1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 static struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(c, ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= S_NOCMTIME; 132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 133 inode->i_flags |= S_NOATIME; 134 #endif 135 set_nlink(inode, le32_to_cpu(ino->nlink)); 136 i_uid_write(inode, le32_to_cpu(ino->uid)); 137 i_gid_write(inode, le32_to_cpu(ino->gid)); 138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 144 inode->i_mode = le32_to_cpu(ino->mode); 145 inode->i_size = le64_to_cpu(ino->size); 146 147 ui->data_len = le32_to_cpu(ino->data_len); 148 ui->flags = le32_to_cpu(ino->flags); 149 ui->compr_type = le16_to_cpu(ino->compr_type); 150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 152 ui->xattr_size = le32_to_cpu(ino->xattr_size); 153 ui->xattr_names = le32_to_cpu(ino->xattr_names); 154 ui->synced_i_size = ui->ui_size = inode->i_size; 155 156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 157 158 err = validate_inode(c, inode); 159 if (err) 160 goto out_invalid; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 249 ubifs_dump_node(c, ino); 250 ubifs_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 kfree(ui->data); 280 kmem_cache_free(ubifs_inode_slab, ui); 281 } 282 283 static void ubifs_destroy_inode(struct inode *inode) 284 { 285 call_rcu(&inode->i_rcu, ubifs_i_callback); 286 } 287 288 /* 289 * Note, Linux write-back code calls this without 'i_mutex'. 290 */ 291 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 292 { 293 int err = 0; 294 struct ubifs_info *c = inode->i_sb->s_fs_info; 295 struct ubifs_inode *ui = ubifs_inode(inode); 296 297 ubifs_assert(c, !ui->xattr); 298 if (is_bad_inode(inode)) 299 return 0; 300 301 mutex_lock(&ui->ui_mutex); 302 /* 303 * Due to races between write-back forced by budgeting 304 * (see 'sync_some_inodes()') and background write-back, the inode may 305 * have already been synchronized, do not do this again. This might 306 * also happen if it was synchronized in an VFS operation, e.g. 307 * 'ubifs_link()'. 308 */ 309 if (!ui->dirty) { 310 mutex_unlock(&ui->ui_mutex); 311 return 0; 312 } 313 314 /* 315 * As an optimization, do not write orphan inodes to the media just 316 * because this is not needed. 317 */ 318 dbg_gen("inode %lu, mode %#x, nlink %u", 319 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 320 if (inode->i_nlink) { 321 err = ubifs_jnl_write_inode(c, inode); 322 if (err) 323 ubifs_err(c, "can't write inode %lu, error %d", 324 inode->i_ino, err); 325 else 326 err = dbg_check_inode_size(c, inode, ui->ui_size); 327 } 328 329 ui->dirty = 0; 330 mutex_unlock(&ui->ui_mutex); 331 ubifs_release_dirty_inode_budget(c, ui); 332 return err; 333 } 334 335 static void ubifs_evict_inode(struct inode *inode) 336 { 337 int err; 338 struct ubifs_info *c = inode->i_sb->s_fs_info; 339 struct ubifs_inode *ui = ubifs_inode(inode); 340 341 if (ui->xattr) 342 /* 343 * Extended attribute inode deletions are fully handled in 344 * 'ubifs_removexattr()'. These inodes are special and have 345 * limited usage, so there is nothing to do here. 346 */ 347 goto out; 348 349 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 350 ubifs_assert(c, !atomic_read(&inode->i_count)); 351 352 truncate_inode_pages_final(&inode->i_data); 353 354 if (inode->i_nlink) 355 goto done; 356 357 if (is_bad_inode(inode)) 358 goto out; 359 360 ui->ui_size = inode->i_size = 0; 361 err = ubifs_jnl_delete_inode(c, inode); 362 if (err) 363 /* 364 * Worst case we have a lost orphan inode wasting space, so a 365 * simple error message is OK here. 366 */ 367 ubifs_err(c, "can't delete inode %lu, error %d", 368 inode->i_ino, err); 369 370 out: 371 if (ui->dirty) 372 ubifs_release_dirty_inode_budget(c, ui); 373 else { 374 /* We've deleted something - clean the "no space" flags */ 375 c->bi.nospace = c->bi.nospace_rp = 0; 376 smp_wmb(); 377 } 378 done: 379 clear_inode(inode); 380 fscrypt_put_encryption_info(inode); 381 } 382 383 static void ubifs_dirty_inode(struct inode *inode, int flags) 384 { 385 struct ubifs_info *c = inode->i_sb->s_fs_info; 386 struct ubifs_inode *ui = ubifs_inode(inode); 387 388 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 389 if (!ui->dirty) { 390 ui->dirty = 1; 391 dbg_gen("inode %lu", inode->i_ino); 392 } 393 } 394 395 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 396 { 397 struct ubifs_info *c = dentry->d_sb->s_fs_info; 398 unsigned long long free; 399 __le32 *uuid = (__le32 *)c->uuid; 400 401 free = ubifs_get_free_space(c); 402 dbg_gen("free space %lld bytes (%lld blocks)", 403 free, free >> UBIFS_BLOCK_SHIFT); 404 405 buf->f_type = UBIFS_SUPER_MAGIC; 406 buf->f_bsize = UBIFS_BLOCK_SIZE; 407 buf->f_blocks = c->block_cnt; 408 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 409 if (free > c->report_rp_size) 410 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 411 else 412 buf->f_bavail = 0; 413 buf->f_files = 0; 414 buf->f_ffree = 0; 415 buf->f_namelen = UBIFS_MAX_NLEN; 416 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 417 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 418 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 419 return 0; 420 } 421 422 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 423 { 424 struct ubifs_info *c = root->d_sb->s_fs_info; 425 426 if (c->mount_opts.unmount_mode == 2) 427 seq_puts(s, ",fast_unmount"); 428 else if (c->mount_opts.unmount_mode == 1) 429 seq_puts(s, ",norm_unmount"); 430 431 if (c->mount_opts.bulk_read == 2) 432 seq_puts(s, ",bulk_read"); 433 else if (c->mount_opts.bulk_read == 1) 434 seq_puts(s, ",no_bulk_read"); 435 436 if (c->mount_opts.chk_data_crc == 2) 437 seq_puts(s, ",chk_data_crc"); 438 else if (c->mount_opts.chk_data_crc == 1) 439 seq_puts(s, ",no_chk_data_crc"); 440 441 if (c->mount_opts.override_compr) { 442 seq_printf(s, ",compr=%s", 443 ubifs_compr_name(c, c->mount_opts.compr_type)); 444 } 445 446 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 447 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 448 449 return 0; 450 } 451 452 static int ubifs_sync_fs(struct super_block *sb, int wait) 453 { 454 int i, err; 455 struct ubifs_info *c = sb->s_fs_info; 456 457 /* 458 * Zero @wait is just an advisory thing to help the file system shove 459 * lots of data into the queues, and there will be the second 460 * '->sync_fs()' call, with non-zero @wait. 461 */ 462 if (!wait) 463 return 0; 464 465 /* 466 * Synchronize write buffers, because 'ubifs_run_commit()' does not 467 * do this if it waits for an already running commit. 468 */ 469 for (i = 0; i < c->jhead_cnt; i++) { 470 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 471 if (err) 472 return err; 473 } 474 475 /* 476 * Strictly speaking, it is not necessary to commit the journal here, 477 * synchronizing write-buffers would be enough. But committing makes 478 * UBIFS free space predictions much more accurate, so we want to let 479 * the user be able to get more accurate results of 'statfs()' after 480 * they synchronize the file system. 481 */ 482 err = ubifs_run_commit(c); 483 if (err) 484 return err; 485 486 return ubi_sync(c->vi.ubi_num); 487 } 488 489 /** 490 * init_constants_early - initialize UBIFS constants. 491 * @c: UBIFS file-system description object 492 * 493 * This function initialize UBIFS constants which do not need the superblock to 494 * be read. It also checks that the UBI volume satisfies basic UBIFS 495 * requirements. Returns zero in case of success and a negative error code in 496 * case of failure. 497 */ 498 static int init_constants_early(struct ubifs_info *c) 499 { 500 if (c->vi.corrupted) { 501 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 502 c->ro_media = 1; 503 } 504 505 if (c->di.ro_mode) { 506 ubifs_msg(c, "read-only UBI device"); 507 c->ro_media = 1; 508 } 509 510 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 511 ubifs_msg(c, "static UBI volume - read-only mode"); 512 c->ro_media = 1; 513 } 514 515 c->leb_cnt = c->vi.size; 516 c->leb_size = c->vi.usable_leb_size; 517 c->leb_start = c->di.leb_start; 518 c->half_leb_size = c->leb_size / 2; 519 c->min_io_size = c->di.min_io_size; 520 c->min_io_shift = fls(c->min_io_size) - 1; 521 c->max_write_size = c->di.max_write_size; 522 c->max_write_shift = fls(c->max_write_size) - 1; 523 524 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 525 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 526 c->leb_size, UBIFS_MIN_LEB_SZ); 527 return -EINVAL; 528 } 529 530 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 531 ubifs_errc(c, "too few LEBs (%d), min. is %d", 532 c->leb_cnt, UBIFS_MIN_LEB_CNT); 533 return -EINVAL; 534 } 535 536 if (!is_power_of_2(c->min_io_size)) { 537 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 538 return -EINVAL; 539 } 540 541 /* 542 * Maximum write size has to be greater or equivalent to min. I/O 543 * size, and be multiple of min. I/O size. 544 */ 545 if (c->max_write_size < c->min_io_size || 546 c->max_write_size % c->min_io_size || 547 !is_power_of_2(c->max_write_size)) { 548 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 549 c->max_write_size, c->min_io_size); 550 return -EINVAL; 551 } 552 553 /* 554 * UBIFS aligns all node to 8-byte boundary, so to make function in 555 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 556 * less than 8. 557 */ 558 if (c->min_io_size < 8) { 559 c->min_io_size = 8; 560 c->min_io_shift = 3; 561 if (c->max_write_size < c->min_io_size) { 562 c->max_write_size = c->min_io_size; 563 c->max_write_shift = c->min_io_shift; 564 } 565 } 566 567 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 568 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 569 570 /* 571 * Initialize node length ranges which are mostly needed for node 572 * length validation. 573 */ 574 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 575 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 576 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 577 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 578 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 579 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 580 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 581 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 582 UBIFS_MAX_HMAC_LEN; 583 584 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 585 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 586 c->ranges[UBIFS_ORPH_NODE].min_len = 587 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 588 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 589 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 590 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 591 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 592 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 593 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 594 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 595 /* 596 * Minimum indexing node size is amended later when superblock is 597 * read and the key length is known. 598 */ 599 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 600 /* 601 * Maximum indexing node size is amended later when superblock is 602 * read and the fanout is known. 603 */ 604 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 605 606 /* 607 * Initialize dead and dark LEB space watermarks. See gc.c for comments 608 * about these values. 609 */ 610 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 611 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 612 613 /* 614 * Calculate how many bytes would be wasted at the end of LEB if it was 615 * fully filled with data nodes of maximum size. This is used in 616 * calculations when reporting free space. 617 */ 618 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 619 620 /* Buffer size for bulk-reads */ 621 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 622 if (c->max_bu_buf_len > c->leb_size) 623 c->max_bu_buf_len = c->leb_size; 624 return 0; 625 } 626 627 /** 628 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 629 * @c: UBIFS file-system description object 630 * @lnum: LEB the write-buffer was synchronized to 631 * @free: how many free bytes left in this LEB 632 * @pad: how many bytes were padded 633 * 634 * This is a callback function which is called by the I/O unit when the 635 * write-buffer is synchronized. We need this to correctly maintain space 636 * accounting in bud logical eraseblocks. This function returns zero in case of 637 * success and a negative error code in case of failure. 638 * 639 * This function actually belongs to the journal, but we keep it here because 640 * we want to keep it static. 641 */ 642 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 643 { 644 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 645 } 646 647 /* 648 * init_constants_sb - initialize UBIFS constants. 649 * @c: UBIFS file-system description object 650 * 651 * This is a helper function which initializes various UBIFS constants after 652 * the superblock has been read. It also checks various UBIFS parameters and 653 * makes sure they are all right. Returns zero in case of success and a 654 * negative error code in case of failure. 655 */ 656 static int init_constants_sb(struct ubifs_info *c) 657 { 658 int tmp, err; 659 long long tmp64; 660 661 c->main_bytes = (long long)c->main_lebs * c->leb_size; 662 c->max_znode_sz = sizeof(struct ubifs_znode) + 663 c->fanout * sizeof(struct ubifs_zbranch); 664 665 tmp = ubifs_idx_node_sz(c, 1); 666 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 667 c->min_idx_node_sz = ALIGN(tmp, 8); 668 669 tmp = ubifs_idx_node_sz(c, c->fanout); 670 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 671 c->max_idx_node_sz = ALIGN(tmp, 8); 672 673 /* Make sure LEB size is large enough to fit full commit */ 674 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 675 tmp = ALIGN(tmp, c->min_io_size); 676 if (tmp > c->leb_size) { 677 ubifs_err(c, "too small LEB size %d, at least %d needed", 678 c->leb_size, tmp); 679 return -EINVAL; 680 } 681 682 /* 683 * Make sure that the log is large enough to fit reference nodes for 684 * all buds plus one reserved LEB. 685 */ 686 tmp64 = c->max_bud_bytes + c->leb_size - 1; 687 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 688 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 689 tmp /= c->leb_size; 690 tmp += 1; 691 if (c->log_lebs < tmp) { 692 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 693 c->log_lebs, tmp); 694 return -EINVAL; 695 } 696 697 /* 698 * When budgeting we assume worst-case scenarios when the pages are not 699 * be compressed and direntries are of the maximum size. 700 * 701 * Note, data, which may be stored in inodes is budgeted separately, so 702 * it is not included into 'c->bi.inode_budget'. 703 */ 704 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 705 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 706 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 707 708 /* 709 * When the amount of flash space used by buds becomes 710 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 711 * The writers are unblocked when the commit is finished. To avoid 712 * writers to be blocked UBIFS initiates background commit in advance, 713 * when number of bud bytes becomes above the limit defined below. 714 */ 715 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 716 717 /* 718 * Ensure minimum journal size. All the bytes in the journal heads are 719 * considered to be used, when calculating the current journal usage. 720 * Consequently, if the journal is too small, UBIFS will treat it as 721 * always full. 722 */ 723 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 724 if (c->bg_bud_bytes < tmp64) 725 c->bg_bud_bytes = tmp64; 726 if (c->max_bud_bytes < tmp64 + c->leb_size) 727 c->max_bud_bytes = tmp64 + c->leb_size; 728 729 err = ubifs_calc_lpt_geom(c); 730 if (err) 731 return err; 732 733 /* Initialize effective LEB size used in budgeting calculations */ 734 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 735 return 0; 736 } 737 738 /* 739 * init_constants_master - initialize UBIFS constants. 740 * @c: UBIFS file-system description object 741 * 742 * This is a helper function which initializes various UBIFS constants after 743 * the master node has been read. It also checks various UBIFS parameters and 744 * makes sure they are all right. 745 */ 746 static void init_constants_master(struct ubifs_info *c) 747 { 748 long long tmp64; 749 750 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 751 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 752 753 /* 754 * Calculate total amount of FS blocks. This number is not used 755 * internally because it does not make much sense for UBIFS, but it is 756 * necessary to report something for the 'statfs()' call. 757 * 758 * Subtract the LEB reserved for GC, the LEB which is reserved for 759 * deletions, minimum LEBs for the index, and assume only one journal 760 * head is available. 761 */ 762 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 763 tmp64 *= (long long)c->leb_size - c->leb_overhead; 764 tmp64 = ubifs_reported_space(c, tmp64); 765 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 766 } 767 768 /** 769 * take_gc_lnum - reserve GC LEB. 770 * @c: UBIFS file-system description object 771 * 772 * This function ensures that the LEB reserved for garbage collection is marked 773 * as "taken" in lprops. We also have to set free space to LEB size and dirty 774 * space to zero, because lprops may contain out-of-date information if the 775 * file-system was un-mounted before it has been committed. This function 776 * returns zero in case of success and a negative error code in case of 777 * failure. 778 */ 779 static int take_gc_lnum(struct ubifs_info *c) 780 { 781 int err; 782 783 if (c->gc_lnum == -1) { 784 ubifs_err(c, "no LEB for GC"); 785 return -EINVAL; 786 } 787 788 /* And we have to tell lprops that this LEB is taken */ 789 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 790 LPROPS_TAKEN, 0, 0); 791 return err; 792 } 793 794 /** 795 * alloc_wbufs - allocate write-buffers. 796 * @c: UBIFS file-system description object 797 * 798 * This helper function allocates and initializes UBIFS write-buffers. Returns 799 * zero in case of success and %-ENOMEM in case of failure. 800 */ 801 static int alloc_wbufs(struct ubifs_info *c) 802 { 803 int i, err; 804 805 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 806 GFP_KERNEL); 807 if (!c->jheads) 808 return -ENOMEM; 809 810 /* Initialize journal heads */ 811 for (i = 0; i < c->jhead_cnt; i++) { 812 INIT_LIST_HEAD(&c->jheads[i].buds_list); 813 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 814 if (err) 815 return err; 816 817 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 818 c->jheads[i].wbuf.jhead = i; 819 c->jheads[i].grouped = 1; 820 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 821 if (IS_ERR(c->jheads[i].log_hash)) 822 goto out; 823 } 824 825 /* 826 * Garbage Collector head does not need to be synchronized by timer. 827 * Also GC head nodes are not grouped. 828 */ 829 c->jheads[GCHD].wbuf.no_timer = 1; 830 c->jheads[GCHD].grouped = 0; 831 832 return 0; 833 834 out: 835 while (i--) 836 kfree(c->jheads[i].log_hash); 837 838 return err; 839 } 840 841 /** 842 * free_wbufs - free write-buffers. 843 * @c: UBIFS file-system description object 844 */ 845 static void free_wbufs(struct ubifs_info *c) 846 { 847 int i; 848 849 if (c->jheads) { 850 for (i = 0; i < c->jhead_cnt; i++) { 851 kfree(c->jheads[i].wbuf.buf); 852 kfree(c->jheads[i].wbuf.inodes); 853 kfree(c->jheads[i].log_hash); 854 } 855 kfree(c->jheads); 856 c->jheads = NULL; 857 } 858 } 859 860 /** 861 * free_orphans - free orphans. 862 * @c: UBIFS file-system description object 863 */ 864 static void free_orphans(struct ubifs_info *c) 865 { 866 struct ubifs_orphan *orph; 867 868 while (c->orph_dnext) { 869 orph = c->orph_dnext; 870 c->orph_dnext = orph->dnext; 871 list_del(&orph->list); 872 kfree(orph); 873 } 874 875 while (!list_empty(&c->orph_list)) { 876 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 877 list_del(&orph->list); 878 kfree(orph); 879 ubifs_err(c, "orphan list not empty at unmount"); 880 } 881 882 vfree(c->orph_buf); 883 c->orph_buf = NULL; 884 } 885 886 /** 887 * free_buds - free per-bud objects. 888 * @c: UBIFS file-system description object 889 */ 890 static void free_buds(struct ubifs_info *c) 891 { 892 struct ubifs_bud *bud, *n; 893 894 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 895 kfree(bud); 896 } 897 898 /** 899 * check_volume_empty - check if the UBI volume is empty. 900 * @c: UBIFS file-system description object 901 * 902 * This function checks if the UBIFS volume is empty by looking if its LEBs are 903 * mapped or not. The result of checking is stored in the @c->empty variable. 904 * Returns zero in case of success and a negative error code in case of 905 * failure. 906 */ 907 static int check_volume_empty(struct ubifs_info *c) 908 { 909 int lnum, err; 910 911 c->empty = 1; 912 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 913 err = ubifs_is_mapped(c, lnum); 914 if (unlikely(err < 0)) 915 return err; 916 if (err == 1) { 917 c->empty = 0; 918 break; 919 } 920 921 cond_resched(); 922 } 923 924 return 0; 925 } 926 927 /* 928 * UBIFS mount options. 929 * 930 * Opt_fast_unmount: do not run a journal commit before un-mounting 931 * Opt_norm_unmount: run a journal commit before un-mounting 932 * Opt_bulk_read: enable bulk-reads 933 * Opt_no_bulk_read: disable bulk-reads 934 * Opt_chk_data_crc: check CRCs when reading data nodes 935 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 936 * Opt_override_compr: override default compressor 937 * Opt_assert: set ubifs_assert() action 938 * Opt_auth_key: The key name used for authentication 939 * Opt_auth_hash_name: The hash type used for authentication 940 * Opt_err: just end of array marker 941 */ 942 enum { 943 Opt_fast_unmount, 944 Opt_norm_unmount, 945 Opt_bulk_read, 946 Opt_no_bulk_read, 947 Opt_chk_data_crc, 948 Opt_no_chk_data_crc, 949 Opt_override_compr, 950 Opt_assert, 951 Opt_auth_key, 952 Opt_auth_hash_name, 953 Opt_ignore, 954 Opt_err, 955 }; 956 957 static const match_table_t tokens = { 958 {Opt_fast_unmount, "fast_unmount"}, 959 {Opt_norm_unmount, "norm_unmount"}, 960 {Opt_bulk_read, "bulk_read"}, 961 {Opt_no_bulk_read, "no_bulk_read"}, 962 {Opt_chk_data_crc, "chk_data_crc"}, 963 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 964 {Opt_override_compr, "compr=%s"}, 965 {Opt_auth_key, "auth_key=%s"}, 966 {Opt_auth_hash_name, "auth_hash_name=%s"}, 967 {Opt_ignore, "ubi=%s"}, 968 {Opt_ignore, "vol=%s"}, 969 {Opt_assert, "assert=%s"}, 970 {Opt_err, NULL}, 971 }; 972 973 /** 974 * parse_standard_option - parse a standard mount option. 975 * @option: the option to parse 976 * 977 * Normally, standard mount options like "sync" are passed to file-systems as 978 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 979 * be present in the options string. This function tries to deal with this 980 * situation and parse standard options. Returns 0 if the option was not 981 * recognized, and the corresponding integer flag if it was. 982 * 983 * UBIFS is only interested in the "sync" option, so do not check for anything 984 * else. 985 */ 986 static int parse_standard_option(const char *option) 987 { 988 989 pr_notice("UBIFS: parse %s\n", option); 990 if (!strcmp(option, "sync")) 991 return SB_SYNCHRONOUS; 992 return 0; 993 } 994 995 /** 996 * ubifs_parse_options - parse mount parameters. 997 * @c: UBIFS file-system description object 998 * @options: parameters to parse 999 * @is_remount: non-zero if this is FS re-mount 1000 * 1001 * This function parses UBIFS mount options and returns zero in case success 1002 * and a negative error code in case of failure. 1003 */ 1004 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1005 int is_remount) 1006 { 1007 char *p; 1008 substring_t args[MAX_OPT_ARGS]; 1009 1010 if (!options) 1011 return 0; 1012 1013 while ((p = strsep(&options, ","))) { 1014 int token; 1015 1016 if (!*p) 1017 continue; 1018 1019 token = match_token(p, tokens, args); 1020 switch (token) { 1021 /* 1022 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1023 * We accept them in order to be backward-compatible. But this 1024 * should be removed at some point. 1025 */ 1026 case Opt_fast_unmount: 1027 c->mount_opts.unmount_mode = 2; 1028 break; 1029 case Opt_norm_unmount: 1030 c->mount_opts.unmount_mode = 1; 1031 break; 1032 case Opt_bulk_read: 1033 c->mount_opts.bulk_read = 2; 1034 c->bulk_read = 1; 1035 break; 1036 case Opt_no_bulk_read: 1037 c->mount_opts.bulk_read = 1; 1038 c->bulk_read = 0; 1039 break; 1040 case Opt_chk_data_crc: 1041 c->mount_opts.chk_data_crc = 2; 1042 c->no_chk_data_crc = 0; 1043 break; 1044 case Opt_no_chk_data_crc: 1045 c->mount_opts.chk_data_crc = 1; 1046 c->no_chk_data_crc = 1; 1047 break; 1048 case Opt_override_compr: 1049 { 1050 char *name = match_strdup(&args[0]); 1051 1052 if (!name) 1053 return -ENOMEM; 1054 if (!strcmp(name, "none")) 1055 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1056 else if (!strcmp(name, "lzo")) 1057 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1058 else if (!strcmp(name, "zlib")) 1059 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1060 else { 1061 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1062 kfree(name); 1063 return -EINVAL; 1064 } 1065 kfree(name); 1066 c->mount_opts.override_compr = 1; 1067 c->default_compr = c->mount_opts.compr_type; 1068 break; 1069 } 1070 case Opt_assert: 1071 { 1072 char *act = match_strdup(&args[0]); 1073 1074 if (!act) 1075 return -ENOMEM; 1076 if (!strcmp(act, "report")) 1077 c->assert_action = ASSACT_REPORT; 1078 else if (!strcmp(act, "read-only")) 1079 c->assert_action = ASSACT_RO; 1080 else if (!strcmp(act, "panic")) 1081 c->assert_action = ASSACT_PANIC; 1082 else { 1083 ubifs_err(c, "unknown assert action \"%s\"", act); 1084 kfree(act); 1085 return -EINVAL; 1086 } 1087 kfree(act); 1088 break; 1089 } 1090 case Opt_auth_key: 1091 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL); 1092 if (!c->auth_key_name) 1093 return -ENOMEM; 1094 break; 1095 case Opt_auth_hash_name: 1096 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL); 1097 if (!c->auth_hash_name) 1098 return -ENOMEM; 1099 break; 1100 case Opt_ignore: 1101 break; 1102 default: 1103 { 1104 unsigned long flag; 1105 struct super_block *sb = c->vfs_sb; 1106 1107 flag = parse_standard_option(p); 1108 if (!flag) { 1109 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1110 p); 1111 return -EINVAL; 1112 } 1113 sb->s_flags |= flag; 1114 break; 1115 } 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 /** 1123 * destroy_journal - destroy journal data structures. 1124 * @c: UBIFS file-system description object 1125 * 1126 * This function destroys journal data structures including those that may have 1127 * been created by recovery functions. 1128 */ 1129 static void destroy_journal(struct ubifs_info *c) 1130 { 1131 while (!list_empty(&c->unclean_leb_list)) { 1132 struct ubifs_unclean_leb *ucleb; 1133 1134 ucleb = list_entry(c->unclean_leb_list.next, 1135 struct ubifs_unclean_leb, list); 1136 list_del(&ucleb->list); 1137 kfree(ucleb); 1138 } 1139 while (!list_empty(&c->old_buds)) { 1140 struct ubifs_bud *bud; 1141 1142 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1143 list_del(&bud->list); 1144 kfree(bud); 1145 } 1146 ubifs_destroy_idx_gc(c); 1147 ubifs_destroy_size_tree(c); 1148 ubifs_tnc_close(c); 1149 free_buds(c); 1150 } 1151 1152 /** 1153 * bu_init - initialize bulk-read information. 1154 * @c: UBIFS file-system description object 1155 */ 1156 static void bu_init(struct ubifs_info *c) 1157 { 1158 ubifs_assert(c, c->bulk_read == 1); 1159 1160 if (c->bu.buf) 1161 return; /* Already initialized */ 1162 1163 again: 1164 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1165 if (!c->bu.buf) { 1166 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1167 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1168 goto again; 1169 } 1170 1171 /* Just disable bulk-read */ 1172 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1173 c->max_bu_buf_len); 1174 c->mount_opts.bulk_read = 1; 1175 c->bulk_read = 0; 1176 return; 1177 } 1178 } 1179 1180 /** 1181 * check_free_space - check if there is enough free space to mount. 1182 * @c: UBIFS file-system description object 1183 * 1184 * This function makes sure UBIFS has enough free space to be mounted in 1185 * read/write mode. UBIFS must always have some free space to allow deletions. 1186 */ 1187 static int check_free_space(struct ubifs_info *c) 1188 { 1189 ubifs_assert(c, c->dark_wm > 0); 1190 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1191 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1192 ubifs_dump_budg(c, &c->bi); 1193 ubifs_dump_lprops(c); 1194 return -ENOSPC; 1195 } 1196 return 0; 1197 } 1198 1199 /** 1200 * mount_ubifs - mount UBIFS file-system. 1201 * @c: UBIFS file-system description object 1202 * 1203 * This function mounts UBIFS file system. Returns zero in case of success and 1204 * a negative error code in case of failure. 1205 */ 1206 static int mount_ubifs(struct ubifs_info *c) 1207 { 1208 int err; 1209 long long x, y; 1210 size_t sz; 1211 1212 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1213 /* Suppress error messages while probing if SB_SILENT is set */ 1214 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1215 1216 err = init_constants_early(c); 1217 if (err) 1218 return err; 1219 1220 err = ubifs_debugging_init(c); 1221 if (err) 1222 return err; 1223 1224 err = check_volume_empty(c); 1225 if (err) 1226 goto out_free; 1227 1228 if (c->empty && (c->ro_mount || c->ro_media)) { 1229 /* 1230 * This UBI volume is empty, and read-only, or the file system 1231 * is mounted read-only - we cannot format it. 1232 */ 1233 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1234 c->ro_media ? "UBI volume" : "mount"); 1235 err = -EROFS; 1236 goto out_free; 1237 } 1238 1239 if (c->ro_media && !c->ro_mount) { 1240 ubifs_err(c, "cannot mount read-write - read-only media"); 1241 err = -EROFS; 1242 goto out_free; 1243 } 1244 1245 /* 1246 * The requirement for the buffer is that it should fit indexing B-tree 1247 * height amount of integers. We assume the height if the TNC tree will 1248 * never exceed 64. 1249 */ 1250 err = -ENOMEM; 1251 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1252 GFP_KERNEL); 1253 if (!c->bottom_up_buf) 1254 goto out_free; 1255 1256 c->sbuf = vmalloc(c->leb_size); 1257 if (!c->sbuf) 1258 goto out_free; 1259 1260 if (!c->ro_mount) { 1261 c->ileb_buf = vmalloc(c->leb_size); 1262 if (!c->ileb_buf) 1263 goto out_free; 1264 } 1265 1266 if (c->bulk_read == 1) 1267 bu_init(c); 1268 1269 if (!c->ro_mount) { 1270 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1271 UBIFS_CIPHER_BLOCK_SIZE, 1272 GFP_KERNEL); 1273 if (!c->write_reserve_buf) 1274 goto out_free; 1275 } 1276 1277 c->mounting = 1; 1278 1279 if (c->auth_key_name) { 1280 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1281 err = ubifs_init_authentication(c); 1282 if (err) 1283 goto out_free; 1284 } else { 1285 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1286 " authentication support"); 1287 err = -EINVAL; 1288 goto out_free; 1289 } 1290 } 1291 1292 err = ubifs_read_superblock(c); 1293 if (err) 1294 goto out_free; 1295 1296 c->probing = 0; 1297 1298 /* 1299 * Make sure the compressor which is set as default in the superblock 1300 * or overridden by mount options is actually compiled in. 1301 */ 1302 if (!ubifs_compr_present(c, c->default_compr)) { 1303 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1304 ubifs_compr_name(c, c->default_compr)); 1305 err = -ENOTSUPP; 1306 goto out_free; 1307 } 1308 1309 err = init_constants_sb(c); 1310 if (err) 1311 goto out_free; 1312 1313 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1314 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1315 c->cbuf = kmalloc(sz, GFP_NOFS); 1316 if (!c->cbuf) { 1317 err = -ENOMEM; 1318 goto out_free; 1319 } 1320 1321 err = alloc_wbufs(c); 1322 if (err) 1323 goto out_cbuf; 1324 1325 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1326 if (!c->ro_mount) { 1327 /* Create background thread */ 1328 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1329 if (IS_ERR(c->bgt)) { 1330 err = PTR_ERR(c->bgt); 1331 c->bgt = NULL; 1332 ubifs_err(c, "cannot spawn \"%s\", error %d", 1333 c->bgt_name, err); 1334 goto out_wbufs; 1335 } 1336 wake_up_process(c->bgt); 1337 } 1338 1339 err = ubifs_read_master(c); 1340 if (err) 1341 goto out_master; 1342 1343 init_constants_master(c); 1344 1345 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1346 ubifs_msg(c, "recovery needed"); 1347 c->need_recovery = 1; 1348 } 1349 1350 if (c->need_recovery && !c->ro_mount) { 1351 err = ubifs_recover_inl_heads(c, c->sbuf); 1352 if (err) 1353 goto out_master; 1354 } 1355 1356 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1357 if (err) 1358 goto out_master; 1359 1360 if (!c->ro_mount && c->space_fixup) { 1361 err = ubifs_fixup_free_space(c); 1362 if (err) 1363 goto out_lpt; 1364 } 1365 1366 if (!c->ro_mount && !c->need_recovery) { 1367 /* 1368 * Set the "dirty" flag so that if we reboot uncleanly we 1369 * will notice this immediately on the next mount. 1370 */ 1371 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1372 err = ubifs_write_master(c); 1373 if (err) 1374 goto out_lpt; 1375 } 1376 1377 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1378 if (err) 1379 goto out_lpt; 1380 1381 err = ubifs_replay_journal(c); 1382 if (err) 1383 goto out_journal; 1384 1385 /* Calculate 'min_idx_lebs' after journal replay */ 1386 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1387 1388 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1389 if (err) 1390 goto out_orphans; 1391 1392 if (!c->ro_mount) { 1393 int lnum; 1394 1395 err = check_free_space(c); 1396 if (err) 1397 goto out_orphans; 1398 1399 /* Check for enough log space */ 1400 lnum = c->lhead_lnum + 1; 1401 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1402 lnum = UBIFS_LOG_LNUM; 1403 if (lnum == c->ltail_lnum) { 1404 err = ubifs_consolidate_log(c); 1405 if (err) 1406 goto out_orphans; 1407 } 1408 1409 if (c->need_recovery) { 1410 if (!ubifs_authenticated(c)) { 1411 err = ubifs_recover_size(c, true); 1412 if (err) 1413 goto out_orphans; 1414 } 1415 1416 err = ubifs_rcvry_gc_commit(c); 1417 if (err) 1418 goto out_orphans; 1419 1420 if (ubifs_authenticated(c)) { 1421 err = ubifs_recover_size(c, false); 1422 if (err) 1423 goto out_orphans; 1424 } 1425 } else { 1426 err = take_gc_lnum(c); 1427 if (err) 1428 goto out_orphans; 1429 1430 /* 1431 * GC LEB may contain garbage if there was an unclean 1432 * reboot, and it should be un-mapped. 1433 */ 1434 err = ubifs_leb_unmap(c, c->gc_lnum); 1435 if (err) 1436 goto out_orphans; 1437 } 1438 1439 err = dbg_check_lprops(c); 1440 if (err) 1441 goto out_orphans; 1442 } else if (c->need_recovery) { 1443 err = ubifs_recover_size(c, false); 1444 if (err) 1445 goto out_orphans; 1446 } else { 1447 /* 1448 * Even if we mount read-only, we have to set space in GC LEB 1449 * to proper value because this affects UBIFS free space 1450 * reporting. We do not want to have a situation when 1451 * re-mounting from R/O to R/W changes amount of free space. 1452 */ 1453 err = take_gc_lnum(c); 1454 if (err) 1455 goto out_orphans; 1456 } 1457 1458 spin_lock(&ubifs_infos_lock); 1459 list_add_tail(&c->infos_list, &ubifs_infos); 1460 spin_unlock(&ubifs_infos_lock); 1461 1462 if (c->need_recovery) { 1463 if (c->ro_mount) 1464 ubifs_msg(c, "recovery deferred"); 1465 else { 1466 c->need_recovery = 0; 1467 ubifs_msg(c, "recovery completed"); 1468 /* 1469 * GC LEB has to be empty and taken at this point. But 1470 * the journal head LEBs may also be accounted as 1471 * "empty taken" if they are empty. 1472 */ 1473 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1474 } 1475 } else 1476 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1477 1478 err = dbg_check_filesystem(c); 1479 if (err) 1480 goto out_infos; 1481 1482 err = dbg_debugfs_init_fs(c); 1483 if (err) 1484 goto out_infos; 1485 1486 c->mounting = 0; 1487 1488 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1489 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1490 c->ro_mount ? ", R/O mode" : ""); 1491 x = (long long)c->main_lebs * c->leb_size; 1492 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1493 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1494 c->leb_size, c->leb_size >> 10, c->min_io_size, 1495 c->max_write_size); 1496 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1497 x, x >> 20, c->main_lebs, 1498 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1499 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1500 c->report_rp_size, c->report_rp_size >> 10); 1501 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1502 c->fmt_version, c->ro_compat_version, 1503 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1504 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1505 1506 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1507 dbg_gen("data journal heads: %d", 1508 c->jhead_cnt - NONDATA_JHEADS_CNT); 1509 dbg_gen("log LEBs: %d (%d - %d)", 1510 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1511 dbg_gen("LPT area LEBs: %d (%d - %d)", 1512 c->lpt_lebs, c->lpt_first, c->lpt_last); 1513 dbg_gen("orphan area LEBs: %d (%d - %d)", 1514 c->orph_lebs, c->orph_first, c->orph_last); 1515 dbg_gen("main area LEBs: %d (%d - %d)", 1516 c->main_lebs, c->main_first, c->leb_cnt - 1); 1517 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1518 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1519 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1520 c->bi.old_idx_sz >> 20); 1521 dbg_gen("key hash type: %d", c->key_hash_type); 1522 dbg_gen("tree fanout: %d", c->fanout); 1523 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1524 dbg_gen("max. znode size %d", c->max_znode_sz); 1525 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1526 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1527 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1528 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1529 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1530 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1531 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1532 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1533 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1534 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1535 dbg_gen("dead watermark: %d", c->dead_wm); 1536 dbg_gen("dark watermark: %d", c->dark_wm); 1537 dbg_gen("LEB overhead: %d", c->leb_overhead); 1538 x = (long long)c->main_lebs * c->dark_wm; 1539 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1540 x, x >> 10, x >> 20); 1541 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1542 c->max_bud_bytes, c->max_bud_bytes >> 10, 1543 c->max_bud_bytes >> 20); 1544 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1545 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1546 c->bg_bud_bytes >> 20); 1547 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1548 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1549 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1550 dbg_gen("commit number: %llu", c->cmt_no); 1551 1552 return 0; 1553 1554 out_infos: 1555 spin_lock(&ubifs_infos_lock); 1556 list_del(&c->infos_list); 1557 spin_unlock(&ubifs_infos_lock); 1558 out_orphans: 1559 free_orphans(c); 1560 out_journal: 1561 destroy_journal(c); 1562 out_lpt: 1563 ubifs_lpt_free(c, 0); 1564 out_master: 1565 kfree(c->mst_node); 1566 kfree(c->rcvrd_mst_node); 1567 if (c->bgt) 1568 kthread_stop(c->bgt); 1569 out_wbufs: 1570 free_wbufs(c); 1571 out_cbuf: 1572 kfree(c->cbuf); 1573 out_free: 1574 kfree(c->write_reserve_buf); 1575 kfree(c->bu.buf); 1576 vfree(c->ileb_buf); 1577 vfree(c->sbuf); 1578 kfree(c->bottom_up_buf); 1579 ubifs_debugging_exit(c); 1580 return err; 1581 } 1582 1583 /** 1584 * ubifs_umount - un-mount UBIFS file-system. 1585 * @c: UBIFS file-system description object 1586 * 1587 * Note, this function is called to free allocated resourced when un-mounting, 1588 * as well as free resources when an error occurred while we were half way 1589 * through mounting (error path cleanup function). So it has to make sure the 1590 * resource was actually allocated before freeing it. 1591 */ 1592 static void ubifs_umount(struct ubifs_info *c) 1593 { 1594 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1595 c->vi.vol_id); 1596 1597 dbg_debugfs_exit_fs(c); 1598 spin_lock(&ubifs_infos_lock); 1599 list_del(&c->infos_list); 1600 spin_unlock(&ubifs_infos_lock); 1601 1602 if (c->bgt) 1603 kthread_stop(c->bgt); 1604 1605 destroy_journal(c); 1606 free_wbufs(c); 1607 free_orphans(c); 1608 ubifs_lpt_free(c, 0); 1609 ubifs_exit_authentication(c); 1610 1611 kfree(c->auth_key_name); 1612 kfree(c->auth_hash_name); 1613 kfree(c->cbuf); 1614 kfree(c->rcvrd_mst_node); 1615 kfree(c->mst_node); 1616 kfree(c->write_reserve_buf); 1617 kfree(c->bu.buf); 1618 vfree(c->ileb_buf); 1619 vfree(c->sbuf); 1620 kfree(c->bottom_up_buf); 1621 ubifs_debugging_exit(c); 1622 } 1623 1624 /** 1625 * ubifs_remount_rw - re-mount in read-write mode. 1626 * @c: UBIFS file-system description object 1627 * 1628 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1629 * mode. This function allocates the needed resources and re-mounts UBIFS in 1630 * read-write mode. 1631 */ 1632 static int ubifs_remount_rw(struct ubifs_info *c) 1633 { 1634 int err, lnum; 1635 1636 if (c->rw_incompat) { 1637 ubifs_err(c, "the file-system is not R/W-compatible"); 1638 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1639 c->fmt_version, c->ro_compat_version, 1640 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1641 return -EROFS; 1642 } 1643 1644 mutex_lock(&c->umount_mutex); 1645 dbg_save_space_info(c); 1646 c->remounting_rw = 1; 1647 c->ro_mount = 0; 1648 1649 if (c->space_fixup) { 1650 err = ubifs_fixup_free_space(c); 1651 if (err) 1652 goto out; 1653 } 1654 1655 err = check_free_space(c); 1656 if (err) 1657 goto out; 1658 1659 if (c->old_leb_cnt != c->leb_cnt) { 1660 struct ubifs_sb_node *sup = c->sup_node; 1661 1662 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1663 err = ubifs_write_sb_node(c, sup); 1664 if (err) 1665 goto out; 1666 } 1667 1668 if (c->need_recovery) { 1669 ubifs_msg(c, "completing deferred recovery"); 1670 err = ubifs_write_rcvrd_mst_node(c); 1671 if (err) 1672 goto out; 1673 if (!ubifs_authenticated(c)) { 1674 err = ubifs_recover_size(c, true); 1675 if (err) 1676 goto out; 1677 } 1678 err = ubifs_clean_lebs(c, c->sbuf); 1679 if (err) 1680 goto out; 1681 err = ubifs_recover_inl_heads(c, c->sbuf); 1682 if (err) 1683 goto out; 1684 } else { 1685 /* A readonly mount is not allowed to have orphans */ 1686 ubifs_assert(c, c->tot_orphans == 0); 1687 err = ubifs_clear_orphans(c); 1688 if (err) 1689 goto out; 1690 } 1691 1692 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1693 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1694 err = ubifs_write_master(c); 1695 if (err) 1696 goto out; 1697 } 1698 1699 c->ileb_buf = vmalloc(c->leb_size); 1700 if (!c->ileb_buf) { 1701 err = -ENOMEM; 1702 goto out; 1703 } 1704 1705 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1706 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1707 if (!c->write_reserve_buf) { 1708 err = -ENOMEM; 1709 goto out; 1710 } 1711 1712 err = ubifs_lpt_init(c, 0, 1); 1713 if (err) 1714 goto out; 1715 1716 /* Create background thread */ 1717 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1718 if (IS_ERR(c->bgt)) { 1719 err = PTR_ERR(c->bgt); 1720 c->bgt = NULL; 1721 ubifs_err(c, "cannot spawn \"%s\", error %d", 1722 c->bgt_name, err); 1723 goto out; 1724 } 1725 wake_up_process(c->bgt); 1726 1727 c->orph_buf = vmalloc(c->leb_size); 1728 if (!c->orph_buf) { 1729 err = -ENOMEM; 1730 goto out; 1731 } 1732 1733 /* Check for enough log space */ 1734 lnum = c->lhead_lnum + 1; 1735 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1736 lnum = UBIFS_LOG_LNUM; 1737 if (lnum == c->ltail_lnum) { 1738 err = ubifs_consolidate_log(c); 1739 if (err) 1740 goto out; 1741 } 1742 1743 if (c->need_recovery) { 1744 err = ubifs_rcvry_gc_commit(c); 1745 if (err) 1746 goto out; 1747 1748 if (ubifs_authenticated(c)) { 1749 err = ubifs_recover_size(c, false); 1750 if (err) 1751 goto out; 1752 } 1753 } else { 1754 err = ubifs_leb_unmap(c, c->gc_lnum); 1755 } 1756 if (err) 1757 goto out; 1758 1759 dbg_gen("re-mounted read-write"); 1760 c->remounting_rw = 0; 1761 1762 if (c->need_recovery) { 1763 c->need_recovery = 0; 1764 ubifs_msg(c, "deferred recovery completed"); 1765 } else { 1766 /* 1767 * Do not run the debugging space check if the were doing 1768 * recovery, because when we saved the information we had the 1769 * file-system in a state where the TNC and lprops has been 1770 * modified in memory, but all the I/O operations (including a 1771 * commit) were deferred. So the file-system was in 1772 * "non-committed" state. Now the file-system is in committed 1773 * state, and of course the amount of free space will change 1774 * because, for example, the old index size was imprecise. 1775 */ 1776 err = dbg_check_space_info(c); 1777 } 1778 1779 mutex_unlock(&c->umount_mutex); 1780 return err; 1781 1782 out: 1783 c->ro_mount = 1; 1784 vfree(c->orph_buf); 1785 c->orph_buf = NULL; 1786 if (c->bgt) { 1787 kthread_stop(c->bgt); 1788 c->bgt = NULL; 1789 } 1790 free_wbufs(c); 1791 kfree(c->write_reserve_buf); 1792 c->write_reserve_buf = NULL; 1793 vfree(c->ileb_buf); 1794 c->ileb_buf = NULL; 1795 ubifs_lpt_free(c, 1); 1796 c->remounting_rw = 0; 1797 mutex_unlock(&c->umount_mutex); 1798 return err; 1799 } 1800 1801 /** 1802 * ubifs_remount_ro - re-mount in read-only mode. 1803 * @c: UBIFS file-system description object 1804 * 1805 * We assume VFS has stopped writing. Possibly the background thread could be 1806 * running a commit, however kthread_stop will wait in that case. 1807 */ 1808 static void ubifs_remount_ro(struct ubifs_info *c) 1809 { 1810 int i, err; 1811 1812 ubifs_assert(c, !c->need_recovery); 1813 ubifs_assert(c, !c->ro_mount); 1814 1815 mutex_lock(&c->umount_mutex); 1816 if (c->bgt) { 1817 kthread_stop(c->bgt); 1818 c->bgt = NULL; 1819 } 1820 1821 dbg_save_space_info(c); 1822 1823 for (i = 0; i < c->jhead_cnt; i++) { 1824 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1825 if (err) 1826 ubifs_ro_mode(c, err); 1827 } 1828 1829 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1830 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1831 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1832 err = ubifs_write_master(c); 1833 if (err) 1834 ubifs_ro_mode(c, err); 1835 1836 vfree(c->orph_buf); 1837 c->orph_buf = NULL; 1838 kfree(c->write_reserve_buf); 1839 c->write_reserve_buf = NULL; 1840 vfree(c->ileb_buf); 1841 c->ileb_buf = NULL; 1842 ubifs_lpt_free(c, 1); 1843 c->ro_mount = 1; 1844 err = dbg_check_space_info(c); 1845 if (err) 1846 ubifs_ro_mode(c, err); 1847 mutex_unlock(&c->umount_mutex); 1848 } 1849 1850 static void ubifs_put_super(struct super_block *sb) 1851 { 1852 int i; 1853 struct ubifs_info *c = sb->s_fs_info; 1854 1855 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1856 1857 /* 1858 * The following asserts are only valid if there has not been a failure 1859 * of the media. For example, there will be dirty inodes if we failed 1860 * to write them back because of I/O errors. 1861 */ 1862 if (!c->ro_error) { 1863 ubifs_assert(c, c->bi.idx_growth == 0); 1864 ubifs_assert(c, c->bi.dd_growth == 0); 1865 ubifs_assert(c, c->bi.data_growth == 0); 1866 } 1867 1868 /* 1869 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1870 * and file system un-mount. Namely, it prevents the shrinker from 1871 * picking this superblock for shrinking - it will be just skipped if 1872 * the mutex is locked. 1873 */ 1874 mutex_lock(&c->umount_mutex); 1875 if (!c->ro_mount) { 1876 /* 1877 * First of all kill the background thread to make sure it does 1878 * not interfere with un-mounting and freeing resources. 1879 */ 1880 if (c->bgt) { 1881 kthread_stop(c->bgt); 1882 c->bgt = NULL; 1883 } 1884 1885 /* 1886 * On fatal errors c->ro_error is set to 1, in which case we do 1887 * not write the master node. 1888 */ 1889 if (!c->ro_error) { 1890 int err; 1891 1892 /* Synchronize write-buffers */ 1893 for (i = 0; i < c->jhead_cnt; i++) { 1894 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1895 if (err) 1896 ubifs_ro_mode(c, err); 1897 } 1898 1899 /* 1900 * We are being cleanly unmounted which means the 1901 * orphans were killed - indicate this in the master 1902 * node. Also save the reserved GC LEB number. 1903 */ 1904 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1905 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1906 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1907 err = ubifs_write_master(c); 1908 if (err) 1909 /* 1910 * Recovery will attempt to fix the master area 1911 * next mount, so we just print a message and 1912 * continue to unmount normally. 1913 */ 1914 ubifs_err(c, "failed to write master node, error %d", 1915 err); 1916 } else { 1917 for (i = 0; i < c->jhead_cnt; i++) 1918 /* Make sure write-buffer timers are canceled */ 1919 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1920 } 1921 } 1922 1923 ubifs_umount(c); 1924 ubi_close_volume(c->ubi); 1925 mutex_unlock(&c->umount_mutex); 1926 } 1927 1928 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1929 { 1930 int err; 1931 struct ubifs_info *c = sb->s_fs_info; 1932 1933 sync_filesystem(sb); 1934 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1935 1936 err = ubifs_parse_options(c, data, 1); 1937 if (err) { 1938 ubifs_err(c, "invalid or unknown remount parameter"); 1939 return err; 1940 } 1941 1942 if (c->ro_mount && !(*flags & SB_RDONLY)) { 1943 if (c->ro_error) { 1944 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1945 return -EROFS; 1946 } 1947 if (c->ro_media) { 1948 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1949 return -EROFS; 1950 } 1951 err = ubifs_remount_rw(c); 1952 if (err) 1953 return err; 1954 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 1955 if (c->ro_error) { 1956 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1957 return -EROFS; 1958 } 1959 ubifs_remount_ro(c); 1960 } 1961 1962 if (c->bulk_read == 1) 1963 bu_init(c); 1964 else { 1965 dbg_gen("disable bulk-read"); 1966 mutex_lock(&c->bu_mutex); 1967 kfree(c->bu.buf); 1968 c->bu.buf = NULL; 1969 mutex_unlock(&c->bu_mutex); 1970 } 1971 1972 if (!c->need_recovery) 1973 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1974 1975 return 0; 1976 } 1977 1978 const struct super_operations ubifs_super_operations = { 1979 .alloc_inode = ubifs_alloc_inode, 1980 .destroy_inode = ubifs_destroy_inode, 1981 .put_super = ubifs_put_super, 1982 .write_inode = ubifs_write_inode, 1983 .evict_inode = ubifs_evict_inode, 1984 .statfs = ubifs_statfs, 1985 .dirty_inode = ubifs_dirty_inode, 1986 .remount_fs = ubifs_remount_fs, 1987 .show_options = ubifs_show_options, 1988 .sync_fs = ubifs_sync_fs, 1989 }; 1990 1991 /** 1992 * open_ubi - parse UBI device name string and open the UBI device. 1993 * @name: UBI volume name 1994 * @mode: UBI volume open mode 1995 * 1996 * The primary method of mounting UBIFS is by specifying the UBI volume 1997 * character device node path. However, UBIFS may also be mounted withoug any 1998 * character device node using one of the following methods: 1999 * 2000 * o ubiX_Y - mount UBI device number X, volume Y; 2001 * o ubiY - mount UBI device number 0, volume Y; 2002 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2003 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2004 * 2005 * Alternative '!' separator may be used instead of ':' (because some shells 2006 * like busybox may interpret ':' as an NFS host name separator). This function 2007 * returns UBI volume description object in case of success and a negative 2008 * error code in case of failure. 2009 */ 2010 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2011 { 2012 struct ubi_volume_desc *ubi; 2013 int dev, vol; 2014 char *endptr; 2015 2016 if (!name || !*name) 2017 return ERR_PTR(-EINVAL); 2018 2019 /* First, try to open using the device node path method */ 2020 ubi = ubi_open_volume_path(name, mode); 2021 if (!IS_ERR(ubi)) 2022 return ubi; 2023 2024 /* Try the "nodev" method */ 2025 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2026 return ERR_PTR(-EINVAL); 2027 2028 /* ubi:NAME method */ 2029 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2030 return ubi_open_volume_nm(0, name + 4, mode); 2031 2032 if (!isdigit(name[3])) 2033 return ERR_PTR(-EINVAL); 2034 2035 dev = simple_strtoul(name + 3, &endptr, 0); 2036 2037 /* ubiY method */ 2038 if (*endptr == '\0') 2039 return ubi_open_volume(0, dev, mode); 2040 2041 /* ubiX_Y method */ 2042 if (*endptr == '_' && isdigit(endptr[1])) { 2043 vol = simple_strtoul(endptr + 1, &endptr, 0); 2044 if (*endptr != '\0') 2045 return ERR_PTR(-EINVAL); 2046 return ubi_open_volume(dev, vol, mode); 2047 } 2048 2049 /* ubiX:NAME method */ 2050 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2051 return ubi_open_volume_nm(dev, ++endptr, mode); 2052 2053 return ERR_PTR(-EINVAL); 2054 } 2055 2056 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2057 { 2058 struct ubifs_info *c; 2059 2060 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2061 if (c) { 2062 spin_lock_init(&c->cnt_lock); 2063 spin_lock_init(&c->cs_lock); 2064 spin_lock_init(&c->buds_lock); 2065 spin_lock_init(&c->space_lock); 2066 spin_lock_init(&c->orphan_lock); 2067 init_rwsem(&c->commit_sem); 2068 mutex_init(&c->lp_mutex); 2069 mutex_init(&c->tnc_mutex); 2070 mutex_init(&c->log_mutex); 2071 mutex_init(&c->umount_mutex); 2072 mutex_init(&c->bu_mutex); 2073 mutex_init(&c->write_reserve_mutex); 2074 init_waitqueue_head(&c->cmt_wq); 2075 c->buds = RB_ROOT; 2076 c->old_idx = RB_ROOT; 2077 c->size_tree = RB_ROOT; 2078 c->orph_tree = RB_ROOT; 2079 INIT_LIST_HEAD(&c->infos_list); 2080 INIT_LIST_HEAD(&c->idx_gc); 2081 INIT_LIST_HEAD(&c->replay_list); 2082 INIT_LIST_HEAD(&c->replay_buds); 2083 INIT_LIST_HEAD(&c->uncat_list); 2084 INIT_LIST_HEAD(&c->empty_list); 2085 INIT_LIST_HEAD(&c->freeable_list); 2086 INIT_LIST_HEAD(&c->frdi_idx_list); 2087 INIT_LIST_HEAD(&c->unclean_leb_list); 2088 INIT_LIST_HEAD(&c->old_buds); 2089 INIT_LIST_HEAD(&c->orph_list); 2090 INIT_LIST_HEAD(&c->orph_new); 2091 c->no_chk_data_crc = 1; 2092 c->assert_action = ASSACT_RO; 2093 2094 c->highest_inum = UBIFS_FIRST_INO; 2095 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2096 2097 ubi_get_volume_info(ubi, &c->vi); 2098 ubi_get_device_info(c->vi.ubi_num, &c->di); 2099 } 2100 return c; 2101 } 2102 2103 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2104 { 2105 struct ubifs_info *c = sb->s_fs_info; 2106 struct inode *root; 2107 int err; 2108 2109 c->vfs_sb = sb; 2110 /* Re-open the UBI device in read-write mode */ 2111 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2112 if (IS_ERR(c->ubi)) { 2113 err = PTR_ERR(c->ubi); 2114 goto out; 2115 } 2116 2117 err = ubifs_parse_options(c, data, 0); 2118 if (err) 2119 goto out_close; 2120 2121 /* 2122 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2123 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2124 * which means the user would have to wait not just for their own I/O 2125 * but the read-ahead I/O as well i.e. completely pointless. 2126 * 2127 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2128 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2129 * writeback happening. 2130 */ 2131 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2132 c->vi.vol_id); 2133 if (err) 2134 goto out_close; 2135 2136 sb->s_fs_info = c; 2137 sb->s_magic = UBIFS_SUPER_MAGIC; 2138 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2139 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2140 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2141 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2142 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2143 sb->s_op = &ubifs_super_operations; 2144 #ifdef CONFIG_UBIFS_FS_XATTR 2145 sb->s_xattr = ubifs_xattr_handlers; 2146 #endif 2147 #ifdef CONFIG_FS_ENCRYPTION 2148 sb->s_cop = &ubifs_crypt_operations; 2149 #endif 2150 2151 mutex_lock(&c->umount_mutex); 2152 err = mount_ubifs(c); 2153 if (err) { 2154 ubifs_assert(c, err < 0); 2155 goto out_unlock; 2156 } 2157 2158 /* Read the root inode */ 2159 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2160 if (IS_ERR(root)) { 2161 err = PTR_ERR(root); 2162 goto out_umount; 2163 } 2164 2165 sb->s_root = d_make_root(root); 2166 if (!sb->s_root) { 2167 err = -ENOMEM; 2168 goto out_umount; 2169 } 2170 2171 mutex_unlock(&c->umount_mutex); 2172 return 0; 2173 2174 out_umount: 2175 ubifs_umount(c); 2176 out_unlock: 2177 mutex_unlock(&c->umount_mutex); 2178 out_close: 2179 ubi_close_volume(c->ubi); 2180 out: 2181 return err; 2182 } 2183 2184 static int sb_test(struct super_block *sb, void *data) 2185 { 2186 struct ubifs_info *c1 = data; 2187 struct ubifs_info *c = sb->s_fs_info; 2188 2189 return c->vi.cdev == c1->vi.cdev; 2190 } 2191 2192 static int sb_set(struct super_block *sb, void *data) 2193 { 2194 sb->s_fs_info = data; 2195 return set_anon_super(sb, NULL); 2196 } 2197 2198 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2199 const char *name, void *data) 2200 { 2201 struct ubi_volume_desc *ubi; 2202 struct ubifs_info *c; 2203 struct super_block *sb; 2204 int err; 2205 2206 dbg_gen("name %s, flags %#x", name, flags); 2207 2208 /* 2209 * Get UBI device number and volume ID. Mount it read-only so far 2210 * because this might be a new mount point, and UBI allows only one 2211 * read-write user at a time. 2212 */ 2213 ubi = open_ubi(name, UBI_READONLY); 2214 if (IS_ERR(ubi)) { 2215 if (!(flags & SB_SILENT)) 2216 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2217 current->pid, name, (int)PTR_ERR(ubi)); 2218 return ERR_CAST(ubi); 2219 } 2220 2221 c = alloc_ubifs_info(ubi); 2222 if (!c) { 2223 err = -ENOMEM; 2224 goto out_close; 2225 } 2226 2227 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2228 2229 sb = sget(fs_type, sb_test, sb_set, flags, c); 2230 if (IS_ERR(sb)) { 2231 err = PTR_ERR(sb); 2232 kfree(c); 2233 goto out_close; 2234 } 2235 2236 if (sb->s_root) { 2237 struct ubifs_info *c1 = sb->s_fs_info; 2238 kfree(c); 2239 /* A new mount point for already mounted UBIFS */ 2240 dbg_gen("this ubi volume is already mounted"); 2241 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2242 err = -EBUSY; 2243 goto out_deact; 2244 } 2245 } else { 2246 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2247 if (err) 2248 goto out_deact; 2249 /* We do not support atime */ 2250 sb->s_flags |= SB_ACTIVE; 2251 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 2252 sb->s_flags |= SB_NOATIME; 2253 #else 2254 ubifs_msg(c, "full atime support is enabled."); 2255 #endif 2256 } 2257 2258 /* 'fill_super()' opens ubi again so we must close it here */ 2259 ubi_close_volume(ubi); 2260 2261 return dget(sb->s_root); 2262 2263 out_deact: 2264 deactivate_locked_super(sb); 2265 out_close: 2266 ubi_close_volume(ubi); 2267 return ERR_PTR(err); 2268 } 2269 2270 static void kill_ubifs_super(struct super_block *s) 2271 { 2272 struct ubifs_info *c = s->s_fs_info; 2273 kill_anon_super(s); 2274 kfree(c); 2275 } 2276 2277 static struct file_system_type ubifs_fs_type = { 2278 .name = "ubifs", 2279 .owner = THIS_MODULE, 2280 .mount = ubifs_mount, 2281 .kill_sb = kill_ubifs_super, 2282 }; 2283 MODULE_ALIAS_FS("ubifs"); 2284 2285 /* 2286 * Inode slab cache constructor. 2287 */ 2288 static void inode_slab_ctor(void *obj) 2289 { 2290 struct ubifs_inode *ui = obj; 2291 inode_init_once(&ui->vfs_inode); 2292 } 2293 2294 static int __init ubifs_init(void) 2295 { 2296 int err; 2297 2298 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2299 2300 /* Make sure node sizes are 8-byte aligned */ 2301 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2302 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2303 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2304 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2305 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2306 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2307 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2308 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2309 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2310 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2311 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2312 2313 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2314 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2315 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2316 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2317 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2318 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2319 2320 /* Check min. node size */ 2321 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2322 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2323 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2324 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2325 2326 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2327 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2328 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2329 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2330 2331 /* Defined node sizes */ 2332 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2333 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2334 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2335 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2336 2337 /* 2338 * We use 2 bit wide bit-fields to store compression type, which should 2339 * be amended if more compressors are added. The bit-fields are: 2340 * @compr_type in 'struct ubifs_inode', @default_compr in 2341 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2342 */ 2343 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2344 2345 /* 2346 * We require that PAGE_SIZE is greater-than-or-equal-to 2347 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2348 */ 2349 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2350 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2351 current->pid, (unsigned int)PAGE_SIZE); 2352 return -EINVAL; 2353 } 2354 2355 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2356 sizeof(struct ubifs_inode), 0, 2357 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2358 SLAB_ACCOUNT, &inode_slab_ctor); 2359 if (!ubifs_inode_slab) 2360 return -ENOMEM; 2361 2362 err = register_shrinker(&ubifs_shrinker_info); 2363 if (err) 2364 goto out_slab; 2365 2366 err = ubifs_compressors_init(); 2367 if (err) 2368 goto out_shrinker; 2369 2370 err = dbg_debugfs_init(); 2371 if (err) 2372 goto out_compr; 2373 2374 err = register_filesystem(&ubifs_fs_type); 2375 if (err) { 2376 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2377 current->pid, err); 2378 goto out_dbg; 2379 } 2380 return 0; 2381 2382 out_dbg: 2383 dbg_debugfs_exit(); 2384 out_compr: 2385 ubifs_compressors_exit(); 2386 out_shrinker: 2387 unregister_shrinker(&ubifs_shrinker_info); 2388 out_slab: 2389 kmem_cache_destroy(ubifs_inode_slab); 2390 return err; 2391 } 2392 /* late_initcall to let compressors initialize first */ 2393 late_initcall(ubifs_init); 2394 2395 static void __exit ubifs_exit(void) 2396 { 2397 WARN_ON(!list_empty(&ubifs_infos)); 2398 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2399 2400 dbg_debugfs_exit(); 2401 ubifs_compressors_exit(); 2402 unregister_shrinker(&ubifs_shrinker_info); 2403 2404 /* 2405 * Make sure all delayed rcu free inodes are flushed before we 2406 * destroy cache. 2407 */ 2408 rcu_barrier(); 2409 kmem_cache_destroy(ubifs_inode_slab); 2410 unregister_filesystem(&ubifs_fs_type); 2411 } 2412 module_exit(ubifs_exit); 2413 2414 MODULE_LICENSE("GPL"); 2415 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2416 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2417 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2418