xref: /openbmc/linux/fs/ubifs/sb.c (revision 4f6cce39)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS superblock. The superblock is stored at the first
25  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26  * change it. The superblock node mostly contains geometry information.
27  */
28 
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/math64.h>
32 #include <linux/uuid.h>
33 
34 /*
35  * Default journal size in logical eraseblocks as a percent of total
36  * flash size.
37  */
38 #define DEFAULT_JNL_PERCENT 5
39 
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
42 
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
45 
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
48 
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB  0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB   2
53 
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
56 
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
59 
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62 
63 /* Default time granularity in nanoseconds */
64 #define DEFAULT_TIME_GRAN 1000000000
65 
66 /**
67  * create_default_filesystem - format empty UBI volume.
68  * @c: UBIFS file-system description object
69  *
70  * This function creates default empty file-system. Returns zero in case of
71  * success and a negative error code in case of failure.
72  */
73 static int create_default_filesystem(struct ubifs_info *c)
74 {
75 	struct ubifs_sb_node *sup;
76 	struct ubifs_mst_node *mst;
77 	struct ubifs_idx_node *idx;
78 	struct ubifs_branch *br;
79 	struct ubifs_ino_node *ino;
80 	struct ubifs_cs_node *cs;
81 	union ubifs_key key;
82 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
83 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
84 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
85 	long long tmp64, main_bytes;
86 	__le64 tmp_le64;
87 
88 	/* Some functions called from here depend on the @c->key_len filed */
89 	c->key_len = UBIFS_SK_LEN;
90 
91 	/*
92 	 * First of all, we have to calculate default file-system geometry -
93 	 * log size, journal size, etc.
94 	 */
95 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
96 		/* We can first multiply then divide and have no overflow */
97 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
98 	else
99 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
100 
101 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
102 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
103 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
104 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
105 
106 	/*
107 	 * The log should be large enough to fit reference nodes for all bud
108 	 * LEBs. Because buds do not have to start from the beginning of LEBs
109 	 * (half of the LEB may contain committed data), the log should
110 	 * generally be larger, make it twice as large.
111 	 */
112 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
113 	log_lebs = tmp / c->leb_size;
114 	/* Plus one LEB reserved for commit */
115 	log_lebs += 1;
116 	if (c->leb_cnt - min_leb_cnt > 8) {
117 		/* And some extra space to allow writes while committing */
118 		log_lebs += 1;
119 		min_leb_cnt += 1;
120 	}
121 
122 	max_buds = jnl_lebs - log_lebs;
123 	if (max_buds < UBIFS_MIN_BUD_LEBS)
124 		max_buds = UBIFS_MIN_BUD_LEBS;
125 
126 	/*
127 	 * Orphan nodes are stored in a separate area. One node can store a lot
128 	 * of orphan inode numbers, but when new orphan comes we just add a new
129 	 * orphan node. At some point the nodes are consolidated into one
130 	 * orphan node.
131 	 */
132 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
133 	if (c->leb_cnt - min_leb_cnt > 1)
134 		/*
135 		 * For debugging purposes it is better to have at least 2
136 		 * orphan LEBs, because the orphan subsystem would need to do
137 		 * consolidations and would be stressed more.
138 		 */
139 		orph_lebs += 1;
140 
141 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
142 	main_lebs -= orph_lebs;
143 
144 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
145 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
146 	c->max_leb_cnt = c->leb_cnt;
147 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
148 				    &big_lpt);
149 	if (err)
150 		return err;
151 
152 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
153 		lpt_first + lpt_lebs - 1);
154 
155 	main_first = c->leb_cnt - main_lebs;
156 
157 	/* Create default superblock */
158 	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
159 	sup = kzalloc(tmp, GFP_KERNEL);
160 	if (!sup)
161 		return -ENOMEM;
162 
163 	tmp64 = (long long)max_buds * c->leb_size;
164 	if (big_lpt)
165 		sup_flags |= UBIFS_FLG_BIGLPT;
166 	sup_flags |= UBIFS_FLG_DOUBLE_HASH;
167 
168 	sup->ch.node_type  = UBIFS_SB_NODE;
169 	sup->key_hash      = UBIFS_KEY_HASH_R5;
170 	sup->flags         = cpu_to_le32(sup_flags);
171 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
172 	sup->leb_size      = cpu_to_le32(c->leb_size);
173 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
174 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
175 	sup->max_bud_bytes = cpu_to_le64(tmp64);
176 	sup->log_lebs      = cpu_to_le32(log_lebs);
177 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
178 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
179 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
180 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
181 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
182 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
183 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
184 	if (c->mount_opts.override_compr)
185 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
186 	else
187 		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
188 
189 	generate_random_uuid(sup->uuid);
190 
191 	main_bytes = (long long)main_lebs * c->leb_size;
192 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
193 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
194 		tmp64 = DEFAULT_MAX_RP_SIZE;
195 	sup->rp_size = cpu_to_le64(tmp64);
196 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
197 
198 	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
199 	kfree(sup);
200 	if (err)
201 		return err;
202 
203 	dbg_gen("default superblock created at LEB 0:0");
204 
205 	/* Create default master node */
206 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
207 	if (!mst)
208 		return -ENOMEM;
209 
210 	mst->ch.node_type = UBIFS_MST_NODE;
211 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
212 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
213 	mst->cmt_no       = 0;
214 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
215 	mst->root_offs    = 0;
216 	tmp = ubifs_idx_node_sz(c, 1);
217 	mst->root_len     = cpu_to_le32(tmp);
218 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
219 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
220 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
221 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
222 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
223 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
224 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
225 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
226 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
227 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
228 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
229 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
230 	mst->lscan_lnum   = cpu_to_le32(main_first);
231 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
232 	mst->idx_lebs     = cpu_to_le32(1);
233 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
234 
235 	/* Calculate lprops statistics */
236 	tmp64 = main_bytes;
237 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
238 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
239 	mst->total_free = cpu_to_le64(tmp64);
240 
241 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
242 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
243 			  UBIFS_INO_NODE_SZ;
244 	tmp64 += ino_waste;
245 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
246 	mst->total_dirty = cpu_to_le64(tmp64);
247 
248 	/*  The indexing LEB does not contribute to dark space */
249 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
250 	mst->total_dark = cpu_to_le64(tmp64);
251 
252 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
253 
254 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
255 	if (err) {
256 		kfree(mst);
257 		return err;
258 	}
259 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
260 			       0);
261 	kfree(mst);
262 	if (err)
263 		return err;
264 
265 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
266 
267 	/* Create the root indexing node */
268 	tmp = ubifs_idx_node_sz(c, 1);
269 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
270 	if (!idx)
271 		return -ENOMEM;
272 
273 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
274 	c->key_hash = key_r5_hash;
275 
276 	idx->ch.node_type = UBIFS_IDX_NODE;
277 	idx->child_cnt = cpu_to_le16(1);
278 	ino_key_init(c, &key, UBIFS_ROOT_INO);
279 	br = ubifs_idx_branch(c, idx, 0);
280 	key_write_idx(c, &key, &br->key);
281 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
282 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
283 	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
284 	kfree(idx);
285 	if (err)
286 		return err;
287 
288 	dbg_gen("default root indexing node created LEB %d:0",
289 		main_first + DEFAULT_IDX_LEB);
290 
291 	/* Create default root inode */
292 	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
293 	ino = kzalloc(tmp, GFP_KERNEL);
294 	if (!ino)
295 		return -ENOMEM;
296 
297 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
298 	ino->ch.node_type = UBIFS_INO_NODE;
299 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
300 	ino->nlink = cpu_to_le32(2);
301 	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
302 	ino->atime_sec   = tmp_le64;
303 	ino->ctime_sec   = tmp_le64;
304 	ino->mtime_sec   = tmp_le64;
305 	ino->atime_nsec  = 0;
306 	ino->ctime_nsec  = 0;
307 	ino->mtime_nsec  = 0;
308 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
309 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
310 
311 	/* Set compression enabled by default */
312 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
313 
314 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
315 			       main_first + DEFAULT_DATA_LEB, 0);
316 	kfree(ino);
317 	if (err)
318 		return err;
319 
320 	dbg_gen("root inode created at LEB %d:0",
321 		main_first + DEFAULT_DATA_LEB);
322 
323 	/*
324 	 * The first node in the log has to be the commit start node. This is
325 	 * always the case during normal file-system operation. Write a fake
326 	 * commit start node to the log.
327 	 */
328 	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
329 	cs = kzalloc(tmp, GFP_KERNEL);
330 	if (!cs)
331 		return -ENOMEM;
332 
333 	cs->ch.node_type = UBIFS_CS_NODE;
334 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
335 	kfree(cs);
336 	if (err)
337 		return err;
338 
339 	ubifs_msg(c, "default file-system created");
340 	return 0;
341 }
342 
343 /**
344  * validate_sb - validate superblock node.
345  * @c: UBIFS file-system description object
346  * @sup: superblock node
347  *
348  * This function validates superblock node @sup. Since most of data was read
349  * from the superblock and stored in @c, the function validates fields in @c
350  * instead. Returns zero in case of success and %-EINVAL in case of validation
351  * failure.
352  */
353 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
354 {
355 	long long max_bytes;
356 	int err = 1, min_leb_cnt;
357 
358 	if (!c->key_hash) {
359 		err = 2;
360 		goto failed;
361 	}
362 
363 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
364 		err = 3;
365 		goto failed;
366 	}
367 
368 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
369 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
370 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
371 		goto failed;
372 	}
373 
374 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
375 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
376 			  le32_to_cpu(sup->leb_size), c->leb_size);
377 		goto failed;
378 	}
379 
380 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
381 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
382 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
383 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
384 		err = 4;
385 		goto failed;
386 	}
387 
388 	/*
389 	 * Calculate minimum allowed amount of main area LEBs. This is very
390 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
391 	 * have just read from the superblock.
392 	 */
393 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
394 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
395 
396 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
397 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
398 			  c->leb_cnt, c->vi.size, min_leb_cnt);
399 		goto failed;
400 	}
401 
402 	if (c->max_leb_cnt < c->leb_cnt) {
403 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
404 			  c->max_leb_cnt, c->leb_cnt);
405 		goto failed;
406 	}
407 
408 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
409 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
410 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
411 		goto failed;
412 	}
413 
414 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
415 	if (c->max_bud_bytes < max_bytes) {
416 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
417 			  c->max_bud_bytes, max_bytes);
418 		goto failed;
419 	}
420 
421 	max_bytes = (long long)c->leb_size * c->main_lebs;
422 	if (c->max_bud_bytes > max_bytes) {
423 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
424 			  c->max_bud_bytes, max_bytes);
425 		goto failed;
426 	}
427 
428 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
429 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
430 		err = 9;
431 		goto failed;
432 	}
433 
434 	if (c->fanout < UBIFS_MIN_FANOUT ||
435 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
436 		err = 10;
437 		goto failed;
438 	}
439 
440 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
441 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
442 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
443 		err = 11;
444 		goto failed;
445 	}
446 
447 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
448 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
449 		err = 12;
450 		goto failed;
451 	}
452 
453 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
454 		err = 13;
455 		goto failed;
456 	}
457 
458 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
459 		err = 14;
460 		goto failed;
461 	}
462 
463 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
464 	    le32_to_cpu(sup->time_gran) < 1) {
465 		err = 15;
466 		goto failed;
467 	}
468 
469 	if (!c->double_hash && c->fmt_version >= 5) {
470 		err = 16;
471 		goto failed;
472 	}
473 
474 	if (c->encrypted && c->fmt_version < 5) {
475 		err = 17;
476 		goto failed;
477 	}
478 
479 	return 0;
480 
481 failed:
482 	ubifs_err(c, "bad superblock, error %d", err);
483 	ubifs_dump_node(c, sup);
484 	return -EINVAL;
485 }
486 
487 /**
488  * ubifs_read_sb_node - read superblock node.
489  * @c: UBIFS file-system description object
490  *
491  * This function returns a pointer to the superblock node or a negative error
492  * code. Note, the user of this function is responsible of kfree()'ing the
493  * returned superblock buffer.
494  */
495 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
496 {
497 	struct ubifs_sb_node *sup;
498 	int err;
499 
500 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
501 	if (!sup)
502 		return ERR_PTR(-ENOMEM);
503 
504 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
505 			      UBIFS_SB_LNUM, 0);
506 	if (err) {
507 		kfree(sup);
508 		return ERR_PTR(err);
509 	}
510 
511 	return sup;
512 }
513 
514 /**
515  * ubifs_write_sb_node - write superblock node.
516  * @c: UBIFS file-system description object
517  * @sup: superblock node read with 'ubifs_read_sb_node()'
518  *
519  * This function returns %0 on success and a negative error code on failure.
520  */
521 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
522 {
523 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
524 
525 	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
526 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
527 }
528 
529 /**
530  * ubifs_read_superblock - read superblock.
531  * @c: UBIFS file-system description object
532  *
533  * This function finds, reads and checks the superblock. If an empty UBI volume
534  * is being mounted, this function creates default superblock. Returns zero in
535  * case of success, and a negative error code in case of failure.
536  */
537 int ubifs_read_superblock(struct ubifs_info *c)
538 {
539 	int err, sup_flags;
540 	struct ubifs_sb_node *sup;
541 
542 	if (c->empty) {
543 		err = create_default_filesystem(c);
544 		if (err)
545 			return err;
546 	}
547 
548 	sup = ubifs_read_sb_node(c);
549 	if (IS_ERR(sup))
550 		return PTR_ERR(sup);
551 
552 	c->fmt_version = le32_to_cpu(sup->fmt_version);
553 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
554 
555 	/*
556 	 * The software supports all previous versions but not future versions,
557 	 * due to the unavailability of time-travelling equipment.
558 	 */
559 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
560 		ubifs_assert(!c->ro_media || c->ro_mount);
561 		if (!c->ro_mount ||
562 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
563 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
564 				  c->fmt_version, c->ro_compat_version,
565 				  UBIFS_FORMAT_VERSION,
566 				  UBIFS_RO_COMPAT_VERSION);
567 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
568 				ubifs_msg(c, "only R/O mounting is possible");
569 				err = -EROFS;
570 			} else
571 				err = -EINVAL;
572 			goto out;
573 		}
574 
575 		/*
576 		 * The FS is mounted R/O, and the media format is
577 		 * R/O-compatible with the UBIFS implementation, so we can
578 		 * mount.
579 		 */
580 		c->rw_incompat = 1;
581 	}
582 
583 	if (c->fmt_version < 3) {
584 		ubifs_err(c, "on-flash format version %d is not supported",
585 			  c->fmt_version);
586 		err = -EINVAL;
587 		goto out;
588 	}
589 
590 	switch (sup->key_hash) {
591 	case UBIFS_KEY_HASH_R5:
592 		c->key_hash = key_r5_hash;
593 		c->key_hash_type = UBIFS_KEY_HASH_R5;
594 		break;
595 
596 	case UBIFS_KEY_HASH_TEST:
597 		c->key_hash = key_test_hash;
598 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
599 		break;
600 	};
601 
602 	c->key_fmt = sup->key_fmt;
603 
604 	switch (c->key_fmt) {
605 	case UBIFS_SIMPLE_KEY_FMT:
606 		c->key_len = UBIFS_SK_LEN;
607 		break;
608 	default:
609 		ubifs_err(c, "unsupported key format");
610 		err = -EINVAL;
611 		goto out;
612 	}
613 
614 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
615 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
616 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
617 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
618 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
619 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
620 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
621 	c->fanout        = le32_to_cpu(sup->fanout);
622 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
623 	c->rp_size       = le64_to_cpu(sup->rp_size);
624 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
625 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
626 	sup_flags        = le32_to_cpu(sup->flags);
627 	if (!c->mount_opts.override_compr)
628 		c->default_compr = le16_to_cpu(sup->default_compr);
629 
630 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
631 	memcpy(&c->uuid, &sup->uuid, 16);
632 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
633 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
634 	c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
635 	c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
636 
637 	if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
638 		ubifs_err(c, "Unknown feature flags found: %#x",
639 			  sup_flags & ~UBIFS_FLG_MASK);
640 		err = -EINVAL;
641 		goto out;
642 	}
643 
644 #ifndef CONFIG_UBIFS_FS_ENCRYPTION
645 	if (c->encrypted) {
646 		ubifs_err(c, "file system contains encrypted files but UBIFS"
647 			     " was built without crypto support.");
648 		err = -EINVAL;
649 		goto out;
650 	}
651 #endif
652 
653 	/* Automatically increase file system size to the maximum size */
654 	c->old_leb_cnt = c->leb_cnt;
655 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
656 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
657 		if (c->ro_mount)
658 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
659 				c->old_leb_cnt,	c->leb_cnt);
660 		else {
661 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
662 				c->old_leb_cnt, c->leb_cnt);
663 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
664 			err = ubifs_write_sb_node(c, sup);
665 			if (err)
666 				goto out;
667 			c->old_leb_cnt = c->leb_cnt;
668 		}
669 	}
670 
671 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
672 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
673 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
674 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
675 	c->orph_first = c->lpt_last + 1;
676 	c->orph_last = c->orph_first + c->orph_lebs - 1;
677 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
678 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
679 	c->main_first = c->leb_cnt - c->main_lebs;
680 
681 	err = validate_sb(c, sup);
682 out:
683 	kfree(sup);
684 	return err;
685 }
686 
687 /**
688  * fixup_leb - fixup/unmap an LEB containing free space.
689  * @c: UBIFS file-system description object
690  * @lnum: the LEB number to fix up
691  * @len: number of used bytes in LEB (starting at offset 0)
692  *
693  * This function reads the contents of the given LEB number @lnum, then fixes
694  * it up, so that empty min. I/O units in the end of LEB are actually erased on
695  * flash (rather than being just all-0xff real data). If the LEB is completely
696  * empty, it is simply unmapped.
697  */
698 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
699 {
700 	int err;
701 
702 	ubifs_assert(len >= 0);
703 	ubifs_assert(len % c->min_io_size == 0);
704 	ubifs_assert(len < c->leb_size);
705 
706 	if (len == 0) {
707 		dbg_mnt("unmap empty LEB %d", lnum);
708 		return ubifs_leb_unmap(c, lnum);
709 	}
710 
711 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
712 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
713 	if (err)
714 		return err;
715 
716 	return ubifs_leb_change(c, lnum, c->sbuf, len);
717 }
718 
719 /**
720  * fixup_free_space - find & remap all LEBs containing free space.
721  * @c: UBIFS file-system description object
722  *
723  * This function walks through all LEBs in the filesystem and fiexes up those
724  * containing free/empty space.
725  */
726 static int fixup_free_space(struct ubifs_info *c)
727 {
728 	int lnum, err = 0;
729 	struct ubifs_lprops *lprops;
730 
731 	ubifs_get_lprops(c);
732 
733 	/* Fixup LEBs in the master area */
734 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
735 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
736 		if (err)
737 			goto out;
738 	}
739 
740 	/* Unmap unused log LEBs */
741 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
742 	while (lnum != c->ltail_lnum) {
743 		err = fixup_leb(c, lnum, 0);
744 		if (err)
745 			goto out;
746 		lnum = ubifs_next_log_lnum(c, lnum);
747 	}
748 
749 	/*
750 	 * Fixup the log head which contains the only a CS node at the
751 	 * beginning.
752 	 */
753 	err = fixup_leb(c, c->lhead_lnum,
754 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
755 	if (err)
756 		goto out;
757 
758 	/* Fixup LEBs in the LPT area */
759 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
760 		int free = c->ltab[lnum - c->lpt_first].free;
761 
762 		if (free > 0) {
763 			err = fixup_leb(c, lnum, c->leb_size - free);
764 			if (err)
765 				goto out;
766 		}
767 	}
768 
769 	/* Unmap LEBs in the orphans area */
770 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
771 		err = fixup_leb(c, lnum, 0);
772 		if (err)
773 			goto out;
774 	}
775 
776 	/* Fixup LEBs in the main area */
777 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
778 		lprops = ubifs_lpt_lookup(c, lnum);
779 		if (IS_ERR(lprops)) {
780 			err = PTR_ERR(lprops);
781 			goto out;
782 		}
783 
784 		if (lprops->free > 0) {
785 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
786 			if (err)
787 				goto out;
788 		}
789 	}
790 
791 out:
792 	ubifs_release_lprops(c);
793 	return err;
794 }
795 
796 /**
797  * ubifs_fixup_free_space - find & fix all LEBs with free space.
798  * @c: UBIFS file-system description object
799  *
800  * This function fixes up LEBs containing free space on first mount, if the
801  * appropriate flag was set when the FS was created. Each LEB with one or more
802  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
803  * the free space is actually erased. E.g., this is necessary for some NAND
804  * chips, since the free space may have been programmed like real "0xff" data
805  * (generating a non-0xff ECC), causing future writes to the not-really-erased
806  * NAND pages to behave badly. After the space is fixed up, the superblock flag
807  * is cleared, so that this is skipped for all future mounts.
808  */
809 int ubifs_fixup_free_space(struct ubifs_info *c)
810 {
811 	int err;
812 	struct ubifs_sb_node *sup;
813 
814 	ubifs_assert(c->space_fixup);
815 	ubifs_assert(!c->ro_mount);
816 
817 	ubifs_msg(c, "start fixing up free space");
818 
819 	err = fixup_free_space(c);
820 	if (err)
821 		return err;
822 
823 	sup = ubifs_read_sb_node(c);
824 	if (IS_ERR(sup))
825 		return PTR_ERR(sup);
826 
827 	/* Free-space fixup is no longer required */
828 	c->space_fixup = 0;
829 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
830 
831 	err = ubifs_write_sb_node(c, sup);
832 	kfree(sup);
833 	if (err)
834 		return err;
835 
836 	ubifs_msg(c, "free space fixup complete");
837 	return err;
838 }
839 
840 int ubifs_enable_encryption(struct ubifs_info *c)
841 {
842 	int err;
843 	struct ubifs_sb_node *sup;
844 
845 	if (c->encrypted)
846 		return 0;
847 
848 	if (c->ro_mount || c->ro_media)
849 		return -EROFS;
850 
851 	if (c->fmt_version < 5) {
852 		ubifs_err(c, "on-flash format version 5 is needed for encryption");
853 		return -EINVAL;
854 	}
855 
856 	sup = ubifs_read_sb_node(c);
857 	if (IS_ERR(sup))
858 		return PTR_ERR(sup);
859 
860 	sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
861 
862 	err = ubifs_write_sb_node(c, sup);
863 	if (!err)
864 		c->encrypted = 1;
865 	kfree(sup);
866 
867 	return err;
868 }
869