xref: /openbmc/linux/fs/ubifs/super.c (revision 0c7beb2d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(c, ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 	inode->i_flags |= S_NOATIME;
134 #endif
135 	set_nlink(inode, le32_to_cpu(ino->nlink));
136 	i_uid_write(inode, le32_to_cpu(ino->uid));
137 	i_gid_write(inode, le32_to_cpu(ino->gid));
138 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
139 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
141 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
143 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 	inode->i_mode = le32_to_cpu(ino->mode);
145 	inode->i_size = le64_to_cpu(ino->size);
146 
147 	ui->data_len    = le32_to_cpu(ino->data_len);
148 	ui->flags       = le32_to_cpu(ino->flags);
149 	ui->compr_type  = le16_to_cpu(ino->compr_type);
150 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
152 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
153 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 	ui->synced_i_size = ui->ui_size = inode->i_size;
155 
156 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157 
158 	err = validate_inode(c, inode);
159 	if (err)
160 		goto out_invalid;
161 
162 	switch (inode->i_mode & S_IFMT) {
163 	case S_IFREG:
164 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 		inode->i_op = &ubifs_file_inode_operations;
166 		inode->i_fop = &ubifs_file_operations;
167 		if (ui->xattr) {
168 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 			if (!ui->data) {
170 				err = -ENOMEM;
171 				goto out_ino;
172 			}
173 			memcpy(ui->data, ino->data, ui->data_len);
174 			((char *)ui->data)[ui->data_len] = '\0';
175 		} else if (ui->data_len != 0) {
176 			err = 10;
177 			goto out_invalid;
178 		}
179 		break;
180 	case S_IFDIR:
181 		inode->i_op  = &ubifs_dir_inode_operations;
182 		inode->i_fop = &ubifs_dir_operations;
183 		if (ui->data_len != 0) {
184 			err = 11;
185 			goto out_invalid;
186 		}
187 		break;
188 	case S_IFLNK:
189 		inode->i_op = &ubifs_symlink_inode_operations;
190 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 			err = 12;
192 			goto out_invalid;
193 		}
194 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 		if (!ui->data) {
196 			err = -ENOMEM;
197 			goto out_ino;
198 		}
199 		memcpy(ui->data, ino->data, ui->data_len);
200 		((char *)ui->data)[ui->data_len] = '\0';
201 		break;
202 	case S_IFBLK:
203 	case S_IFCHR:
204 	{
205 		dev_t rdev;
206 		union ubifs_dev_desc *dev;
207 
208 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 		if (!ui->data) {
210 			err = -ENOMEM;
211 			goto out_ino;
212 		}
213 
214 		dev = (union ubifs_dev_desc *)ino->data;
215 		if (ui->data_len == sizeof(dev->new))
216 			rdev = new_decode_dev(le32_to_cpu(dev->new));
217 		else if (ui->data_len == sizeof(dev->huge))
218 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 		else {
220 			err = 13;
221 			goto out_invalid;
222 		}
223 		memcpy(ui->data, ino->data, ui->data_len);
224 		inode->i_op = &ubifs_file_inode_operations;
225 		init_special_inode(inode, inode->i_mode, rdev);
226 		break;
227 	}
228 	case S_IFSOCK:
229 	case S_IFIFO:
230 		inode->i_op = &ubifs_file_inode_operations;
231 		init_special_inode(inode, inode->i_mode, 0);
232 		if (ui->data_len != 0) {
233 			err = 14;
234 			goto out_invalid;
235 		}
236 		break;
237 	default:
238 		err = 15;
239 		goto out_invalid;
240 	}
241 
242 	kfree(ino);
243 	ubifs_set_inode_flags(inode);
244 	unlock_new_inode(inode);
245 	return inode;
246 
247 out_invalid:
248 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 	ubifs_dump_node(c, ino);
250 	ubifs_dump_inode(c, inode);
251 	err = -EINVAL;
252 out_ino:
253 	kfree(ino);
254 out:
255 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 	iget_failed(inode);
257 	return ERR_PTR(err);
258 }
259 
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
261 {
262 	struct ubifs_inode *ui;
263 
264 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 	if (!ui)
266 		return NULL;
267 
268 	memset((void *)ui + sizeof(struct inode), 0,
269 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270 	mutex_init(&ui->ui_mutex);
271 	spin_lock_init(&ui->ui_lock);
272 	return &ui->vfs_inode;
273 };
274 
275 static void ubifs_i_callback(struct rcu_head *head)
276 {
277 	struct inode *inode = container_of(head, struct inode, i_rcu);
278 	struct ubifs_inode *ui = ubifs_inode(inode);
279 	kfree(ui->data);
280 	kmem_cache_free(ubifs_inode_slab, ui);
281 }
282 
283 static void ubifs_destroy_inode(struct inode *inode)
284 {
285 	call_rcu(&inode->i_rcu, ubifs_i_callback);
286 }
287 
288 /*
289  * Note, Linux write-back code calls this without 'i_mutex'.
290  */
291 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
292 {
293 	int err = 0;
294 	struct ubifs_info *c = inode->i_sb->s_fs_info;
295 	struct ubifs_inode *ui = ubifs_inode(inode);
296 
297 	ubifs_assert(c, !ui->xattr);
298 	if (is_bad_inode(inode))
299 		return 0;
300 
301 	mutex_lock(&ui->ui_mutex);
302 	/*
303 	 * Due to races between write-back forced by budgeting
304 	 * (see 'sync_some_inodes()') and background write-back, the inode may
305 	 * have already been synchronized, do not do this again. This might
306 	 * also happen if it was synchronized in an VFS operation, e.g.
307 	 * 'ubifs_link()'.
308 	 */
309 	if (!ui->dirty) {
310 		mutex_unlock(&ui->ui_mutex);
311 		return 0;
312 	}
313 
314 	/*
315 	 * As an optimization, do not write orphan inodes to the media just
316 	 * because this is not needed.
317 	 */
318 	dbg_gen("inode %lu, mode %#x, nlink %u",
319 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
320 	if (inode->i_nlink) {
321 		err = ubifs_jnl_write_inode(c, inode);
322 		if (err)
323 			ubifs_err(c, "can't write inode %lu, error %d",
324 				  inode->i_ino, err);
325 		else
326 			err = dbg_check_inode_size(c, inode, ui->ui_size);
327 	}
328 
329 	ui->dirty = 0;
330 	mutex_unlock(&ui->ui_mutex);
331 	ubifs_release_dirty_inode_budget(c, ui);
332 	return err;
333 }
334 
335 static void ubifs_evict_inode(struct inode *inode)
336 {
337 	int err;
338 	struct ubifs_info *c = inode->i_sb->s_fs_info;
339 	struct ubifs_inode *ui = ubifs_inode(inode);
340 
341 	if (ui->xattr)
342 		/*
343 		 * Extended attribute inode deletions are fully handled in
344 		 * 'ubifs_removexattr()'. These inodes are special and have
345 		 * limited usage, so there is nothing to do here.
346 		 */
347 		goto out;
348 
349 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
350 	ubifs_assert(c, !atomic_read(&inode->i_count));
351 
352 	truncate_inode_pages_final(&inode->i_data);
353 
354 	if (inode->i_nlink)
355 		goto done;
356 
357 	if (is_bad_inode(inode))
358 		goto out;
359 
360 	ui->ui_size = inode->i_size = 0;
361 	err = ubifs_jnl_delete_inode(c, inode);
362 	if (err)
363 		/*
364 		 * Worst case we have a lost orphan inode wasting space, so a
365 		 * simple error message is OK here.
366 		 */
367 		ubifs_err(c, "can't delete inode %lu, error %d",
368 			  inode->i_ino, err);
369 
370 out:
371 	if (ui->dirty)
372 		ubifs_release_dirty_inode_budget(c, ui);
373 	else {
374 		/* We've deleted something - clean the "no space" flags */
375 		c->bi.nospace = c->bi.nospace_rp = 0;
376 		smp_wmb();
377 	}
378 done:
379 	clear_inode(inode);
380 	fscrypt_put_encryption_info(inode);
381 }
382 
383 static void ubifs_dirty_inode(struct inode *inode, int flags)
384 {
385 	struct ubifs_info *c = inode->i_sb->s_fs_info;
386 	struct ubifs_inode *ui = ubifs_inode(inode);
387 
388 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
389 	if (!ui->dirty) {
390 		ui->dirty = 1;
391 		dbg_gen("inode %lu",  inode->i_ino);
392 	}
393 }
394 
395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
396 {
397 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
398 	unsigned long long free;
399 	__le32 *uuid = (__le32 *)c->uuid;
400 
401 	free = ubifs_get_free_space(c);
402 	dbg_gen("free space %lld bytes (%lld blocks)",
403 		free, free >> UBIFS_BLOCK_SHIFT);
404 
405 	buf->f_type = UBIFS_SUPER_MAGIC;
406 	buf->f_bsize = UBIFS_BLOCK_SIZE;
407 	buf->f_blocks = c->block_cnt;
408 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
409 	if (free > c->report_rp_size)
410 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
411 	else
412 		buf->f_bavail = 0;
413 	buf->f_files = 0;
414 	buf->f_ffree = 0;
415 	buf->f_namelen = UBIFS_MAX_NLEN;
416 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
417 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
418 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
419 	return 0;
420 }
421 
422 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
423 {
424 	struct ubifs_info *c = root->d_sb->s_fs_info;
425 
426 	if (c->mount_opts.unmount_mode == 2)
427 		seq_puts(s, ",fast_unmount");
428 	else if (c->mount_opts.unmount_mode == 1)
429 		seq_puts(s, ",norm_unmount");
430 
431 	if (c->mount_opts.bulk_read == 2)
432 		seq_puts(s, ",bulk_read");
433 	else if (c->mount_opts.bulk_read == 1)
434 		seq_puts(s, ",no_bulk_read");
435 
436 	if (c->mount_opts.chk_data_crc == 2)
437 		seq_puts(s, ",chk_data_crc");
438 	else if (c->mount_opts.chk_data_crc == 1)
439 		seq_puts(s, ",no_chk_data_crc");
440 
441 	if (c->mount_opts.override_compr) {
442 		seq_printf(s, ",compr=%s",
443 			   ubifs_compr_name(c, c->mount_opts.compr_type));
444 	}
445 
446 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
447 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
448 
449 	return 0;
450 }
451 
452 static int ubifs_sync_fs(struct super_block *sb, int wait)
453 {
454 	int i, err;
455 	struct ubifs_info *c = sb->s_fs_info;
456 
457 	/*
458 	 * Zero @wait is just an advisory thing to help the file system shove
459 	 * lots of data into the queues, and there will be the second
460 	 * '->sync_fs()' call, with non-zero @wait.
461 	 */
462 	if (!wait)
463 		return 0;
464 
465 	/*
466 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
467 	 * do this if it waits for an already running commit.
468 	 */
469 	for (i = 0; i < c->jhead_cnt; i++) {
470 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
471 		if (err)
472 			return err;
473 	}
474 
475 	/*
476 	 * Strictly speaking, it is not necessary to commit the journal here,
477 	 * synchronizing write-buffers would be enough. But committing makes
478 	 * UBIFS free space predictions much more accurate, so we want to let
479 	 * the user be able to get more accurate results of 'statfs()' after
480 	 * they synchronize the file system.
481 	 */
482 	err = ubifs_run_commit(c);
483 	if (err)
484 		return err;
485 
486 	return ubi_sync(c->vi.ubi_num);
487 }
488 
489 /**
490  * init_constants_early - initialize UBIFS constants.
491  * @c: UBIFS file-system description object
492  *
493  * This function initialize UBIFS constants which do not need the superblock to
494  * be read. It also checks that the UBI volume satisfies basic UBIFS
495  * requirements. Returns zero in case of success and a negative error code in
496  * case of failure.
497  */
498 static int init_constants_early(struct ubifs_info *c)
499 {
500 	if (c->vi.corrupted) {
501 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
502 		c->ro_media = 1;
503 	}
504 
505 	if (c->di.ro_mode) {
506 		ubifs_msg(c, "read-only UBI device");
507 		c->ro_media = 1;
508 	}
509 
510 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
511 		ubifs_msg(c, "static UBI volume - read-only mode");
512 		c->ro_media = 1;
513 	}
514 
515 	c->leb_cnt = c->vi.size;
516 	c->leb_size = c->vi.usable_leb_size;
517 	c->leb_start = c->di.leb_start;
518 	c->half_leb_size = c->leb_size / 2;
519 	c->min_io_size = c->di.min_io_size;
520 	c->min_io_shift = fls(c->min_io_size) - 1;
521 	c->max_write_size = c->di.max_write_size;
522 	c->max_write_shift = fls(c->max_write_size) - 1;
523 
524 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
525 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
526 			   c->leb_size, UBIFS_MIN_LEB_SZ);
527 		return -EINVAL;
528 	}
529 
530 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
531 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
532 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
533 		return -EINVAL;
534 	}
535 
536 	if (!is_power_of_2(c->min_io_size)) {
537 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
538 		return -EINVAL;
539 	}
540 
541 	/*
542 	 * Maximum write size has to be greater or equivalent to min. I/O
543 	 * size, and be multiple of min. I/O size.
544 	 */
545 	if (c->max_write_size < c->min_io_size ||
546 	    c->max_write_size % c->min_io_size ||
547 	    !is_power_of_2(c->max_write_size)) {
548 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
549 			   c->max_write_size, c->min_io_size);
550 		return -EINVAL;
551 	}
552 
553 	/*
554 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
555 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
556 	 * less than 8.
557 	 */
558 	if (c->min_io_size < 8) {
559 		c->min_io_size = 8;
560 		c->min_io_shift = 3;
561 		if (c->max_write_size < c->min_io_size) {
562 			c->max_write_size = c->min_io_size;
563 			c->max_write_shift = c->min_io_shift;
564 		}
565 	}
566 
567 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
568 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
569 
570 	/*
571 	 * Initialize node length ranges which are mostly needed for node
572 	 * length validation.
573 	 */
574 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
575 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
576 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
577 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
578 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
579 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
580 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
581 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
582 				UBIFS_MAX_HMAC_LEN;
583 
584 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
585 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
586 	c->ranges[UBIFS_ORPH_NODE].min_len =
587 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
588 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
589 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
590 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
591 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
592 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
593 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
594 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
595 	/*
596 	 * Minimum indexing node size is amended later when superblock is
597 	 * read and the key length is known.
598 	 */
599 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
600 	/*
601 	 * Maximum indexing node size is amended later when superblock is
602 	 * read and the fanout is known.
603 	 */
604 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
605 
606 	/*
607 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
608 	 * about these values.
609 	 */
610 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
611 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
612 
613 	/*
614 	 * Calculate how many bytes would be wasted at the end of LEB if it was
615 	 * fully filled with data nodes of maximum size. This is used in
616 	 * calculations when reporting free space.
617 	 */
618 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
619 
620 	/* Buffer size for bulk-reads */
621 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
622 	if (c->max_bu_buf_len > c->leb_size)
623 		c->max_bu_buf_len = c->leb_size;
624 	return 0;
625 }
626 
627 /**
628  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
629  * @c: UBIFS file-system description object
630  * @lnum: LEB the write-buffer was synchronized to
631  * @free: how many free bytes left in this LEB
632  * @pad: how many bytes were padded
633  *
634  * This is a callback function which is called by the I/O unit when the
635  * write-buffer is synchronized. We need this to correctly maintain space
636  * accounting in bud logical eraseblocks. This function returns zero in case of
637  * success and a negative error code in case of failure.
638  *
639  * This function actually belongs to the journal, but we keep it here because
640  * we want to keep it static.
641  */
642 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
643 {
644 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
645 }
646 
647 /*
648  * init_constants_sb - initialize UBIFS constants.
649  * @c: UBIFS file-system description object
650  *
651  * This is a helper function which initializes various UBIFS constants after
652  * the superblock has been read. It also checks various UBIFS parameters and
653  * makes sure they are all right. Returns zero in case of success and a
654  * negative error code in case of failure.
655  */
656 static int init_constants_sb(struct ubifs_info *c)
657 {
658 	int tmp, err;
659 	long long tmp64;
660 
661 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
662 	c->max_znode_sz = sizeof(struct ubifs_znode) +
663 				c->fanout * sizeof(struct ubifs_zbranch);
664 
665 	tmp = ubifs_idx_node_sz(c, 1);
666 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
667 	c->min_idx_node_sz = ALIGN(tmp, 8);
668 
669 	tmp = ubifs_idx_node_sz(c, c->fanout);
670 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
671 	c->max_idx_node_sz = ALIGN(tmp, 8);
672 
673 	/* Make sure LEB size is large enough to fit full commit */
674 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
675 	tmp = ALIGN(tmp, c->min_io_size);
676 	if (tmp > c->leb_size) {
677 		ubifs_err(c, "too small LEB size %d, at least %d needed",
678 			  c->leb_size, tmp);
679 		return -EINVAL;
680 	}
681 
682 	/*
683 	 * Make sure that the log is large enough to fit reference nodes for
684 	 * all buds plus one reserved LEB.
685 	 */
686 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
687 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
688 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
689 	tmp /= c->leb_size;
690 	tmp += 1;
691 	if (c->log_lebs < tmp) {
692 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
693 			  c->log_lebs, tmp);
694 		return -EINVAL;
695 	}
696 
697 	/*
698 	 * When budgeting we assume worst-case scenarios when the pages are not
699 	 * be compressed and direntries are of the maximum size.
700 	 *
701 	 * Note, data, which may be stored in inodes is budgeted separately, so
702 	 * it is not included into 'c->bi.inode_budget'.
703 	 */
704 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
705 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
706 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
707 
708 	/*
709 	 * When the amount of flash space used by buds becomes
710 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
711 	 * The writers are unblocked when the commit is finished. To avoid
712 	 * writers to be blocked UBIFS initiates background commit in advance,
713 	 * when number of bud bytes becomes above the limit defined below.
714 	 */
715 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
716 
717 	/*
718 	 * Ensure minimum journal size. All the bytes in the journal heads are
719 	 * considered to be used, when calculating the current journal usage.
720 	 * Consequently, if the journal is too small, UBIFS will treat it as
721 	 * always full.
722 	 */
723 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
724 	if (c->bg_bud_bytes < tmp64)
725 		c->bg_bud_bytes = tmp64;
726 	if (c->max_bud_bytes < tmp64 + c->leb_size)
727 		c->max_bud_bytes = tmp64 + c->leb_size;
728 
729 	err = ubifs_calc_lpt_geom(c);
730 	if (err)
731 		return err;
732 
733 	/* Initialize effective LEB size used in budgeting calculations */
734 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
735 	return 0;
736 }
737 
738 /*
739  * init_constants_master - initialize UBIFS constants.
740  * @c: UBIFS file-system description object
741  *
742  * This is a helper function which initializes various UBIFS constants after
743  * the master node has been read. It also checks various UBIFS parameters and
744  * makes sure they are all right.
745  */
746 static void init_constants_master(struct ubifs_info *c)
747 {
748 	long long tmp64;
749 
750 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
751 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
752 
753 	/*
754 	 * Calculate total amount of FS blocks. This number is not used
755 	 * internally because it does not make much sense for UBIFS, but it is
756 	 * necessary to report something for the 'statfs()' call.
757 	 *
758 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
759 	 * deletions, minimum LEBs for the index, and assume only one journal
760 	 * head is available.
761 	 */
762 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
763 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
764 	tmp64 = ubifs_reported_space(c, tmp64);
765 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
766 }
767 
768 /**
769  * take_gc_lnum - reserve GC LEB.
770  * @c: UBIFS file-system description object
771  *
772  * This function ensures that the LEB reserved for garbage collection is marked
773  * as "taken" in lprops. We also have to set free space to LEB size and dirty
774  * space to zero, because lprops may contain out-of-date information if the
775  * file-system was un-mounted before it has been committed. This function
776  * returns zero in case of success and a negative error code in case of
777  * failure.
778  */
779 static int take_gc_lnum(struct ubifs_info *c)
780 {
781 	int err;
782 
783 	if (c->gc_lnum == -1) {
784 		ubifs_err(c, "no LEB for GC");
785 		return -EINVAL;
786 	}
787 
788 	/* And we have to tell lprops that this LEB is taken */
789 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
790 				  LPROPS_TAKEN, 0, 0);
791 	return err;
792 }
793 
794 /**
795  * alloc_wbufs - allocate write-buffers.
796  * @c: UBIFS file-system description object
797  *
798  * This helper function allocates and initializes UBIFS write-buffers. Returns
799  * zero in case of success and %-ENOMEM in case of failure.
800  */
801 static int alloc_wbufs(struct ubifs_info *c)
802 {
803 	int i, err;
804 
805 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
806 			    GFP_KERNEL);
807 	if (!c->jheads)
808 		return -ENOMEM;
809 
810 	/* Initialize journal heads */
811 	for (i = 0; i < c->jhead_cnt; i++) {
812 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
813 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
814 		if (err)
815 			return err;
816 
817 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
818 		c->jheads[i].wbuf.jhead = i;
819 		c->jheads[i].grouped = 1;
820 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
821 		if (IS_ERR(c->jheads[i].log_hash))
822 			goto out;
823 	}
824 
825 	/*
826 	 * Garbage Collector head does not need to be synchronized by timer.
827 	 * Also GC head nodes are not grouped.
828 	 */
829 	c->jheads[GCHD].wbuf.no_timer = 1;
830 	c->jheads[GCHD].grouped = 0;
831 
832 	return 0;
833 
834 out:
835 	while (i--)
836 		kfree(c->jheads[i].log_hash);
837 
838 	return err;
839 }
840 
841 /**
842  * free_wbufs - free write-buffers.
843  * @c: UBIFS file-system description object
844  */
845 static void free_wbufs(struct ubifs_info *c)
846 {
847 	int i;
848 
849 	if (c->jheads) {
850 		for (i = 0; i < c->jhead_cnt; i++) {
851 			kfree(c->jheads[i].wbuf.buf);
852 			kfree(c->jheads[i].wbuf.inodes);
853 			kfree(c->jheads[i].log_hash);
854 		}
855 		kfree(c->jheads);
856 		c->jheads = NULL;
857 	}
858 }
859 
860 /**
861  * free_orphans - free orphans.
862  * @c: UBIFS file-system description object
863  */
864 static void free_orphans(struct ubifs_info *c)
865 {
866 	struct ubifs_orphan *orph;
867 
868 	while (c->orph_dnext) {
869 		orph = c->orph_dnext;
870 		c->orph_dnext = orph->dnext;
871 		list_del(&orph->list);
872 		kfree(orph);
873 	}
874 
875 	while (!list_empty(&c->orph_list)) {
876 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
877 		list_del(&orph->list);
878 		kfree(orph);
879 		ubifs_err(c, "orphan list not empty at unmount");
880 	}
881 
882 	vfree(c->orph_buf);
883 	c->orph_buf = NULL;
884 }
885 
886 /**
887  * free_buds - free per-bud objects.
888  * @c: UBIFS file-system description object
889  */
890 static void free_buds(struct ubifs_info *c)
891 {
892 	struct ubifs_bud *bud, *n;
893 
894 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
895 		kfree(bud);
896 }
897 
898 /**
899  * check_volume_empty - check if the UBI volume is empty.
900  * @c: UBIFS file-system description object
901  *
902  * This function checks if the UBIFS volume is empty by looking if its LEBs are
903  * mapped or not. The result of checking is stored in the @c->empty variable.
904  * Returns zero in case of success and a negative error code in case of
905  * failure.
906  */
907 static int check_volume_empty(struct ubifs_info *c)
908 {
909 	int lnum, err;
910 
911 	c->empty = 1;
912 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
913 		err = ubifs_is_mapped(c, lnum);
914 		if (unlikely(err < 0))
915 			return err;
916 		if (err == 1) {
917 			c->empty = 0;
918 			break;
919 		}
920 
921 		cond_resched();
922 	}
923 
924 	return 0;
925 }
926 
927 /*
928  * UBIFS mount options.
929  *
930  * Opt_fast_unmount: do not run a journal commit before un-mounting
931  * Opt_norm_unmount: run a journal commit before un-mounting
932  * Opt_bulk_read: enable bulk-reads
933  * Opt_no_bulk_read: disable bulk-reads
934  * Opt_chk_data_crc: check CRCs when reading data nodes
935  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
936  * Opt_override_compr: override default compressor
937  * Opt_assert: set ubifs_assert() action
938  * Opt_auth_key: The key name used for authentication
939  * Opt_auth_hash_name: The hash type used for authentication
940  * Opt_err: just end of array marker
941  */
942 enum {
943 	Opt_fast_unmount,
944 	Opt_norm_unmount,
945 	Opt_bulk_read,
946 	Opt_no_bulk_read,
947 	Opt_chk_data_crc,
948 	Opt_no_chk_data_crc,
949 	Opt_override_compr,
950 	Opt_assert,
951 	Opt_auth_key,
952 	Opt_auth_hash_name,
953 	Opt_ignore,
954 	Opt_err,
955 };
956 
957 static const match_table_t tokens = {
958 	{Opt_fast_unmount, "fast_unmount"},
959 	{Opt_norm_unmount, "norm_unmount"},
960 	{Opt_bulk_read, "bulk_read"},
961 	{Opt_no_bulk_read, "no_bulk_read"},
962 	{Opt_chk_data_crc, "chk_data_crc"},
963 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
964 	{Opt_override_compr, "compr=%s"},
965 	{Opt_auth_key, "auth_key=%s"},
966 	{Opt_auth_hash_name, "auth_hash_name=%s"},
967 	{Opt_ignore, "ubi=%s"},
968 	{Opt_ignore, "vol=%s"},
969 	{Opt_assert, "assert=%s"},
970 	{Opt_err, NULL},
971 };
972 
973 /**
974  * parse_standard_option - parse a standard mount option.
975  * @option: the option to parse
976  *
977  * Normally, standard mount options like "sync" are passed to file-systems as
978  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
979  * be present in the options string. This function tries to deal with this
980  * situation and parse standard options. Returns 0 if the option was not
981  * recognized, and the corresponding integer flag if it was.
982  *
983  * UBIFS is only interested in the "sync" option, so do not check for anything
984  * else.
985  */
986 static int parse_standard_option(const char *option)
987 {
988 
989 	pr_notice("UBIFS: parse %s\n", option);
990 	if (!strcmp(option, "sync"))
991 		return SB_SYNCHRONOUS;
992 	return 0;
993 }
994 
995 /**
996  * ubifs_parse_options - parse mount parameters.
997  * @c: UBIFS file-system description object
998  * @options: parameters to parse
999  * @is_remount: non-zero if this is FS re-mount
1000  *
1001  * This function parses UBIFS mount options and returns zero in case success
1002  * and a negative error code in case of failure.
1003  */
1004 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1005 			       int is_remount)
1006 {
1007 	char *p;
1008 	substring_t args[MAX_OPT_ARGS];
1009 
1010 	if (!options)
1011 		return 0;
1012 
1013 	while ((p = strsep(&options, ","))) {
1014 		int token;
1015 
1016 		if (!*p)
1017 			continue;
1018 
1019 		token = match_token(p, tokens, args);
1020 		switch (token) {
1021 		/*
1022 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1023 		 * We accept them in order to be backward-compatible. But this
1024 		 * should be removed at some point.
1025 		 */
1026 		case Opt_fast_unmount:
1027 			c->mount_opts.unmount_mode = 2;
1028 			break;
1029 		case Opt_norm_unmount:
1030 			c->mount_opts.unmount_mode = 1;
1031 			break;
1032 		case Opt_bulk_read:
1033 			c->mount_opts.bulk_read = 2;
1034 			c->bulk_read = 1;
1035 			break;
1036 		case Opt_no_bulk_read:
1037 			c->mount_opts.bulk_read = 1;
1038 			c->bulk_read = 0;
1039 			break;
1040 		case Opt_chk_data_crc:
1041 			c->mount_opts.chk_data_crc = 2;
1042 			c->no_chk_data_crc = 0;
1043 			break;
1044 		case Opt_no_chk_data_crc:
1045 			c->mount_opts.chk_data_crc = 1;
1046 			c->no_chk_data_crc = 1;
1047 			break;
1048 		case Opt_override_compr:
1049 		{
1050 			char *name = match_strdup(&args[0]);
1051 
1052 			if (!name)
1053 				return -ENOMEM;
1054 			if (!strcmp(name, "none"))
1055 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1056 			else if (!strcmp(name, "lzo"))
1057 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1058 			else if (!strcmp(name, "zlib"))
1059 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1060 			else {
1061 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1062 				kfree(name);
1063 				return -EINVAL;
1064 			}
1065 			kfree(name);
1066 			c->mount_opts.override_compr = 1;
1067 			c->default_compr = c->mount_opts.compr_type;
1068 			break;
1069 		}
1070 		case Opt_assert:
1071 		{
1072 			char *act = match_strdup(&args[0]);
1073 
1074 			if (!act)
1075 				return -ENOMEM;
1076 			if (!strcmp(act, "report"))
1077 				c->assert_action = ASSACT_REPORT;
1078 			else if (!strcmp(act, "read-only"))
1079 				c->assert_action = ASSACT_RO;
1080 			else if (!strcmp(act, "panic"))
1081 				c->assert_action = ASSACT_PANIC;
1082 			else {
1083 				ubifs_err(c, "unknown assert action \"%s\"", act);
1084 				kfree(act);
1085 				return -EINVAL;
1086 			}
1087 			kfree(act);
1088 			break;
1089 		}
1090 		case Opt_auth_key:
1091 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1092 			if (!c->auth_key_name)
1093 				return -ENOMEM;
1094 			break;
1095 		case Opt_auth_hash_name:
1096 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1097 			if (!c->auth_hash_name)
1098 				return -ENOMEM;
1099 			break;
1100 		case Opt_ignore:
1101 			break;
1102 		default:
1103 		{
1104 			unsigned long flag;
1105 			struct super_block *sb = c->vfs_sb;
1106 
1107 			flag = parse_standard_option(p);
1108 			if (!flag) {
1109 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1110 					  p);
1111 				return -EINVAL;
1112 			}
1113 			sb->s_flags |= flag;
1114 			break;
1115 		}
1116 		}
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 /**
1123  * destroy_journal - destroy journal data structures.
1124  * @c: UBIFS file-system description object
1125  *
1126  * This function destroys journal data structures including those that may have
1127  * been created by recovery functions.
1128  */
1129 static void destroy_journal(struct ubifs_info *c)
1130 {
1131 	while (!list_empty(&c->unclean_leb_list)) {
1132 		struct ubifs_unclean_leb *ucleb;
1133 
1134 		ucleb = list_entry(c->unclean_leb_list.next,
1135 				   struct ubifs_unclean_leb, list);
1136 		list_del(&ucleb->list);
1137 		kfree(ucleb);
1138 	}
1139 	while (!list_empty(&c->old_buds)) {
1140 		struct ubifs_bud *bud;
1141 
1142 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1143 		list_del(&bud->list);
1144 		kfree(bud);
1145 	}
1146 	ubifs_destroy_idx_gc(c);
1147 	ubifs_destroy_size_tree(c);
1148 	ubifs_tnc_close(c);
1149 	free_buds(c);
1150 }
1151 
1152 /**
1153  * bu_init - initialize bulk-read information.
1154  * @c: UBIFS file-system description object
1155  */
1156 static void bu_init(struct ubifs_info *c)
1157 {
1158 	ubifs_assert(c, c->bulk_read == 1);
1159 
1160 	if (c->bu.buf)
1161 		return; /* Already initialized */
1162 
1163 again:
1164 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1165 	if (!c->bu.buf) {
1166 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1167 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1168 			goto again;
1169 		}
1170 
1171 		/* Just disable bulk-read */
1172 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1173 			   c->max_bu_buf_len);
1174 		c->mount_opts.bulk_read = 1;
1175 		c->bulk_read = 0;
1176 		return;
1177 	}
1178 }
1179 
1180 /**
1181  * check_free_space - check if there is enough free space to mount.
1182  * @c: UBIFS file-system description object
1183  *
1184  * This function makes sure UBIFS has enough free space to be mounted in
1185  * read/write mode. UBIFS must always have some free space to allow deletions.
1186  */
1187 static int check_free_space(struct ubifs_info *c)
1188 {
1189 	ubifs_assert(c, c->dark_wm > 0);
1190 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1191 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1192 		ubifs_dump_budg(c, &c->bi);
1193 		ubifs_dump_lprops(c);
1194 		return -ENOSPC;
1195 	}
1196 	return 0;
1197 }
1198 
1199 /**
1200  * mount_ubifs - mount UBIFS file-system.
1201  * @c: UBIFS file-system description object
1202  *
1203  * This function mounts UBIFS file system. Returns zero in case of success and
1204  * a negative error code in case of failure.
1205  */
1206 static int mount_ubifs(struct ubifs_info *c)
1207 {
1208 	int err;
1209 	long long x, y;
1210 	size_t sz;
1211 
1212 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1213 	/* Suppress error messages while probing if SB_SILENT is set */
1214 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1215 
1216 	err = init_constants_early(c);
1217 	if (err)
1218 		return err;
1219 
1220 	err = ubifs_debugging_init(c);
1221 	if (err)
1222 		return err;
1223 
1224 	err = check_volume_empty(c);
1225 	if (err)
1226 		goto out_free;
1227 
1228 	if (c->empty && (c->ro_mount || c->ro_media)) {
1229 		/*
1230 		 * This UBI volume is empty, and read-only, or the file system
1231 		 * is mounted read-only - we cannot format it.
1232 		 */
1233 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1234 			  c->ro_media ? "UBI volume" : "mount");
1235 		err = -EROFS;
1236 		goto out_free;
1237 	}
1238 
1239 	if (c->ro_media && !c->ro_mount) {
1240 		ubifs_err(c, "cannot mount read-write - read-only media");
1241 		err = -EROFS;
1242 		goto out_free;
1243 	}
1244 
1245 	/*
1246 	 * The requirement for the buffer is that it should fit indexing B-tree
1247 	 * height amount of integers. We assume the height if the TNC tree will
1248 	 * never exceed 64.
1249 	 */
1250 	err = -ENOMEM;
1251 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1252 					 GFP_KERNEL);
1253 	if (!c->bottom_up_buf)
1254 		goto out_free;
1255 
1256 	c->sbuf = vmalloc(c->leb_size);
1257 	if (!c->sbuf)
1258 		goto out_free;
1259 
1260 	if (!c->ro_mount) {
1261 		c->ileb_buf = vmalloc(c->leb_size);
1262 		if (!c->ileb_buf)
1263 			goto out_free;
1264 	}
1265 
1266 	if (c->bulk_read == 1)
1267 		bu_init(c);
1268 
1269 	if (!c->ro_mount) {
1270 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1271 					       UBIFS_CIPHER_BLOCK_SIZE,
1272 					       GFP_KERNEL);
1273 		if (!c->write_reserve_buf)
1274 			goto out_free;
1275 	}
1276 
1277 	c->mounting = 1;
1278 
1279 	if (c->auth_key_name) {
1280 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1281 			err = ubifs_init_authentication(c);
1282 			if (err)
1283 				goto out_free;
1284 		} else {
1285 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1286 				  " authentication support");
1287 			err = -EINVAL;
1288 			goto out_free;
1289 		}
1290 	}
1291 
1292 	err = ubifs_read_superblock(c);
1293 	if (err)
1294 		goto out_free;
1295 
1296 	c->probing = 0;
1297 
1298 	/*
1299 	 * Make sure the compressor which is set as default in the superblock
1300 	 * or overridden by mount options is actually compiled in.
1301 	 */
1302 	if (!ubifs_compr_present(c, c->default_compr)) {
1303 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1304 			  ubifs_compr_name(c, c->default_compr));
1305 		err = -ENOTSUPP;
1306 		goto out_free;
1307 	}
1308 
1309 	err = init_constants_sb(c);
1310 	if (err)
1311 		goto out_free;
1312 
1313 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1314 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1315 	c->cbuf = kmalloc(sz, GFP_NOFS);
1316 	if (!c->cbuf) {
1317 		err = -ENOMEM;
1318 		goto out_free;
1319 	}
1320 
1321 	err = alloc_wbufs(c);
1322 	if (err)
1323 		goto out_cbuf;
1324 
1325 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1326 	if (!c->ro_mount) {
1327 		/* Create background thread */
1328 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1329 		if (IS_ERR(c->bgt)) {
1330 			err = PTR_ERR(c->bgt);
1331 			c->bgt = NULL;
1332 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1333 				  c->bgt_name, err);
1334 			goto out_wbufs;
1335 		}
1336 		wake_up_process(c->bgt);
1337 	}
1338 
1339 	err = ubifs_read_master(c);
1340 	if (err)
1341 		goto out_master;
1342 
1343 	init_constants_master(c);
1344 
1345 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1346 		ubifs_msg(c, "recovery needed");
1347 		c->need_recovery = 1;
1348 	}
1349 
1350 	if (c->need_recovery && !c->ro_mount) {
1351 		err = ubifs_recover_inl_heads(c, c->sbuf);
1352 		if (err)
1353 			goto out_master;
1354 	}
1355 
1356 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1357 	if (err)
1358 		goto out_master;
1359 
1360 	if (!c->ro_mount && c->space_fixup) {
1361 		err = ubifs_fixup_free_space(c);
1362 		if (err)
1363 			goto out_lpt;
1364 	}
1365 
1366 	if (!c->ro_mount && !c->need_recovery) {
1367 		/*
1368 		 * Set the "dirty" flag so that if we reboot uncleanly we
1369 		 * will notice this immediately on the next mount.
1370 		 */
1371 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1372 		err = ubifs_write_master(c);
1373 		if (err)
1374 			goto out_lpt;
1375 	}
1376 
1377 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1378 	if (err)
1379 		goto out_lpt;
1380 
1381 	err = ubifs_replay_journal(c);
1382 	if (err)
1383 		goto out_journal;
1384 
1385 	/* Calculate 'min_idx_lebs' after journal replay */
1386 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1387 
1388 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1389 	if (err)
1390 		goto out_orphans;
1391 
1392 	if (!c->ro_mount) {
1393 		int lnum;
1394 
1395 		err = check_free_space(c);
1396 		if (err)
1397 			goto out_orphans;
1398 
1399 		/* Check for enough log space */
1400 		lnum = c->lhead_lnum + 1;
1401 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1402 			lnum = UBIFS_LOG_LNUM;
1403 		if (lnum == c->ltail_lnum) {
1404 			err = ubifs_consolidate_log(c);
1405 			if (err)
1406 				goto out_orphans;
1407 		}
1408 
1409 		if (c->need_recovery) {
1410 			if (!ubifs_authenticated(c)) {
1411 				err = ubifs_recover_size(c, true);
1412 				if (err)
1413 					goto out_orphans;
1414 			}
1415 
1416 			err = ubifs_rcvry_gc_commit(c);
1417 			if (err)
1418 				goto out_orphans;
1419 
1420 			if (ubifs_authenticated(c)) {
1421 				err = ubifs_recover_size(c, false);
1422 				if (err)
1423 					goto out_orphans;
1424 			}
1425 		} else {
1426 			err = take_gc_lnum(c);
1427 			if (err)
1428 				goto out_orphans;
1429 
1430 			/*
1431 			 * GC LEB may contain garbage if there was an unclean
1432 			 * reboot, and it should be un-mapped.
1433 			 */
1434 			err = ubifs_leb_unmap(c, c->gc_lnum);
1435 			if (err)
1436 				goto out_orphans;
1437 		}
1438 
1439 		err = dbg_check_lprops(c);
1440 		if (err)
1441 			goto out_orphans;
1442 	} else if (c->need_recovery) {
1443 		err = ubifs_recover_size(c, false);
1444 		if (err)
1445 			goto out_orphans;
1446 	} else {
1447 		/*
1448 		 * Even if we mount read-only, we have to set space in GC LEB
1449 		 * to proper value because this affects UBIFS free space
1450 		 * reporting. We do not want to have a situation when
1451 		 * re-mounting from R/O to R/W changes amount of free space.
1452 		 */
1453 		err = take_gc_lnum(c);
1454 		if (err)
1455 			goto out_orphans;
1456 	}
1457 
1458 	spin_lock(&ubifs_infos_lock);
1459 	list_add_tail(&c->infos_list, &ubifs_infos);
1460 	spin_unlock(&ubifs_infos_lock);
1461 
1462 	if (c->need_recovery) {
1463 		if (c->ro_mount)
1464 			ubifs_msg(c, "recovery deferred");
1465 		else {
1466 			c->need_recovery = 0;
1467 			ubifs_msg(c, "recovery completed");
1468 			/*
1469 			 * GC LEB has to be empty and taken at this point. But
1470 			 * the journal head LEBs may also be accounted as
1471 			 * "empty taken" if they are empty.
1472 			 */
1473 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1474 		}
1475 	} else
1476 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1477 
1478 	err = dbg_check_filesystem(c);
1479 	if (err)
1480 		goto out_infos;
1481 
1482 	err = dbg_debugfs_init_fs(c);
1483 	if (err)
1484 		goto out_infos;
1485 
1486 	c->mounting = 0;
1487 
1488 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1489 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1490 		  c->ro_mount ? ", R/O mode" : "");
1491 	x = (long long)c->main_lebs * c->leb_size;
1492 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1493 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1494 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1495 		  c->max_write_size);
1496 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1497 		  x, x >> 20, c->main_lebs,
1498 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1499 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1500 		  c->report_rp_size, c->report_rp_size >> 10);
1501 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1502 		  c->fmt_version, c->ro_compat_version,
1503 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1504 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1505 
1506 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1507 	dbg_gen("data journal heads:  %d",
1508 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1509 	dbg_gen("log LEBs:            %d (%d - %d)",
1510 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1511 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1512 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1513 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1514 		c->orph_lebs, c->orph_first, c->orph_last);
1515 	dbg_gen("main area LEBs:      %d (%d - %d)",
1516 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1517 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1518 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1519 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1520 		c->bi.old_idx_sz >> 20);
1521 	dbg_gen("key hash type:       %d", c->key_hash_type);
1522 	dbg_gen("tree fanout:         %d", c->fanout);
1523 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1524 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1525 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1526 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1527 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1528 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1529 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1530 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1531 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1532 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1533 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1534 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1535 	dbg_gen("dead watermark:      %d", c->dead_wm);
1536 	dbg_gen("dark watermark:      %d", c->dark_wm);
1537 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1538 	x = (long long)c->main_lebs * c->dark_wm;
1539 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1540 		x, x >> 10, x >> 20);
1541 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1542 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1543 		c->max_bud_bytes >> 20);
1544 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1545 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1546 		c->bg_bud_bytes >> 20);
1547 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1548 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1549 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1550 	dbg_gen("commit number:       %llu", c->cmt_no);
1551 
1552 	return 0;
1553 
1554 out_infos:
1555 	spin_lock(&ubifs_infos_lock);
1556 	list_del(&c->infos_list);
1557 	spin_unlock(&ubifs_infos_lock);
1558 out_orphans:
1559 	free_orphans(c);
1560 out_journal:
1561 	destroy_journal(c);
1562 out_lpt:
1563 	ubifs_lpt_free(c, 0);
1564 out_master:
1565 	kfree(c->mst_node);
1566 	kfree(c->rcvrd_mst_node);
1567 	if (c->bgt)
1568 		kthread_stop(c->bgt);
1569 out_wbufs:
1570 	free_wbufs(c);
1571 out_cbuf:
1572 	kfree(c->cbuf);
1573 out_free:
1574 	kfree(c->write_reserve_buf);
1575 	kfree(c->bu.buf);
1576 	vfree(c->ileb_buf);
1577 	vfree(c->sbuf);
1578 	kfree(c->bottom_up_buf);
1579 	ubifs_debugging_exit(c);
1580 	return err;
1581 }
1582 
1583 /**
1584  * ubifs_umount - un-mount UBIFS file-system.
1585  * @c: UBIFS file-system description object
1586  *
1587  * Note, this function is called to free allocated resourced when un-mounting,
1588  * as well as free resources when an error occurred while we were half way
1589  * through mounting (error path cleanup function). So it has to make sure the
1590  * resource was actually allocated before freeing it.
1591  */
1592 static void ubifs_umount(struct ubifs_info *c)
1593 {
1594 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1595 		c->vi.vol_id);
1596 
1597 	dbg_debugfs_exit_fs(c);
1598 	spin_lock(&ubifs_infos_lock);
1599 	list_del(&c->infos_list);
1600 	spin_unlock(&ubifs_infos_lock);
1601 
1602 	if (c->bgt)
1603 		kthread_stop(c->bgt);
1604 
1605 	destroy_journal(c);
1606 	free_wbufs(c);
1607 	free_orphans(c);
1608 	ubifs_lpt_free(c, 0);
1609 	ubifs_exit_authentication(c);
1610 
1611 	kfree(c->auth_key_name);
1612 	kfree(c->auth_hash_name);
1613 	kfree(c->cbuf);
1614 	kfree(c->rcvrd_mst_node);
1615 	kfree(c->mst_node);
1616 	kfree(c->write_reserve_buf);
1617 	kfree(c->bu.buf);
1618 	vfree(c->ileb_buf);
1619 	vfree(c->sbuf);
1620 	kfree(c->bottom_up_buf);
1621 	ubifs_debugging_exit(c);
1622 }
1623 
1624 /**
1625  * ubifs_remount_rw - re-mount in read-write mode.
1626  * @c: UBIFS file-system description object
1627  *
1628  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1629  * mode. This function allocates the needed resources and re-mounts UBIFS in
1630  * read-write mode.
1631  */
1632 static int ubifs_remount_rw(struct ubifs_info *c)
1633 {
1634 	int err, lnum;
1635 
1636 	if (c->rw_incompat) {
1637 		ubifs_err(c, "the file-system is not R/W-compatible");
1638 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1639 			  c->fmt_version, c->ro_compat_version,
1640 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1641 		return -EROFS;
1642 	}
1643 
1644 	mutex_lock(&c->umount_mutex);
1645 	dbg_save_space_info(c);
1646 	c->remounting_rw = 1;
1647 	c->ro_mount = 0;
1648 
1649 	if (c->space_fixup) {
1650 		err = ubifs_fixup_free_space(c);
1651 		if (err)
1652 			goto out;
1653 	}
1654 
1655 	err = check_free_space(c);
1656 	if (err)
1657 		goto out;
1658 
1659 	if (c->old_leb_cnt != c->leb_cnt) {
1660 		struct ubifs_sb_node *sup = c->sup_node;
1661 
1662 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1663 		err = ubifs_write_sb_node(c, sup);
1664 		if (err)
1665 			goto out;
1666 	}
1667 
1668 	if (c->need_recovery) {
1669 		ubifs_msg(c, "completing deferred recovery");
1670 		err = ubifs_write_rcvrd_mst_node(c);
1671 		if (err)
1672 			goto out;
1673 		if (!ubifs_authenticated(c)) {
1674 			err = ubifs_recover_size(c, true);
1675 			if (err)
1676 				goto out;
1677 		}
1678 		err = ubifs_clean_lebs(c, c->sbuf);
1679 		if (err)
1680 			goto out;
1681 		err = ubifs_recover_inl_heads(c, c->sbuf);
1682 		if (err)
1683 			goto out;
1684 	} else {
1685 		/* A readonly mount is not allowed to have orphans */
1686 		ubifs_assert(c, c->tot_orphans == 0);
1687 		err = ubifs_clear_orphans(c);
1688 		if (err)
1689 			goto out;
1690 	}
1691 
1692 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1693 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1694 		err = ubifs_write_master(c);
1695 		if (err)
1696 			goto out;
1697 	}
1698 
1699 	c->ileb_buf = vmalloc(c->leb_size);
1700 	if (!c->ileb_buf) {
1701 		err = -ENOMEM;
1702 		goto out;
1703 	}
1704 
1705 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1706 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1707 	if (!c->write_reserve_buf) {
1708 		err = -ENOMEM;
1709 		goto out;
1710 	}
1711 
1712 	err = ubifs_lpt_init(c, 0, 1);
1713 	if (err)
1714 		goto out;
1715 
1716 	/* Create background thread */
1717 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1718 	if (IS_ERR(c->bgt)) {
1719 		err = PTR_ERR(c->bgt);
1720 		c->bgt = NULL;
1721 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1722 			  c->bgt_name, err);
1723 		goto out;
1724 	}
1725 	wake_up_process(c->bgt);
1726 
1727 	c->orph_buf = vmalloc(c->leb_size);
1728 	if (!c->orph_buf) {
1729 		err = -ENOMEM;
1730 		goto out;
1731 	}
1732 
1733 	/* Check for enough log space */
1734 	lnum = c->lhead_lnum + 1;
1735 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1736 		lnum = UBIFS_LOG_LNUM;
1737 	if (lnum == c->ltail_lnum) {
1738 		err = ubifs_consolidate_log(c);
1739 		if (err)
1740 			goto out;
1741 	}
1742 
1743 	if (c->need_recovery) {
1744 		err = ubifs_rcvry_gc_commit(c);
1745 		if (err)
1746 			goto out;
1747 
1748 		if (ubifs_authenticated(c)) {
1749 			err = ubifs_recover_size(c, false);
1750 			if (err)
1751 				goto out;
1752 		}
1753 	} else {
1754 		err = ubifs_leb_unmap(c, c->gc_lnum);
1755 	}
1756 	if (err)
1757 		goto out;
1758 
1759 	dbg_gen("re-mounted read-write");
1760 	c->remounting_rw = 0;
1761 
1762 	if (c->need_recovery) {
1763 		c->need_recovery = 0;
1764 		ubifs_msg(c, "deferred recovery completed");
1765 	} else {
1766 		/*
1767 		 * Do not run the debugging space check if the were doing
1768 		 * recovery, because when we saved the information we had the
1769 		 * file-system in a state where the TNC and lprops has been
1770 		 * modified in memory, but all the I/O operations (including a
1771 		 * commit) were deferred. So the file-system was in
1772 		 * "non-committed" state. Now the file-system is in committed
1773 		 * state, and of course the amount of free space will change
1774 		 * because, for example, the old index size was imprecise.
1775 		 */
1776 		err = dbg_check_space_info(c);
1777 	}
1778 
1779 	mutex_unlock(&c->umount_mutex);
1780 	return err;
1781 
1782 out:
1783 	c->ro_mount = 1;
1784 	vfree(c->orph_buf);
1785 	c->orph_buf = NULL;
1786 	if (c->bgt) {
1787 		kthread_stop(c->bgt);
1788 		c->bgt = NULL;
1789 	}
1790 	free_wbufs(c);
1791 	kfree(c->write_reserve_buf);
1792 	c->write_reserve_buf = NULL;
1793 	vfree(c->ileb_buf);
1794 	c->ileb_buf = NULL;
1795 	ubifs_lpt_free(c, 1);
1796 	c->remounting_rw = 0;
1797 	mutex_unlock(&c->umount_mutex);
1798 	return err;
1799 }
1800 
1801 /**
1802  * ubifs_remount_ro - re-mount in read-only mode.
1803  * @c: UBIFS file-system description object
1804  *
1805  * We assume VFS has stopped writing. Possibly the background thread could be
1806  * running a commit, however kthread_stop will wait in that case.
1807  */
1808 static void ubifs_remount_ro(struct ubifs_info *c)
1809 {
1810 	int i, err;
1811 
1812 	ubifs_assert(c, !c->need_recovery);
1813 	ubifs_assert(c, !c->ro_mount);
1814 
1815 	mutex_lock(&c->umount_mutex);
1816 	if (c->bgt) {
1817 		kthread_stop(c->bgt);
1818 		c->bgt = NULL;
1819 	}
1820 
1821 	dbg_save_space_info(c);
1822 
1823 	for (i = 0; i < c->jhead_cnt; i++) {
1824 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1825 		if (err)
1826 			ubifs_ro_mode(c, err);
1827 	}
1828 
1829 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1830 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1831 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1832 	err = ubifs_write_master(c);
1833 	if (err)
1834 		ubifs_ro_mode(c, err);
1835 
1836 	vfree(c->orph_buf);
1837 	c->orph_buf = NULL;
1838 	kfree(c->write_reserve_buf);
1839 	c->write_reserve_buf = NULL;
1840 	vfree(c->ileb_buf);
1841 	c->ileb_buf = NULL;
1842 	ubifs_lpt_free(c, 1);
1843 	c->ro_mount = 1;
1844 	err = dbg_check_space_info(c);
1845 	if (err)
1846 		ubifs_ro_mode(c, err);
1847 	mutex_unlock(&c->umount_mutex);
1848 }
1849 
1850 static void ubifs_put_super(struct super_block *sb)
1851 {
1852 	int i;
1853 	struct ubifs_info *c = sb->s_fs_info;
1854 
1855 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1856 
1857 	/*
1858 	 * The following asserts are only valid if there has not been a failure
1859 	 * of the media. For example, there will be dirty inodes if we failed
1860 	 * to write them back because of I/O errors.
1861 	 */
1862 	if (!c->ro_error) {
1863 		ubifs_assert(c, c->bi.idx_growth == 0);
1864 		ubifs_assert(c, c->bi.dd_growth == 0);
1865 		ubifs_assert(c, c->bi.data_growth == 0);
1866 	}
1867 
1868 	/*
1869 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1870 	 * and file system un-mount. Namely, it prevents the shrinker from
1871 	 * picking this superblock for shrinking - it will be just skipped if
1872 	 * the mutex is locked.
1873 	 */
1874 	mutex_lock(&c->umount_mutex);
1875 	if (!c->ro_mount) {
1876 		/*
1877 		 * First of all kill the background thread to make sure it does
1878 		 * not interfere with un-mounting and freeing resources.
1879 		 */
1880 		if (c->bgt) {
1881 			kthread_stop(c->bgt);
1882 			c->bgt = NULL;
1883 		}
1884 
1885 		/*
1886 		 * On fatal errors c->ro_error is set to 1, in which case we do
1887 		 * not write the master node.
1888 		 */
1889 		if (!c->ro_error) {
1890 			int err;
1891 
1892 			/* Synchronize write-buffers */
1893 			for (i = 0; i < c->jhead_cnt; i++) {
1894 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1895 				if (err)
1896 					ubifs_ro_mode(c, err);
1897 			}
1898 
1899 			/*
1900 			 * We are being cleanly unmounted which means the
1901 			 * orphans were killed - indicate this in the master
1902 			 * node. Also save the reserved GC LEB number.
1903 			 */
1904 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1905 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1906 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1907 			err = ubifs_write_master(c);
1908 			if (err)
1909 				/*
1910 				 * Recovery will attempt to fix the master area
1911 				 * next mount, so we just print a message and
1912 				 * continue to unmount normally.
1913 				 */
1914 				ubifs_err(c, "failed to write master node, error %d",
1915 					  err);
1916 		} else {
1917 			for (i = 0; i < c->jhead_cnt; i++)
1918 				/* Make sure write-buffer timers are canceled */
1919 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1920 		}
1921 	}
1922 
1923 	ubifs_umount(c);
1924 	ubi_close_volume(c->ubi);
1925 	mutex_unlock(&c->umount_mutex);
1926 }
1927 
1928 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1929 {
1930 	int err;
1931 	struct ubifs_info *c = sb->s_fs_info;
1932 
1933 	sync_filesystem(sb);
1934 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1935 
1936 	err = ubifs_parse_options(c, data, 1);
1937 	if (err) {
1938 		ubifs_err(c, "invalid or unknown remount parameter");
1939 		return err;
1940 	}
1941 
1942 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1943 		if (c->ro_error) {
1944 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1945 			return -EROFS;
1946 		}
1947 		if (c->ro_media) {
1948 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1949 			return -EROFS;
1950 		}
1951 		err = ubifs_remount_rw(c);
1952 		if (err)
1953 			return err;
1954 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1955 		if (c->ro_error) {
1956 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1957 			return -EROFS;
1958 		}
1959 		ubifs_remount_ro(c);
1960 	}
1961 
1962 	if (c->bulk_read == 1)
1963 		bu_init(c);
1964 	else {
1965 		dbg_gen("disable bulk-read");
1966 		mutex_lock(&c->bu_mutex);
1967 		kfree(c->bu.buf);
1968 		c->bu.buf = NULL;
1969 		mutex_unlock(&c->bu_mutex);
1970 	}
1971 
1972 	if (!c->need_recovery)
1973 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1974 
1975 	return 0;
1976 }
1977 
1978 const struct super_operations ubifs_super_operations = {
1979 	.alloc_inode   = ubifs_alloc_inode,
1980 	.destroy_inode = ubifs_destroy_inode,
1981 	.put_super     = ubifs_put_super,
1982 	.write_inode   = ubifs_write_inode,
1983 	.evict_inode   = ubifs_evict_inode,
1984 	.statfs        = ubifs_statfs,
1985 	.dirty_inode   = ubifs_dirty_inode,
1986 	.remount_fs    = ubifs_remount_fs,
1987 	.show_options  = ubifs_show_options,
1988 	.sync_fs       = ubifs_sync_fs,
1989 };
1990 
1991 /**
1992  * open_ubi - parse UBI device name string and open the UBI device.
1993  * @name: UBI volume name
1994  * @mode: UBI volume open mode
1995  *
1996  * The primary method of mounting UBIFS is by specifying the UBI volume
1997  * character device node path. However, UBIFS may also be mounted withoug any
1998  * character device node using one of the following methods:
1999  *
2000  * o ubiX_Y    - mount UBI device number X, volume Y;
2001  * o ubiY      - mount UBI device number 0, volume Y;
2002  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2003  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2004  *
2005  * Alternative '!' separator may be used instead of ':' (because some shells
2006  * like busybox may interpret ':' as an NFS host name separator). This function
2007  * returns UBI volume description object in case of success and a negative
2008  * error code in case of failure.
2009  */
2010 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2011 {
2012 	struct ubi_volume_desc *ubi;
2013 	int dev, vol;
2014 	char *endptr;
2015 
2016 	if (!name || !*name)
2017 		return ERR_PTR(-EINVAL);
2018 
2019 	/* First, try to open using the device node path method */
2020 	ubi = ubi_open_volume_path(name, mode);
2021 	if (!IS_ERR(ubi))
2022 		return ubi;
2023 
2024 	/* Try the "nodev" method */
2025 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2026 		return ERR_PTR(-EINVAL);
2027 
2028 	/* ubi:NAME method */
2029 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2030 		return ubi_open_volume_nm(0, name + 4, mode);
2031 
2032 	if (!isdigit(name[3]))
2033 		return ERR_PTR(-EINVAL);
2034 
2035 	dev = simple_strtoul(name + 3, &endptr, 0);
2036 
2037 	/* ubiY method */
2038 	if (*endptr == '\0')
2039 		return ubi_open_volume(0, dev, mode);
2040 
2041 	/* ubiX_Y method */
2042 	if (*endptr == '_' && isdigit(endptr[1])) {
2043 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2044 		if (*endptr != '\0')
2045 			return ERR_PTR(-EINVAL);
2046 		return ubi_open_volume(dev, vol, mode);
2047 	}
2048 
2049 	/* ubiX:NAME method */
2050 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2051 		return ubi_open_volume_nm(dev, ++endptr, mode);
2052 
2053 	return ERR_PTR(-EINVAL);
2054 }
2055 
2056 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2057 {
2058 	struct ubifs_info *c;
2059 
2060 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2061 	if (c) {
2062 		spin_lock_init(&c->cnt_lock);
2063 		spin_lock_init(&c->cs_lock);
2064 		spin_lock_init(&c->buds_lock);
2065 		spin_lock_init(&c->space_lock);
2066 		spin_lock_init(&c->orphan_lock);
2067 		init_rwsem(&c->commit_sem);
2068 		mutex_init(&c->lp_mutex);
2069 		mutex_init(&c->tnc_mutex);
2070 		mutex_init(&c->log_mutex);
2071 		mutex_init(&c->umount_mutex);
2072 		mutex_init(&c->bu_mutex);
2073 		mutex_init(&c->write_reserve_mutex);
2074 		init_waitqueue_head(&c->cmt_wq);
2075 		c->buds = RB_ROOT;
2076 		c->old_idx = RB_ROOT;
2077 		c->size_tree = RB_ROOT;
2078 		c->orph_tree = RB_ROOT;
2079 		INIT_LIST_HEAD(&c->infos_list);
2080 		INIT_LIST_HEAD(&c->idx_gc);
2081 		INIT_LIST_HEAD(&c->replay_list);
2082 		INIT_LIST_HEAD(&c->replay_buds);
2083 		INIT_LIST_HEAD(&c->uncat_list);
2084 		INIT_LIST_HEAD(&c->empty_list);
2085 		INIT_LIST_HEAD(&c->freeable_list);
2086 		INIT_LIST_HEAD(&c->frdi_idx_list);
2087 		INIT_LIST_HEAD(&c->unclean_leb_list);
2088 		INIT_LIST_HEAD(&c->old_buds);
2089 		INIT_LIST_HEAD(&c->orph_list);
2090 		INIT_LIST_HEAD(&c->orph_new);
2091 		c->no_chk_data_crc = 1;
2092 		c->assert_action = ASSACT_RO;
2093 
2094 		c->highest_inum = UBIFS_FIRST_INO;
2095 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2096 
2097 		ubi_get_volume_info(ubi, &c->vi);
2098 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2099 	}
2100 	return c;
2101 }
2102 
2103 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2104 {
2105 	struct ubifs_info *c = sb->s_fs_info;
2106 	struct inode *root;
2107 	int err;
2108 
2109 	c->vfs_sb = sb;
2110 	/* Re-open the UBI device in read-write mode */
2111 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2112 	if (IS_ERR(c->ubi)) {
2113 		err = PTR_ERR(c->ubi);
2114 		goto out;
2115 	}
2116 
2117 	err = ubifs_parse_options(c, data, 0);
2118 	if (err)
2119 		goto out_close;
2120 
2121 	/*
2122 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2123 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2124 	 * which means the user would have to wait not just for their own I/O
2125 	 * but the read-ahead I/O as well i.e. completely pointless.
2126 	 *
2127 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2128 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2129 	 * writeback happening.
2130 	 */
2131 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2132 				   c->vi.vol_id);
2133 	if (err)
2134 		goto out_close;
2135 
2136 	sb->s_fs_info = c;
2137 	sb->s_magic = UBIFS_SUPER_MAGIC;
2138 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2139 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2140 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2141 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2142 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2143 	sb->s_op = &ubifs_super_operations;
2144 #ifdef CONFIG_UBIFS_FS_XATTR
2145 	sb->s_xattr = ubifs_xattr_handlers;
2146 #endif
2147 #ifdef CONFIG_FS_ENCRYPTION
2148 	sb->s_cop = &ubifs_crypt_operations;
2149 #endif
2150 
2151 	mutex_lock(&c->umount_mutex);
2152 	err = mount_ubifs(c);
2153 	if (err) {
2154 		ubifs_assert(c, err < 0);
2155 		goto out_unlock;
2156 	}
2157 
2158 	/* Read the root inode */
2159 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2160 	if (IS_ERR(root)) {
2161 		err = PTR_ERR(root);
2162 		goto out_umount;
2163 	}
2164 
2165 	sb->s_root = d_make_root(root);
2166 	if (!sb->s_root) {
2167 		err = -ENOMEM;
2168 		goto out_umount;
2169 	}
2170 
2171 	mutex_unlock(&c->umount_mutex);
2172 	return 0;
2173 
2174 out_umount:
2175 	ubifs_umount(c);
2176 out_unlock:
2177 	mutex_unlock(&c->umount_mutex);
2178 out_close:
2179 	ubi_close_volume(c->ubi);
2180 out:
2181 	return err;
2182 }
2183 
2184 static int sb_test(struct super_block *sb, void *data)
2185 {
2186 	struct ubifs_info *c1 = data;
2187 	struct ubifs_info *c = sb->s_fs_info;
2188 
2189 	return c->vi.cdev == c1->vi.cdev;
2190 }
2191 
2192 static int sb_set(struct super_block *sb, void *data)
2193 {
2194 	sb->s_fs_info = data;
2195 	return set_anon_super(sb, NULL);
2196 }
2197 
2198 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2199 			const char *name, void *data)
2200 {
2201 	struct ubi_volume_desc *ubi;
2202 	struct ubifs_info *c;
2203 	struct super_block *sb;
2204 	int err;
2205 
2206 	dbg_gen("name %s, flags %#x", name, flags);
2207 
2208 	/*
2209 	 * Get UBI device number and volume ID. Mount it read-only so far
2210 	 * because this might be a new mount point, and UBI allows only one
2211 	 * read-write user at a time.
2212 	 */
2213 	ubi = open_ubi(name, UBI_READONLY);
2214 	if (IS_ERR(ubi)) {
2215 		if (!(flags & SB_SILENT))
2216 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2217 			       current->pid, name, (int)PTR_ERR(ubi));
2218 		return ERR_CAST(ubi);
2219 	}
2220 
2221 	c = alloc_ubifs_info(ubi);
2222 	if (!c) {
2223 		err = -ENOMEM;
2224 		goto out_close;
2225 	}
2226 
2227 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2228 
2229 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2230 	if (IS_ERR(sb)) {
2231 		err = PTR_ERR(sb);
2232 		kfree(c);
2233 		goto out_close;
2234 	}
2235 
2236 	if (sb->s_root) {
2237 		struct ubifs_info *c1 = sb->s_fs_info;
2238 		kfree(c);
2239 		/* A new mount point for already mounted UBIFS */
2240 		dbg_gen("this ubi volume is already mounted");
2241 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2242 			err = -EBUSY;
2243 			goto out_deact;
2244 		}
2245 	} else {
2246 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2247 		if (err)
2248 			goto out_deact;
2249 		/* We do not support atime */
2250 		sb->s_flags |= SB_ACTIVE;
2251 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2252 		sb->s_flags |= SB_NOATIME;
2253 #else
2254 		ubifs_msg(c, "full atime support is enabled.");
2255 #endif
2256 	}
2257 
2258 	/* 'fill_super()' opens ubi again so we must close it here */
2259 	ubi_close_volume(ubi);
2260 
2261 	return dget(sb->s_root);
2262 
2263 out_deact:
2264 	deactivate_locked_super(sb);
2265 out_close:
2266 	ubi_close_volume(ubi);
2267 	return ERR_PTR(err);
2268 }
2269 
2270 static void kill_ubifs_super(struct super_block *s)
2271 {
2272 	struct ubifs_info *c = s->s_fs_info;
2273 	kill_anon_super(s);
2274 	kfree(c);
2275 }
2276 
2277 static struct file_system_type ubifs_fs_type = {
2278 	.name    = "ubifs",
2279 	.owner   = THIS_MODULE,
2280 	.mount   = ubifs_mount,
2281 	.kill_sb = kill_ubifs_super,
2282 };
2283 MODULE_ALIAS_FS("ubifs");
2284 
2285 /*
2286  * Inode slab cache constructor.
2287  */
2288 static void inode_slab_ctor(void *obj)
2289 {
2290 	struct ubifs_inode *ui = obj;
2291 	inode_init_once(&ui->vfs_inode);
2292 }
2293 
2294 static int __init ubifs_init(void)
2295 {
2296 	int err;
2297 
2298 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2299 
2300 	/* Make sure node sizes are 8-byte aligned */
2301 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2302 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2303 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2304 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2305 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2306 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2307 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2308 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2309 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2310 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2311 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2312 
2313 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2314 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2315 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2316 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2317 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2318 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2319 
2320 	/* Check min. node size */
2321 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2322 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2323 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2324 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2325 
2326 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2327 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2328 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2329 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2330 
2331 	/* Defined node sizes */
2332 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2333 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2334 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2335 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2336 
2337 	/*
2338 	 * We use 2 bit wide bit-fields to store compression type, which should
2339 	 * be amended if more compressors are added. The bit-fields are:
2340 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2341 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2342 	 */
2343 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2344 
2345 	/*
2346 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2347 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2348 	 */
2349 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2350 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2351 		       current->pid, (unsigned int)PAGE_SIZE);
2352 		return -EINVAL;
2353 	}
2354 
2355 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2356 				sizeof(struct ubifs_inode), 0,
2357 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2358 				SLAB_ACCOUNT, &inode_slab_ctor);
2359 	if (!ubifs_inode_slab)
2360 		return -ENOMEM;
2361 
2362 	err = register_shrinker(&ubifs_shrinker_info);
2363 	if (err)
2364 		goto out_slab;
2365 
2366 	err = ubifs_compressors_init();
2367 	if (err)
2368 		goto out_shrinker;
2369 
2370 	err = dbg_debugfs_init();
2371 	if (err)
2372 		goto out_compr;
2373 
2374 	err = register_filesystem(&ubifs_fs_type);
2375 	if (err) {
2376 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2377 		       current->pid, err);
2378 		goto out_dbg;
2379 	}
2380 	return 0;
2381 
2382 out_dbg:
2383 	dbg_debugfs_exit();
2384 out_compr:
2385 	ubifs_compressors_exit();
2386 out_shrinker:
2387 	unregister_shrinker(&ubifs_shrinker_info);
2388 out_slab:
2389 	kmem_cache_destroy(ubifs_inode_slab);
2390 	return err;
2391 }
2392 /* late_initcall to let compressors initialize first */
2393 late_initcall(ubifs_init);
2394 
2395 static void __exit ubifs_exit(void)
2396 {
2397 	WARN_ON(!list_empty(&ubifs_infos));
2398 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2399 
2400 	dbg_debugfs_exit();
2401 	ubifs_compressors_exit();
2402 	unregister_shrinker(&ubifs_shrinker_info);
2403 
2404 	/*
2405 	 * Make sure all delayed rcu free inodes are flushed before we
2406 	 * destroy cache.
2407 	 */
2408 	rcu_barrier();
2409 	kmem_cache_destroy(ubifs_inode_slab);
2410 	unregister_filesystem(&ubifs_fs_type);
2411 }
2412 module_exit(ubifs_exit);
2413 
2414 MODULE_LICENSE("GPL");
2415 MODULE_VERSION(__stringify(UBIFS_VERSION));
2416 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2417 MODULE_DESCRIPTION("UBIFS - UBI File System");
2418