1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= S_NOCMTIME; 132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 133 inode->i_flags |= S_NOATIME; 134 #endif 135 set_nlink(inode, le32_to_cpu(ino->nlink)); 136 i_uid_write(inode, le32_to_cpu(ino->uid)); 137 i_gid_write(inode, le32_to_cpu(ino->gid)); 138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 144 inode->i_mode = le32_to_cpu(ino->mode); 145 inode->i_size = le64_to_cpu(ino->size); 146 147 ui->data_len = le32_to_cpu(ino->data_len); 148 ui->flags = le32_to_cpu(ino->flags); 149 ui->compr_type = le16_to_cpu(ino->compr_type); 150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 152 ui->xattr_size = le32_to_cpu(ino->xattr_size); 153 ui->xattr_names = le32_to_cpu(ino->xattr_names); 154 ui->synced_i_size = ui->ui_size = inode->i_size; 155 156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 157 158 err = validate_inode(c, inode); 159 if (err) 160 goto out_invalid; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 249 ubifs_dump_node(c, ino); 250 ubifs_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 kmem_cache_free(ubifs_inode_slab, ui); 280 } 281 282 static void ubifs_destroy_inode(struct inode *inode) 283 { 284 struct ubifs_inode *ui = ubifs_inode(inode); 285 286 kfree(ui->data); 287 call_rcu(&inode->i_rcu, ubifs_i_callback); 288 } 289 290 /* 291 * Note, Linux write-back code calls this without 'i_mutex'. 292 */ 293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 294 { 295 int err = 0; 296 struct ubifs_info *c = inode->i_sb->s_fs_info; 297 struct ubifs_inode *ui = ubifs_inode(inode); 298 299 ubifs_assert(!ui->xattr); 300 if (is_bad_inode(inode)) 301 return 0; 302 303 mutex_lock(&ui->ui_mutex); 304 /* 305 * Due to races between write-back forced by budgeting 306 * (see 'sync_some_inodes()') and background write-back, the inode may 307 * have already been synchronized, do not do this again. This might 308 * also happen if it was synchronized in an VFS operation, e.g. 309 * 'ubifs_link()'. 310 */ 311 if (!ui->dirty) { 312 mutex_unlock(&ui->ui_mutex); 313 return 0; 314 } 315 316 /* 317 * As an optimization, do not write orphan inodes to the media just 318 * because this is not needed. 319 */ 320 dbg_gen("inode %lu, mode %#x, nlink %u", 321 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 322 if (inode->i_nlink) { 323 err = ubifs_jnl_write_inode(c, inode); 324 if (err) 325 ubifs_err(c, "can't write inode %lu, error %d", 326 inode->i_ino, err); 327 else 328 err = dbg_check_inode_size(c, inode, ui->ui_size); 329 } 330 331 ui->dirty = 0; 332 mutex_unlock(&ui->ui_mutex); 333 ubifs_release_dirty_inode_budget(c, ui); 334 return err; 335 } 336 337 static void ubifs_evict_inode(struct inode *inode) 338 { 339 int err; 340 struct ubifs_info *c = inode->i_sb->s_fs_info; 341 struct ubifs_inode *ui = ubifs_inode(inode); 342 343 if (ui->xattr) 344 /* 345 * Extended attribute inode deletions are fully handled in 346 * 'ubifs_removexattr()'. These inodes are special and have 347 * limited usage, so there is nothing to do here. 348 */ 349 goto out; 350 351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 352 ubifs_assert(!atomic_read(&inode->i_count)); 353 354 truncate_inode_pages_final(&inode->i_data); 355 356 if (inode->i_nlink) 357 goto done; 358 359 if (is_bad_inode(inode)) 360 goto out; 361 362 ui->ui_size = inode->i_size = 0; 363 err = ubifs_jnl_delete_inode(c, inode); 364 if (err) 365 /* 366 * Worst case we have a lost orphan inode wasting space, so a 367 * simple error message is OK here. 368 */ 369 ubifs_err(c, "can't delete inode %lu, error %d", 370 inode->i_ino, err); 371 372 out: 373 if (ui->dirty) 374 ubifs_release_dirty_inode_budget(c, ui); 375 else { 376 /* We've deleted something - clean the "no space" flags */ 377 c->bi.nospace = c->bi.nospace_rp = 0; 378 smp_wmb(); 379 } 380 done: 381 clear_inode(inode); 382 #ifdef CONFIG_UBIFS_FS_ENCRYPTION 383 fscrypt_put_encryption_info(inode, NULL); 384 #endif 385 } 386 387 static void ubifs_dirty_inode(struct inode *inode, int flags) 388 { 389 struct ubifs_inode *ui = ubifs_inode(inode); 390 391 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 392 if (!ui->dirty) { 393 ui->dirty = 1; 394 dbg_gen("inode %lu", inode->i_ino); 395 } 396 } 397 398 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 399 { 400 struct ubifs_info *c = dentry->d_sb->s_fs_info; 401 unsigned long long free; 402 __le32 *uuid = (__le32 *)c->uuid; 403 404 free = ubifs_get_free_space(c); 405 dbg_gen("free space %lld bytes (%lld blocks)", 406 free, free >> UBIFS_BLOCK_SHIFT); 407 408 buf->f_type = UBIFS_SUPER_MAGIC; 409 buf->f_bsize = UBIFS_BLOCK_SIZE; 410 buf->f_blocks = c->block_cnt; 411 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 412 if (free > c->report_rp_size) 413 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 414 else 415 buf->f_bavail = 0; 416 buf->f_files = 0; 417 buf->f_ffree = 0; 418 buf->f_namelen = UBIFS_MAX_NLEN; 419 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 420 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 421 ubifs_assert(buf->f_bfree <= c->block_cnt); 422 return 0; 423 } 424 425 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 426 { 427 struct ubifs_info *c = root->d_sb->s_fs_info; 428 429 if (c->mount_opts.unmount_mode == 2) 430 seq_puts(s, ",fast_unmount"); 431 else if (c->mount_opts.unmount_mode == 1) 432 seq_puts(s, ",norm_unmount"); 433 434 if (c->mount_opts.bulk_read == 2) 435 seq_puts(s, ",bulk_read"); 436 else if (c->mount_opts.bulk_read == 1) 437 seq_puts(s, ",no_bulk_read"); 438 439 if (c->mount_opts.chk_data_crc == 2) 440 seq_puts(s, ",chk_data_crc"); 441 else if (c->mount_opts.chk_data_crc == 1) 442 seq_puts(s, ",no_chk_data_crc"); 443 444 if (c->mount_opts.override_compr) { 445 seq_printf(s, ",compr=%s", 446 ubifs_compr_name(c->mount_opts.compr_type)); 447 } 448 449 return 0; 450 } 451 452 static int ubifs_sync_fs(struct super_block *sb, int wait) 453 { 454 int i, err; 455 struct ubifs_info *c = sb->s_fs_info; 456 457 /* 458 * Zero @wait is just an advisory thing to help the file system shove 459 * lots of data into the queues, and there will be the second 460 * '->sync_fs()' call, with non-zero @wait. 461 */ 462 if (!wait) 463 return 0; 464 465 /* 466 * Synchronize write buffers, because 'ubifs_run_commit()' does not 467 * do this if it waits for an already running commit. 468 */ 469 for (i = 0; i < c->jhead_cnt; i++) { 470 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 471 if (err) 472 return err; 473 } 474 475 /* 476 * Strictly speaking, it is not necessary to commit the journal here, 477 * synchronizing write-buffers would be enough. But committing makes 478 * UBIFS free space predictions much more accurate, so we want to let 479 * the user be able to get more accurate results of 'statfs()' after 480 * they synchronize the file system. 481 */ 482 err = ubifs_run_commit(c); 483 if (err) 484 return err; 485 486 return ubi_sync(c->vi.ubi_num); 487 } 488 489 /** 490 * init_constants_early - initialize UBIFS constants. 491 * @c: UBIFS file-system description object 492 * 493 * This function initialize UBIFS constants which do not need the superblock to 494 * be read. It also checks that the UBI volume satisfies basic UBIFS 495 * requirements. Returns zero in case of success and a negative error code in 496 * case of failure. 497 */ 498 static int init_constants_early(struct ubifs_info *c) 499 { 500 if (c->vi.corrupted) { 501 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 502 c->ro_media = 1; 503 } 504 505 if (c->di.ro_mode) { 506 ubifs_msg(c, "read-only UBI device"); 507 c->ro_media = 1; 508 } 509 510 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 511 ubifs_msg(c, "static UBI volume - read-only mode"); 512 c->ro_media = 1; 513 } 514 515 c->leb_cnt = c->vi.size; 516 c->leb_size = c->vi.usable_leb_size; 517 c->leb_start = c->di.leb_start; 518 c->half_leb_size = c->leb_size / 2; 519 c->min_io_size = c->di.min_io_size; 520 c->min_io_shift = fls(c->min_io_size) - 1; 521 c->max_write_size = c->di.max_write_size; 522 c->max_write_shift = fls(c->max_write_size) - 1; 523 524 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 525 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 526 c->leb_size, UBIFS_MIN_LEB_SZ); 527 return -EINVAL; 528 } 529 530 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 531 ubifs_errc(c, "too few LEBs (%d), min. is %d", 532 c->leb_cnt, UBIFS_MIN_LEB_CNT); 533 return -EINVAL; 534 } 535 536 if (!is_power_of_2(c->min_io_size)) { 537 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 538 return -EINVAL; 539 } 540 541 /* 542 * Maximum write size has to be greater or equivalent to min. I/O 543 * size, and be multiple of min. I/O size. 544 */ 545 if (c->max_write_size < c->min_io_size || 546 c->max_write_size % c->min_io_size || 547 !is_power_of_2(c->max_write_size)) { 548 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 549 c->max_write_size, c->min_io_size); 550 return -EINVAL; 551 } 552 553 /* 554 * UBIFS aligns all node to 8-byte boundary, so to make function in 555 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 556 * less than 8. 557 */ 558 if (c->min_io_size < 8) { 559 c->min_io_size = 8; 560 c->min_io_shift = 3; 561 if (c->max_write_size < c->min_io_size) { 562 c->max_write_size = c->min_io_size; 563 c->max_write_shift = c->min_io_shift; 564 } 565 } 566 567 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 568 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 569 570 /* 571 * Initialize node length ranges which are mostly needed for node 572 * length validation. 573 */ 574 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 575 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 576 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 577 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 578 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 579 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 580 581 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 582 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 583 c->ranges[UBIFS_ORPH_NODE].min_len = 584 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 585 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 586 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 587 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 588 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 589 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 590 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 591 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 592 /* 593 * Minimum indexing node size is amended later when superblock is 594 * read and the key length is known. 595 */ 596 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 597 /* 598 * Maximum indexing node size is amended later when superblock is 599 * read and the fanout is known. 600 */ 601 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 602 603 /* 604 * Initialize dead and dark LEB space watermarks. See gc.c for comments 605 * about these values. 606 */ 607 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 608 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 609 610 /* 611 * Calculate how many bytes would be wasted at the end of LEB if it was 612 * fully filled with data nodes of maximum size. This is used in 613 * calculations when reporting free space. 614 */ 615 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 616 617 /* Buffer size for bulk-reads */ 618 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 619 if (c->max_bu_buf_len > c->leb_size) 620 c->max_bu_buf_len = c->leb_size; 621 return 0; 622 } 623 624 /** 625 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 626 * @c: UBIFS file-system description object 627 * @lnum: LEB the write-buffer was synchronized to 628 * @free: how many free bytes left in this LEB 629 * @pad: how many bytes were padded 630 * 631 * This is a callback function which is called by the I/O unit when the 632 * write-buffer is synchronized. We need this to correctly maintain space 633 * accounting in bud logical eraseblocks. This function returns zero in case of 634 * success and a negative error code in case of failure. 635 * 636 * This function actually belongs to the journal, but we keep it here because 637 * we want to keep it static. 638 */ 639 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 640 { 641 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 642 } 643 644 /* 645 * init_constants_sb - initialize UBIFS constants. 646 * @c: UBIFS file-system description object 647 * 648 * This is a helper function which initializes various UBIFS constants after 649 * the superblock has been read. It also checks various UBIFS parameters and 650 * makes sure they are all right. Returns zero in case of success and a 651 * negative error code in case of failure. 652 */ 653 static int init_constants_sb(struct ubifs_info *c) 654 { 655 int tmp, err; 656 long long tmp64; 657 658 c->main_bytes = (long long)c->main_lebs * c->leb_size; 659 c->max_znode_sz = sizeof(struct ubifs_znode) + 660 c->fanout * sizeof(struct ubifs_zbranch); 661 662 tmp = ubifs_idx_node_sz(c, 1); 663 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 664 c->min_idx_node_sz = ALIGN(tmp, 8); 665 666 tmp = ubifs_idx_node_sz(c, c->fanout); 667 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 668 c->max_idx_node_sz = ALIGN(tmp, 8); 669 670 /* Make sure LEB size is large enough to fit full commit */ 671 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 672 tmp = ALIGN(tmp, c->min_io_size); 673 if (tmp > c->leb_size) { 674 ubifs_err(c, "too small LEB size %d, at least %d needed", 675 c->leb_size, tmp); 676 return -EINVAL; 677 } 678 679 /* 680 * Make sure that the log is large enough to fit reference nodes for 681 * all buds plus one reserved LEB. 682 */ 683 tmp64 = c->max_bud_bytes + c->leb_size - 1; 684 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 685 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 686 tmp /= c->leb_size; 687 tmp += 1; 688 if (c->log_lebs < tmp) { 689 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 690 c->log_lebs, tmp); 691 return -EINVAL; 692 } 693 694 /* 695 * When budgeting we assume worst-case scenarios when the pages are not 696 * be compressed and direntries are of the maximum size. 697 * 698 * Note, data, which may be stored in inodes is budgeted separately, so 699 * it is not included into 'c->bi.inode_budget'. 700 */ 701 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 702 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 703 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 704 705 /* 706 * When the amount of flash space used by buds becomes 707 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 708 * The writers are unblocked when the commit is finished. To avoid 709 * writers to be blocked UBIFS initiates background commit in advance, 710 * when number of bud bytes becomes above the limit defined below. 711 */ 712 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 713 714 /* 715 * Ensure minimum journal size. All the bytes in the journal heads are 716 * considered to be used, when calculating the current journal usage. 717 * Consequently, if the journal is too small, UBIFS will treat it as 718 * always full. 719 */ 720 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 721 if (c->bg_bud_bytes < tmp64) 722 c->bg_bud_bytes = tmp64; 723 if (c->max_bud_bytes < tmp64 + c->leb_size) 724 c->max_bud_bytes = tmp64 + c->leb_size; 725 726 err = ubifs_calc_lpt_geom(c); 727 if (err) 728 return err; 729 730 /* Initialize effective LEB size used in budgeting calculations */ 731 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 732 return 0; 733 } 734 735 /* 736 * init_constants_master - initialize UBIFS constants. 737 * @c: UBIFS file-system description object 738 * 739 * This is a helper function which initializes various UBIFS constants after 740 * the master node has been read. It also checks various UBIFS parameters and 741 * makes sure they are all right. 742 */ 743 static void init_constants_master(struct ubifs_info *c) 744 { 745 long long tmp64; 746 747 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 748 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 749 750 /* 751 * Calculate total amount of FS blocks. This number is not used 752 * internally because it does not make much sense for UBIFS, but it is 753 * necessary to report something for the 'statfs()' call. 754 * 755 * Subtract the LEB reserved for GC, the LEB which is reserved for 756 * deletions, minimum LEBs for the index, and assume only one journal 757 * head is available. 758 */ 759 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 760 tmp64 *= (long long)c->leb_size - c->leb_overhead; 761 tmp64 = ubifs_reported_space(c, tmp64); 762 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 763 } 764 765 /** 766 * take_gc_lnum - reserve GC LEB. 767 * @c: UBIFS file-system description object 768 * 769 * This function ensures that the LEB reserved for garbage collection is marked 770 * as "taken" in lprops. We also have to set free space to LEB size and dirty 771 * space to zero, because lprops may contain out-of-date information if the 772 * file-system was un-mounted before it has been committed. This function 773 * returns zero in case of success and a negative error code in case of 774 * failure. 775 */ 776 static int take_gc_lnum(struct ubifs_info *c) 777 { 778 int err; 779 780 if (c->gc_lnum == -1) { 781 ubifs_err(c, "no LEB for GC"); 782 return -EINVAL; 783 } 784 785 /* And we have to tell lprops that this LEB is taken */ 786 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 787 LPROPS_TAKEN, 0, 0); 788 return err; 789 } 790 791 /** 792 * alloc_wbufs - allocate write-buffers. 793 * @c: UBIFS file-system description object 794 * 795 * This helper function allocates and initializes UBIFS write-buffers. Returns 796 * zero in case of success and %-ENOMEM in case of failure. 797 */ 798 static int alloc_wbufs(struct ubifs_info *c) 799 { 800 int i, err; 801 802 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 803 GFP_KERNEL); 804 if (!c->jheads) 805 return -ENOMEM; 806 807 /* Initialize journal heads */ 808 for (i = 0; i < c->jhead_cnt; i++) { 809 INIT_LIST_HEAD(&c->jheads[i].buds_list); 810 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 811 if (err) 812 return err; 813 814 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 815 c->jheads[i].wbuf.jhead = i; 816 c->jheads[i].grouped = 1; 817 } 818 819 /* 820 * Garbage Collector head does not need to be synchronized by timer. 821 * Also GC head nodes are not grouped. 822 */ 823 c->jheads[GCHD].wbuf.no_timer = 1; 824 c->jheads[GCHD].grouped = 0; 825 826 return 0; 827 } 828 829 /** 830 * free_wbufs - free write-buffers. 831 * @c: UBIFS file-system description object 832 */ 833 static void free_wbufs(struct ubifs_info *c) 834 { 835 int i; 836 837 if (c->jheads) { 838 for (i = 0; i < c->jhead_cnt; i++) { 839 kfree(c->jheads[i].wbuf.buf); 840 kfree(c->jheads[i].wbuf.inodes); 841 } 842 kfree(c->jheads); 843 c->jheads = NULL; 844 } 845 } 846 847 /** 848 * free_orphans - free orphans. 849 * @c: UBIFS file-system description object 850 */ 851 static void free_orphans(struct ubifs_info *c) 852 { 853 struct ubifs_orphan *orph; 854 855 while (c->orph_dnext) { 856 orph = c->orph_dnext; 857 c->orph_dnext = orph->dnext; 858 list_del(&orph->list); 859 kfree(orph); 860 } 861 862 while (!list_empty(&c->orph_list)) { 863 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 864 list_del(&orph->list); 865 kfree(orph); 866 ubifs_err(c, "orphan list not empty at unmount"); 867 } 868 869 vfree(c->orph_buf); 870 c->orph_buf = NULL; 871 } 872 873 /** 874 * free_buds - free per-bud objects. 875 * @c: UBIFS file-system description object 876 */ 877 static void free_buds(struct ubifs_info *c) 878 { 879 struct ubifs_bud *bud, *n; 880 881 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 882 kfree(bud); 883 } 884 885 /** 886 * check_volume_empty - check if the UBI volume is empty. 887 * @c: UBIFS file-system description object 888 * 889 * This function checks if the UBIFS volume is empty by looking if its LEBs are 890 * mapped or not. The result of checking is stored in the @c->empty variable. 891 * Returns zero in case of success and a negative error code in case of 892 * failure. 893 */ 894 static int check_volume_empty(struct ubifs_info *c) 895 { 896 int lnum, err; 897 898 c->empty = 1; 899 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 900 err = ubifs_is_mapped(c, lnum); 901 if (unlikely(err < 0)) 902 return err; 903 if (err == 1) { 904 c->empty = 0; 905 break; 906 } 907 908 cond_resched(); 909 } 910 911 return 0; 912 } 913 914 /* 915 * UBIFS mount options. 916 * 917 * Opt_fast_unmount: do not run a journal commit before un-mounting 918 * Opt_norm_unmount: run a journal commit before un-mounting 919 * Opt_bulk_read: enable bulk-reads 920 * Opt_no_bulk_read: disable bulk-reads 921 * Opt_chk_data_crc: check CRCs when reading data nodes 922 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 923 * Opt_override_compr: override default compressor 924 * Opt_err: just end of array marker 925 */ 926 enum { 927 Opt_fast_unmount, 928 Opt_norm_unmount, 929 Opt_bulk_read, 930 Opt_no_bulk_read, 931 Opt_chk_data_crc, 932 Opt_no_chk_data_crc, 933 Opt_override_compr, 934 Opt_err, 935 }; 936 937 static const match_table_t tokens = { 938 {Opt_fast_unmount, "fast_unmount"}, 939 {Opt_norm_unmount, "norm_unmount"}, 940 {Opt_bulk_read, "bulk_read"}, 941 {Opt_no_bulk_read, "no_bulk_read"}, 942 {Opt_chk_data_crc, "chk_data_crc"}, 943 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 944 {Opt_override_compr, "compr=%s"}, 945 {Opt_err, NULL}, 946 }; 947 948 /** 949 * parse_standard_option - parse a standard mount option. 950 * @option: the option to parse 951 * 952 * Normally, standard mount options like "sync" are passed to file-systems as 953 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 954 * be present in the options string. This function tries to deal with this 955 * situation and parse standard options. Returns 0 if the option was not 956 * recognized, and the corresponding integer flag if it was. 957 * 958 * UBIFS is only interested in the "sync" option, so do not check for anything 959 * else. 960 */ 961 static int parse_standard_option(const char *option) 962 { 963 964 pr_notice("UBIFS: parse %s\n", option); 965 if (!strcmp(option, "sync")) 966 return MS_SYNCHRONOUS; 967 return 0; 968 } 969 970 /** 971 * ubifs_parse_options - parse mount parameters. 972 * @c: UBIFS file-system description object 973 * @options: parameters to parse 974 * @is_remount: non-zero if this is FS re-mount 975 * 976 * This function parses UBIFS mount options and returns zero in case success 977 * and a negative error code in case of failure. 978 */ 979 static int ubifs_parse_options(struct ubifs_info *c, char *options, 980 int is_remount) 981 { 982 char *p; 983 substring_t args[MAX_OPT_ARGS]; 984 985 if (!options) 986 return 0; 987 988 while ((p = strsep(&options, ","))) { 989 int token; 990 991 if (!*p) 992 continue; 993 994 token = match_token(p, tokens, args); 995 switch (token) { 996 /* 997 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 998 * We accept them in order to be backward-compatible. But this 999 * should be removed at some point. 1000 */ 1001 case Opt_fast_unmount: 1002 c->mount_opts.unmount_mode = 2; 1003 break; 1004 case Opt_norm_unmount: 1005 c->mount_opts.unmount_mode = 1; 1006 break; 1007 case Opt_bulk_read: 1008 c->mount_opts.bulk_read = 2; 1009 c->bulk_read = 1; 1010 break; 1011 case Opt_no_bulk_read: 1012 c->mount_opts.bulk_read = 1; 1013 c->bulk_read = 0; 1014 break; 1015 case Opt_chk_data_crc: 1016 c->mount_opts.chk_data_crc = 2; 1017 c->no_chk_data_crc = 0; 1018 break; 1019 case Opt_no_chk_data_crc: 1020 c->mount_opts.chk_data_crc = 1; 1021 c->no_chk_data_crc = 1; 1022 break; 1023 case Opt_override_compr: 1024 { 1025 char *name = match_strdup(&args[0]); 1026 1027 if (!name) 1028 return -ENOMEM; 1029 if (!strcmp(name, "none")) 1030 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1031 else if (!strcmp(name, "lzo")) 1032 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1033 else if (!strcmp(name, "zlib")) 1034 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1035 else { 1036 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1037 kfree(name); 1038 return -EINVAL; 1039 } 1040 kfree(name); 1041 c->mount_opts.override_compr = 1; 1042 c->default_compr = c->mount_opts.compr_type; 1043 break; 1044 } 1045 default: 1046 { 1047 unsigned long flag; 1048 struct super_block *sb = c->vfs_sb; 1049 1050 flag = parse_standard_option(p); 1051 if (!flag) { 1052 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1053 p); 1054 return -EINVAL; 1055 } 1056 sb->s_flags |= flag; 1057 break; 1058 } 1059 } 1060 } 1061 1062 return 0; 1063 } 1064 1065 /** 1066 * destroy_journal - destroy journal data structures. 1067 * @c: UBIFS file-system description object 1068 * 1069 * This function destroys journal data structures including those that may have 1070 * been created by recovery functions. 1071 */ 1072 static void destroy_journal(struct ubifs_info *c) 1073 { 1074 while (!list_empty(&c->unclean_leb_list)) { 1075 struct ubifs_unclean_leb *ucleb; 1076 1077 ucleb = list_entry(c->unclean_leb_list.next, 1078 struct ubifs_unclean_leb, list); 1079 list_del(&ucleb->list); 1080 kfree(ucleb); 1081 } 1082 while (!list_empty(&c->old_buds)) { 1083 struct ubifs_bud *bud; 1084 1085 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1086 list_del(&bud->list); 1087 kfree(bud); 1088 } 1089 ubifs_destroy_idx_gc(c); 1090 ubifs_destroy_size_tree(c); 1091 ubifs_tnc_close(c); 1092 free_buds(c); 1093 } 1094 1095 /** 1096 * bu_init - initialize bulk-read information. 1097 * @c: UBIFS file-system description object 1098 */ 1099 static void bu_init(struct ubifs_info *c) 1100 { 1101 ubifs_assert(c->bulk_read == 1); 1102 1103 if (c->bu.buf) 1104 return; /* Already initialized */ 1105 1106 again: 1107 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1108 if (!c->bu.buf) { 1109 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1110 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1111 goto again; 1112 } 1113 1114 /* Just disable bulk-read */ 1115 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1116 c->max_bu_buf_len); 1117 c->mount_opts.bulk_read = 1; 1118 c->bulk_read = 0; 1119 return; 1120 } 1121 } 1122 1123 /** 1124 * check_free_space - check if there is enough free space to mount. 1125 * @c: UBIFS file-system description object 1126 * 1127 * This function makes sure UBIFS has enough free space to be mounted in 1128 * read/write mode. UBIFS must always have some free space to allow deletions. 1129 */ 1130 static int check_free_space(struct ubifs_info *c) 1131 { 1132 ubifs_assert(c->dark_wm > 0); 1133 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1134 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1135 ubifs_dump_budg(c, &c->bi); 1136 ubifs_dump_lprops(c); 1137 return -ENOSPC; 1138 } 1139 return 0; 1140 } 1141 1142 /** 1143 * mount_ubifs - mount UBIFS file-system. 1144 * @c: UBIFS file-system description object 1145 * 1146 * This function mounts UBIFS file system. Returns zero in case of success and 1147 * a negative error code in case of failure. 1148 */ 1149 static int mount_ubifs(struct ubifs_info *c) 1150 { 1151 int err; 1152 long long x, y; 1153 size_t sz; 1154 1155 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); 1156 /* Suppress error messages while probing if MS_SILENT is set */ 1157 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); 1158 1159 err = init_constants_early(c); 1160 if (err) 1161 return err; 1162 1163 err = ubifs_debugging_init(c); 1164 if (err) 1165 return err; 1166 1167 err = check_volume_empty(c); 1168 if (err) 1169 goto out_free; 1170 1171 if (c->empty && (c->ro_mount || c->ro_media)) { 1172 /* 1173 * This UBI volume is empty, and read-only, or the file system 1174 * is mounted read-only - we cannot format it. 1175 */ 1176 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1177 c->ro_media ? "UBI volume" : "mount"); 1178 err = -EROFS; 1179 goto out_free; 1180 } 1181 1182 if (c->ro_media && !c->ro_mount) { 1183 ubifs_err(c, "cannot mount read-write - read-only media"); 1184 err = -EROFS; 1185 goto out_free; 1186 } 1187 1188 /* 1189 * The requirement for the buffer is that it should fit indexing B-tree 1190 * height amount of integers. We assume the height if the TNC tree will 1191 * never exceed 64. 1192 */ 1193 err = -ENOMEM; 1194 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); 1195 if (!c->bottom_up_buf) 1196 goto out_free; 1197 1198 c->sbuf = vmalloc(c->leb_size); 1199 if (!c->sbuf) 1200 goto out_free; 1201 1202 if (!c->ro_mount) { 1203 c->ileb_buf = vmalloc(c->leb_size); 1204 if (!c->ileb_buf) 1205 goto out_free; 1206 } 1207 1208 if (c->bulk_read == 1) 1209 bu_init(c); 1210 1211 if (!c->ro_mount) { 1212 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1213 UBIFS_CIPHER_BLOCK_SIZE, 1214 GFP_KERNEL); 1215 if (!c->write_reserve_buf) 1216 goto out_free; 1217 } 1218 1219 c->mounting = 1; 1220 1221 err = ubifs_read_superblock(c); 1222 if (err) 1223 goto out_free; 1224 1225 c->probing = 0; 1226 1227 /* 1228 * Make sure the compressor which is set as default in the superblock 1229 * or overridden by mount options is actually compiled in. 1230 */ 1231 if (!ubifs_compr_present(c->default_compr)) { 1232 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1233 ubifs_compr_name(c->default_compr)); 1234 err = -ENOTSUPP; 1235 goto out_free; 1236 } 1237 1238 err = init_constants_sb(c); 1239 if (err) 1240 goto out_free; 1241 1242 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1243 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1244 c->cbuf = kmalloc(sz, GFP_NOFS); 1245 if (!c->cbuf) { 1246 err = -ENOMEM; 1247 goto out_free; 1248 } 1249 1250 err = alloc_wbufs(c); 1251 if (err) 1252 goto out_cbuf; 1253 1254 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1255 if (!c->ro_mount) { 1256 /* Create background thread */ 1257 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1258 if (IS_ERR(c->bgt)) { 1259 err = PTR_ERR(c->bgt); 1260 c->bgt = NULL; 1261 ubifs_err(c, "cannot spawn \"%s\", error %d", 1262 c->bgt_name, err); 1263 goto out_wbufs; 1264 } 1265 wake_up_process(c->bgt); 1266 } 1267 1268 err = ubifs_read_master(c); 1269 if (err) 1270 goto out_master; 1271 1272 init_constants_master(c); 1273 1274 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1275 ubifs_msg(c, "recovery needed"); 1276 c->need_recovery = 1; 1277 } 1278 1279 if (c->need_recovery && !c->ro_mount) { 1280 err = ubifs_recover_inl_heads(c, c->sbuf); 1281 if (err) 1282 goto out_master; 1283 } 1284 1285 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1286 if (err) 1287 goto out_master; 1288 1289 if (!c->ro_mount && c->space_fixup) { 1290 err = ubifs_fixup_free_space(c); 1291 if (err) 1292 goto out_lpt; 1293 } 1294 1295 if (!c->ro_mount && !c->need_recovery) { 1296 /* 1297 * Set the "dirty" flag so that if we reboot uncleanly we 1298 * will notice this immediately on the next mount. 1299 */ 1300 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1301 err = ubifs_write_master(c); 1302 if (err) 1303 goto out_lpt; 1304 } 1305 1306 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1307 if (err) 1308 goto out_lpt; 1309 1310 err = ubifs_replay_journal(c); 1311 if (err) 1312 goto out_journal; 1313 1314 /* Calculate 'min_idx_lebs' after journal replay */ 1315 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1316 1317 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1318 if (err) 1319 goto out_orphans; 1320 1321 if (!c->ro_mount) { 1322 int lnum; 1323 1324 err = check_free_space(c); 1325 if (err) 1326 goto out_orphans; 1327 1328 /* Check for enough log space */ 1329 lnum = c->lhead_lnum + 1; 1330 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1331 lnum = UBIFS_LOG_LNUM; 1332 if (lnum == c->ltail_lnum) { 1333 err = ubifs_consolidate_log(c); 1334 if (err) 1335 goto out_orphans; 1336 } 1337 1338 if (c->need_recovery) { 1339 err = ubifs_recover_size(c); 1340 if (err) 1341 goto out_orphans; 1342 err = ubifs_rcvry_gc_commit(c); 1343 if (err) 1344 goto out_orphans; 1345 } else { 1346 err = take_gc_lnum(c); 1347 if (err) 1348 goto out_orphans; 1349 1350 /* 1351 * GC LEB may contain garbage if there was an unclean 1352 * reboot, and it should be un-mapped. 1353 */ 1354 err = ubifs_leb_unmap(c, c->gc_lnum); 1355 if (err) 1356 goto out_orphans; 1357 } 1358 1359 err = dbg_check_lprops(c); 1360 if (err) 1361 goto out_orphans; 1362 } else if (c->need_recovery) { 1363 err = ubifs_recover_size(c); 1364 if (err) 1365 goto out_orphans; 1366 } else { 1367 /* 1368 * Even if we mount read-only, we have to set space in GC LEB 1369 * to proper value because this affects UBIFS free space 1370 * reporting. We do not want to have a situation when 1371 * re-mounting from R/O to R/W changes amount of free space. 1372 */ 1373 err = take_gc_lnum(c); 1374 if (err) 1375 goto out_orphans; 1376 } 1377 1378 spin_lock(&ubifs_infos_lock); 1379 list_add_tail(&c->infos_list, &ubifs_infos); 1380 spin_unlock(&ubifs_infos_lock); 1381 1382 if (c->need_recovery) { 1383 if (c->ro_mount) 1384 ubifs_msg(c, "recovery deferred"); 1385 else { 1386 c->need_recovery = 0; 1387 ubifs_msg(c, "recovery completed"); 1388 /* 1389 * GC LEB has to be empty and taken at this point. But 1390 * the journal head LEBs may also be accounted as 1391 * "empty taken" if they are empty. 1392 */ 1393 ubifs_assert(c->lst.taken_empty_lebs > 0); 1394 } 1395 } else 1396 ubifs_assert(c->lst.taken_empty_lebs > 0); 1397 1398 err = dbg_check_filesystem(c); 1399 if (err) 1400 goto out_infos; 1401 1402 err = dbg_debugfs_init_fs(c); 1403 if (err) 1404 goto out_infos; 1405 1406 c->mounting = 0; 1407 1408 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1409 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1410 c->ro_mount ? ", R/O mode" : ""); 1411 x = (long long)c->main_lebs * c->leb_size; 1412 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1413 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1414 c->leb_size, c->leb_size >> 10, c->min_io_size, 1415 c->max_write_size); 1416 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1417 x, x >> 20, c->main_lebs, 1418 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1419 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1420 c->report_rp_size, c->report_rp_size >> 10); 1421 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1422 c->fmt_version, c->ro_compat_version, 1423 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1424 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1425 1426 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); 1427 dbg_gen("data journal heads: %d", 1428 c->jhead_cnt - NONDATA_JHEADS_CNT); 1429 dbg_gen("log LEBs: %d (%d - %d)", 1430 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1431 dbg_gen("LPT area LEBs: %d (%d - %d)", 1432 c->lpt_lebs, c->lpt_first, c->lpt_last); 1433 dbg_gen("orphan area LEBs: %d (%d - %d)", 1434 c->orph_lebs, c->orph_first, c->orph_last); 1435 dbg_gen("main area LEBs: %d (%d - %d)", 1436 c->main_lebs, c->main_first, c->leb_cnt - 1); 1437 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1438 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1439 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1440 c->bi.old_idx_sz >> 20); 1441 dbg_gen("key hash type: %d", c->key_hash_type); 1442 dbg_gen("tree fanout: %d", c->fanout); 1443 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1444 dbg_gen("max. znode size %d", c->max_znode_sz); 1445 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1446 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1447 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1448 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1449 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1450 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1451 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1452 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1453 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1454 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1455 dbg_gen("dead watermark: %d", c->dead_wm); 1456 dbg_gen("dark watermark: %d", c->dark_wm); 1457 dbg_gen("LEB overhead: %d", c->leb_overhead); 1458 x = (long long)c->main_lebs * c->dark_wm; 1459 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1460 x, x >> 10, x >> 20); 1461 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1462 c->max_bud_bytes, c->max_bud_bytes >> 10, 1463 c->max_bud_bytes >> 20); 1464 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1465 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1466 c->bg_bud_bytes >> 20); 1467 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1468 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1469 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1470 dbg_gen("commit number: %llu", c->cmt_no); 1471 1472 return 0; 1473 1474 out_infos: 1475 spin_lock(&ubifs_infos_lock); 1476 list_del(&c->infos_list); 1477 spin_unlock(&ubifs_infos_lock); 1478 out_orphans: 1479 free_orphans(c); 1480 out_journal: 1481 destroy_journal(c); 1482 out_lpt: 1483 ubifs_lpt_free(c, 0); 1484 out_master: 1485 kfree(c->mst_node); 1486 kfree(c->rcvrd_mst_node); 1487 if (c->bgt) 1488 kthread_stop(c->bgt); 1489 out_wbufs: 1490 free_wbufs(c); 1491 out_cbuf: 1492 kfree(c->cbuf); 1493 out_free: 1494 kfree(c->write_reserve_buf); 1495 kfree(c->bu.buf); 1496 vfree(c->ileb_buf); 1497 vfree(c->sbuf); 1498 kfree(c->bottom_up_buf); 1499 ubifs_debugging_exit(c); 1500 return err; 1501 } 1502 1503 /** 1504 * ubifs_umount - un-mount UBIFS file-system. 1505 * @c: UBIFS file-system description object 1506 * 1507 * Note, this function is called to free allocated resourced when un-mounting, 1508 * as well as free resources when an error occurred while we were half way 1509 * through mounting (error path cleanup function). So it has to make sure the 1510 * resource was actually allocated before freeing it. 1511 */ 1512 static void ubifs_umount(struct ubifs_info *c) 1513 { 1514 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1515 c->vi.vol_id); 1516 1517 dbg_debugfs_exit_fs(c); 1518 spin_lock(&ubifs_infos_lock); 1519 list_del(&c->infos_list); 1520 spin_unlock(&ubifs_infos_lock); 1521 1522 if (c->bgt) 1523 kthread_stop(c->bgt); 1524 1525 destroy_journal(c); 1526 free_wbufs(c); 1527 free_orphans(c); 1528 ubifs_lpt_free(c, 0); 1529 1530 kfree(c->cbuf); 1531 kfree(c->rcvrd_mst_node); 1532 kfree(c->mst_node); 1533 kfree(c->write_reserve_buf); 1534 kfree(c->bu.buf); 1535 vfree(c->ileb_buf); 1536 vfree(c->sbuf); 1537 kfree(c->bottom_up_buf); 1538 ubifs_debugging_exit(c); 1539 } 1540 1541 /** 1542 * ubifs_remount_rw - re-mount in read-write mode. 1543 * @c: UBIFS file-system description object 1544 * 1545 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1546 * mode. This function allocates the needed resources and re-mounts UBIFS in 1547 * read-write mode. 1548 */ 1549 static int ubifs_remount_rw(struct ubifs_info *c) 1550 { 1551 int err, lnum; 1552 1553 if (c->rw_incompat) { 1554 ubifs_err(c, "the file-system is not R/W-compatible"); 1555 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1556 c->fmt_version, c->ro_compat_version, 1557 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1558 return -EROFS; 1559 } 1560 1561 mutex_lock(&c->umount_mutex); 1562 dbg_save_space_info(c); 1563 c->remounting_rw = 1; 1564 c->ro_mount = 0; 1565 1566 if (c->space_fixup) { 1567 err = ubifs_fixup_free_space(c); 1568 if (err) 1569 goto out; 1570 } 1571 1572 err = check_free_space(c); 1573 if (err) 1574 goto out; 1575 1576 if (c->old_leb_cnt != c->leb_cnt) { 1577 struct ubifs_sb_node *sup; 1578 1579 sup = ubifs_read_sb_node(c); 1580 if (IS_ERR(sup)) { 1581 err = PTR_ERR(sup); 1582 goto out; 1583 } 1584 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1585 err = ubifs_write_sb_node(c, sup); 1586 kfree(sup); 1587 if (err) 1588 goto out; 1589 } 1590 1591 if (c->need_recovery) { 1592 ubifs_msg(c, "completing deferred recovery"); 1593 err = ubifs_write_rcvrd_mst_node(c); 1594 if (err) 1595 goto out; 1596 err = ubifs_recover_size(c); 1597 if (err) 1598 goto out; 1599 err = ubifs_clean_lebs(c, c->sbuf); 1600 if (err) 1601 goto out; 1602 err = ubifs_recover_inl_heads(c, c->sbuf); 1603 if (err) 1604 goto out; 1605 } else { 1606 /* A readonly mount is not allowed to have orphans */ 1607 ubifs_assert(c->tot_orphans == 0); 1608 err = ubifs_clear_orphans(c); 1609 if (err) 1610 goto out; 1611 } 1612 1613 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1614 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1615 err = ubifs_write_master(c); 1616 if (err) 1617 goto out; 1618 } 1619 1620 c->ileb_buf = vmalloc(c->leb_size); 1621 if (!c->ileb_buf) { 1622 err = -ENOMEM; 1623 goto out; 1624 } 1625 1626 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1627 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1628 if (!c->write_reserve_buf) { 1629 err = -ENOMEM; 1630 goto out; 1631 } 1632 1633 err = ubifs_lpt_init(c, 0, 1); 1634 if (err) 1635 goto out; 1636 1637 /* Create background thread */ 1638 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1639 if (IS_ERR(c->bgt)) { 1640 err = PTR_ERR(c->bgt); 1641 c->bgt = NULL; 1642 ubifs_err(c, "cannot spawn \"%s\", error %d", 1643 c->bgt_name, err); 1644 goto out; 1645 } 1646 wake_up_process(c->bgt); 1647 1648 c->orph_buf = vmalloc(c->leb_size); 1649 if (!c->orph_buf) { 1650 err = -ENOMEM; 1651 goto out; 1652 } 1653 1654 /* Check for enough log space */ 1655 lnum = c->lhead_lnum + 1; 1656 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1657 lnum = UBIFS_LOG_LNUM; 1658 if (lnum == c->ltail_lnum) { 1659 err = ubifs_consolidate_log(c); 1660 if (err) 1661 goto out; 1662 } 1663 1664 if (c->need_recovery) 1665 err = ubifs_rcvry_gc_commit(c); 1666 else 1667 err = ubifs_leb_unmap(c, c->gc_lnum); 1668 if (err) 1669 goto out; 1670 1671 dbg_gen("re-mounted read-write"); 1672 c->remounting_rw = 0; 1673 1674 if (c->need_recovery) { 1675 c->need_recovery = 0; 1676 ubifs_msg(c, "deferred recovery completed"); 1677 } else { 1678 /* 1679 * Do not run the debugging space check if the were doing 1680 * recovery, because when we saved the information we had the 1681 * file-system in a state where the TNC and lprops has been 1682 * modified in memory, but all the I/O operations (including a 1683 * commit) were deferred. So the file-system was in 1684 * "non-committed" state. Now the file-system is in committed 1685 * state, and of course the amount of free space will change 1686 * because, for example, the old index size was imprecise. 1687 */ 1688 err = dbg_check_space_info(c); 1689 } 1690 1691 mutex_unlock(&c->umount_mutex); 1692 return err; 1693 1694 out: 1695 c->ro_mount = 1; 1696 vfree(c->orph_buf); 1697 c->orph_buf = NULL; 1698 if (c->bgt) { 1699 kthread_stop(c->bgt); 1700 c->bgt = NULL; 1701 } 1702 free_wbufs(c); 1703 kfree(c->write_reserve_buf); 1704 c->write_reserve_buf = NULL; 1705 vfree(c->ileb_buf); 1706 c->ileb_buf = NULL; 1707 ubifs_lpt_free(c, 1); 1708 c->remounting_rw = 0; 1709 mutex_unlock(&c->umount_mutex); 1710 return err; 1711 } 1712 1713 /** 1714 * ubifs_remount_ro - re-mount in read-only mode. 1715 * @c: UBIFS file-system description object 1716 * 1717 * We assume VFS has stopped writing. Possibly the background thread could be 1718 * running a commit, however kthread_stop will wait in that case. 1719 */ 1720 static void ubifs_remount_ro(struct ubifs_info *c) 1721 { 1722 int i, err; 1723 1724 ubifs_assert(!c->need_recovery); 1725 ubifs_assert(!c->ro_mount); 1726 1727 mutex_lock(&c->umount_mutex); 1728 if (c->bgt) { 1729 kthread_stop(c->bgt); 1730 c->bgt = NULL; 1731 } 1732 1733 dbg_save_space_info(c); 1734 1735 for (i = 0; i < c->jhead_cnt; i++) 1736 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1737 1738 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1739 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1740 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1741 err = ubifs_write_master(c); 1742 if (err) 1743 ubifs_ro_mode(c, err); 1744 1745 vfree(c->orph_buf); 1746 c->orph_buf = NULL; 1747 kfree(c->write_reserve_buf); 1748 c->write_reserve_buf = NULL; 1749 vfree(c->ileb_buf); 1750 c->ileb_buf = NULL; 1751 ubifs_lpt_free(c, 1); 1752 c->ro_mount = 1; 1753 err = dbg_check_space_info(c); 1754 if (err) 1755 ubifs_ro_mode(c, err); 1756 mutex_unlock(&c->umount_mutex); 1757 } 1758 1759 static void ubifs_put_super(struct super_block *sb) 1760 { 1761 int i; 1762 struct ubifs_info *c = sb->s_fs_info; 1763 1764 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1765 1766 /* 1767 * The following asserts are only valid if there has not been a failure 1768 * of the media. For example, there will be dirty inodes if we failed 1769 * to write them back because of I/O errors. 1770 */ 1771 if (!c->ro_error) { 1772 ubifs_assert(c->bi.idx_growth == 0); 1773 ubifs_assert(c->bi.dd_growth == 0); 1774 ubifs_assert(c->bi.data_growth == 0); 1775 } 1776 1777 /* 1778 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1779 * and file system un-mount. Namely, it prevents the shrinker from 1780 * picking this superblock for shrinking - it will be just skipped if 1781 * the mutex is locked. 1782 */ 1783 mutex_lock(&c->umount_mutex); 1784 if (!c->ro_mount) { 1785 /* 1786 * First of all kill the background thread to make sure it does 1787 * not interfere with un-mounting and freeing resources. 1788 */ 1789 if (c->bgt) { 1790 kthread_stop(c->bgt); 1791 c->bgt = NULL; 1792 } 1793 1794 /* 1795 * On fatal errors c->ro_error is set to 1, in which case we do 1796 * not write the master node. 1797 */ 1798 if (!c->ro_error) { 1799 int err; 1800 1801 /* Synchronize write-buffers */ 1802 for (i = 0; i < c->jhead_cnt; i++) 1803 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1804 1805 /* 1806 * We are being cleanly unmounted which means the 1807 * orphans were killed - indicate this in the master 1808 * node. Also save the reserved GC LEB number. 1809 */ 1810 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1811 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1812 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1813 err = ubifs_write_master(c); 1814 if (err) 1815 /* 1816 * Recovery will attempt to fix the master area 1817 * next mount, so we just print a message and 1818 * continue to unmount normally. 1819 */ 1820 ubifs_err(c, "failed to write master node, error %d", 1821 err); 1822 } else { 1823 for (i = 0; i < c->jhead_cnt; i++) 1824 /* Make sure write-buffer timers are canceled */ 1825 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1826 } 1827 } 1828 1829 ubifs_umount(c); 1830 ubi_close_volume(c->ubi); 1831 mutex_unlock(&c->umount_mutex); 1832 } 1833 1834 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1835 { 1836 int err; 1837 struct ubifs_info *c = sb->s_fs_info; 1838 1839 sync_filesystem(sb); 1840 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1841 1842 err = ubifs_parse_options(c, data, 1); 1843 if (err) { 1844 ubifs_err(c, "invalid or unknown remount parameter"); 1845 return err; 1846 } 1847 1848 if (c->ro_mount && !(*flags & MS_RDONLY)) { 1849 if (c->ro_error) { 1850 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1851 return -EROFS; 1852 } 1853 if (c->ro_media) { 1854 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1855 return -EROFS; 1856 } 1857 err = ubifs_remount_rw(c); 1858 if (err) 1859 return err; 1860 } else if (!c->ro_mount && (*flags & MS_RDONLY)) { 1861 if (c->ro_error) { 1862 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1863 return -EROFS; 1864 } 1865 ubifs_remount_ro(c); 1866 } 1867 1868 if (c->bulk_read == 1) 1869 bu_init(c); 1870 else { 1871 dbg_gen("disable bulk-read"); 1872 kfree(c->bu.buf); 1873 c->bu.buf = NULL; 1874 } 1875 1876 ubifs_assert(c->lst.taken_empty_lebs > 0); 1877 return 0; 1878 } 1879 1880 const struct super_operations ubifs_super_operations = { 1881 .alloc_inode = ubifs_alloc_inode, 1882 .destroy_inode = ubifs_destroy_inode, 1883 .put_super = ubifs_put_super, 1884 .write_inode = ubifs_write_inode, 1885 .evict_inode = ubifs_evict_inode, 1886 .statfs = ubifs_statfs, 1887 .dirty_inode = ubifs_dirty_inode, 1888 .remount_fs = ubifs_remount_fs, 1889 .show_options = ubifs_show_options, 1890 .sync_fs = ubifs_sync_fs, 1891 }; 1892 1893 /** 1894 * open_ubi - parse UBI device name string and open the UBI device. 1895 * @name: UBI volume name 1896 * @mode: UBI volume open mode 1897 * 1898 * The primary method of mounting UBIFS is by specifying the UBI volume 1899 * character device node path. However, UBIFS may also be mounted withoug any 1900 * character device node using one of the following methods: 1901 * 1902 * o ubiX_Y - mount UBI device number X, volume Y; 1903 * o ubiY - mount UBI device number 0, volume Y; 1904 * o ubiX:NAME - mount UBI device X, volume with name NAME; 1905 * o ubi:NAME - mount UBI device 0, volume with name NAME. 1906 * 1907 * Alternative '!' separator may be used instead of ':' (because some shells 1908 * like busybox may interpret ':' as an NFS host name separator). This function 1909 * returns UBI volume description object in case of success and a negative 1910 * error code in case of failure. 1911 */ 1912 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 1913 { 1914 struct ubi_volume_desc *ubi; 1915 int dev, vol; 1916 char *endptr; 1917 1918 /* First, try to open using the device node path method */ 1919 ubi = ubi_open_volume_path(name, mode); 1920 if (!IS_ERR(ubi)) 1921 return ubi; 1922 1923 /* Try the "nodev" method */ 1924 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 1925 return ERR_PTR(-EINVAL); 1926 1927 /* ubi:NAME method */ 1928 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 1929 return ubi_open_volume_nm(0, name + 4, mode); 1930 1931 if (!isdigit(name[3])) 1932 return ERR_PTR(-EINVAL); 1933 1934 dev = simple_strtoul(name + 3, &endptr, 0); 1935 1936 /* ubiY method */ 1937 if (*endptr == '\0') 1938 return ubi_open_volume(0, dev, mode); 1939 1940 /* ubiX_Y method */ 1941 if (*endptr == '_' && isdigit(endptr[1])) { 1942 vol = simple_strtoul(endptr + 1, &endptr, 0); 1943 if (*endptr != '\0') 1944 return ERR_PTR(-EINVAL); 1945 return ubi_open_volume(dev, vol, mode); 1946 } 1947 1948 /* ubiX:NAME method */ 1949 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 1950 return ubi_open_volume_nm(dev, ++endptr, mode); 1951 1952 return ERR_PTR(-EINVAL); 1953 } 1954 1955 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 1956 { 1957 struct ubifs_info *c; 1958 1959 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 1960 if (c) { 1961 spin_lock_init(&c->cnt_lock); 1962 spin_lock_init(&c->cs_lock); 1963 spin_lock_init(&c->buds_lock); 1964 spin_lock_init(&c->space_lock); 1965 spin_lock_init(&c->orphan_lock); 1966 init_rwsem(&c->commit_sem); 1967 mutex_init(&c->lp_mutex); 1968 mutex_init(&c->tnc_mutex); 1969 mutex_init(&c->log_mutex); 1970 mutex_init(&c->umount_mutex); 1971 mutex_init(&c->bu_mutex); 1972 mutex_init(&c->write_reserve_mutex); 1973 init_waitqueue_head(&c->cmt_wq); 1974 c->buds = RB_ROOT; 1975 c->old_idx = RB_ROOT; 1976 c->size_tree = RB_ROOT; 1977 c->orph_tree = RB_ROOT; 1978 INIT_LIST_HEAD(&c->infos_list); 1979 INIT_LIST_HEAD(&c->idx_gc); 1980 INIT_LIST_HEAD(&c->replay_list); 1981 INIT_LIST_HEAD(&c->replay_buds); 1982 INIT_LIST_HEAD(&c->uncat_list); 1983 INIT_LIST_HEAD(&c->empty_list); 1984 INIT_LIST_HEAD(&c->freeable_list); 1985 INIT_LIST_HEAD(&c->frdi_idx_list); 1986 INIT_LIST_HEAD(&c->unclean_leb_list); 1987 INIT_LIST_HEAD(&c->old_buds); 1988 INIT_LIST_HEAD(&c->orph_list); 1989 INIT_LIST_HEAD(&c->orph_new); 1990 c->no_chk_data_crc = 1; 1991 1992 c->highest_inum = UBIFS_FIRST_INO; 1993 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 1994 1995 ubi_get_volume_info(ubi, &c->vi); 1996 ubi_get_device_info(c->vi.ubi_num, &c->di); 1997 } 1998 return c; 1999 } 2000 2001 #ifndef CONFIG_UBIFS_FS_ENCRYPTION 2002 const struct fscrypt_operations ubifs_crypt_operations = { 2003 .is_encrypted = __ubifs_crypt_is_encrypted, 2004 }; 2005 #endif 2006 2007 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2008 { 2009 struct ubifs_info *c = sb->s_fs_info; 2010 struct inode *root; 2011 int err; 2012 2013 c->vfs_sb = sb; 2014 /* Re-open the UBI device in read-write mode */ 2015 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2016 if (IS_ERR(c->ubi)) { 2017 err = PTR_ERR(c->ubi); 2018 goto out; 2019 } 2020 2021 err = ubifs_parse_options(c, data, 0); 2022 if (err) 2023 goto out_close; 2024 2025 /* 2026 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2027 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2028 * which means the user would have to wait not just for their own I/O 2029 * but the read-ahead I/O as well i.e. completely pointless. 2030 * 2031 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2032 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2033 * writeback happening. 2034 */ 2035 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2036 c->vi.vol_id); 2037 if (err) 2038 goto out_close; 2039 2040 sb->s_fs_info = c; 2041 sb->s_magic = UBIFS_SUPER_MAGIC; 2042 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2043 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2044 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2045 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2046 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2047 sb->s_op = &ubifs_super_operations; 2048 sb->s_xattr = ubifs_xattr_handlers; 2049 sb->s_cop = &ubifs_crypt_operations; 2050 2051 mutex_lock(&c->umount_mutex); 2052 err = mount_ubifs(c); 2053 if (err) { 2054 ubifs_assert(err < 0); 2055 goto out_unlock; 2056 } 2057 2058 /* Read the root inode */ 2059 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2060 if (IS_ERR(root)) { 2061 err = PTR_ERR(root); 2062 goto out_umount; 2063 } 2064 2065 sb->s_root = d_make_root(root); 2066 if (!sb->s_root) { 2067 err = -ENOMEM; 2068 goto out_umount; 2069 } 2070 2071 mutex_unlock(&c->umount_mutex); 2072 return 0; 2073 2074 out_umount: 2075 ubifs_umount(c); 2076 out_unlock: 2077 mutex_unlock(&c->umount_mutex); 2078 out_close: 2079 ubi_close_volume(c->ubi); 2080 out: 2081 return err; 2082 } 2083 2084 static int sb_test(struct super_block *sb, void *data) 2085 { 2086 struct ubifs_info *c1 = data; 2087 struct ubifs_info *c = sb->s_fs_info; 2088 2089 return c->vi.cdev == c1->vi.cdev; 2090 } 2091 2092 static int sb_set(struct super_block *sb, void *data) 2093 { 2094 sb->s_fs_info = data; 2095 return set_anon_super(sb, NULL); 2096 } 2097 2098 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2099 const char *name, void *data) 2100 { 2101 struct ubi_volume_desc *ubi; 2102 struct ubifs_info *c; 2103 struct super_block *sb; 2104 int err; 2105 2106 dbg_gen("name %s, flags %#x", name, flags); 2107 2108 /* 2109 * Get UBI device number and volume ID. Mount it read-only so far 2110 * because this might be a new mount point, and UBI allows only one 2111 * read-write user at a time. 2112 */ 2113 ubi = open_ubi(name, UBI_READONLY); 2114 if (IS_ERR(ubi)) { 2115 if (!(flags & MS_SILENT)) 2116 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2117 current->pid, name, (int)PTR_ERR(ubi)); 2118 return ERR_CAST(ubi); 2119 } 2120 2121 c = alloc_ubifs_info(ubi); 2122 if (!c) { 2123 err = -ENOMEM; 2124 goto out_close; 2125 } 2126 2127 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2128 2129 sb = sget(fs_type, sb_test, sb_set, flags, c); 2130 if (IS_ERR(sb)) { 2131 err = PTR_ERR(sb); 2132 kfree(c); 2133 goto out_close; 2134 } 2135 2136 if (sb->s_root) { 2137 struct ubifs_info *c1 = sb->s_fs_info; 2138 kfree(c); 2139 /* A new mount point for already mounted UBIFS */ 2140 dbg_gen("this ubi volume is already mounted"); 2141 if (!!(flags & MS_RDONLY) != c1->ro_mount) { 2142 err = -EBUSY; 2143 goto out_deact; 2144 } 2145 } else { 2146 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 2147 if (err) 2148 goto out_deact; 2149 /* We do not support atime */ 2150 sb->s_flags |= MS_ACTIVE; 2151 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 2152 sb->s_flags |= MS_NOATIME; 2153 #else 2154 ubifs_msg(c, "full atime support is enabled."); 2155 #endif 2156 } 2157 2158 /* 'fill_super()' opens ubi again so we must close it here */ 2159 ubi_close_volume(ubi); 2160 2161 return dget(sb->s_root); 2162 2163 out_deact: 2164 deactivate_locked_super(sb); 2165 out_close: 2166 ubi_close_volume(ubi); 2167 return ERR_PTR(err); 2168 } 2169 2170 static void kill_ubifs_super(struct super_block *s) 2171 { 2172 struct ubifs_info *c = s->s_fs_info; 2173 kill_anon_super(s); 2174 kfree(c); 2175 } 2176 2177 static struct file_system_type ubifs_fs_type = { 2178 .name = "ubifs", 2179 .owner = THIS_MODULE, 2180 .mount = ubifs_mount, 2181 .kill_sb = kill_ubifs_super, 2182 }; 2183 MODULE_ALIAS_FS("ubifs"); 2184 2185 /* 2186 * Inode slab cache constructor. 2187 */ 2188 static void inode_slab_ctor(void *obj) 2189 { 2190 struct ubifs_inode *ui = obj; 2191 inode_init_once(&ui->vfs_inode); 2192 } 2193 2194 static int __init ubifs_init(void) 2195 { 2196 int err; 2197 2198 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2199 2200 /* Make sure node sizes are 8-byte aligned */ 2201 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2202 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2203 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2204 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2205 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2206 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2207 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2208 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2209 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2210 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2211 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2212 2213 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2214 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2215 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2216 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2217 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2218 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2219 2220 /* Check min. node size */ 2221 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2222 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2223 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2224 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2225 2226 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2227 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2228 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2229 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2230 2231 /* Defined node sizes */ 2232 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2233 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2234 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2235 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2236 2237 /* 2238 * We use 2 bit wide bit-fields to store compression type, which should 2239 * be amended if more compressors are added. The bit-fields are: 2240 * @compr_type in 'struct ubifs_inode', @default_compr in 2241 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2242 */ 2243 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2244 2245 /* 2246 * We require that PAGE_SIZE is greater-than-or-equal-to 2247 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2248 */ 2249 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2250 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2251 current->pid, (unsigned int)PAGE_SIZE); 2252 return -EINVAL; 2253 } 2254 2255 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2256 sizeof(struct ubifs_inode), 0, 2257 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2258 SLAB_ACCOUNT, &inode_slab_ctor); 2259 if (!ubifs_inode_slab) 2260 return -ENOMEM; 2261 2262 err = register_shrinker(&ubifs_shrinker_info); 2263 if (err) 2264 goto out_slab; 2265 2266 err = ubifs_compressors_init(); 2267 if (err) 2268 goto out_shrinker; 2269 2270 err = dbg_debugfs_init(); 2271 if (err) 2272 goto out_compr; 2273 2274 err = register_filesystem(&ubifs_fs_type); 2275 if (err) { 2276 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2277 current->pid, err); 2278 goto out_dbg; 2279 } 2280 return 0; 2281 2282 out_dbg: 2283 dbg_debugfs_exit(); 2284 out_compr: 2285 ubifs_compressors_exit(); 2286 out_shrinker: 2287 unregister_shrinker(&ubifs_shrinker_info); 2288 out_slab: 2289 kmem_cache_destroy(ubifs_inode_slab); 2290 return err; 2291 } 2292 /* late_initcall to let compressors initialize first */ 2293 late_initcall(ubifs_init); 2294 2295 static void __exit ubifs_exit(void) 2296 { 2297 ubifs_assert(list_empty(&ubifs_infos)); 2298 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); 2299 2300 dbg_debugfs_exit(); 2301 ubifs_compressors_exit(); 2302 unregister_shrinker(&ubifs_shrinker_info); 2303 2304 /* 2305 * Make sure all delayed rcu free inodes are flushed before we 2306 * destroy cache. 2307 */ 2308 rcu_barrier(); 2309 kmem_cache_destroy(ubifs_inode_slab); 2310 unregister_filesystem(&ubifs_fs_type); 2311 } 2312 module_exit(ubifs_exit); 2313 2314 MODULE_LICENSE("GPL"); 2315 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2316 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2317 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2318