1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS superblock. The superblock is stored at the first 25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may 26 * change it. The superblock node mostly contains geometry information. 27 */ 28 29 #include "ubifs.h" 30 #include <linux/slab.h> 31 #include <linux/random.h> 32 #include <linux/math64.h> 33 34 /* 35 * Default journal size in logical eraseblocks as a percent of total 36 * flash size. 37 */ 38 #define DEFAULT_JNL_PERCENT 5 39 40 /* Default maximum journal size in bytes */ 41 #define DEFAULT_MAX_JNL (32*1024*1024) 42 43 /* Default indexing tree fanout */ 44 #define DEFAULT_FANOUT 8 45 46 /* Default number of data journal heads */ 47 #define DEFAULT_JHEADS_CNT 1 48 49 /* Default positions of different LEBs in the main area */ 50 #define DEFAULT_IDX_LEB 0 51 #define DEFAULT_DATA_LEB 1 52 #define DEFAULT_GC_LEB 2 53 54 /* Default number of LEB numbers in LPT's save table */ 55 #define DEFAULT_LSAVE_CNT 256 56 57 /* Default reserved pool size as a percent of maximum free space */ 58 #define DEFAULT_RP_PERCENT 5 59 60 /* The default maximum size of reserved pool in bytes */ 61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024) 62 63 /* Default time granularity in nanoseconds */ 64 #define DEFAULT_TIME_GRAN 1000000000 65 66 /** 67 * create_default_filesystem - format empty UBI volume. 68 * @c: UBIFS file-system description object 69 * 70 * This function creates default empty file-system. Returns zero in case of 71 * success and a negative error code in case of failure. 72 */ 73 static int create_default_filesystem(struct ubifs_info *c) 74 { 75 struct ubifs_sb_node *sup; 76 struct ubifs_mst_node *mst; 77 struct ubifs_idx_node *idx; 78 struct ubifs_branch *br; 79 struct ubifs_ino_node *ino; 80 struct ubifs_cs_node *cs; 81 union ubifs_key key; 82 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; 83 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; 84 int min_leb_cnt = UBIFS_MIN_LEB_CNT; 85 long long tmp64, main_bytes; 86 __le64 tmp_le64; 87 88 /* Some functions called from here depend on the @c->key_len filed */ 89 c->key_len = UBIFS_SK_LEN; 90 91 /* 92 * First of all, we have to calculate default file-system geometry - 93 * log size, journal size, etc. 94 */ 95 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) 96 /* We can first multiply then divide and have no overflow */ 97 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; 98 else 99 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; 100 101 if (jnl_lebs < UBIFS_MIN_JNL_LEBS) 102 jnl_lebs = UBIFS_MIN_JNL_LEBS; 103 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) 104 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; 105 106 /* 107 * The log should be large enough to fit reference nodes for all bud 108 * LEBs. Because buds do not have to start from the beginning of LEBs 109 * (half of the LEB may contain committed data), the log should 110 * generally be larger, make it twice as large. 111 */ 112 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; 113 log_lebs = tmp / c->leb_size; 114 /* Plus one LEB reserved for commit */ 115 log_lebs += 1; 116 if (c->leb_cnt - min_leb_cnt > 8) { 117 /* And some extra space to allow writes while committing */ 118 log_lebs += 1; 119 min_leb_cnt += 1; 120 } 121 122 max_buds = jnl_lebs - log_lebs; 123 if (max_buds < UBIFS_MIN_BUD_LEBS) 124 max_buds = UBIFS_MIN_BUD_LEBS; 125 126 /* 127 * Orphan nodes are stored in a separate area. One node can store a lot 128 * of orphan inode numbers, but when new orphan comes we just add a new 129 * orphan node. At some point the nodes are consolidated into one 130 * orphan node. 131 */ 132 orph_lebs = UBIFS_MIN_ORPH_LEBS; 133 #ifdef CONFIG_UBIFS_FS_DEBUG 134 if (c->leb_cnt - min_leb_cnt > 1) 135 /* 136 * For debugging purposes it is better to have at least 2 137 * orphan LEBs, because the orphan subsystem would need to do 138 * consolidations and would be stressed more. 139 */ 140 orph_lebs += 1; 141 #endif 142 143 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; 144 main_lebs -= orph_lebs; 145 146 lpt_first = UBIFS_LOG_LNUM + log_lebs; 147 c->lsave_cnt = DEFAULT_LSAVE_CNT; 148 c->max_leb_cnt = c->leb_cnt; 149 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, 150 &big_lpt); 151 if (err) 152 return err; 153 154 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, 155 lpt_first + lpt_lebs - 1); 156 157 main_first = c->leb_cnt - main_lebs; 158 159 /* Create default superblock */ 160 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 161 sup = kzalloc(tmp, GFP_KERNEL); 162 if (!sup) 163 return -ENOMEM; 164 165 tmp64 = (long long)max_buds * c->leb_size; 166 if (big_lpt) 167 sup_flags |= UBIFS_FLG_BIGLPT; 168 169 sup->ch.node_type = UBIFS_SB_NODE; 170 sup->key_hash = UBIFS_KEY_HASH_R5; 171 sup->flags = cpu_to_le32(sup_flags); 172 sup->min_io_size = cpu_to_le32(c->min_io_size); 173 sup->leb_size = cpu_to_le32(c->leb_size); 174 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 175 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt); 176 sup->max_bud_bytes = cpu_to_le64(tmp64); 177 sup->log_lebs = cpu_to_le32(log_lebs); 178 sup->lpt_lebs = cpu_to_le32(lpt_lebs); 179 sup->orph_lebs = cpu_to_le32(orph_lebs); 180 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT); 181 sup->fanout = cpu_to_le32(DEFAULT_FANOUT); 182 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt); 183 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION); 184 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN); 185 if (c->mount_opts.override_compr) 186 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); 187 else 188 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO); 189 190 generate_random_uuid(sup->uuid); 191 192 main_bytes = (long long)main_lebs * c->leb_size; 193 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); 194 if (tmp64 > DEFAULT_MAX_RP_SIZE) 195 tmp64 = DEFAULT_MAX_RP_SIZE; 196 sup->rp_size = cpu_to_le64(tmp64); 197 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); 198 199 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0, UBI_LONGTERM); 200 kfree(sup); 201 if (err) 202 return err; 203 204 dbg_gen("default superblock created at LEB 0:0"); 205 206 /* Create default master node */ 207 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); 208 if (!mst) 209 return -ENOMEM; 210 211 mst->ch.node_type = UBIFS_MST_NODE; 212 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM); 213 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); 214 mst->cmt_no = 0; 215 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 216 mst->root_offs = 0; 217 tmp = ubifs_idx_node_sz(c, 1); 218 mst->root_len = cpu_to_le32(tmp); 219 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB); 220 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 221 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size)); 222 mst->index_size = cpu_to_le64(ALIGN(tmp, 8)); 223 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum); 224 mst->lpt_offs = cpu_to_le32(c->lpt_offs); 225 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum); 226 mst->nhead_offs = cpu_to_le32(c->nhead_offs); 227 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum); 228 mst->ltab_offs = cpu_to_le32(c->ltab_offs); 229 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum); 230 mst->lsave_offs = cpu_to_le32(c->lsave_offs); 231 mst->lscan_lnum = cpu_to_le32(main_first); 232 mst->empty_lebs = cpu_to_le32(main_lebs - 2); 233 mst->idx_lebs = cpu_to_le32(1); 234 mst->leb_cnt = cpu_to_le32(c->leb_cnt); 235 236 /* Calculate lprops statistics */ 237 tmp64 = main_bytes; 238 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 239 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 240 mst->total_free = cpu_to_le64(tmp64); 241 242 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 243 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - 244 UBIFS_INO_NODE_SZ; 245 tmp64 += ino_waste; 246 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); 247 mst->total_dirty = cpu_to_le64(tmp64); 248 249 /* The indexing LEB does not contribute to dark space */ 250 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); 251 mst->total_dark = cpu_to_le64(tmp64); 252 253 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); 254 255 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0, 256 UBI_UNKNOWN); 257 if (err) { 258 kfree(mst); 259 return err; 260 } 261 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 0, 262 UBI_UNKNOWN); 263 kfree(mst); 264 if (err) 265 return err; 266 267 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); 268 269 /* Create the root indexing node */ 270 tmp = ubifs_idx_node_sz(c, 1); 271 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL); 272 if (!idx) 273 return -ENOMEM; 274 275 c->key_fmt = UBIFS_SIMPLE_KEY_FMT; 276 c->key_hash = key_r5_hash; 277 278 idx->ch.node_type = UBIFS_IDX_NODE; 279 idx->child_cnt = cpu_to_le16(1); 280 ino_key_init(c, &key, UBIFS_ROOT_INO); 281 br = ubifs_idx_branch(c, idx, 0); 282 key_write_idx(c, &key, &br->key); 283 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); 284 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ); 285 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0, 286 UBI_UNKNOWN); 287 kfree(idx); 288 if (err) 289 return err; 290 291 dbg_gen("default root indexing node created LEB %d:0", 292 main_first + DEFAULT_IDX_LEB); 293 294 /* Create default root inode */ 295 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 296 ino = kzalloc(tmp, GFP_KERNEL); 297 if (!ino) 298 return -ENOMEM; 299 300 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); 301 ino->ch.node_type = UBIFS_INO_NODE; 302 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); 303 ino->nlink = cpu_to_le32(2); 304 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec); 305 ino->atime_sec = tmp_le64; 306 ino->ctime_sec = tmp_le64; 307 ino->mtime_sec = tmp_le64; 308 ino->atime_nsec = 0; 309 ino->ctime_nsec = 0; 310 ino->mtime_nsec = 0; 311 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); 312 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); 313 314 /* Set compression enabled by default */ 315 ino->flags = cpu_to_le32(UBIFS_COMPR_FL); 316 317 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, 318 main_first + DEFAULT_DATA_LEB, 0, 319 UBI_UNKNOWN); 320 kfree(ino); 321 if (err) 322 return err; 323 324 dbg_gen("root inode created at LEB %d:0", 325 main_first + DEFAULT_DATA_LEB); 326 327 /* 328 * The first node in the log has to be the commit start node. This is 329 * always the case during normal file-system operation. Write a fake 330 * commit start node to the log. 331 */ 332 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size); 333 cs = kzalloc(tmp, GFP_KERNEL); 334 if (!cs) 335 return -ENOMEM; 336 337 cs->ch.node_type = UBIFS_CS_NODE; 338 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 339 0, UBI_UNKNOWN); 340 kfree(cs); 341 342 ubifs_msg("default file-system created"); 343 return 0; 344 } 345 346 /** 347 * validate_sb - validate superblock node. 348 * @c: UBIFS file-system description object 349 * @sup: superblock node 350 * 351 * This function validates superblock node @sup. Since most of data was read 352 * from the superblock and stored in @c, the function validates fields in @c 353 * instead. Returns zero in case of success and %-EINVAL in case of validation 354 * failure. 355 */ 356 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) 357 { 358 long long max_bytes; 359 int err = 1, min_leb_cnt; 360 361 if (!c->key_hash) { 362 err = 2; 363 goto failed; 364 } 365 366 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) { 367 err = 3; 368 goto failed; 369 } 370 371 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) { 372 ubifs_err("min. I/O unit mismatch: %d in superblock, %d real", 373 le32_to_cpu(sup->min_io_size), c->min_io_size); 374 goto failed; 375 } 376 377 if (le32_to_cpu(sup->leb_size) != c->leb_size) { 378 ubifs_err("LEB size mismatch: %d in superblock, %d real", 379 le32_to_cpu(sup->leb_size), c->leb_size); 380 goto failed; 381 } 382 383 if (c->log_lebs < UBIFS_MIN_LOG_LEBS || 384 c->lpt_lebs < UBIFS_MIN_LPT_LEBS || 385 c->orph_lebs < UBIFS_MIN_ORPH_LEBS || 386 c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 387 err = 4; 388 goto failed; 389 } 390 391 /* 392 * Calculate minimum allowed amount of main area LEBs. This is very 393 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we 394 * have just read from the superblock. 395 */ 396 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs; 397 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; 398 399 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { 400 ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, " 401 "%d minimum required", c->leb_cnt, c->vi.size, 402 min_leb_cnt); 403 goto failed; 404 } 405 406 if (c->max_leb_cnt < c->leb_cnt) { 407 ubifs_err("max. LEB count %d less than LEB count %d", 408 c->max_leb_cnt, c->leb_cnt); 409 goto failed; 410 } 411 412 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 413 ubifs_err("too few main LEBs count %d, must be at least %d", 414 c->main_lebs, UBIFS_MIN_MAIN_LEBS); 415 goto failed; 416 } 417 418 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS; 419 if (c->max_bud_bytes < max_bytes) { 420 ubifs_err("too small journal (%lld bytes), must be at least " 421 "%lld bytes", c->max_bud_bytes, max_bytes); 422 goto failed; 423 } 424 425 max_bytes = (long long)c->leb_size * c->main_lebs; 426 if (c->max_bud_bytes > max_bytes) { 427 ubifs_err("too large journal size (%lld bytes), only %lld bytes" 428 "available in the main area", 429 c->max_bud_bytes, max_bytes); 430 goto failed; 431 } 432 433 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 || 434 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) { 435 err = 9; 436 goto failed; 437 } 438 439 if (c->fanout < UBIFS_MIN_FANOUT || 440 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) { 441 err = 10; 442 goto failed; 443 } 444 445 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT && 446 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - 447 c->log_lebs - c->lpt_lebs - c->orph_lebs)) { 448 err = 11; 449 goto failed; 450 } 451 452 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs + 453 c->orph_lebs + c->main_lebs != c->leb_cnt) { 454 err = 12; 455 goto failed; 456 } 457 458 if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) { 459 err = 13; 460 goto failed; 461 } 462 463 if (c->rp_size < 0 || max_bytes < c->rp_size) { 464 err = 14; 465 goto failed; 466 } 467 468 if (le32_to_cpu(sup->time_gran) > 1000000000 || 469 le32_to_cpu(sup->time_gran) < 1) { 470 err = 15; 471 goto failed; 472 } 473 474 return 0; 475 476 failed: 477 ubifs_err("bad superblock, error %d", err); 478 dbg_dump_node(c, sup); 479 return -EINVAL; 480 } 481 482 /** 483 * ubifs_read_sb_node - read superblock node. 484 * @c: UBIFS file-system description object 485 * 486 * This function returns a pointer to the superblock node or a negative error 487 * code. Note, the user of this function is responsible of kfree()'ing the 488 * returned superblock buffer. 489 */ 490 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) 491 { 492 struct ubifs_sb_node *sup; 493 int err; 494 495 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS); 496 if (!sup) 497 return ERR_PTR(-ENOMEM); 498 499 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ, 500 UBIFS_SB_LNUM, 0); 501 if (err) { 502 kfree(sup); 503 return ERR_PTR(err); 504 } 505 506 return sup; 507 } 508 509 /** 510 * ubifs_write_sb_node - write superblock node. 511 * @c: UBIFS file-system description object 512 * @sup: superblock node read with 'ubifs_read_sb_node()' 513 * 514 * This function returns %0 on success and a negative error code on failure. 515 */ 516 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) 517 { 518 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 519 520 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1); 521 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len, UBI_LONGTERM); 522 } 523 524 /** 525 * ubifs_read_superblock - read superblock. 526 * @c: UBIFS file-system description object 527 * 528 * This function finds, reads and checks the superblock. If an empty UBI volume 529 * is being mounted, this function creates default superblock. Returns zero in 530 * case of success, and a negative error code in case of failure. 531 */ 532 int ubifs_read_superblock(struct ubifs_info *c) 533 { 534 int err, sup_flags; 535 struct ubifs_sb_node *sup; 536 537 if (c->empty) { 538 err = create_default_filesystem(c); 539 if (err) 540 return err; 541 } 542 543 sup = ubifs_read_sb_node(c); 544 if (IS_ERR(sup)) 545 return PTR_ERR(sup); 546 547 c->fmt_version = le32_to_cpu(sup->fmt_version); 548 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version); 549 550 /* 551 * The software supports all previous versions but not future versions, 552 * due to the unavailability of time-travelling equipment. 553 */ 554 if (c->fmt_version > UBIFS_FORMAT_VERSION) { 555 ubifs_assert(!c->ro_media || c->ro_mount); 556 if (!c->ro_mount || 557 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { 558 ubifs_err("on-flash format version is w%d/r%d, but " 559 "software only supports up to version " 560 "w%d/r%d", c->fmt_version, 561 c->ro_compat_version, UBIFS_FORMAT_VERSION, 562 UBIFS_RO_COMPAT_VERSION); 563 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { 564 ubifs_msg("only R/O mounting is possible"); 565 err = -EROFS; 566 } else 567 err = -EINVAL; 568 goto out; 569 } 570 571 /* 572 * The FS is mounted R/O, and the media format is 573 * R/O-compatible with the UBIFS implementation, so we can 574 * mount. 575 */ 576 c->rw_incompat = 1; 577 } 578 579 if (c->fmt_version < 3) { 580 ubifs_err("on-flash format version %d is not supported", 581 c->fmt_version); 582 err = -EINVAL; 583 goto out; 584 } 585 586 switch (sup->key_hash) { 587 case UBIFS_KEY_HASH_R5: 588 c->key_hash = key_r5_hash; 589 c->key_hash_type = UBIFS_KEY_HASH_R5; 590 break; 591 592 case UBIFS_KEY_HASH_TEST: 593 c->key_hash = key_test_hash; 594 c->key_hash_type = UBIFS_KEY_HASH_TEST; 595 break; 596 }; 597 598 c->key_fmt = sup->key_fmt; 599 600 switch (c->key_fmt) { 601 case UBIFS_SIMPLE_KEY_FMT: 602 c->key_len = UBIFS_SK_LEN; 603 break; 604 default: 605 ubifs_err("unsupported key format"); 606 err = -EINVAL; 607 goto out; 608 } 609 610 c->leb_cnt = le32_to_cpu(sup->leb_cnt); 611 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt); 612 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes); 613 c->log_lebs = le32_to_cpu(sup->log_lebs); 614 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs); 615 c->orph_lebs = le32_to_cpu(sup->orph_lebs); 616 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; 617 c->fanout = le32_to_cpu(sup->fanout); 618 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt); 619 c->rp_size = le64_to_cpu(sup->rp_size); 620 c->rp_uid = le32_to_cpu(sup->rp_uid); 621 c->rp_gid = le32_to_cpu(sup->rp_gid); 622 sup_flags = le32_to_cpu(sup->flags); 623 if (!c->mount_opts.override_compr) 624 c->default_compr = le16_to_cpu(sup->default_compr); 625 626 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); 627 memcpy(&c->uuid, &sup->uuid, 16); 628 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); 629 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); 630 631 /* Automatically increase file system size to the maximum size */ 632 c->old_leb_cnt = c->leb_cnt; 633 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { 634 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); 635 if (c->ro_mount) 636 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", 637 c->old_leb_cnt, c->leb_cnt); 638 else { 639 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs", 640 c->old_leb_cnt, c->leb_cnt); 641 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 642 err = ubifs_write_sb_node(c, sup); 643 if (err) 644 goto out; 645 c->old_leb_cnt = c->leb_cnt; 646 } 647 } 648 649 c->log_bytes = (long long)c->log_lebs * c->leb_size; 650 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1; 651 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs; 652 c->lpt_last = c->lpt_first + c->lpt_lebs - 1; 653 c->orph_first = c->lpt_last + 1; 654 c->orph_last = c->orph_first + c->orph_lebs - 1; 655 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; 656 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; 657 c->main_first = c->leb_cnt - c->main_lebs; 658 659 err = validate_sb(c, sup); 660 out: 661 kfree(sup); 662 return err; 663 } 664 665 /** 666 * fixup_leb - fixup/unmap an LEB containing free space. 667 * @c: UBIFS file-system description object 668 * @lnum: the LEB number to fix up 669 * @len: number of used bytes in LEB (starting at offset 0) 670 * 671 * This function reads the contents of the given LEB number @lnum, then fixes 672 * it up, so that empty min. I/O units in the end of LEB are actually erased on 673 * flash (rather than being just all-0xff real data). If the LEB is completely 674 * empty, it is simply unmapped. 675 */ 676 static int fixup_leb(struct ubifs_info *c, int lnum, int len) 677 { 678 int err; 679 680 ubifs_assert(len >= 0); 681 ubifs_assert(len % c->min_io_size == 0); 682 ubifs_assert(len < c->leb_size); 683 684 if (len == 0) { 685 dbg_mnt("unmap empty LEB %d", lnum); 686 return ubifs_leb_unmap(c, lnum); 687 } 688 689 dbg_mnt("fixup LEB %d, data len %d", lnum, len); 690 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1); 691 if (err) 692 return err; 693 694 return ubifs_leb_change(c, lnum, c->sbuf, len, UBI_UNKNOWN); 695 } 696 697 /** 698 * fixup_free_space - find & remap all LEBs containing free space. 699 * @c: UBIFS file-system description object 700 * 701 * This function walks through all LEBs in the filesystem and fiexes up those 702 * containing free/empty space. 703 */ 704 static int fixup_free_space(struct ubifs_info *c) 705 { 706 int lnum, err = 0; 707 struct ubifs_lprops *lprops; 708 709 ubifs_get_lprops(c); 710 711 /* Fixup LEBs in the master area */ 712 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { 713 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); 714 if (err) 715 goto out; 716 } 717 718 /* Unmap unused log LEBs */ 719 lnum = ubifs_next_log_lnum(c, c->lhead_lnum); 720 while (lnum != c->ltail_lnum) { 721 err = fixup_leb(c, lnum, 0); 722 if (err) 723 goto out; 724 lnum = ubifs_next_log_lnum(c, lnum); 725 } 726 727 /* Fixup the current log head */ 728 err = fixup_leb(c, c->lhead_lnum, c->lhead_offs); 729 if (err) 730 goto out; 731 732 /* Fixup LEBs in the LPT area */ 733 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { 734 int free = c->ltab[lnum - c->lpt_first].free; 735 736 if (free > 0) { 737 err = fixup_leb(c, lnum, c->leb_size - free); 738 if (err) 739 goto out; 740 } 741 } 742 743 /* Unmap LEBs in the orphans area */ 744 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 745 err = fixup_leb(c, lnum, 0); 746 if (err) 747 goto out; 748 } 749 750 /* Fixup LEBs in the main area */ 751 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 752 lprops = ubifs_lpt_lookup(c, lnum); 753 if (IS_ERR(lprops)) { 754 err = PTR_ERR(lprops); 755 goto out; 756 } 757 758 if (lprops->free > 0) { 759 err = fixup_leb(c, lnum, c->leb_size - lprops->free); 760 if (err) 761 goto out; 762 } 763 } 764 765 out: 766 ubifs_release_lprops(c); 767 return err; 768 } 769 770 /** 771 * ubifs_fixup_free_space - find & fix all LEBs with free space. 772 * @c: UBIFS file-system description object 773 * 774 * This function fixes up LEBs containing free space on first mount, if the 775 * appropriate flag was set when the FS was created. Each LEB with one or more 776 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure 777 * the free space is actually erased. E.g., this is necessary for some NAND 778 * chips, since the free space may have been programmed like real "0xff" data 779 * (generating a non-0xff ECC), causing future writes to the not-really-erased 780 * NAND pages to behave badly. After the space is fixed up, the superblock flag 781 * is cleared, so that this is skipped for all future mounts. 782 */ 783 int ubifs_fixup_free_space(struct ubifs_info *c) 784 { 785 int err; 786 struct ubifs_sb_node *sup; 787 788 ubifs_assert(c->space_fixup); 789 ubifs_assert(!c->ro_mount); 790 791 ubifs_msg("start fixing up free space"); 792 793 err = fixup_free_space(c); 794 if (err) 795 return err; 796 797 sup = ubifs_read_sb_node(c); 798 if (IS_ERR(sup)) 799 return PTR_ERR(sup); 800 801 /* Free-space fixup is no longer required */ 802 c->space_fixup = 0; 803 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); 804 805 err = ubifs_write_sb_node(c, sup); 806 kfree(sup); 807 if (err) 808 return err; 809 810 ubifs_msg("free space fixup complete"); 811 return err; 812 } 813