuf); 1534 kfree(c->bottom_up_buf); 1535 ubifs_debugging_exit(c); 1536 } 1537 1538 /** 1539 * ubifs_remount_rw - re-mount in read-write mode. 1540 * @c: UBIFS file-system description object 1541 * 1542 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1543 * mode. This function allocates the needed resources and re-mounts UBIFS in 1544 * read-write mode. 1545 */ 1546 static int ubifs_remount_rw(struct ubifs_info *c) 1547 { 1548 int err, lnum; 1549 1550 if (c->rw_incompat) { 1551 ubifs_err(c, "the file-system is not R/W-compatible"); 1552 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1553 c->fmt_version, c->ro_compat_version, 1554 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1555 return -EROFS; 1556 } 1557 1558 mutex_lock(&c->umount_mutex); 1559 dbg_save_space_info(c); 1560 c->remounting_rw = 1; 1561 c->ro_mount = 0; 1562 1563 if (c->space_fixup) { 1564 err = ubifs_fixup_free_space(c); 1565 if (err) 1566 goto out; 1567 } 1568 1569 err = check_free_space(c); 1570 if (err) 1571 goto out; 1572 1573 if (c->old_leb_cnt != c->leb_cnt) { 1574 struct ubifs_sb_node *sup; 1575 1576 sup = ubifs_read_sb_node(c); 1577 if (IS_ERR(sup)) { 1578 err = PTR_ERR(sup); 1579 goto out; 1580 } 1581 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1582 err = ubifs_write_sb_node(c, sup); 1583 kfree(sup); 1584 if (err) 1585 goto out; 1586 } 1587 1588 if (c->need_recovery) { 1589 ubifs_msg(c, "completing deferred recovery"); 1590 err = ubifs_write_rcvrd_mst_node(c); 1591 if (err) 1592 goto out; 1593 err = ubifs_recover_size(c); 1594 if (err) 1595 goto out; 1596 err = ubifs_clean_lebs(c, c->sbuf); 1597 if (err) 1598 goto out; 1599 err = ubifs_recover_inl_heads(c, c->sbuf); 1600 if (err) 1601 goto out; 1602 } else { 1603 /* A readonly mount is not allowed to have orphans */ 1604 ubifs_assert(c->tot_orphans == 0); 1605 err = ubifs_clear_orphans(c); 1606 if (err) 1607 goto out; 1608 } 1609 1610 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1611 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1612 err = ubifs_write_master(c); 1613 if (err) 1614 goto out; 1615 } 1616 1617 c->ileb_buf = vmalloc(c->leb_size); 1618 if (!c->ileb_buf) { 1619 err = -ENOMEM; 1620 goto out; 1621 } 1622 1623 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); 1624 if (!c->write_reserve_buf) { 1625 err = -ENOMEM; 1626 goto out; 1627 } 1628 1629 err = ubifs_lpt_init(c, 0, 1); 1630 if (err) 1631 goto out; 1632 1633 /* Create background thread */ 1634 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1635 if (IS_ERR(c->bgt)) { 1636 err = PTR_ERR(c->bgt); 1637 c->bgt = NULL; 1638 ubifs_err(c, "cannot spawn \"%s\", error %d", 1639 c->bgt_name, err); 1640 goto out; 1641 } 1642 wake_up_process(c->bgt); 1643 1644 c->orph_buf = vmalloc(c->leb_size); 1645 if (!c->orph_buf) { 1646 err = -ENOMEM; 1647 goto out; 1648 } 1649 1650 /* Check for enough log space */ 1651 lnum = c->lhead_lnum + 1; 1652 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1653 lnum = UBIFS_LOG_LNUM; 1654 if (lnum == c->ltail_lnum) { 1655 err = ubifs_consolidate_log(c); 1656 if (err) 1657 goto out; 1658 } 1659 1660 if (c->need_recovery) 1661 err = ubifs_rcvry_gc_commit(c); 1662 else 1663 err = ubifs_leb_unmap(c, c->gc_lnum); 1664 if (err) 1665 goto out; 1666 1667 dbg_gen("re-mounted read-write"); 1668 c->remounting_rw = 0; 1669 1670 if (c->need_recovery) { 1671 c->need_recovery = 0; 1672 ubifs_msg(c, "deferred recovery completed"); 1673 } else { 1674 /* 1675 * Do not run the debugging space check if the were doing 1676 * recovery, because when we saved the information we had the 1677 * file-system in a state where the TNC and lprops has been 1678 * modified in memory, but all the I/O operations (including a 1679 * commit) were deferred. So the file-system was in 1680 * "non-committed" state. Now the file-system is in committed 1681 * state, and of course the amount of free space will change 1682 * because, for example, the old index size was imprecise. 1683 */ 1684 err = dbg_check_space_info(c); 1685 } 1686 1687 mutex_unlock(&c->umount_mutex); 1688 return err; 1689 1690 out: 1691 c->ro_mount = 1; 1692 vfree(c->orph_buf); 1693 c->orph_buf = NULL; 1694 if (c->bgt) { 1695 kthread_stop(c->bgt); 1696 c->bgt = NULL; 1697 } 1698 free_wbufs(c); 1699 kfree(c->write_reserve_buf); 1700 c->write_reserve_buf = NULL; 1701 vfree(c->ileb_buf); 1702 c->ileb_buf = NULL; 1703 ubifs_lpt_free(c, 1); 1704 c->remounting_rw = 0; 1705 mutex_unlock(&c->umount_mutex); 1706 return err; 1707 } 1708 1709 /** 1710 * ubifs_remount_ro - re-mount in read-only mode. 1711 * @c: UBIFS file-system description object 1712 * 1713 * We assume VFS has stopped writing. Possibly the background thread could be 1714 * running a commit, however kthread_stop will wait in that case. 1715 */ 1716 static void ubifs_remount_ro(struct ubifs_info *c) 1717 { 1718 int i, err; 1719 1720 ubifs_assert(!c->need_recovery); 1721 ubifs_assert(!c->ro_mount); 1722 1723 mutex_lock(&c->umount_mutex); 1724 if (c->bgt) { 1725 kthread_stop(c->bgt); 1726 c->bgt = NULL; 1727 } 1728 1729 dbg_save_space_info(c); 1730 1731 for (i = 0; i < c->jhead_cnt; i++) 1732 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1733 1734 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1735 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1736 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1737 err = ubifs_write_master(c); 1738 if (err) 1739 ubifs_ro_mode(c, err); 1740 1741 vfree(c->orph_buf); 1742 c->orph_buf = NULL; 1743 kfree(c->write_reserve_buf); 1744 c->write_reserve_buf = NULL; 1745 vfree(c->ileb_buf); 1746 c->ileb_buf = NULL; 1747 ubifs_lpt_free(c, 1); 1748 c->ro_mount = 1; 1749 err = dbg_check_space_info(c); 1750 if (err) 1751 ubifs_ro_mode(c, err); 1752 mutex_unlock(&c->umount_mutex); 1753 } 1754 1755 static void ubifs_put_super(struct super_block *sb) 1756 { 1757 int i; 1758 struct ubifs_info *c = sb->s_fs_info; 1759 1760 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1761 1762 /* 1763 * The following asserts are only valid if there has not been a failure 1764 * of the media. For example, there will be dirty inodes if we failed 1765 * to write them back because of I/O errors. 1766 */ 1767 if (!c->ro_error) { 1768 ubifs_assert(c->bi.idx_growth == 0); 1769 ubifs_assert(c->bi.dd_growth == 0); 1770 ubifs_assert(c->bi.data_growth == 0); 1771 } 1772 1773 /* 1774 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1775 * and file system un-mount. Namely, it prevents the shrinker from 1776 * picking this superblock for shrinking - it will be just skipped if 1777 * the mutex is locked. 1778 */ 1779 mutex_lock(&c->umount_mutex); 1780 if (!c->ro_mount) { 1781 /* 1782 * First of all kill the background thread to make sure it does 1783 * not interfere with un-mounting and freeing resources. 1784 */ 1785 if (c->bgt) { 1786 kthread_stop(c->bgt); 1787 c->bgt = NULL; 1788 } 1789 1790 /* 1791 * On fatal errors c->ro_error is set to 1, in which case we do 1792 * not write the master node. 1793 */ 1794 if (!c->ro_error) { 1795 int err; 1796 1797 /* Synchronize write-buffers */ 1798 for (i = 0; i < c->jhead_cnt; i++) 1799 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1800 1801 /* 1802 * We are being cleanly unmounted which means the 1803 * orphans were killed - indicate this in the master 1804 * node. Also save the reserved GC LEB number. 1805 */ 1806 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1807 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1808 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1809 err = ubifs_write_master(c); 1810 if (err) 1811 /* 1812 * Recovery will attempt to fix the master area 1813 * next mount, so we just print a message and 1814 * continue to unmount normally. 1815 */ 1816 ubifs_err(c, "failed to write master node, error %d", 1817 err); 1818 } else { 1819 for (i = 0; i < c->jhead_cnt; i++) 1820 /* Make sure write-buffer timers are canceled */ 1821 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1822 } 1823 } 1824 1825 ubifs_umount(c); 1826 bdi_destroy(&c->bdi); 1827 ubi_close_volume(c->ubi); 1828 mutex_unlock(&c->umount_mutex); 1829 } 1830 1831 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1832 { 1833 int err; 1834 struct ubifs_info *c = sb->s_fs_info; 1835 1836 sync_filesystem(sb); 1837 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1838 1839 err = ubifs_parse_options(c, data, 1); 1840 if (err) { 1841 ubifs_err(c, "invalid or unknown remount parameter"); 1842 return err; 1843 } 1844 1845 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1846 if (c->ro_error) { 1847 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1848 return -EROFS; 1849 } 1850 if (c->ro_media) { 1851 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1852 return -EROFS; 1853 } 1854 err = ubifs_remount_rw(c); 1855 if (err) 1856 return err; 1857 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1858 if (c->ro_error) { 1859 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1860 return -EROFS; 1861 } 1862 ubifs_remount_ro(c); 1863 } 1864 1865 if (c->bulk_read == 1) 1866 bu_init(c); 1867 else { 1868 dbg_gen("disable bulk-read"); 1869 kfree(c->bu.buf); 1870 c->bu.buf = NULL; 1871 } 1872 1873 ubifs_assert(c->lst.taken_empty_lebs > 0); 1874 return 0; 1875 } 1876 1877 const struct super_operations ubifs_super_operations = { 1878 .alloc_inode = ubifs_alloc_inode, 1879 .destroy_inode = ubifs_destroy_inode, 1880 .put_super = ubifs_put_super, 1881 .write_inode = ubifs_write_inode, 1882 .evict_inode = ubifs_evict_inode, 1883 .statfs = ubifs_statfs, 1884 .dirty_inode = ubifs_dirty_inode, 1885 .remount_fs = ubifs_remount_fs, 1886 .show_options = ubifs_show_options, 1887 .sync_fs = ubifs_sync_fs, 1888 }; 1889 1890 /** 1891 * open_ubi - parse UBI device name string and open the UBI device. 1892 * @name: UBI volume name 1893 * @mode: UBI volume open mode 1894 * 1895 * The primary method of mounting UBIFS is by specifying the UBI volume 1896 * character device node path. However, UBIFS may also be mounted withoug any 1897 * character device node using one of the following methods: 1898 * 1899 * o ubiX_Y - mount UBI device number X, volume Y; 1900 * o ubiY - mount UBI device number 0, volume Y; 1901 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1902 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1903 * 1904 * Alternative '!' separator may be used instead of ':' (because some shells 1905 * like busybox may interpret ':' as an NFS host name separator). This function 1906 * returns UBI volume description object in case of success and a negative 1907 * error code in case of failure. 1908 */ 1909 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1910 { 1911 struct ubi_volume_desc *ubi; 1912 int dev, vol; 1913 char *endptr; 1914 1915 /* First, try to open using the device node path method */ 1916 ubi = ubi_open_volume_path(name, mode); 1917 if (!IS_ERR(ubi)) 1918 return ubi; 1919 1920 /* Try the "nodev" method */ 1921 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1922 return ERR_PTR(-EINVAL); 1923 1924 /* ubi:NAME method */ 1925 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1926 return ubi_open_volume_nm(0, name + 4, mode); 1927 1928 if (!isdigit(name[3])) 1929 return ERR_PTR(-EINVAL); 1930 1931 dev = simple_strtoul(name + 3, &endptr, 0); 1932 1933 /* ubiY method */ 1934 if (*endptr == '\0') 1935 return ubi_open_volume(0, dev, mode); 1936 1937 /* ubiX_Y method */ 1938 if (*endptr == '_' && isdigit(endptr[1])) { 1939 vol = simple_strtoul(endptr + 1, &endptr, 0); 1940 if (*endptr != '\0') 1941 return ERR_PTR(-EINVAL); 1942 return ubi_open_volume(dev, vol, mode); 1943 } 1944 1945 /* ubiX:NAME method */ 1946 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1947 return ubi_open_volume_nm(dev, ++endptr, mode); 1948 1949 return ERR_PTR(-EINVAL); 1950 } 1951 1952 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1953 { 1954 struct ubifs_info *c; 1955 1956 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1957 if (c) { 1958 spin_lock_init(&c->cnt_lock); 1959 spin_lock_init(&c->cs_lock); 1960 spin_lock_init(&c->buds_lock); 1961 spin_lock_init(&c->space_lock); 1962 spin_lock_init(&c->orphan_lock); 1963 init_rwsem(&c->commit_sem); 1964 mutex_init(&c->lp_mutex); 1965 mutex_init(&c->tnc_mutex); 1966 mutex_init(&c->log_mutex); 1967 mutex_init(&c->umount_mutex); 1968 mutex_init(&c->bu_mutex); 1969 mutex_init(&c->write_reserve_mutex); 1970 init_waitqueue_head(&c->cmt_wq); 1971 c->buds = RB_ROOT; 1972 c->old_idx = RB_ROOT; 1973 c->size_tree = RB_ROOT; 1974 c->orph_tree = RB_ROOT; 1975 INIT_LIST_HEAD(&c->infos_list); 1976 INIT_LIST_HEAD(&c->idx_gc); 1977 INIT_LIST_HEAD(&c->replay_list); 1978 INIT_LIST_HEAD(&c->replay_buds); 1979 INIT_LIST_HEAD(&c->uncat_list); 1980 INIT_LIST_HEAD(&c->empty_list); 1981 INIT_LIST_HEAD(&c->freeable_list); 1982 INIT_LIST_HEAD(&c->frdi_idx_list); 1983 INIT_LIST_HEAD(&c->unclean_leb_list); 1984 INIT_LIST_HEAD(&c->old_buds); 1985 INIT_LIST_HEAD(&c->orph_list); 1986 INIT_LIST_HEAD(&c->orph_new); 1987 c->no_chk_data_crc = 1; 1988 1989 c->highest_inum = UBIFS_FIRST_INO; 1990 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1991 1992 ubi_get_volume_info(ubi, &c->vi); 1993 ubi_get_device_info(c->vi.ubi_num, &c->di); 1994 } 1995 return c; 1996 } 1997 1998 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 1999 { 2000 struct ubifs_info *c = sb->s_fs_info; 2001 struct inode *root; 2002 int err; 2003 2004 c->vfs_sb = sb; 2005 /* Re-open the UBI device in read-write mode */ 2006 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2007 if (IS_ERR(c->ubi)) { 2008 err = PTR_ERR(c->ubi); 2009 goto out; 2010 } 2011 2012 /* 2013 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2014 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2015 * which means the user would have to wait not just for their own I/O 2016 * but the read-ahead I/O as well i.e. completely pointless. 2017 * 2018 * Read-ahead will be disabled because @c->bdi.ra_pages is 0. 2019 */ 2020 c->bdi.name = "ubifs", 2021 c->bdi.capabilities = 0; 2022 err = bdi_init(&c->bdi); 2023 if (err) 2024 goto out_close; 2025 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", 2026 c->vi.ubi_num, c->vi.vol_id); 2027 if (err) 2028 goto out_bdi; 2029 2030 err = ubifs_parse_options(c, data, 0); 2031 if (err) 2032 goto out_bdi; 2033 2034 sb->s_bdi = &c->bdi; 2035 sb->s_fs_info = c; 2036 sb->s_magic = UBIFS_SUPER_MAGIC; 2037 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2038 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2039 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2040 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2041 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2042 sb->s_op = &ubifs_super_operations; 2043 sb->s_xattr = ubifs_xattr_handlers; 2044 2045 mutex_lock(&c->umount_mutex); 2046 err = mount_ubifs(c); 2047 if (err) { 2048 ubifs_assert(err < 0); 2049 goto out_unlock; 2050 } 2051 2052 /* Read the root inode */ 2053 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2054 if (IS_ERR(root)) { 2055 err = PTR_ERR(root); 2056 goto out_umount; 2057 } 2058 2059 sb->s_root = d_make_root(root); 2060 if (!sb->s_root) { 2061 err = -ENOMEM; 2062 goto out_umount; 2063 } 2064 2065 mutex_unlock(&c->umount_mutex); 2066 return 0; 2067 2068 out_umount: 2069 ubifs_umount(c); 2070 out_unlock: 2071 mutex_unlock(&c->umount_mutex); 2072 out_bdi: 2073 bdi_destroy(&c->bdi); 2074 out_close: 2075 ubi_close_volume(c->ubi); 2076 out: 2077 return err; 2078 } 2079 2080 static int sb_test(struct super_block *sb, void *data) 2081 { 2082 struct ubifs_info *c1 = data; 2083 struct ubifs_info *c = sb->s_fs_info; 2084 2085 return c->vi.cdev == c1->vi.cdev; 2086 } 2087 2088 static int sb_set(struct super_block *sb, void *data) 2089 { 2090 sb->s_fs_info = data; 2091 return set_anon_super(sb, NULL); 2092 } 2093 2094 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2095 const char *name, void *data) 2096 { 2097 struct ubi_volume_desc *ubi; 2098 struct ubifs_info *c; 2099 struct super_block *sb; 2100 int err; 2101 2102 dbg_gen("name %s, flags %#x", name, flags); 2103 2104 /* 2105 * Get UBI device number and volume ID. Mount it read-only so far 2106 * because this might be a new mount point, and UBI allows only one 2107 * read-write user at a time. 2108 */ 2109 ubi = open_ubi(name, UBI_READONLY); 2110 if (IS_ERR(ubi)) { 2111 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2112 current->pid, name, (int)PTR_ERR(ubi)); 2113 return ERR_CAST(ubi); 2114 } 2115 2116 c = alloc_ubifs_info(ubi); 2117 if (!c) { 2118 err = -ENOMEM; 2119 goto out_close; 2120 } 2121 2122 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2123 2124 sb = sget(fs_type, sb_test, sb_set, flags, c); 2125 if (IS_ERR(sb)) { 2126 err = PTR_ERR(sb); 2127 kfree(c); 2128 goto out_close; 2129 } 2130 2131 if (sb->s_root) { 2132 struct ubifs_info *c1 = sb->s_fs_info; 2133 kfree(c); 2134 /* A new mount point for already mounted UBIFS */ 2135 dbg_gen("this ubi volume is already mounted"); 2136 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2137 err = -EBUSY; 2138 goto out_deact; 2139 } 2140 } else { 2141 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2142 if (err) 2143 goto out_deact; 2144 /* We do not support atime */ 2145 sb->s_flags |= MS_ACTIVE; 2146 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 2147 sb->s_flags |= MS_NOATIME; 2148 #else 2149 ubifs_msg(c, "full atime support is enabled."); 2150 #endif 2151 } 2152 2153 /* 'fill_super()' opens ubi again so we must close it here */ 2154 ubi_close_volume(ubi); 2155 2156 return dget(sb->s_root); 2157 2158 out_deact: 2159 deactivate_locked_super(sb); 2160 out_close: 2161 ubi_close_volume(ubi); 2162 return ERR_PTR(err); 2163 } 2164 2165 static void kill_ubifs_super(struct super_block *s) 2166 { 2167 struct ubifs_info *c = s->s_fs_info; 2168 kill_anon_super(s); 2169 kfree(c); 2170 } 2171 2172 static struct file_system_type ubifs_fs_type = { 2173 .name = "ubifs", 2174 .owner = THIS_MODULE, 2175 .mount = ubifs_mount, 2176 .kill_sb = kill_ubifs_super, 2177 }; 2178 MODULE_ALIAS_FS("ubifs"); 2179 2180 /* 2181 * Inode slab cache constructor. 2182 */ 2183 static void inode_slab_ctor(void *obj) 2184 { 2185 struct ubifs_inode *ui = obj; 2186 inode_init_once(&ui->vfs_inode); 2187 } 2188 2189 static int __init ubifs_init(void) 2190 { 2191 int err; 2192 2193 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2194 2195 /* Make sure node sizes are 8-byte aligned */ 2196 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2197 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2198 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2199 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2200 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2201 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2202 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2203 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2204 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2205 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2206 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2207 2208 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2209 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2210 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2211 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2212 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2213 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2214 2215 /* Check min. node size */ 2216 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2217 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2218 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2219 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2220 2221 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2222 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2223 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2224 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2225 2226 /* Defined node sizes */ 2227 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2228 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2229 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2230 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2231 2232 /* 2233 * We use 2 bit wide bit-fields to store compression type, which should 2234 * be amended if more compressors are added. The bit-fields are: 2235 * @compr_type in 'struct ubifs_inode', @default_compr in 2236 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2237 */ 2238 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2239 2240 /* 2241 * We require that PAGE_SIZE is greater-than-or-equal-to 2242 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2243 */ 2244 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2245 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2246 current->pid, (unsigned int)PAGE_SIZE); 2247 return -EINVAL; 2248 } 2249 2250 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2251 sizeof(struct ubifs_inode), 0, 2252 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2253 SLAB_ACCOUNT, &inode_slab_ctor); 2254 if (!ubifs_inode_slab) 2255 return -ENOMEM; 2256 2257 err = register_shrinker(&ubifs_shrinker_info); 2258 if (err) 2259 goto out_slab; 2260 2261 err = ubifs_compressors_init(); 2262 if (err) 2263 goto out_shrinker; 2264 2265 err = dbg_debugfs_init(); 2266 if (err) 2267 goto out_compr; 2268 2269 err = register_filesystem(&ubifs_fs_type); 2270 if (err) { 2271 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2272 current->pid, err); 2273 goto out_dbg; 2274 } 2275 return 0; 2276 2277 out_dbg: 2278 dbg_debugfs_exit(); 2279 out_compr: 2280 ubifs_compressors_exit(); 2281 out_shrinker: 2282 unregister_shrinker(&ubifs_shrinker_info); 2283 out_slab: 2284 kmem_cache_destroy(ubifs_inode_slab); 2285 return err; 2286 } 2287 /* late_initcall to let compressors initialize first */ 2288 late_initcall(ubifs_init); 2289 2290 static void __exit ubifs_exit(void) 2291 { 2292 ubifs_assert(list_empty(&ubifs_infos)); 2293 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2294 2295 dbg_debugfs_exit(); 2296 ubifs_compressors_exit(); 2297 unregister_shrinker(&ubifs_shrinker_info); 2298 2299 /* 2300 * Make sure all delayed rcu free inodes are flushed before we 2301 * destroy cache. 2302 */ 2303 rcu_barrier(); 2304 kmem_cache_destroy(ubifs_inode_slab); 2305 unregister_filesystem(&ubifs_fs_type); 2306 } 2307 module_exit(ubifs_exit); 2308 2309 MODULE_LICENSE("GPL"); 2310 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2311 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2312 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2313