xref: /openbmc/linux/fs/ubifs/super.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 	int n = 0, ret;
32 
33 	ret = kstrtoint(val, 10, &n);
34 	if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 		return -EINVAL;
36 	return param_set_int(val, kp);
37 }
38 
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 	.set = ubifs_default_version_set,
41 	.get = param_get_int,
42 };
43 
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46 
47 /*
48  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49  * allocating too much.
50  */
51 #define UBIFS_KMALLOC_OK (128*1024)
52 
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55 
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 	.scan_objects = ubifs_shrink_scan,
59 	.count_objects = ubifs_shrink_count,
60 	.seeks = DEFAULT_SEEKS,
61 };
62 
63 /**
64  * validate_inode - validate inode.
65  * @c: UBIFS file-system description object
66  * @inode: the inode to validate
67  *
68  * This is a helper function for 'ubifs_iget()' which validates various fields
69  * of a newly built inode to make sure they contain sane values and prevent
70  * possible vulnerabilities. Returns zero if the inode is all right and
71  * a non-zero error code if not.
72  */
73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74 {
75 	int err;
76 	const struct ubifs_inode *ui = ubifs_inode(inode);
77 
78 	if (inode->i_size > c->max_inode_sz) {
79 		ubifs_err(c, "inode is too large (%lld)",
80 			  (long long)inode->i_size);
81 		return 1;
82 	}
83 
84 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 		return 2;
87 	}
88 
89 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 		return 3;
91 
92 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 		return 4;
94 
95 	if (ui->xattr && !S_ISREG(inode->i_mode))
96 		return 5;
97 
98 	if (!ubifs_compr_present(c, ui->compr_type)) {
99 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 	}
102 
103 	err = dbg_check_dir(c, inode);
104 	return err;
105 }
106 
107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108 {
109 	int err;
110 	union ubifs_key key;
111 	struct ubifs_ino_node *ino;
112 	struct ubifs_info *c = sb->s_fs_info;
113 	struct inode *inode;
114 	struct ubifs_inode *ui;
115 
116 	dbg_gen("inode %lu", inum);
117 
118 	inode = iget_locked(sb, inum);
119 	if (!inode)
120 		return ERR_PTR(-ENOMEM);
121 	if (!(inode->i_state & I_NEW))
122 		return inode;
123 	ui = ubifs_inode(inode);
124 
125 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 	if (!ino) {
127 		err = -ENOMEM;
128 		goto out;
129 	}
130 
131 	ino_key_init(c, &key, inode->i_ino);
132 
133 	err = ubifs_tnc_lookup(c, &key, ino);
134 	if (err)
135 		goto out_ino;
136 
137 	inode->i_flags |= S_NOCMTIME;
138 
139 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 		inode->i_flags |= S_NOATIME;
141 
142 	set_nlink(inode, le32_to_cpu(ino->nlink));
143 	i_uid_write(inode, le32_to_cpu(ino->uid));
144 	i_gid_write(inode, le32_to_cpu(ino->gid));
145 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
146 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
148 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 	inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
150 			le32_to_cpu(ino->ctime_nsec));
151 	inode->i_mode = le32_to_cpu(ino->mode);
152 	inode->i_size = le64_to_cpu(ino->size);
153 
154 	ui->data_len    = le32_to_cpu(ino->data_len);
155 	ui->flags       = le32_to_cpu(ino->flags);
156 	ui->compr_type  = le16_to_cpu(ino->compr_type);
157 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
159 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
160 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 	ui->synced_i_size = ui->ui_size = inode->i_size;
162 
163 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164 
165 	err = validate_inode(c, inode);
166 	if (err)
167 		goto out_invalid;
168 
169 	switch (inode->i_mode & S_IFMT) {
170 	case S_IFREG:
171 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 		inode->i_op = &ubifs_file_inode_operations;
173 		inode->i_fop = &ubifs_file_operations;
174 		if (ui->xattr) {
175 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 			if (!ui->data) {
177 				err = -ENOMEM;
178 				goto out_ino;
179 			}
180 			memcpy(ui->data, ino->data, ui->data_len);
181 			((char *)ui->data)[ui->data_len] = '\0';
182 		} else if (ui->data_len != 0) {
183 			err = 10;
184 			goto out_invalid;
185 		}
186 		break;
187 	case S_IFDIR:
188 		inode->i_op  = &ubifs_dir_inode_operations;
189 		inode->i_fop = &ubifs_dir_operations;
190 		if (ui->data_len != 0) {
191 			err = 11;
192 			goto out_invalid;
193 		}
194 		break;
195 	case S_IFLNK:
196 		inode->i_op = &ubifs_symlink_inode_operations;
197 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 			err = 12;
199 			goto out_invalid;
200 		}
201 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 		if (!ui->data) {
203 			err = -ENOMEM;
204 			goto out_ino;
205 		}
206 		memcpy(ui->data, ino->data, ui->data_len);
207 		((char *)ui->data)[ui->data_len] = '\0';
208 		break;
209 	case S_IFBLK:
210 	case S_IFCHR:
211 	{
212 		dev_t rdev;
213 		union ubifs_dev_desc *dev;
214 
215 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 		if (!ui->data) {
217 			err = -ENOMEM;
218 			goto out_ino;
219 		}
220 
221 		dev = (union ubifs_dev_desc *)ino->data;
222 		if (ui->data_len == sizeof(dev->new))
223 			rdev = new_decode_dev(le32_to_cpu(dev->new));
224 		else if (ui->data_len == sizeof(dev->huge))
225 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 		else {
227 			err = 13;
228 			goto out_invalid;
229 		}
230 		memcpy(ui->data, ino->data, ui->data_len);
231 		inode->i_op = &ubifs_file_inode_operations;
232 		init_special_inode(inode, inode->i_mode, rdev);
233 		break;
234 	}
235 	case S_IFSOCK:
236 	case S_IFIFO:
237 		inode->i_op = &ubifs_file_inode_operations;
238 		init_special_inode(inode, inode->i_mode, 0);
239 		if (ui->data_len != 0) {
240 			err = 14;
241 			goto out_invalid;
242 		}
243 		break;
244 	default:
245 		err = 15;
246 		goto out_invalid;
247 	}
248 
249 	kfree(ino);
250 	ubifs_set_inode_flags(inode);
251 	unlock_new_inode(inode);
252 	return inode;
253 
254 out_invalid:
255 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 	ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
257 	ubifs_dump_inode(c, inode);
258 	err = -EINVAL;
259 out_ino:
260 	kfree(ino);
261 out:
262 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 	iget_failed(inode);
264 	return ERR_PTR(err);
265 }
266 
267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
268 {
269 	struct ubifs_inode *ui;
270 
271 	ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
272 	if (!ui)
273 		return NULL;
274 
275 	memset((void *)ui + sizeof(struct inode), 0,
276 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
277 	mutex_init(&ui->ui_mutex);
278 	init_rwsem(&ui->xattr_sem);
279 	spin_lock_init(&ui->ui_lock);
280 	return &ui->vfs_inode;
281 };
282 
283 static void ubifs_free_inode(struct inode *inode)
284 {
285 	struct ubifs_inode *ui = ubifs_inode(inode);
286 
287 	kfree(ui->data);
288 	fscrypt_free_inode(inode);
289 
290 	kmem_cache_free(ubifs_inode_slab, ui);
291 }
292 
293 /*
294  * Note, Linux write-back code calls this without 'i_mutex'.
295  */
296 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 	int err = 0;
299 	struct ubifs_info *c = inode->i_sb->s_fs_info;
300 	struct ubifs_inode *ui = ubifs_inode(inode);
301 
302 	ubifs_assert(c, !ui->xattr);
303 	if (is_bad_inode(inode))
304 		return 0;
305 
306 	mutex_lock(&ui->ui_mutex);
307 	/*
308 	 * Due to races between write-back forced by budgeting
309 	 * (see 'sync_some_inodes()') and background write-back, the inode may
310 	 * have already been synchronized, do not do this again. This might
311 	 * also happen if it was synchronized in an VFS operation, e.g.
312 	 * 'ubifs_link()'.
313 	 */
314 	if (!ui->dirty) {
315 		mutex_unlock(&ui->ui_mutex);
316 		return 0;
317 	}
318 
319 	/*
320 	 * As an optimization, do not write orphan inodes to the media just
321 	 * because this is not needed.
322 	 */
323 	dbg_gen("inode %lu, mode %#x, nlink %u",
324 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
325 	if (inode->i_nlink) {
326 		err = ubifs_jnl_write_inode(c, inode);
327 		if (err)
328 			ubifs_err(c, "can't write inode %lu, error %d",
329 				  inode->i_ino, err);
330 		else
331 			err = dbg_check_inode_size(c, inode, ui->ui_size);
332 	}
333 
334 	ui->dirty = 0;
335 	mutex_unlock(&ui->ui_mutex);
336 	ubifs_release_dirty_inode_budget(c, ui);
337 	return err;
338 }
339 
340 static int ubifs_drop_inode(struct inode *inode)
341 {
342 	int drop = generic_drop_inode(inode);
343 
344 	if (!drop)
345 		drop = fscrypt_drop_inode(inode);
346 
347 	return drop;
348 }
349 
350 static void ubifs_evict_inode(struct inode *inode)
351 {
352 	int err;
353 	struct ubifs_info *c = inode->i_sb->s_fs_info;
354 	struct ubifs_inode *ui = ubifs_inode(inode);
355 
356 	if (ui->xattr)
357 		/*
358 		 * Extended attribute inode deletions are fully handled in
359 		 * 'ubifs_removexattr()'. These inodes are special and have
360 		 * limited usage, so there is nothing to do here.
361 		 */
362 		goto out;
363 
364 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
365 	ubifs_assert(c, !atomic_read(&inode->i_count));
366 
367 	truncate_inode_pages_final(&inode->i_data);
368 
369 	if (inode->i_nlink)
370 		goto done;
371 
372 	if (is_bad_inode(inode))
373 		goto out;
374 
375 	ui->ui_size = inode->i_size = 0;
376 	err = ubifs_jnl_delete_inode(c, inode);
377 	if (err)
378 		/*
379 		 * Worst case we have a lost orphan inode wasting space, so a
380 		 * simple error message is OK here.
381 		 */
382 		ubifs_err(c, "can't delete inode %lu, error %d",
383 			  inode->i_ino, err);
384 
385 out:
386 	if (ui->dirty)
387 		ubifs_release_dirty_inode_budget(c, ui);
388 	else {
389 		/* We've deleted something - clean the "no space" flags */
390 		c->bi.nospace = c->bi.nospace_rp = 0;
391 		smp_wmb();
392 	}
393 done:
394 	clear_inode(inode);
395 	fscrypt_put_encryption_info(inode);
396 }
397 
398 static void ubifs_dirty_inode(struct inode *inode, int flags)
399 {
400 	struct ubifs_info *c = inode->i_sb->s_fs_info;
401 	struct ubifs_inode *ui = ubifs_inode(inode);
402 
403 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
404 	if (!ui->dirty) {
405 		ui->dirty = 1;
406 		dbg_gen("inode %lu",  inode->i_ino);
407 	}
408 }
409 
410 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411 {
412 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
413 	unsigned long long free;
414 	__le32 *uuid = (__le32 *)c->uuid;
415 
416 	free = ubifs_get_free_space(c);
417 	dbg_gen("free space %lld bytes (%lld blocks)",
418 		free, free >> UBIFS_BLOCK_SHIFT);
419 
420 	buf->f_type = UBIFS_SUPER_MAGIC;
421 	buf->f_bsize = UBIFS_BLOCK_SIZE;
422 	buf->f_blocks = c->block_cnt;
423 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
424 	if (free > c->report_rp_size)
425 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
426 	else
427 		buf->f_bavail = 0;
428 	buf->f_files = 0;
429 	buf->f_ffree = 0;
430 	buf->f_namelen = UBIFS_MAX_NLEN;
431 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
432 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
433 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
434 	return 0;
435 }
436 
437 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438 {
439 	struct ubifs_info *c = root->d_sb->s_fs_info;
440 
441 	if (c->mount_opts.unmount_mode == 2)
442 		seq_puts(s, ",fast_unmount");
443 	else if (c->mount_opts.unmount_mode == 1)
444 		seq_puts(s, ",norm_unmount");
445 
446 	if (c->mount_opts.bulk_read == 2)
447 		seq_puts(s, ",bulk_read");
448 	else if (c->mount_opts.bulk_read == 1)
449 		seq_puts(s, ",no_bulk_read");
450 
451 	if (c->mount_opts.chk_data_crc == 2)
452 		seq_puts(s, ",chk_data_crc");
453 	else if (c->mount_opts.chk_data_crc == 1)
454 		seq_puts(s, ",no_chk_data_crc");
455 
456 	if (c->mount_opts.override_compr) {
457 		seq_printf(s, ",compr=%s",
458 			   ubifs_compr_name(c, c->mount_opts.compr_type));
459 	}
460 
461 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
462 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463 
464 	return 0;
465 }
466 
467 static int ubifs_sync_fs(struct super_block *sb, int wait)
468 {
469 	int i, err;
470 	struct ubifs_info *c = sb->s_fs_info;
471 
472 	/*
473 	 * Zero @wait is just an advisory thing to help the file system shove
474 	 * lots of data into the queues, and there will be the second
475 	 * '->sync_fs()' call, with non-zero @wait.
476 	 */
477 	if (!wait)
478 		return 0;
479 
480 	/*
481 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
482 	 * do this if it waits for an already running commit.
483 	 */
484 	for (i = 0; i < c->jhead_cnt; i++) {
485 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
486 		if (err)
487 			return err;
488 	}
489 
490 	/*
491 	 * Strictly speaking, it is not necessary to commit the journal here,
492 	 * synchronizing write-buffers would be enough. But committing makes
493 	 * UBIFS free space predictions much more accurate, so we want to let
494 	 * the user be able to get more accurate results of 'statfs()' after
495 	 * they synchronize the file system.
496 	 */
497 	err = ubifs_run_commit(c);
498 	if (err)
499 		return err;
500 
501 	return ubi_sync(c->vi.ubi_num);
502 }
503 
504 /**
505  * init_constants_early - initialize UBIFS constants.
506  * @c: UBIFS file-system description object
507  *
508  * This function initialize UBIFS constants which do not need the superblock to
509  * be read. It also checks that the UBI volume satisfies basic UBIFS
510  * requirements. Returns zero in case of success and a negative error code in
511  * case of failure.
512  */
513 static int init_constants_early(struct ubifs_info *c)
514 {
515 	if (c->vi.corrupted) {
516 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
517 		c->ro_media = 1;
518 	}
519 
520 	if (c->di.ro_mode) {
521 		ubifs_msg(c, "read-only UBI device");
522 		c->ro_media = 1;
523 	}
524 
525 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
526 		ubifs_msg(c, "static UBI volume - read-only mode");
527 		c->ro_media = 1;
528 	}
529 
530 	c->leb_cnt = c->vi.size;
531 	c->leb_size = c->vi.usable_leb_size;
532 	c->leb_start = c->di.leb_start;
533 	c->half_leb_size = c->leb_size / 2;
534 	c->min_io_size = c->di.min_io_size;
535 	c->min_io_shift = fls(c->min_io_size) - 1;
536 	c->max_write_size = c->di.max_write_size;
537 	c->max_write_shift = fls(c->max_write_size) - 1;
538 
539 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
540 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
541 			   c->leb_size, UBIFS_MIN_LEB_SZ);
542 		return -EINVAL;
543 	}
544 
545 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
546 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
547 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
548 		return -EINVAL;
549 	}
550 
551 	if (!is_power_of_2(c->min_io_size)) {
552 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
553 		return -EINVAL;
554 	}
555 
556 	/*
557 	 * Maximum write size has to be greater or equivalent to min. I/O
558 	 * size, and be multiple of min. I/O size.
559 	 */
560 	if (c->max_write_size < c->min_io_size ||
561 	    c->max_write_size % c->min_io_size ||
562 	    !is_power_of_2(c->max_write_size)) {
563 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
564 			   c->max_write_size, c->min_io_size);
565 		return -EINVAL;
566 	}
567 
568 	/*
569 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
570 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
571 	 * less than 8.
572 	 */
573 	if (c->min_io_size < 8) {
574 		c->min_io_size = 8;
575 		c->min_io_shift = 3;
576 		if (c->max_write_size < c->min_io_size) {
577 			c->max_write_size = c->min_io_size;
578 			c->max_write_shift = c->min_io_shift;
579 		}
580 	}
581 
582 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
583 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
584 
585 	/*
586 	 * Initialize node length ranges which are mostly needed for node
587 	 * length validation.
588 	 */
589 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
590 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
591 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
592 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
593 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
594 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
595 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
596 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
597 				UBIFS_MAX_HMAC_LEN;
598 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
599 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600 
601 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
602 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
603 	c->ranges[UBIFS_ORPH_NODE].min_len =
604 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
605 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
606 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
607 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
608 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
609 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
610 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
611 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 	/*
613 	 * Minimum indexing node size is amended later when superblock is
614 	 * read and the key length is known.
615 	 */
616 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 	/*
618 	 * Maximum indexing node size is amended later when superblock is
619 	 * read and the fanout is known.
620 	 */
621 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
622 
623 	/*
624 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
625 	 * about these values.
626 	 */
627 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
628 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
629 
630 	/*
631 	 * Calculate how many bytes would be wasted at the end of LEB if it was
632 	 * fully filled with data nodes of maximum size. This is used in
633 	 * calculations when reporting free space.
634 	 */
635 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636 
637 	/* Buffer size for bulk-reads */
638 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
639 	if (c->max_bu_buf_len > c->leb_size)
640 		c->max_bu_buf_len = c->leb_size;
641 
642 	/* Log is ready, preserve one LEB for commits. */
643 	c->min_log_bytes = c->leb_size;
644 
645 	return 0;
646 }
647 
648 /**
649  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
650  * @c: UBIFS file-system description object
651  * @lnum: LEB the write-buffer was synchronized to
652  * @free: how many free bytes left in this LEB
653  * @pad: how many bytes were padded
654  *
655  * This is a callback function which is called by the I/O unit when the
656  * write-buffer is synchronized. We need this to correctly maintain space
657  * accounting in bud logical eraseblocks. This function returns zero in case of
658  * success and a negative error code in case of failure.
659  *
660  * This function actually belongs to the journal, but we keep it here because
661  * we want to keep it static.
662  */
663 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664 {
665 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
666 }
667 
668 /*
669  * init_constants_sb - initialize UBIFS constants.
670  * @c: UBIFS file-system description object
671  *
672  * This is a helper function which initializes various UBIFS constants after
673  * the superblock has been read. It also checks various UBIFS parameters and
674  * makes sure they are all right. Returns zero in case of success and a
675  * negative error code in case of failure.
676  */
677 static int init_constants_sb(struct ubifs_info *c)
678 {
679 	int tmp, err;
680 	long long tmp64;
681 
682 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
683 	c->max_znode_sz = sizeof(struct ubifs_znode) +
684 				c->fanout * sizeof(struct ubifs_zbranch);
685 
686 	tmp = ubifs_idx_node_sz(c, 1);
687 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
688 	c->min_idx_node_sz = ALIGN(tmp, 8);
689 
690 	tmp = ubifs_idx_node_sz(c, c->fanout);
691 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
692 	c->max_idx_node_sz = ALIGN(tmp, 8);
693 
694 	/* Make sure LEB size is large enough to fit full commit */
695 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
696 	tmp = ALIGN(tmp, c->min_io_size);
697 	if (tmp > c->leb_size) {
698 		ubifs_err(c, "too small LEB size %d, at least %d needed",
699 			  c->leb_size, tmp);
700 		return -EINVAL;
701 	}
702 
703 	/*
704 	 * Make sure that the log is large enough to fit reference nodes for
705 	 * all buds plus one reserved LEB.
706 	 */
707 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
708 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
709 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
710 	tmp /= c->leb_size;
711 	tmp += 1;
712 	if (c->log_lebs < tmp) {
713 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
714 			  c->log_lebs, tmp);
715 		return -EINVAL;
716 	}
717 
718 	/*
719 	 * When budgeting we assume worst-case scenarios when the pages are not
720 	 * be compressed and direntries are of the maximum size.
721 	 *
722 	 * Note, data, which may be stored in inodes is budgeted separately, so
723 	 * it is not included into 'c->bi.inode_budget'.
724 	 */
725 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
726 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
727 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
728 
729 	/*
730 	 * When the amount of flash space used by buds becomes
731 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
732 	 * The writers are unblocked when the commit is finished. To avoid
733 	 * writers to be blocked UBIFS initiates background commit in advance,
734 	 * when number of bud bytes becomes above the limit defined below.
735 	 */
736 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
737 
738 	/*
739 	 * Ensure minimum journal size. All the bytes in the journal heads are
740 	 * considered to be used, when calculating the current journal usage.
741 	 * Consequently, if the journal is too small, UBIFS will treat it as
742 	 * always full.
743 	 */
744 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
745 	if (c->bg_bud_bytes < tmp64)
746 		c->bg_bud_bytes = tmp64;
747 	if (c->max_bud_bytes < tmp64 + c->leb_size)
748 		c->max_bud_bytes = tmp64 + c->leb_size;
749 
750 	err = ubifs_calc_lpt_geom(c);
751 	if (err)
752 		return err;
753 
754 	/* Initialize effective LEB size used in budgeting calculations */
755 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
756 	return 0;
757 }
758 
759 /*
760  * init_constants_master - initialize UBIFS constants.
761  * @c: UBIFS file-system description object
762  *
763  * This is a helper function which initializes various UBIFS constants after
764  * the master node has been read. It also checks various UBIFS parameters and
765  * makes sure they are all right.
766  */
767 static void init_constants_master(struct ubifs_info *c)
768 {
769 	long long tmp64;
770 
771 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
772 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
773 
774 	/*
775 	 * Calculate total amount of FS blocks. This number is not used
776 	 * internally because it does not make much sense for UBIFS, but it is
777 	 * necessary to report something for the 'statfs()' call.
778 	 *
779 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
780 	 * deletions, minimum LEBs for the index, and assume only one journal
781 	 * head is available.
782 	 */
783 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
784 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
785 	tmp64 = ubifs_reported_space(c, tmp64);
786 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
787 }
788 
789 /**
790  * take_gc_lnum - reserve GC LEB.
791  * @c: UBIFS file-system description object
792  *
793  * This function ensures that the LEB reserved for garbage collection is marked
794  * as "taken" in lprops. We also have to set free space to LEB size and dirty
795  * space to zero, because lprops may contain out-of-date information if the
796  * file-system was un-mounted before it has been committed. This function
797  * returns zero in case of success and a negative error code in case of
798  * failure.
799  */
800 static int take_gc_lnum(struct ubifs_info *c)
801 {
802 	int err;
803 
804 	if (c->gc_lnum == -1) {
805 		ubifs_err(c, "no LEB for GC");
806 		return -EINVAL;
807 	}
808 
809 	/* And we have to tell lprops that this LEB is taken */
810 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
811 				  LPROPS_TAKEN, 0, 0);
812 	return err;
813 }
814 
815 /**
816  * alloc_wbufs - allocate write-buffers.
817  * @c: UBIFS file-system description object
818  *
819  * This helper function allocates and initializes UBIFS write-buffers. Returns
820  * zero in case of success and %-ENOMEM in case of failure.
821  */
822 static int alloc_wbufs(struct ubifs_info *c)
823 {
824 	int i, err;
825 
826 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
827 			    GFP_KERNEL);
828 	if (!c->jheads)
829 		return -ENOMEM;
830 
831 	/* Initialize journal heads */
832 	for (i = 0; i < c->jhead_cnt; i++) {
833 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
834 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
835 		if (err)
836 			goto out_wbuf;
837 
838 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
839 		c->jheads[i].wbuf.jhead = i;
840 		c->jheads[i].grouped = 1;
841 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
842 		if (IS_ERR(c->jheads[i].log_hash)) {
843 			err = PTR_ERR(c->jheads[i].log_hash);
844 			goto out_log_hash;
845 		}
846 	}
847 
848 	/*
849 	 * Garbage Collector head does not need to be synchronized by timer.
850 	 * Also GC head nodes are not grouped.
851 	 */
852 	c->jheads[GCHD].wbuf.no_timer = 1;
853 	c->jheads[GCHD].grouped = 0;
854 
855 	return 0;
856 
857 out_log_hash:
858 	kfree(c->jheads[i].wbuf.buf);
859 	kfree(c->jheads[i].wbuf.inodes);
860 
861 out_wbuf:
862 	while (i--) {
863 		kfree(c->jheads[i].wbuf.buf);
864 		kfree(c->jheads[i].wbuf.inodes);
865 		kfree(c->jheads[i].log_hash);
866 	}
867 	kfree(c->jheads);
868 	c->jheads = NULL;
869 
870 	return err;
871 }
872 
873 /**
874  * free_wbufs - free write-buffers.
875  * @c: UBIFS file-system description object
876  */
877 static void free_wbufs(struct ubifs_info *c)
878 {
879 	int i;
880 
881 	if (c->jheads) {
882 		for (i = 0; i < c->jhead_cnt; i++) {
883 			kfree(c->jheads[i].wbuf.buf);
884 			kfree(c->jheads[i].wbuf.inodes);
885 			kfree(c->jheads[i].log_hash);
886 		}
887 		kfree(c->jheads);
888 		c->jheads = NULL;
889 	}
890 }
891 
892 /**
893  * free_orphans - free orphans.
894  * @c: UBIFS file-system description object
895  */
896 static void free_orphans(struct ubifs_info *c)
897 {
898 	struct ubifs_orphan *orph;
899 
900 	while (c->orph_dnext) {
901 		orph = c->orph_dnext;
902 		c->orph_dnext = orph->dnext;
903 		list_del(&orph->list);
904 		kfree(orph);
905 	}
906 
907 	while (!list_empty(&c->orph_list)) {
908 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
909 		list_del(&orph->list);
910 		kfree(orph);
911 		ubifs_err(c, "orphan list not empty at unmount");
912 	}
913 
914 	vfree(c->orph_buf);
915 	c->orph_buf = NULL;
916 }
917 
918 /**
919  * free_buds - free per-bud objects.
920  * @c: UBIFS file-system description object
921  */
922 static void free_buds(struct ubifs_info *c)
923 {
924 	struct ubifs_bud *bud, *n;
925 
926 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
927 		kfree(bud);
928 }
929 
930 /**
931  * check_volume_empty - check if the UBI volume is empty.
932  * @c: UBIFS file-system description object
933  *
934  * This function checks if the UBIFS volume is empty by looking if its LEBs are
935  * mapped or not. The result of checking is stored in the @c->empty variable.
936  * Returns zero in case of success and a negative error code in case of
937  * failure.
938  */
939 static int check_volume_empty(struct ubifs_info *c)
940 {
941 	int lnum, err;
942 
943 	c->empty = 1;
944 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
945 		err = ubifs_is_mapped(c, lnum);
946 		if (unlikely(err < 0))
947 			return err;
948 		if (err == 1) {
949 			c->empty = 0;
950 			break;
951 		}
952 
953 		cond_resched();
954 	}
955 
956 	return 0;
957 }
958 
959 /*
960  * UBIFS mount options.
961  *
962  * Opt_fast_unmount: do not run a journal commit before un-mounting
963  * Opt_norm_unmount: run a journal commit before un-mounting
964  * Opt_bulk_read: enable bulk-reads
965  * Opt_no_bulk_read: disable bulk-reads
966  * Opt_chk_data_crc: check CRCs when reading data nodes
967  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
968  * Opt_override_compr: override default compressor
969  * Opt_assert: set ubifs_assert() action
970  * Opt_auth_key: The key name used for authentication
971  * Opt_auth_hash_name: The hash type used for authentication
972  * Opt_err: just end of array marker
973  */
974 enum {
975 	Opt_fast_unmount,
976 	Opt_norm_unmount,
977 	Opt_bulk_read,
978 	Opt_no_bulk_read,
979 	Opt_chk_data_crc,
980 	Opt_no_chk_data_crc,
981 	Opt_override_compr,
982 	Opt_assert,
983 	Opt_auth_key,
984 	Opt_auth_hash_name,
985 	Opt_ignore,
986 	Opt_err,
987 };
988 
989 static const match_table_t tokens = {
990 	{Opt_fast_unmount, "fast_unmount"},
991 	{Opt_norm_unmount, "norm_unmount"},
992 	{Opt_bulk_read, "bulk_read"},
993 	{Opt_no_bulk_read, "no_bulk_read"},
994 	{Opt_chk_data_crc, "chk_data_crc"},
995 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
996 	{Opt_override_compr, "compr=%s"},
997 	{Opt_auth_key, "auth_key=%s"},
998 	{Opt_auth_hash_name, "auth_hash_name=%s"},
999 	{Opt_ignore, "ubi=%s"},
1000 	{Opt_ignore, "vol=%s"},
1001 	{Opt_assert, "assert=%s"},
1002 	{Opt_err, NULL},
1003 };
1004 
1005 /**
1006  * parse_standard_option - parse a standard mount option.
1007  * @option: the option to parse
1008  *
1009  * Normally, standard mount options like "sync" are passed to file-systems as
1010  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1011  * be present in the options string. This function tries to deal with this
1012  * situation and parse standard options. Returns 0 if the option was not
1013  * recognized, and the corresponding integer flag if it was.
1014  *
1015  * UBIFS is only interested in the "sync" option, so do not check for anything
1016  * else.
1017  */
1018 static int parse_standard_option(const char *option)
1019 {
1020 
1021 	pr_notice("UBIFS: parse %s\n", option);
1022 	if (!strcmp(option, "sync"))
1023 		return SB_SYNCHRONOUS;
1024 	return 0;
1025 }
1026 
1027 /**
1028  * ubifs_parse_options - parse mount parameters.
1029  * @c: UBIFS file-system description object
1030  * @options: parameters to parse
1031  * @is_remount: non-zero if this is FS re-mount
1032  *
1033  * This function parses UBIFS mount options and returns zero in case success
1034  * and a negative error code in case of failure.
1035  */
1036 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1037 			       int is_remount)
1038 {
1039 	char *p;
1040 	substring_t args[MAX_OPT_ARGS];
1041 
1042 	if (!options)
1043 		return 0;
1044 
1045 	while ((p = strsep(&options, ","))) {
1046 		int token;
1047 
1048 		if (!*p)
1049 			continue;
1050 
1051 		token = match_token(p, tokens, args);
1052 		switch (token) {
1053 		/*
1054 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1055 		 * We accept them in order to be backward-compatible. But this
1056 		 * should be removed at some point.
1057 		 */
1058 		case Opt_fast_unmount:
1059 			c->mount_opts.unmount_mode = 2;
1060 			break;
1061 		case Opt_norm_unmount:
1062 			c->mount_opts.unmount_mode = 1;
1063 			break;
1064 		case Opt_bulk_read:
1065 			c->mount_opts.bulk_read = 2;
1066 			c->bulk_read = 1;
1067 			break;
1068 		case Opt_no_bulk_read:
1069 			c->mount_opts.bulk_read = 1;
1070 			c->bulk_read = 0;
1071 			break;
1072 		case Opt_chk_data_crc:
1073 			c->mount_opts.chk_data_crc = 2;
1074 			c->no_chk_data_crc = 0;
1075 			break;
1076 		case Opt_no_chk_data_crc:
1077 			c->mount_opts.chk_data_crc = 1;
1078 			c->no_chk_data_crc = 1;
1079 			break;
1080 		case Opt_override_compr:
1081 		{
1082 			char *name = match_strdup(&args[0]);
1083 
1084 			if (!name)
1085 				return -ENOMEM;
1086 			if (!strcmp(name, "none"))
1087 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1088 			else if (!strcmp(name, "lzo"))
1089 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1090 			else if (!strcmp(name, "zlib"))
1091 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1092 			else if (!strcmp(name, "zstd"))
1093 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1094 			else {
1095 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1096 				kfree(name);
1097 				return -EINVAL;
1098 			}
1099 			kfree(name);
1100 			c->mount_opts.override_compr = 1;
1101 			c->default_compr = c->mount_opts.compr_type;
1102 			break;
1103 		}
1104 		case Opt_assert:
1105 		{
1106 			char *act = match_strdup(&args[0]);
1107 
1108 			if (!act)
1109 				return -ENOMEM;
1110 			if (!strcmp(act, "report"))
1111 				c->assert_action = ASSACT_REPORT;
1112 			else if (!strcmp(act, "read-only"))
1113 				c->assert_action = ASSACT_RO;
1114 			else if (!strcmp(act, "panic"))
1115 				c->assert_action = ASSACT_PANIC;
1116 			else {
1117 				ubifs_err(c, "unknown assert action \"%s\"", act);
1118 				kfree(act);
1119 				return -EINVAL;
1120 			}
1121 			kfree(act);
1122 			break;
1123 		}
1124 		case Opt_auth_key:
1125 			if (!is_remount) {
1126 				c->auth_key_name = kstrdup(args[0].from,
1127 								GFP_KERNEL);
1128 				if (!c->auth_key_name)
1129 					return -ENOMEM;
1130 			}
1131 			break;
1132 		case Opt_auth_hash_name:
1133 			if (!is_remount) {
1134 				c->auth_hash_name = kstrdup(args[0].from,
1135 								GFP_KERNEL);
1136 				if (!c->auth_hash_name)
1137 					return -ENOMEM;
1138 			}
1139 			break;
1140 		case Opt_ignore:
1141 			break;
1142 		default:
1143 		{
1144 			unsigned long flag;
1145 			struct super_block *sb = c->vfs_sb;
1146 
1147 			flag = parse_standard_option(p);
1148 			if (!flag) {
1149 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1150 					  p);
1151 				return -EINVAL;
1152 			}
1153 			sb->s_flags |= flag;
1154 			break;
1155 		}
1156 		}
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  * ubifs_release_options - release mount parameters which have been dumped.
1164  * @c: UBIFS file-system description object
1165  */
1166 static void ubifs_release_options(struct ubifs_info *c)
1167 {
1168 	kfree(c->auth_key_name);
1169 	c->auth_key_name = NULL;
1170 	kfree(c->auth_hash_name);
1171 	c->auth_hash_name = NULL;
1172 }
1173 
1174 /**
1175  * destroy_journal - destroy journal data structures.
1176  * @c: UBIFS file-system description object
1177  *
1178  * This function destroys journal data structures including those that may have
1179  * been created by recovery functions.
1180  */
1181 static void destroy_journal(struct ubifs_info *c)
1182 {
1183 	while (!list_empty(&c->unclean_leb_list)) {
1184 		struct ubifs_unclean_leb *ucleb;
1185 
1186 		ucleb = list_entry(c->unclean_leb_list.next,
1187 				   struct ubifs_unclean_leb, list);
1188 		list_del(&ucleb->list);
1189 		kfree(ucleb);
1190 	}
1191 	while (!list_empty(&c->old_buds)) {
1192 		struct ubifs_bud *bud;
1193 
1194 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1195 		list_del(&bud->list);
1196 		kfree(bud);
1197 	}
1198 	ubifs_destroy_idx_gc(c);
1199 	ubifs_destroy_size_tree(c);
1200 	ubifs_tnc_close(c);
1201 	free_buds(c);
1202 }
1203 
1204 /**
1205  * bu_init - initialize bulk-read information.
1206  * @c: UBIFS file-system description object
1207  */
1208 static void bu_init(struct ubifs_info *c)
1209 {
1210 	ubifs_assert(c, c->bulk_read == 1);
1211 
1212 	if (c->bu.buf)
1213 		return; /* Already initialized */
1214 
1215 again:
1216 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1217 	if (!c->bu.buf) {
1218 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1219 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1220 			goto again;
1221 		}
1222 
1223 		/* Just disable bulk-read */
1224 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1225 			   c->max_bu_buf_len);
1226 		c->mount_opts.bulk_read = 1;
1227 		c->bulk_read = 0;
1228 		return;
1229 	}
1230 }
1231 
1232 /**
1233  * check_free_space - check if there is enough free space to mount.
1234  * @c: UBIFS file-system description object
1235  *
1236  * This function makes sure UBIFS has enough free space to be mounted in
1237  * read/write mode. UBIFS must always have some free space to allow deletions.
1238  */
1239 static int check_free_space(struct ubifs_info *c)
1240 {
1241 	ubifs_assert(c, c->dark_wm > 0);
1242 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1243 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1244 		ubifs_dump_budg(c, &c->bi);
1245 		ubifs_dump_lprops(c);
1246 		return -ENOSPC;
1247 	}
1248 	return 0;
1249 }
1250 
1251 /**
1252  * mount_ubifs - mount UBIFS file-system.
1253  * @c: UBIFS file-system description object
1254  *
1255  * This function mounts UBIFS file system. Returns zero in case of success and
1256  * a negative error code in case of failure.
1257  */
1258 static int mount_ubifs(struct ubifs_info *c)
1259 {
1260 	int err;
1261 	long long x, y;
1262 	size_t sz;
1263 
1264 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1265 	/* Suppress error messages while probing if SB_SILENT is set */
1266 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1267 
1268 	err = init_constants_early(c);
1269 	if (err)
1270 		return err;
1271 
1272 	err = ubifs_debugging_init(c);
1273 	if (err)
1274 		return err;
1275 
1276 	err = ubifs_sysfs_register(c);
1277 	if (err)
1278 		goto out_debugging;
1279 
1280 	err = check_volume_empty(c);
1281 	if (err)
1282 		goto out_free;
1283 
1284 	if (c->empty && (c->ro_mount || c->ro_media)) {
1285 		/*
1286 		 * This UBI volume is empty, and read-only, or the file system
1287 		 * is mounted read-only - we cannot format it.
1288 		 */
1289 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1290 			  c->ro_media ? "UBI volume" : "mount");
1291 		err = -EROFS;
1292 		goto out_free;
1293 	}
1294 
1295 	if (c->ro_media && !c->ro_mount) {
1296 		ubifs_err(c, "cannot mount read-write - read-only media");
1297 		err = -EROFS;
1298 		goto out_free;
1299 	}
1300 
1301 	/*
1302 	 * The requirement for the buffer is that it should fit indexing B-tree
1303 	 * height amount of integers. We assume the height if the TNC tree will
1304 	 * never exceed 64.
1305 	 */
1306 	err = -ENOMEM;
1307 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1308 					 GFP_KERNEL);
1309 	if (!c->bottom_up_buf)
1310 		goto out_free;
1311 
1312 	c->sbuf = vmalloc(c->leb_size);
1313 	if (!c->sbuf)
1314 		goto out_free;
1315 
1316 	if (!c->ro_mount) {
1317 		c->ileb_buf = vmalloc(c->leb_size);
1318 		if (!c->ileb_buf)
1319 			goto out_free;
1320 	}
1321 
1322 	if (c->bulk_read == 1)
1323 		bu_init(c);
1324 
1325 	if (!c->ro_mount) {
1326 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1327 					       UBIFS_CIPHER_BLOCK_SIZE,
1328 					       GFP_KERNEL);
1329 		if (!c->write_reserve_buf)
1330 			goto out_free;
1331 	}
1332 
1333 	c->mounting = 1;
1334 
1335 	if (c->auth_key_name) {
1336 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1337 			err = ubifs_init_authentication(c);
1338 			if (err)
1339 				goto out_free;
1340 		} else {
1341 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1342 				  " authentication support");
1343 			err = -EINVAL;
1344 			goto out_free;
1345 		}
1346 	}
1347 
1348 	err = ubifs_read_superblock(c);
1349 	if (err)
1350 		goto out_auth;
1351 
1352 	c->probing = 0;
1353 
1354 	/*
1355 	 * Make sure the compressor which is set as default in the superblock
1356 	 * or overridden by mount options is actually compiled in.
1357 	 */
1358 	if (!ubifs_compr_present(c, c->default_compr)) {
1359 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1360 			  ubifs_compr_name(c, c->default_compr));
1361 		err = -ENOTSUPP;
1362 		goto out_auth;
1363 	}
1364 
1365 	err = init_constants_sb(c);
1366 	if (err)
1367 		goto out_auth;
1368 
1369 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1370 	c->cbuf = kmalloc(sz, GFP_NOFS);
1371 	if (!c->cbuf) {
1372 		err = -ENOMEM;
1373 		goto out_auth;
1374 	}
1375 
1376 	err = alloc_wbufs(c);
1377 	if (err)
1378 		goto out_cbuf;
1379 
1380 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1381 	if (!c->ro_mount) {
1382 		/* Create background thread */
1383 		c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1384 		if (IS_ERR(c->bgt)) {
1385 			err = PTR_ERR(c->bgt);
1386 			c->bgt = NULL;
1387 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1388 				  c->bgt_name, err);
1389 			goto out_wbufs;
1390 		}
1391 	}
1392 
1393 	err = ubifs_read_master(c);
1394 	if (err)
1395 		goto out_master;
1396 
1397 	init_constants_master(c);
1398 
1399 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1400 		ubifs_msg(c, "recovery needed");
1401 		c->need_recovery = 1;
1402 	}
1403 
1404 	if (c->need_recovery && !c->ro_mount) {
1405 		err = ubifs_recover_inl_heads(c, c->sbuf);
1406 		if (err)
1407 			goto out_master;
1408 	}
1409 
1410 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1411 	if (err)
1412 		goto out_master;
1413 
1414 	if (!c->ro_mount && c->space_fixup) {
1415 		err = ubifs_fixup_free_space(c);
1416 		if (err)
1417 			goto out_lpt;
1418 	}
1419 
1420 	if (!c->ro_mount && !c->need_recovery) {
1421 		/*
1422 		 * Set the "dirty" flag so that if we reboot uncleanly we
1423 		 * will notice this immediately on the next mount.
1424 		 */
1425 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1426 		err = ubifs_write_master(c);
1427 		if (err)
1428 			goto out_lpt;
1429 	}
1430 
1431 	/*
1432 	 * Handle offline signed images: Now that the master node is
1433 	 * written and its validation no longer depends on the hash
1434 	 * in the superblock, we can update the offline signed
1435 	 * superblock with a HMAC version,
1436 	 */
1437 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1438 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1439 		if (err)
1440 			goto out_lpt;
1441 		c->superblock_need_write = 1;
1442 	}
1443 
1444 	if (!c->ro_mount && c->superblock_need_write) {
1445 		err = ubifs_write_sb_node(c, c->sup_node);
1446 		if (err)
1447 			goto out_lpt;
1448 		c->superblock_need_write = 0;
1449 	}
1450 
1451 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1452 	if (err)
1453 		goto out_lpt;
1454 
1455 	err = ubifs_replay_journal(c);
1456 	if (err)
1457 		goto out_journal;
1458 
1459 	/* Calculate 'min_idx_lebs' after journal replay */
1460 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1461 
1462 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1463 	if (err)
1464 		goto out_orphans;
1465 
1466 	if (!c->ro_mount) {
1467 		int lnum;
1468 
1469 		err = check_free_space(c);
1470 		if (err)
1471 			goto out_orphans;
1472 
1473 		/* Check for enough log space */
1474 		lnum = c->lhead_lnum + 1;
1475 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1476 			lnum = UBIFS_LOG_LNUM;
1477 		if (lnum == c->ltail_lnum) {
1478 			err = ubifs_consolidate_log(c);
1479 			if (err)
1480 				goto out_orphans;
1481 		}
1482 
1483 		if (c->need_recovery) {
1484 			if (!ubifs_authenticated(c)) {
1485 				err = ubifs_recover_size(c, true);
1486 				if (err)
1487 					goto out_orphans;
1488 			}
1489 
1490 			err = ubifs_rcvry_gc_commit(c);
1491 			if (err)
1492 				goto out_orphans;
1493 
1494 			if (ubifs_authenticated(c)) {
1495 				err = ubifs_recover_size(c, false);
1496 				if (err)
1497 					goto out_orphans;
1498 			}
1499 		} else {
1500 			err = take_gc_lnum(c);
1501 			if (err)
1502 				goto out_orphans;
1503 
1504 			/*
1505 			 * GC LEB may contain garbage if there was an unclean
1506 			 * reboot, and it should be un-mapped.
1507 			 */
1508 			err = ubifs_leb_unmap(c, c->gc_lnum);
1509 			if (err)
1510 				goto out_orphans;
1511 		}
1512 
1513 		err = dbg_check_lprops(c);
1514 		if (err)
1515 			goto out_orphans;
1516 	} else if (c->need_recovery) {
1517 		err = ubifs_recover_size(c, false);
1518 		if (err)
1519 			goto out_orphans;
1520 	} else {
1521 		/*
1522 		 * Even if we mount read-only, we have to set space in GC LEB
1523 		 * to proper value because this affects UBIFS free space
1524 		 * reporting. We do not want to have a situation when
1525 		 * re-mounting from R/O to R/W changes amount of free space.
1526 		 */
1527 		err = take_gc_lnum(c);
1528 		if (err)
1529 			goto out_orphans;
1530 	}
1531 
1532 	spin_lock(&ubifs_infos_lock);
1533 	list_add_tail(&c->infos_list, &ubifs_infos);
1534 	spin_unlock(&ubifs_infos_lock);
1535 
1536 	if (c->need_recovery) {
1537 		if (c->ro_mount)
1538 			ubifs_msg(c, "recovery deferred");
1539 		else {
1540 			c->need_recovery = 0;
1541 			ubifs_msg(c, "recovery completed");
1542 			/*
1543 			 * GC LEB has to be empty and taken at this point. But
1544 			 * the journal head LEBs may also be accounted as
1545 			 * "empty taken" if they are empty.
1546 			 */
1547 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1548 		}
1549 	} else
1550 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1551 
1552 	err = dbg_check_filesystem(c);
1553 	if (err)
1554 		goto out_infos;
1555 
1556 	dbg_debugfs_init_fs(c);
1557 
1558 	c->mounting = 0;
1559 
1560 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1561 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1562 		  c->ro_mount ? ", R/O mode" : "");
1563 	x = (long long)c->main_lebs * c->leb_size;
1564 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1565 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1566 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1567 		  c->max_write_size);
1568 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1569 		  x, x >> 20, c->main_lebs, c->max_leb_cnt,
1570 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1571 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1572 		  c->report_rp_size, c->report_rp_size >> 10);
1573 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1574 		  c->fmt_version, c->ro_compat_version,
1575 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1576 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1577 
1578 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1579 	dbg_gen("data journal heads:  %d",
1580 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1581 	dbg_gen("log LEBs:            %d (%d - %d)",
1582 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1583 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1584 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1585 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1586 		c->orph_lebs, c->orph_first, c->orph_last);
1587 	dbg_gen("main area LEBs:      %d (%d - %d)",
1588 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1589 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1590 	dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
1591 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1592 		c->bi.old_idx_sz >> 20);
1593 	dbg_gen("key hash type:       %d", c->key_hash_type);
1594 	dbg_gen("tree fanout:         %d", c->fanout);
1595 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1596 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1597 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1598 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1599 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1600 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1601 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1602 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1603 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1604 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1605 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1606 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1607 	dbg_gen("dead watermark:      %d", c->dead_wm);
1608 	dbg_gen("dark watermark:      %d", c->dark_wm);
1609 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1610 	x = (long long)c->main_lebs * c->dark_wm;
1611 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1612 		x, x >> 10, x >> 20);
1613 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1614 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1615 		c->max_bud_bytes >> 20);
1616 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1617 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1618 		c->bg_bud_bytes >> 20);
1619 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1620 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1621 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1622 	dbg_gen("commit number:       %llu", c->cmt_no);
1623 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1624 	dbg_gen("max orphans:           %d", c->max_orphans);
1625 
1626 	return 0;
1627 
1628 out_infos:
1629 	spin_lock(&ubifs_infos_lock);
1630 	list_del(&c->infos_list);
1631 	spin_unlock(&ubifs_infos_lock);
1632 out_orphans:
1633 	free_orphans(c);
1634 out_journal:
1635 	destroy_journal(c);
1636 out_lpt:
1637 	ubifs_lpt_free(c, 0);
1638 out_master:
1639 	kfree(c->mst_node);
1640 	kfree(c->rcvrd_mst_node);
1641 	if (c->bgt)
1642 		kthread_stop(c->bgt);
1643 out_wbufs:
1644 	free_wbufs(c);
1645 out_cbuf:
1646 	kfree(c->cbuf);
1647 out_auth:
1648 	ubifs_exit_authentication(c);
1649 out_free:
1650 	kfree(c->write_reserve_buf);
1651 	kfree(c->bu.buf);
1652 	vfree(c->ileb_buf);
1653 	vfree(c->sbuf);
1654 	kfree(c->bottom_up_buf);
1655 	kfree(c->sup_node);
1656 	ubifs_sysfs_unregister(c);
1657 out_debugging:
1658 	ubifs_debugging_exit(c);
1659 	return err;
1660 }
1661 
1662 /**
1663  * ubifs_umount - un-mount UBIFS file-system.
1664  * @c: UBIFS file-system description object
1665  *
1666  * Note, this function is called to free allocated resourced when un-mounting,
1667  * as well as free resources when an error occurred while we were half way
1668  * through mounting (error path cleanup function). So it has to make sure the
1669  * resource was actually allocated before freeing it.
1670  */
1671 static void ubifs_umount(struct ubifs_info *c)
1672 {
1673 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1674 		c->vi.vol_id);
1675 
1676 	dbg_debugfs_exit_fs(c);
1677 	spin_lock(&ubifs_infos_lock);
1678 	list_del(&c->infos_list);
1679 	spin_unlock(&ubifs_infos_lock);
1680 
1681 	if (c->bgt)
1682 		kthread_stop(c->bgt);
1683 
1684 	destroy_journal(c);
1685 	free_wbufs(c);
1686 	free_orphans(c);
1687 	ubifs_lpt_free(c, 0);
1688 	ubifs_exit_authentication(c);
1689 
1690 	ubifs_release_options(c);
1691 	kfree(c->cbuf);
1692 	kfree(c->rcvrd_mst_node);
1693 	kfree(c->mst_node);
1694 	kfree(c->write_reserve_buf);
1695 	kfree(c->bu.buf);
1696 	vfree(c->ileb_buf);
1697 	vfree(c->sbuf);
1698 	kfree(c->bottom_up_buf);
1699 	kfree(c->sup_node);
1700 	ubifs_debugging_exit(c);
1701 	ubifs_sysfs_unregister(c);
1702 }
1703 
1704 /**
1705  * ubifs_remount_rw - re-mount in read-write mode.
1706  * @c: UBIFS file-system description object
1707  *
1708  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1709  * mode. This function allocates the needed resources and re-mounts UBIFS in
1710  * read-write mode.
1711  */
1712 static int ubifs_remount_rw(struct ubifs_info *c)
1713 {
1714 	int err, lnum;
1715 
1716 	if (c->rw_incompat) {
1717 		ubifs_err(c, "the file-system is not R/W-compatible");
1718 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1719 			  c->fmt_version, c->ro_compat_version,
1720 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1721 		return -EROFS;
1722 	}
1723 
1724 	mutex_lock(&c->umount_mutex);
1725 	dbg_save_space_info(c);
1726 	c->remounting_rw = 1;
1727 	c->ro_mount = 0;
1728 
1729 	if (c->space_fixup) {
1730 		err = ubifs_fixup_free_space(c);
1731 		if (err)
1732 			goto out;
1733 	}
1734 
1735 	err = check_free_space(c);
1736 	if (err)
1737 		goto out;
1738 
1739 	if (c->need_recovery) {
1740 		ubifs_msg(c, "completing deferred recovery");
1741 		err = ubifs_write_rcvrd_mst_node(c);
1742 		if (err)
1743 			goto out;
1744 		if (!ubifs_authenticated(c)) {
1745 			err = ubifs_recover_size(c, true);
1746 			if (err)
1747 				goto out;
1748 		}
1749 		err = ubifs_clean_lebs(c, c->sbuf);
1750 		if (err)
1751 			goto out;
1752 		err = ubifs_recover_inl_heads(c, c->sbuf);
1753 		if (err)
1754 			goto out;
1755 	} else {
1756 		/* A readonly mount is not allowed to have orphans */
1757 		ubifs_assert(c, c->tot_orphans == 0);
1758 		err = ubifs_clear_orphans(c);
1759 		if (err)
1760 			goto out;
1761 	}
1762 
1763 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1764 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1765 		err = ubifs_write_master(c);
1766 		if (err)
1767 			goto out;
1768 	}
1769 
1770 	if (c->superblock_need_write) {
1771 		struct ubifs_sb_node *sup = c->sup_node;
1772 
1773 		err = ubifs_write_sb_node(c, sup);
1774 		if (err)
1775 			goto out;
1776 
1777 		c->superblock_need_write = 0;
1778 	}
1779 
1780 	c->ileb_buf = vmalloc(c->leb_size);
1781 	if (!c->ileb_buf) {
1782 		err = -ENOMEM;
1783 		goto out;
1784 	}
1785 
1786 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1787 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1788 	if (!c->write_reserve_buf) {
1789 		err = -ENOMEM;
1790 		goto out;
1791 	}
1792 
1793 	err = ubifs_lpt_init(c, 0, 1);
1794 	if (err)
1795 		goto out;
1796 
1797 	/* Create background thread */
1798 	c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1799 	if (IS_ERR(c->bgt)) {
1800 		err = PTR_ERR(c->bgt);
1801 		c->bgt = NULL;
1802 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1803 			  c->bgt_name, err);
1804 		goto out;
1805 	}
1806 
1807 	c->orph_buf = vmalloc(c->leb_size);
1808 	if (!c->orph_buf) {
1809 		err = -ENOMEM;
1810 		goto out;
1811 	}
1812 
1813 	/* Check for enough log space */
1814 	lnum = c->lhead_lnum + 1;
1815 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1816 		lnum = UBIFS_LOG_LNUM;
1817 	if (lnum == c->ltail_lnum) {
1818 		err = ubifs_consolidate_log(c);
1819 		if (err)
1820 			goto out;
1821 	}
1822 
1823 	if (c->need_recovery) {
1824 		err = ubifs_rcvry_gc_commit(c);
1825 		if (err)
1826 			goto out;
1827 
1828 		if (ubifs_authenticated(c)) {
1829 			err = ubifs_recover_size(c, false);
1830 			if (err)
1831 				goto out;
1832 		}
1833 	} else {
1834 		err = ubifs_leb_unmap(c, c->gc_lnum);
1835 	}
1836 	if (err)
1837 		goto out;
1838 
1839 	dbg_gen("re-mounted read-write");
1840 	c->remounting_rw = 0;
1841 
1842 	if (c->need_recovery) {
1843 		c->need_recovery = 0;
1844 		ubifs_msg(c, "deferred recovery completed");
1845 	} else {
1846 		/*
1847 		 * Do not run the debugging space check if the were doing
1848 		 * recovery, because when we saved the information we had the
1849 		 * file-system in a state where the TNC and lprops has been
1850 		 * modified in memory, but all the I/O operations (including a
1851 		 * commit) were deferred. So the file-system was in
1852 		 * "non-committed" state. Now the file-system is in committed
1853 		 * state, and of course the amount of free space will change
1854 		 * because, for example, the old index size was imprecise.
1855 		 */
1856 		err = dbg_check_space_info(c);
1857 	}
1858 
1859 	mutex_unlock(&c->umount_mutex);
1860 	return err;
1861 
1862 out:
1863 	c->ro_mount = 1;
1864 	vfree(c->orph_buf);
1865 	c->orph_buf = NULL;
1866 	if (c->bgt) {
1867 		kthread_stop(c->bgt);
1868 		c->bgt = NULL;
1869 	}
1870 	kfree(c->write_reserve_buf);
1871 	c->write_reserve_buf = NULL;
1872 	vfree(c->ileb_buf);
1873 	c->ileb_buf = NULL;
1874 	ubifs_lpt_free(c, 1);
1875 	c->remounting_rw = 0;
1876 	mutex_unlock(&c->umount_mutex);
1877 	return err;
1878 }
1879 
1880 /**
1881  * ubifs_remount_ro - re-mount in read-only mode.
1882  * @c: UBIFS file-system description object
1883  *
1884  * We assume VFS has stopped writing. Possibly the background thread could be
1885  * running a commit, however kthread_stop will wait in that case.
1886  */
1887 static void ubifs_remount_ro(struct ubifs_info *c)
1888 {
1889 	int i, err;
1890 
1891 	ubifs_assert(c, !c->need_recovery);
1892 	ubifs_assert(c, !c->ro_mount);
1893 
1894 	mutex_lock(&c->umount_mutex);
1895 	if (c->bgt) {
1896 		kthread_stop(c->bgt);
1897 		c->bgt = NULL;
1898 	}
1899 
1900 	dbg_save_space_info(c);
1901 
1902 	for (i = 0; i < c->jhead_cnt; i++) {
1903 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1904 		if (err)
1905 			ubifs_ro_mode(c, err);
1906 	}
1907 
1908 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1909 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1910 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1911 	err = ubifs_write_master(c);
1912 	if (err)
1913 		ubifs_ro_mode(c, err);
1914 
1915 	vfree(c->orph_buf);
1916 	c->orph_buf = NULL;
1917 	kfree(c->write_reserve_buf);
1918 	c->write_reserve_buf = NULL;
1919 	vfree(c->ileb_buf);
1920 	c->ileb_buf = NULL;
1921 	ubifs_lpt_free(c, 1);
1922 	c->ro_mount = 1;
1923 	err = dbg_check_space_info(c);
1924 	if (err)
1925 		ubifs_ro_mode(c, err);
1926 	mutex_unlock(&c->umount_mutex);
1927 }
1928 
1929 static void ubifs_put_super(struct super_block *sb)
1930 {
1931 	int i;
1932 	struct ubifs_info *c = sb->s_fs_info;
1933 
1934 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1935 
1936 	/*
1937 	 * The following asserts are only valid if there has not been a failure
1938 	 * of the media. For example, there will be dirty inodes if we failed
1939 	 * to write them back because of I/O errors.
1940 	 */
1941 	if (!c->ro_error) {
1942 		ubifs_assert(c, c->bi.idx_growth == 0);
1943 		ubifs_assert(c, c->bi.dd_growth == 0);
1944 		ubifs_assert(c, c->bi.data_growth == 0);
1945 	}
1946 
1947 	/*
1948 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1949 	 * and file system un-mount. Namely, it prevents the shrinker from
1950 	 * picking this superblock for shrinking - it will be just skipped if
1951 	 * the mutex is locked.
1952 	 */
1953 	mutex_lock(&c->umount_mutex);
1954 	if (!c->ro_mount) {
1955 		/*
1956 		 * First of all kill the background thread to make sure it does
1957 		 * not interfere with un-mounting and freeing resources.
1958 		 */
1959 		if (c->bgt) {
1960 			kthread_stop(c->bgt);
1961 			c->bgt = NULL;
1962 		}
1963 
1964 		/*
1965 		 * On fatal errors c->ro_error is set to 1, in which case we do
1966 		 * not write the master node.
1967 		 */
1968 		if (!c->ro_error) {
1969 			int err;
1970 
1971 			/* Synchronize write-buffers */
1972 			for (i = 0; i < c->jhead_cnt; i++) {
1973 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1974 				if (err)
1975 					ubifs_ro_mode(c, err);
1976 			}
1977 
1978 			/*
1979 			 * We are being cleanly unmounted which means the
1980 			 * orphans were killed - indicate this in the master
1981 			 * node. Also save the reserved GC LEB number.
1982 			 */
1983 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1984 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1985 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1986 			err = ubifs_write_master(c);
1987 			if (err)
1988 				/*
1989 				 * Recovery will attempt to fix the master area
1990 				 * next mount, so we just print a message and
1991 				 * continue to unmount normally.
1992 				 */
1993 				ubifs_err(c, "failed to write master node, error %d",
1994 					  err);
1995 		} else {
1996 			for (i = 0; i < c->jhead_cnt; i++)
1997 				/* Make sure write-buffer timers are canceled */
1998 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1999 		}
2000 	}
2001 
2002 	ubifs_umount(c);
2003 	ubi_close_volume(c->ubi);
2004 	mutex_unlock(&c->umount_mutex);
2005 }
2006 
2007 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2008 {
2009 	int err;
2010 	struct ubifs_info *c = sb->s_fs_info;
2011 
2012 	sync_filesystem(sb);
2013 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2014 
2015 	err = ubifs_parse_options(c, data, 1);
2016 	if (err) {
2017 		ubifs_err(c, "invalid or unknown remount parameter");
2018 		return err;
2019 	}
2020 
2021 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
2022 		if (c->ro_error) {
2023 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2024 			return -EROFS;
2025 		}
2026 		if (c->ro_media) {
2027 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2028 			return -EROFS;
2029 		}
2030 		err = ubifs_remount_rw(c);
2031 		if (err)
2032 			return err;
2033 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2034 		if (c->ro_error) {
2035 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2036 			return -EROFS;
2037 		}
2038 		ubifs_remount_ro(c);
2039 	}
2040 
2041 	if (c->bulk_read == 1)
2042 		bu_init(c);
2043 	else {
2044 		dbg_gen("disable bulk-read");
2045 		mutex_lock(&c->bu_mutex);
2046 		kfree(c->bu.buf);
2047 		c->bu.buf = NULL;
2048 		mutex_unlock(&c->bu_mutex);
2049 	}
2050 
2051 	if (!c->need_recovery)
2052 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2053 
2054 	return 0;
2055 }
2056 
2057 const struct super_operations ubifs_super_operations = {
2058 	.alloc_inode   = ubifs_alloc_inode,
2059 	.free_inode    = ubifs_free_inode,
2060 	.put_super     = ubifs_put_super,
2061 	.write_inode   = ubifs_write_inode,
2062 	.drop_inode    = ubifs_drop_inode,
2063 	.evict_inode   = ubifs_evict_inode,
2064 	.statfs        = ubifs_statfs,
2065 	.dirty_inode   = ubifs_dirty_inode,
2066 	.remount_fs    = ubifs_remount_fs,
2067 	.show_options  = ubifs_show_options,
2068 	.sync_fs       = ubifs_sync_fs,
2069 };
2070 
2071 /**
2072  * open_ubi - parse UBI device name string and open the UBI device.
2073  * @name: UBI volume name
2074  * @mode: UBI volume open mode
2075  *
2076  * The primary method of mounting UBIFS is by specifying the UBI volume
2077  * character device node path. However, UBIFS may also be mounted without any
2078  * character device node using one of the following methods:
2079  *
2080  * o ubiX_Y    - mount UBI device number X, volume Y;
2081  * o ubiY      - mount UBI device number 0, volume Y;
2082  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2083  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2084  *
2085  * Alternative '!' separator may be used instead of ':' (because some shells
2086  * like busybox may interpret ':' as an NFS host name separator). This function
2087  * returns UBI volume description object in case of success and a negative
2088  * error code in case of failure.
2089  */
2090 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2091 {
2092 	struct ubi_volume_desc *ubi;
2093 	int dev, vol;
2094 	char *endptr;
2095 
2096 	if (!name || !*name)
2097 		return ERR_PTR(-EINVAL);
2098 
2099 	/* First, try to open using the device node path method */
2100 	ubi = ubi_open_volume_path(name, mode);
2101 	if (!IS_ERR(ubi))
2102 		return ubi;
2103 
2104 	/* Try the "nodev" method */
2105 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2106 		return ERR_PTR(-EINVAL);
2107 
2108 	/* ubi:NAME method */
2109 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2110 		return ubi_open_volume_nm(0, name + 4, mode);
2111 
2112 	if (!isdigit(name[3]))
2113 		return ERR_PTR(-EINVAL);
2114 
2115 	dev = simple_strtoul(name + 3, &endptr, 0);
2116 
2117 	/* ubiY method */
2118 	if (*endptr == '\0')
2119 		return ubi_open_volume(0, dev, mode);
2120 
2121 	/* ubiX_Y method */
2122 	if (*endptr == '_' && isdigit(endptr[1])) {
2123 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2124 		if (*endptr != '\0')
2125 			return ERR_PTR(-EINVAL);
2126 		return ubi_open_volume(dev, vol, mode);
2127 	}
2128 
2129 	/* ubiX:NAME method */
2130 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2131 		return ubi_open_volume_nm(dev, ++endptr, mode);
2132 
2133 	return ERR_PTR(-EINVAL);
2134 }
2135 
2136 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2137 {
2138 	struct ubifs_info *c;
2139 
2140 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2141 	if (c) {
2142 		spin_lock_init(&c->cnt_lock);
2143 		spin_lock_init(&c->cs_lock);
2144 		spin_lock_init(&c->buds_lock);
2145 		spin_lock_init(&c->space_lock);
2146 		spin_lock_init(&c->orphan_lock);
2147 		init_rwsem(&c->commit_sem);
2148 		mutex_init(&c->lp_mutex);
2149 		mutex_init(&c->tnc_mutex);
2150 		mutex_init(&c->log_mutex);
2151 		mutex_init(&c->umount_mutex);
2152 		mutex_init(&c->bu_mutex);
2153 		mutex_init(&c->write_reserve_mutex);
2154 		init_waitqueue_head(&c->cmt_wq);
2155 		c->buds = RB_ROOT;
2156 		c->old_idx = RB_ROOT;
2157 		c->size_tree = RB_ROOT;
2158 		c->orph_tree = RB_ROOT;
2159 		INIT_LIST_HEAD(&c->infos_list);
2160 		INIT_LIST_HEAD(&c->idx_gc);
2161 		INIT_LIST_HEAD(&c->replay_list);
2162 		INIT_LIST_HEAD(&c->replay_buds);
2163 		INIT_LIST_HEAD(&c->uncat_list);
2164 		INIT_LIST_HEAD(&c->empty_list);
2165 		INIT_LIST_HEAD(&c->freeable_list);
2166 		INIT_LIST_HEAD(&c->frdi_idx_list);
2167 		INIT_LIST_HEAD(&c->unclean_leb_list);
2168 		INIT_LIST_HEAD(&c->old_buds);
2169 		INIT_LIST_HEAD(&c->orph_list);
2170 		INIT_LIST_HEAD(&c->orph_new);
2171 		c->no_chk_data_crc = 1;
2172 		c->assert_action = ASSACT_RO;
2173 
2174 		c->highest_inum = UBIFS_FIRST_INO;
2175 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2176 
2177 		ubi_get_volume_info(ubi, &c->vi);
2178 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2179 	}
2180 	return c;
2181 }
2182 
2183 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2184 {
2185 	struct ubifs_info *c = sb->s_fs_info;
2186 	struct inode *root;
2187 	int err;
2188 
2189 	c->vfs_sb = sb;
2190 	/* Re-open the UBI device in read-write mode */
2191 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2192 	if (IS_ERR(c->ubi)) {
2193 		err = PTR_ERR(c->ubi);
2194 		goto out;
2195 	}
2196 
2197 	err = ubifs_parse_options(c, data, 0);
2198 	if (err)
2199 		goto out_close;
2200 
2201 	/*
2202 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2203 	 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2204 	 * which means the user would have to wait not just for their own I/O
2205 	 * but the read-ahead I/O as well i.e. completely pointless.
2206 	 *
2207 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2208 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2209 	 * writeback happening.
2210 	 */
2211 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2212 				   c->vi.vol_id);
2213 	if (err)
2214 		goto out_close;
2215 	sb->s_bdi->ra_pages = 0;
2216 	sb->s_bdi->io_pages = 0;
2217 
2218 	sb->s_fs_info = c;
2219 	sb->s_magic = UBIFS_SUPER_MAGIC;
2220 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2221 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2222 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2223 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2224 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2225 	sb->s_op = &ubifs_super_operations;
2226 	sb->s_xattr = ubifs_xattr_handlers;
2227 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2228 
2229 	mutex_lock(&c->umount_mutex);
2230 	err = mount_ubifs(c);
2231 	if (err) {
2232 		ubifs_assert(c, err < 0);
2233 		goto out_unlock;
2234 	}
2235 
2236 	/* Read the root inode */
2237 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2238 	if (IS_ERR(root)) {
2239 		err = PTR_ERR(root);
2240 		goto out_umount;
2241 	}
2242 
2243 	sb->s_root = d_make_root(root);
2244 	if (!sb->s_root) {
2245 		err = -ENOMEM;
2246 		goto out_umount;
2247 	}
2248 
2249 	import_uuid(&sb->s_uuid, c->uuid);
2250 
2251 	mutex_unlock(&c->umount_mutex);
2252 	return 0;
2253 
2254 out_umount:
2255 	ubifs_umount(c);
2256 out_unlock:
2257 	mutex_unlock(&c->umount_mutex);
2258 out_close:
2259 	ubifs_release_options(c);
2260 	ubi_close_volume(c->ubi);
2261 out:
2262 	return err;
2263 }
2264 
2265 static int sb_test(struct super_block *sb, void *data)
2266 {
2267 	struct ubifs_info *c1 = data;
2268 	struct ubifs_info *c = sb->s_fs_info;
2269 
2270 	return c->vi.cdev == c1->vi.cdev;
2271 }
2272 
2273 static int sb_set(struct super_block *sb, void *data)
2274 {
2275 	sb->s_fs_info = data;
2276 	return set_anon_super(sb, NULL);
2277 }
2278 
2279 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2280 			const char *name, void *data)
2281 {
2282 	struct ubi_volume_desc *ubi;
2283 	struct ubifs_info *c;
2284 	struct super_block *sb;
2285 	int err;
2286 
2287 	dbg_gen("name %s, flags %#x", name, flags);
2288 
2289 	/*
2290 	 * Get UBI device number and volume ID. Mount it read-only so far
2291 	 * because this might be a new mount point, and UBI allows only one
2292 	 * read-write user at a time.
2293 	 */
2294 	ubi = open_ubi(name, UBI_READONLY);
2295 	if (IS_ERR(ubi)) {
2296 		if (!(flags & SB_SILENT))
2297 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2298 			       current->pid, name, (int)PTR_ERR(ubi));
2299 		return ERR_CAST(ubi);
2300 	}
2301 
2302 	c = alloc_ubifs_info(ubi);
2303 	if (!c) {
2304 		err = -ENOMEM;
2305 		goto out_close;
2306 	}
2307 
2308 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2309 
2310 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2311 	if (IS_ERR(sb)) {
2312 		err = PTR_ERR(sb);
2313 		kfree(c);
2314 		goto out_close;
2315 	}
2316 
2317 	if (sb->s_root) {
2318 		struct ubifs_info *c1 = sb->s_fs_info;
2319 		kfree(c);
2320 		/* A new mount point for already mounted UBIFS */
2321 		dbg_gen("this ubi volume is already mounted");
2322 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2323 			err = -EBUSY;
2324 			goto out_deact;
2325 		}
2326 	} else {
2327 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2328 		if (err)
2329 			goto out_deact;
2330 		/* We do not support atime */
2331 		sb->s_flags |= SB_ACTIVE;
2332 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2333 			ubifs_msg(c, "full atime support is enabled.");
2334 		else
2335 			sb->s_flags |= SB_NOATIME;
2336 	}
2337 
2338 	/* 'fill_super()' opens ubi again so we must close it here */
2339 	ubi_close_volume(ubi);
2340 
2341 	return dget(sb->s_root);
2342 
2343 out_deact:
2344 	deactivate_locked_super(sb);
2345 out_close:
2346 	ubi_close_volume(ubi);
2347 	return ERR_PTR(err);
2348 }
2349 
2350 static void kill_ubifs_super(struct super_block *s)
2351 {
2352 	struct ubifs_info *c = s->s_fs_info;
2353 	kill_anon_super(s);
2354 	kfree(c);
2355 }
2356 
2357 static struct file_system_type ubifs_fs_type = {
2358 	.name    = "ubifs",
2359 	.owner   = THIS_MODULE,
2360 	.mount   = ubifs_mount,
2361 	.kill_sb = kill_ubifs_super,
2362 };
2363 MODULE_ALIAS_FS("ubifs");
2364 
2365 /*
2366  * Inode slab cache constructor.
2367  */
2368 static void inode_slab_ctor(void *obj)
2369 {
2370 	struct ubifs_inode *ui = obj;
2371 	inode_init_once(&ui->vfs_inode);
2372 }
2373 
2374 static int __init ubifs_init(void)
2375 {
2376 	int err;
2377 
2378 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2379 
2380 	/* Make sure node sizes are 8-byte aligned */
2381 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2382 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2383 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2384 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2385 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2386 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2387 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2388 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2389 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2390 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2391 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2392 
2393 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2394 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2395 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2396 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2397 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2398 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2399 
2400 	/* Check min. node size */
2401 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2402 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2403 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2404 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2405 
2406 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2407 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2408 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2409 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2410 
2411 	/* Defined node sizes */
2412 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2413 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2414 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2415 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2416 
2417 	/*
2418 	 * We use 2 bit wide bit-fields to store compression type, which should
2419 	 * be amended if more compressors are added. The bit-fields are:
2420 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2421 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2422 	 */
2423 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2424 
2425 	/*
2426 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2427 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2428 	 */
2429 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2430 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2431 		       current->pid, (unsigned int)PAGE_SIZE);
2432 		return -EINVAL;
2433 	}
2434 
2435 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2436 				sizeof(struct ubifs_inode), 0,
2437 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2438 				SLAB_ACCOUNT, &inode_slab_ctor);
2439 	if (!ubifs_inode_slab)
2440 		return -ENOMEM;
2441 
2442 	err = register_shrinker(&ubifs_shrinker_info, "ubifs-slab");
2443 	if (err)
2444 		goto out_slab;
2445 
2446 	err = ubifs_compressors_init();
2447 	if (err)
2448 		goto out_shrinker;
2449 
2450 	dbg_debugfs_init();
2451 
2452 	err = ubifs_sysfs_init();
2453 	if (err)
2454 		goto out_dbg;
2455 
2456 	err = register_filesystem(&ubifs_fs_type);
2457 	if (err) {
2458 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2459 		       current->pid, err);
2460 		goto out_sysfs;
2461 	}
2462 	return 0;
2463 
2464 out_sysfs:
2465 	ubifs_sysfs_exit();
2466 out_dbg:
2467 	dbg_debugfs_exit();
2468 	ubifs_compressors_exit();
2469 out_shrinker:
2470 	unregister_shrinker(&ubifs_shrinker_info);
2471 out_slab:
2472 	kmem_cache_destroy(ubifs_inode_slab);
2473 	return err;
2474 }
2475 /* late_initcall to let compressors initialize first */
2476 late_initcall(ubifs_init);
2477 
2478 static void __exit ubifs_exit(void)
2479 {
2480 	WARN_ON(!list_empty(&ubifs_infos));
2481 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2482 
2483 	dbg_debugfs_exit();
2484 	ubifs_sysfs_exit();
2485 	ubifs_compressors_exit();
2486 	unregister_shrinker(&ubifs_shrinker_info);
2487 
2488 	/*
2489 	 * Make sure all delayed rcu free inodes are flushed before we
2490 	 * destroy cache.
2491 	 */
2492 	rcu_barrier();
2493 	kmem_cache_destroy(ubifs_inode_slab);
2494 	unregister_filesystem(&ubifs_fs_type);
2495 }
2496 module_exit(ubifs_exit);
2497 
2498 MODULE_LICENSE("GPL");
2499 MODULE_VERSION(__stringify(UBIFS_VERSION));
2500 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2501 MODULE_DESCRIPTION("UBIFS - UBI File System");
2502