1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS initialization and VFS superblock operations. Some 13 * initialization stuff which is rather large and complex is placed at 14 * corresponding subsystems, but most of it is here. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/kthread.h> 22 #include <linux/parser.h> 23 #include <linux/seq_file.h> 24 #include <linux/mount.h> 25 #include <linux/math64.h> 26 #include <linux/writeback.h> 27 #include "ubifs.h" 28 29 /* 30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 31 * allocating too much. 32 */ 33 #define UBIFS_KMALLOC_OK (128*1024) 34 35 /* Slab cache for UBIFS inodes */ 36 static struct kmem_cache *ubifs_inode_slab; 37 38 /* UBIFS TNC shrinker description */ 39 static struct shrinker ubifs_shrinker_info = { 40 .scan_objects = ubifs_shrink_scan, 41 .count_objects = ubifs_shrink_count, 42 .seeks = DEFAULT_SEEKS, 43 }; 44 45 /** 46 * validate_inode - validate inode. 47 * @c: UBIFS file-system description object 48 * @inode: the inode to validate 49 * 50 * This is a helper function for 'ubifs_iget()' which validates various fields 51 * of a newly built inode to make sure they contain sane values and prevent 52 * possible vulnerabilities. Returns zero if the inode is all right and 53 * a non-zero error code if not. 54 */ 55 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 56 { 57 int err; 58 const struct ubifs_inode *ui = ubifs_inode(inode); 59 60 if (inode->i_size > c->max_inode_sz) { 61 ubifs_err(c, "inode is too large (%lld)", 62 (long long)inode->i_size); 63 return 1; 64 } 65 66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 67 ubifs_err(c, "unknown compression type %d", ui->compr_type); 68 return 2; 69 } 70 71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 72 return 3; 73 74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 75 return 4; 76 77 if (ui->xattr && !S_ISREG(inode->i_mode)) 78 return 5; 79 80 if (!ubifs_compr_present(c, ui->compr_type)) { 81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 82 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 83 } 84 85 err = dbg_check_dir(c, inode); 86 return err; 87 } 88 89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 90 { 91 int err; 92 union ubifs_key key; 93 struct ubifs_ino_node *ino; 94 struct ubifs_info *c = sb->s_fs_info; 95 struct inode *inode; 96 struct ubifs_inode *ui; 97 98 dbg_gen("inode %lu", inum); 99 100 inode = iget_locked(sb, inum); 101 if (!inode) 102 return ERR_PTR(-ENOMEM); 103 if (!(inode->i_state & I_NEW)) 104 return inode; 105 ui = ubifs_inode(inode); 106 107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 108 if (!ino) { 109 err = -ENOMEM; 110 goto out; 111 } 112 113 ino_key_init(c, &key, inode->i_ino); 114 115 err = ubifs_tnc_lookup(c, &key, ino); 116 if (err) 117 goto out_ino; 118 119 inode->i_flags |= S_NOCMTIME; 120 121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 122 inode->i_flags |= S_NOATIME; 123 124 set_nlink(inode, le32_to_cpu(ino->nlink)); 125 i_uid_write(inode, le32_to_cpu(ino->uid)); 126 i_gid_write(inode, le32_to_cpu(ino->gid)); 127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 133 inode->i_mode = le32_to_cpu(ino->mode); 134 inode->i_size = le64_to_cpu(ino->size); 135 136 ui->data_len = le32_to_cpu(ino->data_len); 137 ui->flags = le32_to_cpu(ino->flags); 138 ui->compr_type = le16_to_cpu(ino->compr_type); 139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 141 ui->xattr_size = le32_to_cpu(ino->xattr_size); 142 ui->xattr_names = le32_to_cpu(ino->xattr_names); 143 ui->synced_i_size = ui->ui_size = inode->i_size; 144 145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 146 147 err = validate_inode(c, inode); 148 if (err) 149 goto out_invalid; 150 151 switch (inode->i_mode & S_IFMT) { 152 case S_IFREG: 153 inode->i_mapping->a_ops = &ubifs_file_address_operations; 154 inode->i_op = &ubifs_file_inode_operations; 155 inode->i_fop = &ubifs_file_operations; 156 if (ui->xattr) { 157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 158 if (!ui->data) { 159 err = -ENOMEM; 160 goto out_ino; 161 } 162 memcpy(ui->data, ino->data, ui->data_len); 163 ((char *)ui->data)[ui->data_len] = '\0'; 164 } else if (ui->data_len != 0) { 165 err = 10; 166 goto out_invalid; 167 } 168 break; 169 case S_IFDIR: 170 inode->i_op = &ubifs_dir_inode_operations; 171 inode->i_fop = &ubifs_dir_operations; 172 if (ui->data_len != 0) { 173 err = 11; 174 goto out_invalid; 175 } 176 break; 177 case S_IFLNK: 178 inode->i_op = &ubifs_symlink_inode_operations; 179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 180 err = 12; 181 goto out_invalid; 182 } 183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 184 if (!ui->data) { 185 err = -ENOMEM; 186 goto out_ino; 187 } 188 memcpy(ui->data, ino->data, ui->data_len); 189 ((char *)ui->data)[ui->data_len] = '\0'; 190 break; 191 case S_IFBLK: 192 case S_IFCHR: 193 { 194 dev_t rdev; 195 union ubifs_dev_desc *dev; 196 197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 198 if (!ui->data) { 199 err = -ENOMEM; 200 goto out_ino; 201 } 202 203 dev = (union ubifs_dev_desc *)ino->data; 204 if (ui->data_len == sizeof(dev->new)) 205 rdev = new_decode_dev(le32_to_cpu(dev->new)); 206 else if (ui->data_len == sizeof(dev->huge)) 207 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 208 else { 209 err = 13; 210 goto out_invalid; 211 } 212 memcpy(ui->data, ino->data, ui->data_len); 213 inode->i_op = &ubifs_file_inode_operations; 214 init_special_inode(inode, inode->i_mode, rdev); 215 break; 216 } 217 case S_IFSOCK: 218 case S_IFIFO: 219 inode->i_op = &ubifs_file_inode_operations; 220 init_special_inode(inode, inode->i_mode, 0); 221 if (ui->data_len != 0) { 222 err = 14; 223 goto out_invalid; 224 } 225 break; 226 default: 227 err = 15; 228 goto out_invalid; 229 } 230 231 kfree(ino); 232 ubifs_set_inode_flags(inode); 233 unlock_new_inode(inode); 234 return inode; 235 236 out_invalid: 237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 238 ubifs_dump_node(c, ino); 239 ubifs_dump_inode(c, inode); 240 err = -EINVAL; 241 out_ino: 242 kfree(ino); 243 out: 244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 245 iget_failed(inode); 246 return ERR_PTR(err); 247 } 248 249 static struct inode *ubifs_alloc_inode(struct super_block *sb) 250 { 251 struct ubifs_inode *ui; 252 253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 254 if (!ui) 255 return NULL; 256 257 memset((void *)ui + sizeof(struct inode), 0, 258 sizeof(struct ubifs_inode) - sizeof(struct inode)); 259 mutex_init(&ui->ui_mutex); 260 spin_lock_init(&ui->ui_lock); 261 return &ui->vfs_inode; 262 }; 263 264 static void ubifs_free_inode(struct inode *inode) 265 { 266 struct ubifs_inode *ui = ubifs_inode(inode); 267 268 kfree(ui->data); 269 fscrypt_free_inode(inode); 270 271 kmem_cache_free(ubifs_inode_slab, ui); 272 } 273 274 /* 275 * Note, Linux write-back code calls this without 'i_mutex'. 276 */ 277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 278 { 279 int err = 0; 280 struct ubifs_info *c = inode->i_sb->s_fs_info; 281 struct ubifs_inode *ui = ubifs_inode(inode); 282 283 ubifs_assert(c, !ui->xattr); 284 if (is_bad_inode(inode)) 285 return 0; 286 287 mutex_lock(&ui->ui_mutex); 288 /* 289 * Due to races between write-back forced by budgeting 290 * (see 'sync_some_inodes()') and background write-back, the inode may 291 * have already been synchronized, do not do this again. This might 292 * also happen if it was synchronized in an VFS operation, e.g. 293 * 'ubifs_link()'. 294 */ 295 if (!ui->dirty) { 296 mutex_unlock(&ui->ui_mutex); 297 return 0; 298 } 299 300 /* 301 * As an optimization, do not write orphan inodes to the media just 302 * because this is not needed. 303 */ 304 dbg_gen("inode %lu, mode %#x, nlink %u", 305 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 306 if (inode->i_nlink) { 307 err = ubifs_jnl_write_inode(c, inode); 308 if (err) 309 ubifs_err(c, "can't write inode %lu, error %d", 310 inode->i_ino, err); 311 else 312 err = dbg_check_inode_size(c, inode, ui->ui_size); 313 } 314 315 ui->dirty = 0; 316 mutex_unlock(&ui->ui_mutex); 317 ubifs_release_dirty_inode_budget(c, ui); 318 return err; 319 } 320 321 static int ubifs_drop_inode(struct inode *inode) 322 { 323 int drop = generic_drop_inode(inode); 324 325 if (!drop) 326 drop = fscrypt_drop_inode(inode); 327 328 return drop; 329 } 330 331 static void ubifs_evict_inode(struct inode *inode) 332 { 333 int err; 334 struct ubifs_info *c = inode->i_sb->s_fs_info; 335 struct ubifs_inode *ui = ubifs_inode(inode); 336 337 if (ui->xattr) 338 /* 339 * Extended attribute inode deletions are fully handled in 340 * 'ubifs_removexattr()'. These inodes are special and have 341 * limited usage, so there is nothing to do here. 342 */ 343 goto out; 344 345 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 346 ubifs_assert(c, !atomic_read(&inode->i_count)); 347 348 truncate_inode_pages_final(&inode->i_data); 349 350 if (inode->i_nlink) 351 goto done; 352 353 if (is_bad_inode(inode)) 354 goto out; 355 356 ui->ui_size = inode->i_size = 0; 357 err = ubifs_jnl_delete_inode(c, inode); 358 if (err) 359 /* 360 * Worst case we have a lost orphan inode wasting space, so a 361 * simple error message is OK here. 362 */ 363 ubifs_err(c, "can't delete inode %lu, error %d", 364 inode->i_ino, err); 365 366 out: 367 if (ui->dirty) 368 ubifs_release_dirty_inode_budget(c, ui); 369 else { 370 /* We've deleted something - clean the "no space" flags */ 371 c->bi.nospace = c->bi.nospace_rp = 0; 372 smp_wmb(); 373 } 374 done: 375 clear_inode(inode); 376 fscrypt_put_encryption_info(inode); 377 } 378 379 static void ubifs_dirty_inode(struct inode *inode, int flags) 380 { 381 struct ubifs_info *c = inode->i_sb->s_fs_info; 382 struct ubifs_inode *ui = ubifs_inode(inode); 383 384 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 385 if (!ui->dirty) { 386 ui->dirty = 1; 387 dbg_gen("inode %lu", inode->i_ino); 388 } 389 } 390 391 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 392 { 393 struct ubifs_info *c = dentry->d_sb->s_fs_info; 394 unsigned long long free; 395 __le32 *uuid = (__le32 *)c->uuid; 396 397 free = ubifs_get_free_space(c); 398 dbg_gen("free space %lld bytes (%lld blocks)", 399 free, free >> UBIFS_BLOCK_SHIFT); 400 401 buf->f_type = UBIFS_SUPER_MAGIC; 402 buf->f_bsize = UBIFS_BLOCK_SIZE; 403 buf->f_blocks = c->block_cnt; 404 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 405 if (free > c->report_rp_size) 406 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 407 else 408 buf->f_bavail = 0; 409 buf->f_files = 0; 410 buf->f_ffree = 0; 411 buf->f_namelen = UBIFS_MAX_NLEN; 412 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 413 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 414 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 415 return 0; 416 } 417 418 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 419 { 420 struct ubifs_info *c = root->d_sb->s_fs_info; 421 422 if (c->mount_opts.unmount_mode == 2) 423 seq_puts(s, ",fast_unmount"); 424 else if (c->mount_opts.unmount_mode == 1) 425 seq_puts(s, ",norm_unmount"); 426 427 if (c->mount_opts.bulk_read == 2) 428 seq_puts(s, ",bulk_read"); 429 else if (c->mount_opts.bulk_read == 1) 430 seq_puts(s, ",no_bulk_read"); 431 432 if (c->mount_opts.chk_data_crc == 2) 433 seq_puts(s, ",chk_data_crc"); 434 else if (c->mount_opts.chk_data_crc == 1) 435 seq_puts(s, ",no_chk_data_crc"); 436 437 if (c->mount_opts.override_compr) { 438 seq_printf(s, ",compr=%s", 439 ubifs_compr_name(c, c->mount_opts.compr_type)); 440 } 441 442 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 443 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 444 445 return 0; 446 } 447 448 static int ubifs_sync_fs(struct super_block *sb, int wait) 449 { 450 int i, err; 451 struct ubifs_info *c = sb->s_fs_info; 452 453 /* 454 * Zero @wait is just an advisory thing to help the file system shove 455 * lots of data into the queues, and there will be the second 456 * '->sync_fs()' call, with non-zero @wait. 457 */ 458 if (!wait) 459 return 0; 460 461 /* 462 * Synchronize write buffers, because 'ubifs_run_commit()' does not 463 * do this if it waits for an already running commit. 464 */ 465 for (i = 0; i < c->jhead_cnt; i++) { 466 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 467 if (err) 468 return err; 469 } 470 471 /* 472 * Strictly speaking, it is not necessary to commit the journal here, 473 * synchronizing write-buffers would be enough. But committing makes 474 * UBIFS free space predictions much more accurate, so we want to let 475 * the user be able to get more accurate results of 'statfs()' after 476 * they synchronize the file system. 477 */ 478 err = ubifs_run_commit(c); 479 if (err) 480 return err; 481 482 return ubi_sync(c->vi.ubi_num); 483 } 484 485 /** 486 * init_constants_early - initialize UBIFS constants. 487 * @c: UBIFS file-system description object 488 * 489 * This function initialize UBIFS constants which do not need the superblock to 490 * be read. It also checks that the UBI volume satisfies basic UBIFS 491 * requirements. Returns zero in case of success and a negative error code in 492 * case of failure. 493 */ 494 static int init_constants_early(struct ubifs_info *c) 495 { 496 if (c->vi.corrupted) { 497 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 498 c->ro_media = 1; 499 } 500 501 if (c->di.ro_mode) { 502 ubifs_msg(c, "read-only UBI device"); 503 c->ro_media = 1; 504 } 505 506 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 507 ubifs_msg(c, "static UBI volume - read-only mode"); 508 c->ro_media = 1; 509 } 510 511 c->leb_cnt = c->vi.size; 512 c->leb_size = c->vi.usable_leb_size; 513 c->leb_start = c->di.leb_start; 514 c->half_leb_size = c->leb_size / 2; 515 c->min_io_size = c->di.min_io_size; 516 c->min_io_shift = fls(c->min_io_size) - 1; 517 c->max_write_size = c->di.max_write_size; 518 c->max_write_shift = fls(c->max_write_size) - 1; 519 520 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 521 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 522 c->leb_size, UBIFS_MIN_LEB_SZ); 523 return -EINVAL; 524 } 525 526 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 527 ubifs_errc(c, "too few LEBs (%d), min. is %d", 528 c->leb_cnt, UBIFS_MIN_LEB_CNT); 529 return -EINVAL; 530 } 531 532 if (!is_power_of_2(c->min_io_size)) { 533 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 534 return -EINVAL; 535 } 536 537 /* 538 * Maximum write size has to be greater or equivalent to min. I/O 539 * size, and be multiple of min. I/O size. 540 */ 541 if (c->max_write_size < c->min_io_size || 542 c->max_write_size % c->min_io_size || 543 !is_power_of_2(c->max_write_size)) { 544 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 545 c->max_write_size, c->min_io_size); 546 return -EINVAL; 547 } 548 549 /* 550 * UBIFS aligns all node to 8-byte boundary, so to make function in 551 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 552 * less than 8. 553 */ 554 if (c->min_io_size < 8) { 555 c->min_io_size = 8; 556 c->min_io_shift = 3; 557 if (c->max_write_size < c->min_io_size) { 558 c->max_write_size = c->min_io_size; 559 c->max_write_shift = c->min_io_shift; 560 } 561 } 562 563 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 564 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 565 566 /* 567 * Initialize node length ranges which are mostly needed for node 568 * length validation. 569 */ 570 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 571 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 572 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 573 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 574 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 575 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 576 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 577 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 578 UBIFS_MAX_HMAC_LEN; 579 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ; 580 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ; 581 582 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 583 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 584 c->ranges[UBIFS_ORPH_NODE].min_len = 585 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 586 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 587 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 588 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 589 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 590 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 591 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 592 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 593 /* 594 * Minimum indexing node size is amended later when superblock is 595 * read and the key length is known. 596 */ 597 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 598 /* 599 * Maximum indexing node size is amended later when superblock is 600 * read and the fanout is known. 601 */ 602 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 603 604 /* 605 * Initialize dead and dark LEB space watermarks. See gc.c for comments 606 * about these values. 607 */ 608 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 609 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 610 611 /* 612 * Calculate how many bytes would be wasted at the end of LEB if it was 613 * fully filled with data nodes of maximum size. This is used in 614 * calculations when reporting free space. 615 */ 616 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 617 618 /* Buffer size for bulk-reads */ 619 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 620 if (c->max_bu_buf_len > c->leb_size) 621 c->max_bu_buf_len = c->leb_size; 622 623 /* Log is ready, preserve one LEB for commits. */ 624 c->min_log_bytes = c->leb_size; 625 626 return 0; 627 } 628 629 /** 630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 631 * @c: UBIFS file-system description object 632 * @lnum: LEB the write-buffer was synchronized to 633 * @free: how many free bytes left in this LEB 634 * @pad: how many bytes were padded 635 * 636 * This is a callback function which is called by the I/O unit when the 637 * write-buffer is synchronized. We need this to correctly maintain space 638 * accounting in bud logical eraseblocks. This function returns zero in case of 639 * success and a negative error code in case of failure. 640 * 641 * This function actually belongs to the journal, but we keep it here because 642 * we want to keep it static. 643 */ 644 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 645 { 646 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 647 } 648 649 /* 650 * init_constants_sb - initialize UBIFS constants. 651 * @c: UBIFS file-system description object 652 * 653 * This is a helper function which initializes various UBIFS constants after 654 * the superblock has been read. It also checks various UBIFS parameters and 655 * makes sure they are all right. Returns zero in case of success and a 656 * negative error code in case of failure. 657 */ 658 static int init_constants_sb(struct ubifs_info *c) 659 { 660 int tmp, err; 661 long long tmp64; 662 663 c->main_bytes = (long long)c->main_lebs * c->leb_size; 664 c->max_znode_sz = sizeof(struct ubifs_znode) + 665 c->fanout * sizeof(struct ubifs_zbranch); 666 667 tmp = ubifs_idx_node_sz(c, 1); 668 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 669 c->min_idx_node_sz = ALIGN(tmp, 8); 670 671 tmp = ubifs_idx_node_sz(c, c->fanout); 672 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 673 c->max_idx_node_sz = ALIGN(tmp, 8); 674 675 /* Make sure LEB size is large enough to fit full commit */ 676 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 677 tmp = ALIGN(tmp, c->min_io_size); 678 if (tmp > c->leb_size) { 679 ubifs_err(c, "too small LEB size %d, at least %d needed", 680 c->leb_size, tmp); 681 return -EINVAL; 682 } 683 684 /* 685 * Make sure that the log is large enough to fit reference nodes for 686 * all buds plus one reserved LEB. 687 */ 688 tmp64 = c->max_bud_bytes + c->leb_size - 1; 689 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 690 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 691 tmp /= c->leb_size; 692 tmp += 1; 693 if (c->log_lebs < tmp) { 694 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 695 c->log_lebs, tmp); 696 return -EINVAL; 697 } 698 699 /* 700 * When budgeting we assume worst-case scenarios when the pages are not 701 * be compressed and direntries are of the maximum size. 702 * 703 * Note, data, which may be stored in inodes is budgeted separately, so 704 * it is not included into 'c->bi.inode_budget'. 705 */ 706 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 707 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 708 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 709 710 /* 711 * When the amount of flash space used by buds becomes 712 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 713 * The writers are unblocked when the commit is finished. To avoid 714 * writers to be blocked UBIFS initiates background commit in advance, 715 * when number of bud bytes becomes above the limit defined below. 716 */ 717 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 718 719 /* 720 * Ensure minimum journal size. All the bytes in the journal heads are 721 * considered to be used, when calculating the current journal usage. 722 * Consequently, if the journal is too small, UBIFS will treat it as 723 * always full. 724 */ 725 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 726 if (c->bg_bud_bytes < tmp64) 727 c->bg_bud_bytes = tmp64; 728 if (c->max_bud_bytes < tmp64 + c->leb_size) 729 c->max_bud_bytes = tmp64 + c->leb_size; 730 731 err = ubifs_calc_lpt_geom(c); 732 if (err) 733 return err; 734 735 /* Initialize effective LEB size used in budgeting calculations */ 736 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 737 return 0; 738 } 739 740 /* 741 * init_constants_master - initialize UBIFS constants. 742 * @c: UBIFS file-system description object 743 * 744 * This is a helper function which initializes various UBIFS constants after 745 * the master node has been read. It also checks various UBIFS parameters and 746 * makes sure they are all right. 747 */ 748 static void init_constants_master(struct ubifs_info *c) 749 { 750 long long tmp64; 751 752 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 753 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 754 755 /* 756 * Calculate total amount of FS blocks. This number is not used 757 * internally because it does not make much sense for UBIFS, but it is 758 * necessary to report something for the 'statfs()' call. 759 * 760 * Subtract the LEB reserved for GC, the LEB which is reserved for 761 * deletions, minimum LEBs for the index, and assume only one journal 762 * head is available. 763 */ 764 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 765 tmp64 *= (long long)c->leb_size - c->leb_overhead; 766 tmp64 = ubifs_reported_space(c, tmp64); 767 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 768 } 769 770 /** 771 * take_gc_lnum - reserve GC LEB. 772 * @c: UBIFS file-system description object 773 * 774 * This function ensures that the LEB reserved for garbage collection is marked 775 * as "taken" in lprops. We also have to set free space to LEB size and dirty 776 * space to zero, because lprops may contain out-of-date information if the 777 * file-system was un-mounted before it has been committed. This function 778 * returns zero in case of success and a negative error code in case of 779 * failure. 780 */ 781 static int take_gc_lnum(struct ubifs_info *c) 782 { 783 int err; 784 785 if (c->gc_lnum == -1) { 786 ubifs_err(c, "no LEB for GC"); 787 return -EINVAL; 788 } 789 790 /* And we have to tell lprops that this LEB is taken */ 791 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 792 LPROPS_TAKEN, 0, 0); 793 return err; 794 } 795 796 /** 797 * alloc_wbufs - allocate write-buffers. 798 * @c: UBIFS file-system description object 799 * 800 * This helper function allocates and initializes UBIFS write-buffers. Returns 801 * zero in case of success and %-ENOMEM in case of failure. 802 */ 803 static int alloc_wbufs(struct ubifs_info *c) 804 { 805 int i, err; 806 807 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 808 GFP_KERNEL); 809 if (!c->jheads) 810 return -ENOMEM; 811 812 /* Initialize journal heads */ 813 for (i = 0; i < c->jhead_cnt; i++) { 814 INIT_LIST_HEAD(&c->jheads[i].buds_list); 815 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 816 if (err) 817 return err; 818 819 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 820 c->jheads[i].wbuf.jhead = i; 821 c->jheads[i].grouped = 1; 822 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 823 if (IS_ERR(c->jheads[i].log_hash)) 824 goto out; 825 } 826 827 /* 828 * Garbage Collector head does not need to be synchronized by timer. 829 * Also GC head nodes are not grouped. 830 */ 831 c->jheads[GCHD].wbuf.no_timer = 1; 832 c->jheads[GCHD].grouped = 0; 833 834 return 0; 835 836 out: 837 while (i--) 838 kfree(c->jheads[i].log_hash); 839 840 return err; 841 } 842 843 /** 844 * free_wbufs - free write-buffers. 845 * @c: UBIFS file-system description object 846 */ 847 static void free_wbufs(struct ubifs_info *c) 848 { 849 int i; 850 851 if (c->jheads) { 852 for (i = 0; i < c->jhead_cnt; i++) { 853 kfree(c->jheads[i].wbuf.buf); 854 kfree(c->jheads[i].wbuf.inodes); 855 kfree(c->jheads[i].log_hash); 856 } 857 kfree(c->jheads); 858 c->jheads = NULL; 859 } 860 } 861 862 /** 863 * free_orphans - free orphans. 864 * @c: UBIFS file-system description object 865 */ 866 static void free_orphans(struct ubifs_info *c) 867 { 868 struct ubifs_orphan *orph; 869 870 while (c->orph_dnext) { 871 orph = c->orph_dnext; 872 c->orph_dnext = orph->dnext; 873 list_del(&orph->list); 874 kfree(orph); 875 } 876 877 while (!list_empty(&c->orph_list)) { 878 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 879 list_del(&orph->list); 880 kfree(orph); 881 ubifs_err(c, "orphan list not empty at unmount"); 882 } 883 884 vfree(c->orph_buf); 885 c->orph_buf = NULL; 886 } 887 888 /** 889 * free_buds - free per-bud objects. 890 * @c: UBIFS file-system description object 891 */ 892 static void free_buds(struct ubifs_info *c) 893 { 894 struct ubifs_bud *bud, *n; 895 896 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 897 kfree(bud); 898 } 899 900 /** 901 * check_volume_empty - check if the UBI volume is empty. 902 * @c: UBIFS file-system description object 903 * 904 * This function checks if the UBIFS volume is empty by looking if its LEBs are 905 * mapped or not. The result of checking is stored in the @c->empty variable. 906 * Returns zero in case of success and a negative error code in case of 907 * failure. 908 */ 909 static int check_volume_empty(struct ubifs_info *c) 910 { 911 int lnum, err; 912 913 c->empty = 1; 914 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 915 err = ubifs_is_mapped(c, lnum); 916 if (unlikely(err < 0)) 917 return err; 918 if (err == 1) { 919 c->empty = 0; 920 break; 921 } 922 923 cond_resched(); 924 } 925 926 return 0; 927 } 928 929 /* 930 * UBIFS mount options. 931 * 932 * Opt_fast_unmount: do not run a journal commit before un-mounting 933 * Opt_norm_unmount: run a journal commit before un-mounting 934 * Opt_bulk_read: enable bulk-reads 935 * Opt_no_bulk_read: disable bulk-reads 936 * Opt_chk_data_crc: check CRCs when reading data nodes 937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 938 * Opt_override_compr: override default compressor 939 * Opt_assert: set ubifs_assert() action 940 * Opt_auth_key: The key name used for authentication 941 * Opt_auth_hash_name: The hash type used for authentication 942 * Opt_err: just end of array marker 943 */ 944 enum { 945 Opt_fast_unmount, 946 Opt_norm_unmount, 947 Opt_bulk_read, 948 Opt_no_bulk_read, 949 Opt_chk_data_crc, 950 Opt_no_chk_data_crc, 951 Opt_override_compr, 952 Opt_assert, 953 Opt_auth_key, 954 Opt_auth_hash_name, 955 Opt_ignore, 956 Opt_err, 957 }; 958 959 static const match_table_t tokens = { 960 {Opt_fast_unmount, "fast_unmount"}, 961 {Opt_norm_unmount, "norm_unmount"}, 962 {Opt_bulk_read, "bulk_read"}, 963 {Opt_no_bulk_read, "no_bulk_read"}, 964 {Opt_chk_data_crc, "chk_data_crc"}, 965 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 966 {Opt_override_compr, "compr=%s"}, 967 {Opt_auth_key, "auth_key=%s"}, 968 {Opt_auth_hash_name, "auth_hash_name=%s"}, 969 {Opt_ignore, "ubi=%s"}, 970 {Opt_ignore, "vol=%s"}, 971 {Opt_assert, "assert=%s"}, 972 {Opt_err, NULL}, 973 }; 974 975 /** 976 * parse_standard_option - parse a standard mount option. 977 * @option: the option to parse 978 * 979 * Normally, standard mount options like "sync" are passed to file-systems as 980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 981 * be present in the options string. This function tries to deal with this 982 * situation and parse standard options. Returns 0 if the option was not 983 * recognized, and the corresponding integer flag if it was. 984 * 985 * UBIFS is only interested in the "sync" option, so do not check for anything 986 * else. 987 */ 988 static int parse_standard_option(const char *option) 989 { 990 991 pr_notice("UBIFS: parse %s\n", option); 992 if (!strcmp(option, "sync")) 993 return SB_SYNCHRONOUS; 994 return 0; 995 } 996 997 /** 998 * ubifs_parse_options - parse mount parameters. 999 * @c: UBIFS file-system description object 1000 * @options: parameters to parse 1001 * @is_remount: non-zero if this is FS re-mount 1002 * 1003 * This function parses UBIFS mount options and returns zero in case success 1004 * and a negative error code in case of failure. 1005 */ 1006 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1007 int is_remount) 1008 { 1009 char *p; 1010 substring_t args[MAX_OPT_ARGS]; 1011 1012 if (!options) 1013 return 0; 1014 1015 while ((p = strsep(&options, ","))) { 1016 int token; 1017 1018 if (!*p) 1019 continue; 1020 1021 token = match_token(p, tokens, args); 1022 switch (token) { 1023 /* 1024 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1025 * We accept them in order to be backward-compatible. But this 1026 * should be removed at some point. 1027 */ 1028 case Opt_fast_unmount: 1029 c->mount_opts.unmount_mode = 2; 1030 break; 1031 case Opt_norm_unmount: 1032 c->mount_opts.unmount_mode = 1; 1033 break; 1034 case Opt_bulk_read: 1035 c->mount_opts.bulk_read = 2; 1036 c->bulk_read = 1; 1037 break; 1038 case Opt_no_bulk_read: 1039 c->mount_opts.bulk_read = 1; 1040 c->bulk_read = 0; 1041 break; 1042 case Opt_chk_data_crc: 1043 c->mount_opts.chk_data_crc = 2; 1044 c->no_chk_data_crc = 0; 1045 break; 1046 case Opt_no_chk_data_crc: 1047 c->mount_opts.chk_data_crc = 1; 1048 c->no_chk_data_crc = 1; 1049 break; 1050 case Opt_override_compr: 1051 { 1052 char *name = match_strdup(&args[0]); 1053 1054 if (!name) 1055 return -ENOMEM; 1056 if (!strcmp(name, "none")) 1057 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1058 else if (!strcmp(name, "lzo")) 1059 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1060 else if (!strcmp(name, "zlib")) 1061 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1062 else if (!strcmp(name, "zstd")) 1063 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD; 1064 else { 1065 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1066 kfree(name); 1067 return -EINVAL; 1068 } 1069 kfree(name); 1070 c->mount_opts.override_compr = 1; 1071 c->default_compr = c->mount_opts.compr_type; 1072 break; 1073 } 1074 case Opt_assert: 1075 { 1076 char *act = match_strdup(&args[0]); 1077 1078 if (!act) 1079 return -ENOMEM; 1080 if (!strcmp(act, "report")) 1081 c->assert_action = ASSACT_REPORT; 1082 else if (!strcmp(act, "read-only")) 1083 c->assert_action = ASSACT_RO; 1084 else if (!strcmp(act, "panic")) 1085 c->assert_action = ASSACT_PANIC; 1086 else { 1087 ubifs_err(c, "unknown assert action \"%s\"", act); 1088 kfree(act); 1089 return -EINVAL; 1090 } 1091 kfree(act); 1092 break; 1093 } 1094 case Opt_auth_key: 1095 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL); 1096 if (!c->auth_key_name) 1097 return -ENOMEM; 1098 break; 1099 case Opt_auth_hash_name: 1100 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL); 1101 if (!c->auth_hash_name) 1102 return -ENOMEM; 1103 break; 1104 case Opt_ignore: 1105 break; 1106 default: 1107 { 1108 unsigned long flag; 1109 struct super_block *sb = c->vfs_sb; 1110 1111 flag = parse_standard_option(p); 1112 if (!flag) { 1113 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1114 p); 1115 return -EINVAL; 1116 } 1117 sb->s_flags |= flag; 1118 break; 1119 } 1120 } 1121 } 1122 1123 return 0; 1124 } 1125 1126 /** 1127 * destroy_journal - destroy journal data structures. 1128 * @c: UBIFS file-system description object 1129 * 1130 * This function destroys journal data structures including those that may have 1131 * been created by recovery functions. 1132 */ 1133 static void destroy_journal(struct ubifs_info *c) 1134 { 1135 while (!list_empty(&c->unclean_leb_list)) { 1136 struct ubifs_unclean_leb *ucleb; 1137 1138 ucleb = list_entry(c->unclean_leb_list.next, 1139 struct ubifs_unclean_leb, list); 1140 list_del(&ucleb->list); 1141 kfree(ucleb); 1142 } 1143 while (!list_empty(&c->old_buds)) { 1144 struct ubifs_bud *bud; 1145 1146 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1147 list_del(&bud->list); 1148 kfree(bud); 1149 } 1150 ubifs_destroy_idx_gc(c); 1151 ubifs_destroy_size_tree(c); 1152 ubifs_tnc_close(c); 1153 free_buds(c); 1154 } 1155 1156 /** 1157 * bu_init - initialize bulk-read information. 1158 * @c: UBIFS file-system description object 1159 */ 1160 static void bu_init(struct ubifs_info *c) 1161 { 1162 ubifs_assert(c, c->bulk_read == 1); 1163 1164 if (c->bu.buf) 1165 return; /* Already initialized */ 1166 1167 again: 1168 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1169 if (!c->bu.buf) { 1170 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1171 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1172 goto again; 1173 } 1174 1175 /* Just disable bulk-read */ 1176 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1177 c->max_bu_buf_len); 1178 c->mount_opts.bulk_read = 1; 1179 c->bulk_read = 0; 1180 return; 1181 } 1182 } 1183 1184 /** 1185 * check_free_space - check if there is enough free space to mount. 1186 * @c: UBIFS file-system description object 1187 * 1188 * This function makes sure UBIFS has enough free space to be mounted in 1189 * read/write mode. UBIFS must always have some free space to allow deletions. 1190 */ 1191 static int check_free_space(struct ubifs_info *c) 1192 { 1193 ubifs_assert(c, c->dark_wm > 0); 1194 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1195 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1196 ubifs_dump_budg(c, &c->bi); 1197 ubifs_dump_lprops(c); 1198 return -ENOSPC; 1199 } 1200 return 0; 1201 } 1202 1203 /** 1204 * mount_ubifs - mount UBIFS file-system. 1205 * @c: UBIFS file-system description object 1206 * 1207 * This function mounts UBIFS file system. Returns zero in case of success and 1208 * a negative error code in case of failure. 1209 */ 1210 static int mount_ubifs(struct ubifs_info *c) 1211 { 1212 int err; 1213 long long x, y; 1214 size_t sz; 1215 1216 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1217 /* Suppress error messages while probing if SB_SILENT is set */ 1218 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1219 1220 err = init_constants_early(c); 1221 if (err) 1222 return err; 1223 1224 err = ubifs_debugging_init(c); 1225 if (err) 1226 return err; 1227 1228 err = check_volume_empty(c); 1229 if (err) 1230 goto out_free; 1231 1232 if (c->empty && (c->ro_mount || c->ro_media)) { 1233 /* 1234 * This UBI volume is empty, and read-only, or the file system 1235 * is mounted read-only - we cannot format it. 1236 */ 1237 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1238 c->ro_media ? "UBI volume" : "mount"); 1239 err = -EROFS; 1240 goto out_free; 1241 } 1242 1243 if (c->ro_media && !c->ro_mount) { 1244 ubifs_err(c, "cannot mount read-write - read-only media"); 1245 err = -EROFS; 1246 goto out_free; 1247 } 1248 1249 /* 1250 * The requirement for the buffer is that it should fit indexing B-tree 1251 * height amount of integers. We assume the height if the TNC tree will 1252 * never exceed 64. 1253 */ 1254 err = -ENOMEM; 1255 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1256 GFP_KERNEL); 1257 if (!c->bottom_up_buf) 1258 goto out_free; 1259 1260 c->sbuf = vmalloc(c->leb_size); 1261 if (!c->sbuf) 1262 goto out_free; 1263 1264 if (!c->ro_mount) { 1265 c->ileb_buf = vmalloc(c->leb_size); 1266 if (!c->ileb_buf) 1267 goto out_free; 1268 } 1269 1270 if (c->bulk_read == 1) 1271 bu_init(c); 1272 1273 if (!c->ro_mount) { 1274 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1275 UBIFS_CIPHER_BLOCK_SIZE, 1276 GFP_KERNEL); 1277 if (!c->write_reserve_buf) 1278 goto out_free; 1279 } 1280 1281 c->mounting = 1; 1282 1283 if (c->auth_key_name) { 1284 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1285 err = ubifs_init_authentication(c); 1286 if (err) 1287 goto out_free; 1288 } else { 1289 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1290 " authentication support"); 1291 err = -EINVAL; 1292 goto out_free; 1293 } 1294 } 1295 1296 err = ubifs_read_superblock(c); 1297 if (err) 1298 goto out_free; 1299 1300 c->probing = 0; 1301 1302 /* 1303 * Make sure the compressor which is set as default in the superblock 1304 * or overridden by mount options is actually compiled in. 1305 */ 1306 if (!ubifs_compr_present(c, c->default_compr)) { 1307 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1308 ubifs_compr_name(c, c->default_compr)); 1309 err = -ENOTSUPP; 1310 goto out_free; 1311 } 1312 1313 err = init_constants_sb(c); 1314 if (err) 1315 goto out_free; 1316 1317 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2; 1318 c->cbuf = kmalloc(sz, GFP_NOFS); 1319 if (!c->cbuf) { 1320 err = -ENOMEM; 1321 goto out_free; 1322 } 1323 1324 err = alloc_wbufs(c); 1325 if (err) 1326 goto out_cbuf; 1327 1328 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1329 if (!c->ro_mount) { 1330 /* Create background thread */ 1331 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1332 if (IS_ERR(c->bgt)) { 1333 err = PTR_ERR(c->bgt); 1334 c->bgt = NULL; 1335 ubifs_err(c, "cannot spawn \"%s\", error %d", 1336 c->bgt_name, err); 1337 goto out_wbufs; 1338 } 1339 wake_up_process(c->bgt); 1340 } 1341 1342 err = ubifs_read_master(c); 1343 if (err) 1344 goto out_master; 1345 1346 init_constants_master(c); 1347 1348 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1349 ubifs_msg(c, "recovery needed"); 1350 c->need_recovery = 1; 1351 } 1352 1353 if (c->need_recovery && !c->ro_mount) { 1354 err = ubifs_recover_inl_heads(c, c->sbuf); 1355 if (err) 1356 goto out_master; 1357 } 1358 1359 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1360 if (err) 1361 goto out_master; 1362 1363 if (!c->ro_mount && c->space_fixup) { 1364 err = ubifs_fixup_free_space(c); 1365 if (err) 1366 goto out_lpt; 1367 } 1368 1369 if (!c->ro_mount && !c->need_recovery) { 1370 /* 1371 * Set the "dirty" flag so that if we reboot uncleanly we 1372 * will notice this immediately on the next mount. 1373 */ 1374 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1375 err = ubifs_write_master(c); 1376 if (err) 1377 goto out_lpt; 1378 } 1379 1380 /* 1381 * Handle offline signed images: Now that the master node is 1382 * written and its validation no longer depends on the hash 1383 * in the superblock, we can update the offline signed 1384 * superblock with a HMAC version, 1385 */ 1386 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) { 1387 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm); 1388 if (err) 1389 goto out_lpt; 1390 c->superblock_need_write = 1; 1391 } 1392 1393 if (!c->ro_mount && c->superblock_need_write) { 1394 err = ubifs_write_sb_node(c, c->sup_node); 1395 if (err) 1396 goto out_lpt; 1397 c->superblock_need_write = 0; 1398 } 1399 1400 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1401 if (err) 1402 goto out_lpt; 1403 1404 err = ubifs_replay_journal(c); 1405 if (err) 1406 goto out_journal; 1407 1408 /* Calculate 'min_idx_lebs' after journal replay */ 1409 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1410 1411 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1412 if (err) 1413 goto out_orphans; 1414 1415 if (!c->ro_mount) { 1416 int lnum; 1417 1418 err = check_free_space(c); 1419 if (err) 1420 goto out_orphans; 1421 1422 /* Check for enough log space */ 1423 lnum = c->lhead_lnum + 1; 1424 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1425 lnum = UBIFS_LOG_LNUM; 1426 if (lnum == c->ltail_lnum) { 1427 err = ubifs_consolidate_log(c); 1428 if (err) 1429 goto out_orphans; 1430 } 1431 1432 if (c->need_recovery) { 1433 if (!ubifs_authenticated(c)) { 1434 err = ubifs_recover_size(c, true); 1435 if (err) 1436 goto out_orphans; 1437 } 1438 1439 err = ubifs_rcvry_gc_commit(c); 1440 if (err) 1441 goto out_orphans; 1442 1443 if (ubifs_authenticated(c)) { 1444 err = ubifs_recover_size(c, false); 1445 if (err) 1446 goto out_orphans; 1447 } 1448 } else { 1449 err = take_gc_lnum(c); 1450 if (err) 1451 goto out_orphans; 1452 1453 /* 1454 * GC LEB may contain garbage if there was an unclean 1455 * reboot, and it should be un-mapped. 1456 */ 1457 err = ubifs_leb_unmap(c, c->gc_lnum); 1458 if (err) 1459 goto out_orphans; 1460 } 1461 1462 err = dbg_check_lprops(c); 1463 if (err) 1464 goto out_orphans; 1465 } else if (c->need_recovery) { 1466 err = ubifs_recover_size(c, false); 1467 if (err) 1468 goto out_orphans; 1469 } else { 1470 /* 1471 * Even if we mount read-only, we have to set space in GC LEB 1472 * to proper value because this affects UBIFS free space 1473 * reporting. We do not want to have a situation when 1474 * re-mounting from R/O to R/W changes amount of free space. 1475 */ 1476 err = take_gc_lnum(c); 1477 if (err) 1478 goto out_orphans; 1479 } 1480 1481 spin_lock(&ubifs_infos_lock); 1482 list_add_tail(&c->infos_list, &ubifs_infos); 1483 spin_unlock(&ubifs_infos_lock); 1484 1485 if (c->need_recovery) { 1486 if (c->ro_mount) 1487 ubifs_msg(c, "recovery deferred"); 1488 else { 1489 c->need_recovery = 0; 1490 ubifs_msg(c, "recovery completed"); 1491 /* 1492 * GC LEB has to be empty and taken at this point. But 1493 * the journal head LEBs may also be accounted as 1494 * "empty taken" if they are empty. 1495 */ 1496 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1497 } 1498 } else 1499 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1500 1501 err = dbg_check_filesystem(c); 1502 if (err) 1503 goto out_infos; 1504 1505 dbg_debugfs_init_fs(c); 1506 1507 c->mounting = 0; 1508 1509 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1510 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1511 c->ro_mount ? ", R/O mode" : ""); 1512 x = (long long)c->main_lebs * c->leb_size; 1513 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1514 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1515 c->leb_size, c->leb_size >> 10, c->min_io_size, 1516 c->max_write_size); 1517 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1518 x, x >> 20, c->main_lebs, 1519 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1520 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1521 c->report_rp_size, c->report_rp_size >> 10); 1522 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1523 c->fmt_version, c->ro_compat_version, 1524 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1525 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1526 1527 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1528 dbg_gen("data journal heads: %d", 1529 c->jhead_cnt - NONDATA_JHEADS_CNT); 1530 dbg_gen("log LEBs: %d (%d - %d)", 1531 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1532 dbg_gen("LPT area LEBs: %d (%d - %d)", 1533 c->lpt_lebs, c->lpt_first, c->lpt_last); 1534 dbg_gen("orphan area LEBs: %d (%d - %d)", 1535 c->orph_lebs, c->orph_first, c->orph_last); 1536 dbg_gen("main area LEBs: %d (%d - %d)", 1537 c->main_lebs, c->main_first, c->leb_cnt - 1); 1538 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1539 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1540 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1541 c->bi.old_idx_sz >> 20); 1542 dbg_gen("key hash type: %d", c->key_hash_type); 1543 dbg_gen("tree fanout: %d", c->fanout); 1544 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1545 dbg_gen("max. znode size %d", c->max_znode_sz); 1546 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1547 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1548 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1549 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1550 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1551 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1552 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1553 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1554 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1555 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1556 dbg_gen("dead watermark: %d", c->dead_wm); 1557 dbg_gen("dark watermark: %d", c->dark_wm); 1558 dbg_gen("LEB overhead: %d", c->leb_overhead); 1559 x = (long long)c->main_lebs * c->dark_wm; 1560 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1561 x, x >> 10, x >> 20); 1562 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1563 c->max_bud_bytes, c->max_bud_bytes >> 10, 1564 c->max_bud_bytes >> 20); 1565 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1566 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1567 c->bg_bud_bytes >> 20); 1568 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1569 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1570 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1571 dbg_gen("commit number: %llu", c->cmt_no); 1572 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c)); 1573 dbg_gen("max orphans: %d", c->max_orphans); 1574 1575 return 0; 1576 1577 out_infos: 1578 spin_lock(&ubifs_infos_lock); 1579 list_del(&c->infos_list); 1580 spin_unlock(&ubifs_infos_lock); 1581 out_orphans: 1582 free_orphans(c); 1583 out_journal: 1584 destroy_journal(c); 1585 out_lpt: 1586 ubifs_lpt_free(c, 0); 1587 out_master: 1588 kfree(c->mst_node); 1589 kfree(c->rcvrd_mst_node); 1590 if (c->bgt) 1591 kthread_stop(c->bgt); 1592 out_wbufs: 1593 free_wbufs(c); 1594 out_cbuf: 1595 kfree(c->cbuf); 1596 out_free: 1597 kfree(c->write_reserve_buf); 1598 kfree(c->bu.buf); 1599 vfree(c->ileb_buf); 1600 vfree(c->sbuf); 1601 kfree(c->bottom_up_buf); 1602 kfree(c->sup_node); 1603 ubifs_debugging_exit(c); 1604 return err; 1605 } 1606 1607 /** 1608 * ubifs_umount - un-mount UBIFS file-system. 1609 * @c: UBIFS file-system description object 1610 * 1611 * Note, this function is called to free allocated resourced when un-mounting, 1612 * as well as free resources when an error occurred while we were half way 1613 * through mounting (error path cleanup function). So it has to make sure the 1614 * resource was actually allocated before freeing it. 1615 */ 1616 static void ubifs_umount(struct ubifs_info *c) 1617 { 1618 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1619 c->vi.vol_id); 1620 1621 dbg_debugfs_exit_fs(c); 1622 spin_lock(&ubifs_infos_lock); 1623 list_del(&c->infos_list); 1624 spin_unlock(&ubifs_infos_lock); 1625 1626 if (c->bgt) 1627 kthread_stop(c->bgt); 1628 1629 destroy_journal(c); 1630 free_wbufs(c); 1631 free_orphans(c); 1632 ubifs_lpt_free(c, 0); 1633 ubifs_exit_authentication(c); 1634 1635 kfree(c->auth_key_name); 1636 kfree(c->auth_hash_name); 1637 kfree(c->cbuf); 1638 kfree(c->rcvrd_mst_node); 1639 kfree(c->mst_node); 1640 kfree(c->write_reserve_buf); 1641 kfree(c->bu.buf); 1642 vfree(c->ileb_buf); 1643 vfree(c->sbuf); 1644 kfree(c->bottom_up_buf); 1645 kfree(c->sup_node); 1646 ubifs_debugging_exit(c); 1647 } 1648 1649 /** 1650 * ubifs_remount_rw - re-mount in read-write mode. 1651 * @c: UBIFS file-system description object 1652 * 1653 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1654 * mode. This function allocates the needed resources and re-mounts UBIFS in 1655 * read-write mode. 1656 */ 1657 static int ubifs_remount_rw(struct ubifs_info *c) 1658 { 1659 int err, lnum; 1660 1661 if (c->rw_incompat) { 1662 ubifs_err(c, "the file-system is not R/W-compatible"); 1663 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1664 c->fmt_version, c->ro_compat_version, 1665 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1666 return -EROFS; 1667 } 1668 1669 mutex_lock(&c->umount_mutex); 1670 dbg_save_space_info(c); 1671 c->remounting_rw = 1; 1672 c->ro_mount = 0; 1673 1674 if (c->space_fixup) { 1675 err = ubifs_fixup_free_space(c); 1676 if (err) 1677 goto out; 1678 } 1679 1680 err = check_free_space(c); 1681 if (err) 1682 goto out; 1683 1684 if (c->need_recovery) { 1685 ubifs_msg(c, "completing deferred recovery"); 1686 err = ubifs_write_rcvrd_mst_node(c); 1687 if (err) 1688 goto out; 1689 if (!ubifs_authenticated(c)) { 1690 err = ubifs_recover_size(c, true); 1691 if (err) 1692 goto out; 1693 } 1694 err = ubifs_clean_lebs(c, c->sbuf); 1695 if (err) 1696 goto out; 1697 err = ubifs_recover_inl_heads(c, c->sbuf); 1698 if (err) 1699 goto out; 1700 } else { 1701 /* A readonly mount is not allowed to have orphans */ 1702 ubifs_assert(c, c->tot_orphans == 0); 1703 err = ubifs_clear_orphans(c); 1704 if (err) 1705 goto out; 1706 } 1707 1708 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1709 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1710 err = ubifs_write_master(c); 1711 if (err) 1712 goto out; 1713 } 1714 1715 if (c->superblock_need_write) { 1716 struct ubifs_sb_node *sup = c->sup_node; 1717 1718 err = ubifs_write_sb_node(c, sup); 1719 if (err) 1720 goto out; 1721 1722 c->superblock_need_write = 0; 1723 } 1724 1725 c->ileb_buf = vmalloc(c->leb_size); 1726 if (!c->ileb_buf) { 1727 err = -ENOMEM; 1728 goto out; 1729 } 1730 1731 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1732 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1733 if (!c->write_reserve_buf) { 1734 err = -ENOMEM; 1735 goto out; 1736 } 1737 1738 err = ubifs_lpt_init(c, 0, 1); 1739 if (err) 1740 goto out; 1741 1742 /* Create background thread */ 1743 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1744 if (IS_ERR(c->bgt)) { 1745 err = PTR_ERR(c->bgt); 1746 c->bgt = NULL; 1747 ubifs_err(c, "cannot spawn \"%s\", error %d", 1748 c->bgt_name, err); 1749 goto out; 1750 } 1751 wake_up_process(c->bgt); 1752 1753 c->orph_buf = vmalloc(c->leb_size); 1754 if (!c->orph_buf) { 1755 err = -ENOMEM; 1756 goto out; 1757 } 1758 1759 /* Check for enough log space */ 1760 lnum = c->lhead_lnum + 1; 1761 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1762 lnum = UBIFS_LOG_LNUM; 1763 if (lnum == c->ltail_lnum) { 1764 err = ubifs_consolidate_log(c); 1765 if (err) 1766 goto out; 1767 } 1768 1769 if (c->need_recovery) { 1770 err = ubifs_rcvry_gc_commit(c); 1771 if (err) 1772 goto out; 1773 1774 if (ubifs_authenticated(c)) { 1775 err = ubifs_recover_size(c, false); 1776 if (err) 1777 goto out; 1778 } 1779 } else { 1780 err = ubifs_leb_unmap(c, c->gc_lnum); 1781 } 1782 if (err) 1783 goto out; 1784 1785 dbg_gen("re-mounted read-write"); 1786 c->remounting_rw = 0; 1787 1788 if (c->need_recovery) { 1789 c->need_recovery = 0; 1790 ubifs_msg(c, "deferred recovery completed"); 1791 } else { 1792 /* 1793 * Do not run the debugging space check if the were doing 1794 * recovery, because when we saved the information we had the 1795 * file-system in a state where the TNC and lprops has been 1796 * modified in memory, but all the I/O operations (including a 1797 * commit) were deferred. So the file-system was in 1798 * "non-committed" state. Now the file-system is in committed 1799 * state, and of course the amount of free space will change 1800 * because, for example, the old index size was imprecise. 1801 */ 1802 err = dbg_check_space_info(c); 1803 } 1804 1805 mutex_unlock(&c->umount_mutex); 1806 return err; 1807 1808 out: 1809 c->ro_mount = 1; 1810 vfree(c->orph_buf); 1811 c->orph_buf = NULL; 1812 if (c->bgt) { 1813 kthread_stop(c->bgt); 1814 c->bgt = NULL; 1815 } 1816 free_wbufs(c); 1817 kfree(c->write_reserve_buf); 1818 c->write_reserve_buf = NULL; 1819 vfree(c->ileb_buf); 1820 c->ileb_buf = NULL; 1821 ubifs_lpt_free(c, 1); 1822 c->remounting_rw = 0; 1823 mutex_unlock(&c->umount_mutex); 1824 return err; 1825 } 1826 1827 /** 1828 * ubifs_remount_ro - re-mount in read-only mode. 1829 * @c: UBIFS file-system description object 1830 * 1831 * We assume VFS has stopped writing. Possibly the background thread could be 1832 * running a commit, however kthread_stop will wait in that case. 1833 */ 1834 static void ubifs_remount_ro(struct ubifs_info *c) 1835 { 1836 int i, err; 1837 1838 ubifs_assert(c, !c->need_recovery); 1839 ubifs_assert(c, !c->ro_mount); 1840 1841 mutex_lock(&c->umount_mutex); 1842 if (c->bgt) { 1843 kthread_stop(c->bgt); 1844 c->bgt = NULL; 1845 } 1846 1847 dbg_save_space_info(c); 1848 1849 for (i = 0; i < c->jhead_cnt; i++) { 1850 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1851 if (err) 1852 ubifs_ro_mode(c, err); 1853 } 1854 1855 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1856 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1857 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1858 err = ubifs_write_master(c); 1859 if (err) 1860 ubifs_ro_mode(c, err); 1861 1862 vfree(c->orph_buf); 1863 c->orph_buf = NULL; 1864 kfree(c->write_reserve_buf); 1865 c->write_reserve_buf = NULL; 1866 vfree(c->ileb_buf); 1867 c->ileb_buf = NULL; 1868 ubifs_lpt_free(c, 1); 1869 c->ro_mount = 1; 1870 err = dbg_check_space_info(c); 1871 if (err) 1872 ubifs_ro_mode(c, err); 1873 mutex_unlock(&c->umount_mutex); 1874 } 1875 1876 static void ubifs_put_super(struct super_block *sb) 1877 { 1878 int i; 1879 struct ubifs_info *c = sb->s_fs_info; 1880 1881 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1882 1883 /* 1884 * The following asserts are only valid if there has not been a failure 1885 * of the media. For example, there will be dirty inodes if we failed 1886 * to write them back because of I/O errors. 1887 */ 1888 if (!c->ro_error) { 1889 ubifs_assert(c, c->bi.idx_growth == 0); 1890 ubifs_assert(c, c->bi.dd_growth == 0); 1891 ubifs_assert(c, c->bi.data_growth == 0); 1892 } 1893 1894 /* 1895 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1896 * and file system un-mount. Namely, it prevents the shrinker from 1897 * picking this superblock for shrinking - it will be just skipped if 1898 * the mutex is locked. 1899 */ 1900 mutex_lock(&c->umount_mutex); 1901 if (!c->ro_mount) { 1902 /* 1903 * First of all kill the background thread to make sure it does 1904 * not interfere with un-mounting and freeing resources. 1905 */ 1906 if (c->bgt) { 1907 kthread_stop(c->bgt); 1908 c->bgt = NULL; 1909 } 1910 1911 /* 1912 * On fatal errors c->ro_error is set to 1, in which case we do 1913 * not write the master node. 1914 */ 1915 if (!c->ro_error) { 1916 int err; 1917 1918 /* Synchronize write-buffers */ 1919 for (i = 0; i < c->jhead_cnt; i++) { 1920 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1921 if (err) 1922 ubifs_ro_mode(c, err); 1923 } 1924 1925 /* 1926 * We are being cleanly unmounted which means the 1927 * orphans were killed - indicate this in the master 1928 * node. Also save the reserved GC LEB number. 1929 */ 1930 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1931 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1932 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1933 err = ubifs_write_master(c); 1934 if (err) 1935 /* 1936 * Recovery will attempt to fix the master area 1937 * next mount, so we just print a message and 1938 * continue to unmount normally. 1939 */ 1940 ubifs_err(c, "failed to write master node, error %d", 1941 err); 1942 } else { 1943 for (i = 0; i < c->jhead_cnt; i++) 1944 /* Make sure write-buffer timers are canceled */ 1945 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1946 } 1947 } 1948 1949 ubifs_umount(c); 1950 ubi_close_volume(c->ubi); 1951 mutex_unlock(&c->umount_mutex); 1952 } 1953 1954 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1955 { 1956 int err; 1957 struct ubifs_info *c = sb->s_fs_info; 1958 1959 sync_filesystem(sb); 1960 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1961 1962 err = ubifs_parse_options(c, data, 1); 1963 if (err) { 1964 ubifs_err(c, "invalid or unknown remount parameter"); 1965 return err; 1966 } 1967 1968 if (c->ro_mount && !(*flags & SB_RDONLY)) { 1969 if (c->ro_error) { 1970 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1971 return -EROFS; 1972 } 1973 if (c->ro_media) { 1974 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1975 return -EROFS; 1976 } 1977 err = ubifs_remount_rw(c); 1978 if (err) 1979 return err; 1980 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 1981 if (c->ro_error) { 1982 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1983 return -EROFS; 1984 } 1985 ubifs_remount_ro(c); 1986 } 1987 1988 if (c->bulk_read == 1) 1989 bu_init(c); 1990 else { 1991 dbg_gen("disable bulk-read"); 1992 mutex_lock(&c->bu_mutex); 1993 kfree(c->bu.buf); 1994 c->bu.buf = NULL; 1995 mutex_unlock(&c->bu_mutex); 1996 } 1997 1998 if (!c->need_recovery) 1999 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 2000 2001 return 0; 2002 } 2003 2004 const struct super_operations ubifs_super_operations = { 2005 .alloc_inode = ubifs_alloc_inode, 2006 .free_inode = ubifs_free_inode, 2007 .put_super = ubifs_put_super, 2008 .write_inode = ubifs_write_inode, 2009 .drop_inode = ubifs_drop_inode, 2010 .evict_inode = ubifs_evict_inode, 2011 .statfs = ubifs_statfs, 2012 .dirty_inode = ubifs_dirty_inode, 2013 .remount_fs = ubifs_remount_fs, 2014 .show_options = ubifs_show_options, 2015 .sync_fs = ubifs_sync_fs, 2016 }; 2017 2018 /** 2019 * open_ubi - parse UBI device name string and open the UBI device. 2020 * @name: UBI volume name 2021 * @mode: UBI volume open mode 2022 * 2023 * The primary method of mounting UBIFS is by specifying the UBI volume 2024 * character device node path. However, UBIFS may also be mounted withoug any 2025 * character device node using one of the following methods: 2026 * 2027 * o ubiX_Y - mount UBI device number X, volume Y; 2028 * o ubiY - mount UBI device number 0, volume Y; 2029 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2030 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2031 * 2032 * Alternative '!' separator may be used instead of ':' (because some shells 2033 * like busybox may interpret ':' as an NFS host name separator). This function 2034 * returns UBI volume description object in case of success and a negative 2035 * error code in case of failure. 2036 */ 2037 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2038 { 2039 struct ubi_volume_desc *ubi; 2040 int dev, vol; 2041 char *endptr; 2042 2043 if (!name || !*name) 2044 return ERR_PTR(-EINVAL); 2045 2046 /* First, try to open using the device node path method */ 2047 ubi = ubi_open_volume_path(name, mode); 2048 if (!IS_ERR(ubi)) 2049 return ubi; 2050 2051 /* Try the "nodev" method */ 2052 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2053 return ERR_PTR(-EINVAL); 2054 2055 /* ubi:NAME method */ 2056 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2057 return ubi_open_volume_nm(0, name + 4, mode); 2058 2059 if (!isdigit(name[3])) 2060 return ERR_PTR(-EINVAL); 2061 2062 dev = simple_strtoul(name + 3, &endptr, 0); 2063 2064 /* ubiY method */ 2065 if (*endptr == '\0') 2066 return ubi_open_volume(0, dev, mode); 2067 2068 /* ubiX_Y method */ 2069 if (*endptr == '_' && isdigit(endptr[1])) { 2070 vol = simple_strtoul(endptr + 1, &endptr, 0); 2071 if (*endptr != '\0') 2072 return ERR_PTR(-EINVAL); 2073 return ubi_open_volume(dev, vol, mode); 2074 } 2075 2076 /* ubiX:NAME method */ 2077 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2078 return ubi_open_volume_nm(dev, ++endptr, mode); 2079 2080 return ERR_PTR(-EINVAL); 2081 } 2082 2083 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2084 { 2085 struct ubifs_info *c; 2086 2087 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2088 if (c) { 2089 spin_lock_init(&c->cnt_lock); 2090 spin_lock_init(&c->cs_lock); 2091 spin_lock_init(&c->buds_lock); 2092 spin_lock_init(&c->space_lock); 2093 spin_lock_init(&c->orphan_lock); 2094 init_rwsem(&c->commit_sem); 2095 mutex_init(&c->lp_mutex); 2096 mutex_init(&c->tnc_mutex); 2097 mutex_init(&c->log_mutex); 2098 mutex_init(&c->umount_mutex); 2099 mutex_init(&c->bu_mutex); 2100 mutex_init(&c->write_reserve_mutex); 2101 init_waitqueue_head(&c->cmt_wq); 2102 c->buds = RB_ROOT; 2103 c->old_idx = RB_ROOT; 2104 c->size_tree = RB_ROOT; 2105 c->orph_tree = RB_ROOT; 2106 INIT_LIST_HEAD(&c->infos_list); 2107 INIT_LIST_HEAD(&c->idx_gc); 2108 INIT_LIST_HEAD(&c->replay_list); 2109 INIT_LIST_HEAD(&c->replay_buds); 2110 INIT_LIST_HEAD(&c->uncat_list); 2111 INIT_LIST_HEAD(&c->empty_list); 2112 INIT_LIST_HEAD(&c->freeable_list); 2113 INIT_LIST_HEAD(&c->frdi_idx_list); 2114 INIT_LIST_HEAD(&c->unclean_leb_list); 2115 INIT_LIST_HEAD(&c->old_buds); 2116 INIT_LIST_HEAD(&c->orph_list); 2117 INIT_LIST_HEAD(&c->orph_new); 2118 c->no_chk_data_crc = 1; 2119 c->assert_action = ASSACT_RO; 2120 2121 c->highest_inum = UBIFS_FIRST_INO; 2122 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2123 2124 ubi_get_volume_info(ubi, &c->vi); 2125 ubi_get_device_info(c->vi.ubi_num, &c->di); 2126 } 2127 return c; 2128 } 2129 2130 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2131 { 2132 struct ubifs_info *c = sb->s_fs_info; 2133 struct inode *root; 2134 int err; 2135 2136 c->vfs_sb = sb; 2137 /* Re-open the UBI device in read-write mode */ 2138 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2139 if (IS_ERR(c->ubi)) { 2140 err = PTR_ERR(c->ubi); 2141 goto out; 2142 } 2143 2144 err = ubifs_parse_options(c, data, 0); 2145 if (err) 2146 goto out_close; 2147 2148 /* 2149 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2150 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2151 * which means the user would have to wait not just for their own I/O 2152 * but the read-ahead I/O as well i.e. completely pointless. 2153 * 2154 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2155 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2156 * writeback happening. 2157 */ 2158 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2159 c->vi.vol_id); 2160 if (err) 2161 goto out_close; 2162 2163 sb->s_fs_info = c; 2164 sb->s_magic = UBIFS_SUPER_MAGIC; 2165 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2166 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2167 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2168 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2169 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2170 sb->s_op = &ubifs_super_operations; 2171 #ifdef CONFIG_UBIFS_FS_XATTR 2172 sb->s_xattr = ubifs_xattr_handlers; 2173 #endif 2174 fscrypt_set_ops(sb, &ubifs_crypt_operations); 2175 2176 mutex_lock(&c->umount_mutex); 2177 err = mount_ubifs(c); 2178 if (err) { 2179 ubifs_assert(c, err < 0); 2180 goto out_unlock; 2181 } 2182 2183 /* Read the root inode */ 2184 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2185 if (IS_ERR(root)) { 2186 err = PTR_ERR(root); 2187 goto out_umount; 2188 } 2189 2190 sb->s_root = d_make_root(root); 2191 if (!sb->s_root) { 2192 err = -ENOMEM; 2193 goto out_umount; 2194 } 2195 2196 mutex_unlock(&c->umount_mutex); 2197 return 0; 2198 2199 out_umount: 2200 ubifs_umount(c); 2201 out_unlock: 2202 mutex_unlock(&c->umount_mutex); 2203 out_close: 2204 ubi_close_volume(c->ubi); 2205 out: 2206 return err; 2207 } 2208 2209 static int sb_test(struct super_block *sb, void *data) 2210 { 2211 struct ubifs_info *c1 = data; 2212 struct ubifs_info *c = sb->s_fs_info; 2213 2214 return c->vi.cdev == c1->vi.cdev; 2215 } 2216 2217 static int sb_set(struct super_block *sb, void *data) 2218 { 2219 sb->s_fs_info = data; 2220 return set_anon_super(sb, NULL); 2221 } 2222 2223 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2224 const char *name, void *data) 2225 { 2226 struct ubi_volume_desc *ubi; 2227 struct ubifs_info *c; 2228 struct super_block *sb; 2229 int err; 2230 2231 dbg_gen("name %s, flags %#x", name, flags); 2232 2233 /* 2234 * Get UBI device number and volume ID. Mount it read-only so far 2235 * because this might be a new mount point, and UBI allows only one 2236 * read-write user at a time. 2237 */ 2238 ubi = open_ubi(name, UBI_READONLY); 2239 if (IS_ERR(ubi)) { 2240 if (!(flags & SB_SILENT)) 2241 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2242 current->pid, name, (int)PTR_ERR(ubi)); 2243 return ERR_CAST(ubi); 2244 } 2245 2246 c = alloc_ubifs_info(ubi); 2247 if (!c) { 2248 err = -ENOMEM; 2249 goto out_close; 2250 } 2251 2252 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2253 2254 sb = sget(fs_type, sb_test, sb_set, flags, c); 2255 if (IS_ERR(sb)) { 2256 err = PTR_ERR(sb); 2257 kfree(c); 2258 goto out_close; 2259 } 2260 2261 if (sb->s_root) { 2262 struct ubifs_info *c1 = sb->s_fs_info; 2263 kfree(c); 2264 /* A new mount point for already mounted UBIFS */ 2265 dbg_gen("this ubi volume is already mounted"); 2266 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2267 err = -EBUSY; 2268 goto out_deact; 2269 } 2270 } else { 2271 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2272 if (err) 2273 goto out_deact; 2274 /* We do not support atime */ 2275 sb->s_flags |= SB_ACTIVE; 2276 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 2277 ubifs_msg(c, "full atime support is enabled."); 2278 else 2279 sb->s_flags |= SB_NOATIME; 2280 } 2281 2282 /* 'fill_super()' opens ubi again so we must close it here */ 2283 ubi_close_volume(ubi); 2284 2285 return dget(sb->s_root); 2286 2287 out_deact: 2288 deactivate_locked_super(sb); 2289 out_close: 2290 ubi_close_volume(ubi); 2291 return ERR_PTR(err); 2292 } 2293 2294 static void kill_ubifs_super(struct super_block *s) 2295 { 2296 struct ubifs_info *c = s->s_fs_info; 2297 kill_anon_super(s); 2298 kfree(c); 2299 } 2300 2301 static struct file_system_type ubifs_fs_type = { 2302 .name = "ubifs", 2303 .owner = THIS_MODULE, 2304 .mount = ubifs_mount, 2305 .kill_sb = kill_ubifs_super, 2306 }; 2307 MODULE_ALIAS_FS("ubifs"); 2308 2309 /* 2310 * Inode slab cache constructor. 2311 */ 2312 static void inode_slab_ctor(void *obj) 2313 { 2314 struct ubifs_inode *ui = obj; 2315 inode_init_once(&ui->vfs_inode); 2316 } 2317 2318 static int __init ubifs_init(void) 2319 { 2320 int err; 2321 2322 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2323 2324 /* Make sure node sizes are 8-byte aligned */ 2325 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2326 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2327 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2328 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2329 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2330 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2331 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2332 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2333 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2334 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2335 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2336 2337 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2338 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2339 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2340 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2341 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2342 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2343 2344 /* Check min. node size */ 2345 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2346 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2347 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2348 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2349 2350 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2351 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2352 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2353 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2354 2355 /* Defined node sizes */ 2356 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2357 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2358 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2359 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2360 2361 /* 2362 * We use 2 bit wide bit-fields to store compression type, which should 2363 * be amended if more compressors are added. The bit-fields are: 2364 * @compr_type in 'struct ubifs_inode', @default_compr in 2365 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2366 */ 2367 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2368 2369 /* 2370 * We require that PAGE_SIZE is greater-than-or-equal-to 2371 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2372 */ 2373 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2374 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2375 current->pid, (unsigned int)PAGE_SIZE); 2376 return -EINVAL; 2377 } 2378 2379 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2380 sizeof(struct ubifs_inode), 0, 2381 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2382 SLAB_ACCOUNT, &inode_slab_ctor); 2383 if (!ubifs_inode_slab) 2384 return -ENOMEM; 2385 2386 err = register_shrinker(&ubifs_shrinker_info); 2387 if (err) 2388 goto out_slab; 2389 2390 err = ubifs_compressors_init(); 2391 if (err) 2392 goto out_shrinker; 2393 2394 dbg_debugfs_init(); 2395 2396 err = register_filesystem(&ubifs_fs_type); 2397 if (err) { 2398 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2399 current->pid, err); 2400 goto out_dbg; 2401 } 2402 return 0; 2403 2404 out_dbg: 2405 dbg_debugfs_exit(); 2406 ubifs_compressors_exit(); 2407 out_shrinker: 2408 unregister_shrinker(&ubifs_shrinker_info); 2409 out_slab: 2410 kmem_cache_destroy(ubifs_inode_slab); 2411 return err; 2412 } 2413 /* late_initcall to let compressors initialize first */ 2414 late_initcall(ubifs_init); 2415 2416 static void __exit ubifs_exit(void) 2417 { 2418 WARN_ON(!list_empty(&ubifs_infos)); 2419 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2420 2421 dbg_debugfs_exit(); 2422 ubifs_compressors_exit(); 2423 unregister_shrinker(&ubifs_shrinker_info); 2424 2425 /* 2426 * Make sure all delayed rcu free inodes are flushed before we 2427 * destroy cache. 2428 */ 2429 rcu_barrier(); 2430 kmem_cache_destroy(ubifs_inode_slab); 2431 unregister_filesystem(&ubifs_fs_type); 2432 } 2433 module_exit(ubifs_exit); 2434 2435 MODULE_LICENSE("GPL"); 2436 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2437 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2438 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2439