xref: /openbmc/linux/fs/ubifs/replay.c (revision da2ef666)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file contains journal replay code. It runs when the file-system is being
25  * mounted and requires no locking.
26  *
27  * The larger is the journal, the longer it takes to scan it, so the longer it
28  * takes to mount UBIFS. This is why the journal has limited size which may be
29  * changed depending on the system requirements. But a larger journal gives
30  * faster I/O speed because it writes the index less frequently. So this is a
31  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32  * larger is the journal, the more memory its index may consume.
33  */
34 
35 #include "ubifs.h"
36 #include <linux/list_sort.h>
37 
38 /**
39  * struct replay_entry - replay list entry.
40  * @lnum: logical eraseblock number of the node
41  * @offs: node offset
42  * @len: node length
43  * @deletion: non-zero if this entry corresponds to a node deletion
44  * @sqnum: node sequence number
45  * @list: links the replay list
46  * @key: node key
47  * @nm: directory entry name
48  * @old_size: truncation old size
49  * @new_size: truncation new size
50  *
51  * The replay process first scans all buds and builds the replay list, then
52  * sorts the replay list in nodes sequence number order, and then inserts all
53  * the replay entries to the TNC.
54  */
55 struct replay_entry {
56 	int lnum;
57 	int offs;
58 	int len;
59 	unsigned int deletion:1;
60 	unsigned long long sqnum;
61 	struct list_head list;
62 	union ubifs_key key;
63 	union {
64 		struct fscrypt_name nm;
65 		struct {
66 			loff_t old_size;
67 			loff_t new_size;
68 		};
69 	};
70 };
71 
72 /**
73  * struct bud_entry - entry in the list of buds to replay.
74  * @list: next bud in the list
75  * @bud: bud description object
76  * @sqnum: reference node sequence number
77  * @free: free bytes in the bud
78  * @dirty: dirty bytes in the bud
79  */
80 struct bud_entry {
81 	struct list_head list;
82 	struct ubifs_bud *bud;
83 	unsigned long long sqnum;
84 	int free;
85 	int dirty;
86 };
87 
88 /**
89  * set_bud_lprops - set free and dirty space used by a bud.
90  * @c: UBIFS file-system description object
91  * @b: bud entry which describes the bud
92  *
93  * This function makes sure the LEB properties of bud @b are set correctly
94  * after the replay. Returns zero in case of success and a negative error code
95  * in case of failure.
96  */
97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
98 {
99 	const struct ubifs_lprops *lp;
100 	int err = 0, dirty;
101 
102 	ubifs_get_lprops(c);
103 
104 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 	if (IS_ERR(lp)) {
106 		err = PTR_ERR(lp);
107 		goto out;
108 	}
109 
110 	dirty = lp->dirty;
111 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
112 		/*
113 		 * The LEB was added to the journal with a starting offset of
114 		 * zero which means the LEB must have been empty. The LEB
115 		 * property values should be @lp->free == @c->leb_size and
116 		 * @lp->dirty == 0, but that is not the case. The reason is that
117 		 * the LEB had been garbage collected before it became the bud,
118 		 * and there was not commit inbetween. The garbage collector
119 		 * resets the free and dirty space without recording it
120 		 * anywhere except lprops, so if there was no commit then
121 		 * lprops does not have that information.
122 		 *
123 		 * We do not need to adjust free space because the scan has told
124 		 * us the exact value which is recorded in the replay entry as
125 		 * @b->free.
126 		 *
127 		 * However we do need to subtract from the dirty space the
128 		 * amount of space that the garbage collector reclaimed, which
129 		 * is the whole LEB minus the amount of space that was free.
130 		 */
131 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132 			lp->free, lp->dirty);
133 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134 			lp->free, lp->dirty);
135 		dirty -= c->leb_size - lp->free;
136 		/*
137 		 * If the replay order was perfect the dirty space would now be
138 		 * zero. The order is not perfect because the journal heads
139 		 * race with each other. This is not a problem but is does mean
140 		 * that the dirty space may temporarily exceed c->leb_size
141 		 * during the replay.
142 		 */
143 		if (dirty != 0)
144 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
145 				b->bud->lnum, lp->free, lp->dirty, b->free,
146 				b->dirty);
147 	}
148 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149 			     lp->flags | LPROPS_TAKEN, 0);
150 	if (IS_ERR(lp)) {
151 		err = PTR_ERR(lp);
152 		goto out;
153 	}
154 
155 	/* Make sure the journal head points to the latest bud */
156 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 				     b->bud->lnum, c->leb_size - b->free);
158 
159 out:
160 	ubifs_release_lprops(c);
161 	return err;
162 }
163 
164 /**
165  * set_buds_lprops - set free and dirty space for all replayed buds.
166  * @c: UBIFS file-system description object
167  *
168  * This function sets LEB properties for all replayed buds. Returns zero in
169  * case of success and a negative error code in case of failure.
170  */
171 static int set_buds_lprops(struct ubifs_info *c)
172 {
173 	struct bud_entry *b;
174 	int err;
175 
176 	list_for_each_entry(b, &c->replay_buds, list) {
177 		err = set_bud_lprops(c, b);
178 		if (err)
179 			return err;
180 	}
181 
182 	return 0;
183 }
184 
185 /**
186  * trun_remove_range - apply a replay entry for a truncation to the TNC.
187  * @c: UBIFS file-system description object
188  * @r: replay entry of truncation
189  */
190 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
191 {
192 	unsigned min_blk, max_blk;
193 	union ubifs_key min_key, max_key;
194 	ino_t ino;
195 
196 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198 		min_blk += 1;
199 
200 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202 		max_blk -= 1;
203 
204 	ino = key_inum(c, &r->key);
205 
206 	data_key_init(c, &min_key, ino, min_blk);
207 	data_key_init(c, &max_key, ino, max_blk);
208 
209 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
210 }
211 
212 /**
213  * apply_replay_entry - apply a replay entry to the TNC.
214  * @c: UBIFS file-system description object
215  * @r: replay entry to apply
216  *
217  * Apply a replay entry to the TNC.
218  */
219 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
220 {
221 	int err;
222 
223 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
224 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
225 
226 	if (is_hash_key(c, &r->key)) {
227 		if (r->deletion)
228 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
229 		else
230 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
231 					       r->len, &r->nm);
232 	} else {
233 		if (r->deletion)
234 			switch (key_type(c, &r->key)) {
235 			case UBIFS_INO_KEY:
236 			{
237 				ino_t inum = key_inum(c, &r->key);
238 
239 				err = ubifs_tnc_remove_ino(c, inum);
240 				break;
241 			}
242 			case UBIFS_TRUN_KEY:
243 				err = trun_remove_range(c, r);
244 				break;
245 			default:
246 				err = ubifs_tnc_remove(c, &r->key);
247 				break;
248 			}
249 		else
250 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
251 					    r->len);
252 		if (err)
253 			return err;
254 
255 		if (c->need_recovery)
256 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
257 						       r->new_size);
258 	}
259 
260 	return err;
261 }
262 
263 /**
264  * replay_entries_cmp - compare 2 replay entries.
265  * @priv: UBIFS file-system description object
266  * @a: first replay entry
267  * @b: second replay entry
268  *
269  * This is a comparios function for 'list_sort()' which compares 2 replay
270  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
271  * greater sequence number and %-1 otherwise.
272  */
273 static int replay_entries_cmp(void *priv, struct list_head *a,
274 			      struct list_head *b)
275 {
276 	struct ubifs_info *c = priv;
277 	struct replay_entry *ra, *rb;
278 
279 	cond_resched();
280 	if (a == b)
281 		return 0;
282 
283 	ra = list_entry(a, struct replay_entry, list);
284 	rb = list_entry(b, struct replay_entry, list);
285 	ubifs_assert(c, ra->sqnum != rb->sqnum);
286 	if (ra->sqnum > rb->sqnum)
287 		return 1;
288 	return -1;
289 }
290 
291 /**
292  * apply_replay_list - apply the replay list to the TNC.
293  * @c: UBIFS file-system description object
294  *
295  * Apply all entries in the replay list to the TNC. Returns zero in case of
296  * success and a negative error code in case of failure.
297  */
298 static int apply_replay_list(struct ubifs_info *c)
299 {
300 	struct replay_entry *r;
301 	int err;
302 
303 	list_sort(c, &c->replay_list, &replay_entries_cmp);
304 
305 	list_for_each_entry(r, &c->replay_list, list) {
306 		cond_resched();
307 
308 		err = apply_replay_entry(c, r);
309 		if (err)
310 			return err;
311 	}
312 
313 	return 0;
314 }
315 
316 /**
317  * destroy_replay_list - destroy the replay.
318  * @c: UBIFS file-system description object
319  *
320  * Destroy the replay list.
321  */
322 static void destroy_replay_list(struct ubifs_info *c)
323 {
324 	struct replay_entry *r, *tmp;
325 
326 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
327 		if (is_hash_key(c, &r->key))
328 			kfree(fname_name(&r->nm));
329 		list_del(&r->list);
330 		kfree(r);
331 	}
332 }
333 
334 /**
335  * insert_node - insert a node to the replay list
336  * @c: UBIFS file-system description object
337  * @lnum: node logical eraseblock number
338  * @offs: node offset
339  * @len: node length
340  * @key: node key
341  * @sqnum: sequence number
342  * @deletion: non-zero if this is a deletion
343  * @used: number of bytes in use in a LEB
344  * @old_size: truncation old size
345  * @new_size: truncation new size
346  *
347  * This function inserts a scanned non-direntry node to the replay list. The
348  * replay list contains @struct replay_entry elements, and we sort this list in
349  * sequence number order before applying it. The replay list is applied at the
350  * very end of the replay process. Since the list is sorted in sequence number
351  * order, the older modifications are applied first. This function returns zero
352  * in case of success and a negative error code in case of failure.
353  */
354 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
355 		       union ubifs_key *key, unsigned long long sqnum,
356 		       int deletion, int *used, loff_t old_size,
357 		       loff_t new_size)
358 {
359 	struct replay_entry *r;
360 
361 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
362 
363 	if (key_inum(c, key) >= c->highest_inum)
364 		c->highest_inum = key_inum(c, key);
365 
366 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
367 	if (!r)
368 		return -ENOMEM;
369 
370 	if (!deletion)
371 		*used += ALIGN(len, 8);
372 	r->lnum = lnum;
373 	r->offs = offs;
374 	r->len = len;
375 	r->deletion = !!deletion;
376 	r->sqnum = sqnum;
377 	key_copy(c, key, &r->key);
378 	r->old_size = old_size;
379 	r->new_size = new_size;
380 
381 	list_add_tail(&r->list, &c->replay_list);
382 	return 0;
383 }
384 
385 /**
386  * insert_dent - insert a directory entry node into the replay list.
387  * @c: UBIFS file-system description object
388  * @lnum: node logical eraseblock number
389  * @offs: node offset
390  * @len: node length
391  * @key: node key
392  * @name: directory entry name
393  * @nlen: directory entry name length
394  * @sqnum: sequence number
395  * @deletion: non-zero if this is a deletion
396  * @used: number of bytes in use in a LEB
397  *
398  * This function inserts a scanned directory entry node or an extended
399  * attribute entry to the replay list. Returns zero in case of success and a
400  * negative error code in case of failure.
401  */
402 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
403 		       union ubifs_key *key, const char *name, int nlen,
404 		       unsigned long long sqnum, int deletion, int *used)
405 {
406 	struct replay_entry *r;
407 	char *nbuf;
408 
409 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
410 	if (key_inum(c, key) >= c->highest_inum)
411 		c->highest_inum = key_inum(c, key);
412 
413 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
414 	if (!r)
415 		return -ENOMEM;
416 
417 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
418 	if (!nbuf) {
419 		kfree(r);
420 		return -ENOMEM;
421 	}
422 
423 	if (!deletion)
424 		*used += ALIGN(len, 8);
425 	r->lnum = lnum;
426 	r->offs = offs;
427 	r->len = len;
428 	r->deletion = !!deletion;
429 	r->sqnum = sqnum;
430 	key_copy(c, key, &r->key);
431 	fname_len(&r->nm) = nlen;
432 	memcpy(nbuf, name, nlen);
433 	nbuf[nlen] = '\0';
434 	fname_name(&r->nm) = nbuf;
435 
436 	list_add_tail(&r->list, &c->replay_list);
437 	return 0;
438 }
439 
440 /**
441  * ubifs_validate_entry - validate directory or extended attribute entry node.
442  * @c: UBIFS file-system description object
443  * @dent: the node to validate
444  *
445  * This function validates directory or extended attribute entry node @dent.
446  * Returns zero if the node is all right and a %-EINVAL if not.
447  */
448 int ubifs_validate_entry(struct ubifs_info *c,
449 			 const struct ubifs_dent_node *dent)
450 {
451 	int key_type = key_type_flash(c, dent->key);
452 	int nlen = le16_to_cpu(dent->nlen);
453 
454 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
455 	    dent->type >= UBIFS_ITYPES_CNT ||
456 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
457 	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
458 	    le64_to_cpu(dent->inum) > MAX_INUM) {
459 		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
460 			  "directory entry" : "extended attribute entry");
461 		return -EINVAL;
462 	}
463 
464 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
465 		ubifs_err(c, "bad key type %d", key_type);
466 		return -EINVAL;
467 	}
468 
469 	return 0;
470 }
471 
472 /**
473  * is_last_bud - check if the bud is the last in the journal head.
474  * @c: UBIFS file-system description object
475  * @bud: bud description object
476  *
477  * This function checks if bud @bud is the last bud in its journal head. This
478  * information is then used by 'replay_bud()' to decide whether the bud can
479  * have corruptions or not. Indeed, only last buds can be corrupted by power
480  * cuts. Returns %1 if this is the last bud, and %0 if not.
481  */
482 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
483 {
484 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
485 	struct ubifs_bud *next;
486 	uint32_t data;
487 	int err;
488 
489 	if (list_is_last(&bud->list, &jh->buds_list))
490 		return 1;
491 
492 	/*
493 	 * The following is a quirk to make sure we work correctly with UBIFS
494 	 * images used with older UBIFS.
495 	 *
496 	 * Normally, the last bud will be the last in the journal head's list
497 	 * of bud. However, there is one exception if the UBIFS image belongs
498 	 * to older UBIFS. This is fairly unlikely: one would need to use old
499 	 * UBIFS, then have a power cut exactly at the right point, and then
500 	 * try to mount this image with new UBIFS.
501 	 *
502 	 * The exception is: it is possible to have 2 buds A and B, A goes
503 	 * before B, and B is the last, bud B is contains no data, and bud A is
504 	 * corrupted at the end. The reason is that in older versions when the
505 	 * journal code switched the next bud (from A to B), it first added a
506 	 * log reference node for the new bud (B), and only after this it
507 	 * synchronized the write-buffer of current bud (A). But later this was
508 	 * changed and UBIFS started to always synchronize the write-buffer of
509 	 * the bud (A) before writing the log reference for the new bud (B).
510 	 *
511 	 * But because older UBIFS always synchronized A's write-buffer before
512 	 * writing to B, we can recognize this exceptional situation but
513 	 * checking the contents of bud B - if it is empty, then A can be
514 	 * treated as the last and we can recover it.
515 	 *
516 	 * TODO: remove this piece of code in a couple of years (today it is
517 	 * 16.05.2011).
518 	 */
519 	next = list_entry(bud->list.next, struct ubifs_bud, list);
520 	if (!list_is_last(&next->list, &jh->buds_list))
521 		return 0;
522 
523 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
524 	if (err)
525 		return 0;
526 
527 	return data == 0xFFFFFFFF;
528 }
529 
530 /**
531  * replay_bud - replay a bud logical eraseblock.
532  * @c: UBIFS file-system description object
533  * @b: bud entry which describes the bud
534  *
535  * This function replays bud @bud, recovers it if needed, and adds all nodes
536  * from this bud to the replay list. Returns zero in case of success and a
537  * negative error code in case of failure.
538  */
539 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
540 {
541 	int is_last = is_last_bud(c, b->bud);
542 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
543 	struct ubifs_scan_leb *sleb;
544 	struct ubifs_scan_node *snod;
545 
546 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
547 		lnum, b->bud->jhead, offs, is_last);
548 
549 	if (c->need_recovery && is_last)
550 		/*
551 		 * Recover only last LEBs in the journal heads, because power
552 		 * cuts may cause corruptions only in these LEBs, because only
553 		 * these LEBs could possibly be written to at the power cut
554 		 * time.
555 		 */
556 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
557 	else
558 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
559 	if (IS_ERR(sleb))
560 		return PTR_ERR(sleb);
561 
562 	/*
563 	 * The bud does not have to start from offset zero - the beginning of
564 	 * the 'lnum' LEB may contain previously committed data. One of the
565 	 * things we have to do in replay is to correctly update lprops with
566 	 * newer information about this LEB.
567 	 *
568 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
569 	 * bytes of free space because it only contain information about
570 	 * committed data.
571 	 *
572 	 * But we know that real amount of free space is 'c->leb_size -
573 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
574 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
575 	 * how much of these data are dirty and update lprops with this
576 	 * information.
577 	 *
578 	 * The dirt in that LEB region is comprised of padding nodes, deletion
579 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
580 	 * nodes in this LEB. So instead of calculating clean space, we
581 	 * calculate used space ('used' variable).
582 	 */
583 
584 	list_for_each_entry(snod, &sleb->nodes, list) {
585 		int deletion = 0;
586 
587 		cond_resched();
588 
589 		if (snod->sqnum >= SQNUM_WATERMARK) {
590 			ubifs_err(c, "file system's life ended");
591 			goto out_dump;
592 		}
593 
594 		if (snod->sqnum > c->max_sqnum)
595 			c->max_sqnum = snod->sqnum;
596 
597 		switch (snod->type) {
598 		case UBIFS_INO_NODE:
599 		{
600 			struct ubifs_ino_node *ino = snod->node;
601 			loff_t new_size = le64_to_cpu(ino->size);
602 
603 			if (le32_to_cpu(ino->nlink) == 0)
604 				deletion = 1;
605 			err = insert_node(c, lnum, snod->offs, snod->len,
606 					  &snod->key, snod->sqnum, deletion,
607 					  &used, 0, new_size);
608 			break;
609 		}
610 		case UBIFS_DATA_NODE:
611 		{
612 			struct ubifs_data_node *dn = snod->node;
613 			loff_t new_size = le32_to_cpu(dn->size) +
614 					  key_block(c, &snod->key) *
615 					  UBIFS_BLOCK_SIZE;
616 
617 			err = insert_node(c, lnum, snod->offs, snod->len,
618 					  &snod->key, snod->sqnum, deletion,
619 					  &used, 0, new_size);
620 			break;
621 		}
622 		case UBIFS_DENT_NODE:
623 		case UBIFS_XENT_NODE:
624 		{
625 			struct ubifs_dent_node *dent = snod->node;
626 
627 			err = ubifs_validate_entry(c, dent);
628 			if (err)
629 				goto out_dump;
630 
631 			err = insert_dent(c, lnum, snod->offs, snod->len,
632 					  &snod->key, dent->name,
633 					  le16_to_cpu(dent->nlen), snod->sqnum,
634 					  !le64_to_cpu(dent->inum), &used);
635 			break;
636 		}
637 		case UBIFS_TRUN_NODE:
638 		{
639 			struct ubifs_trun_node *trun = snod->node;
640 			loff_t old_size = le64_to_cpu(trun->old_size);
641 			loff_t new_size = le64_to_cpu(trun->new_size);
642 			union ubifs_key key;
643 
644 			/* Validate truncation node */
645 			if (old_size < 0 || old_size > c->max_inode_sz ||
646 			    new_size < 0 || new_size > c->max_inode_sz ||
647 			    old_size <= new_size) {
648 				ubifs_err(c, "bad truncation node");
649 				goto out_dump;
650 			}
651 
652 			/*
653 			 * Create a fake truncation key just to use the same
654 			 * functions which expect nodes to have keys.
655 			 */
656 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
657 			err = insert_node(c, lnum, snod->offs, snod->len,
658 					  &key, snod->sqnum, 1, &used,
659 					  old_size, new_size);
660 			break;
661 		}
662 		default:
663 			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
664 				  snod->type, lnum, snod->offs);
665 			err = -EINVAL;
666 			goto out_dump;
667 		}
668 		if (err)
669 			goto out;
670 	}
671 
672 	ubifs_assert(c, ubifs_search_bud(c, lnum));
673 	ubifs_assert(c, sleb->endpt - offs >= used);
674 	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
675 
676 	b->dirty = sleb->endpt - offs - used;
677 	b->free = c->leb_size - sleb->endpt;
678 	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
679 		lnum, b->dirty, b->free);
680 
681 out:
682 	ubifs_scan_destroy(sleb);
683 	return err;
684 
685 out_dump:
686 	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
687 	ubifs_dump_node(c, snod->node);
688 	ubifs_scan_destroy(sleb);
689 	return -EINVAL;
690 }
691 
692 /**
693  * replay_buds - replay all buds.
694  * @c: UBIFS file-system description object
695  *
696  * This function returns zero in case of success and a negative error code in
697  * case of failure.
698  */
699 static int replay_buds(struct ubifs_info *c)
700 {
701 	struct bud_entry *b;
702 	int err;
703 	unsigned long long prev_sqnum = 0;
704 
705 	list_for_each_entry(b, &c->replay_buds, list) {
706 		err = replay_bud(c, b);
707 		if (err)
708 			return err;
709 
710 		ubifs_assert(c, b->sqnum > prev_sqnum);
711 		prev_sqnum = b->sqnum;
712 	}
713 
714 	return 0;
715 }
716 
717 /**
718  * destroy_bud_list - destroy the list of buds to replay.
719  * @c: UBIFS file-system description object
720  */
721 static void destroy_bud_list(struct ubifs_info *c)
722 {
723 	struct bud_entry *b;
724 
725 	while (!list_empty(&c->replay_buds)) {
726 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
727 		list_del(&b->list);
728 		kfree(b);
729 	}
730 }
731 
732 /**
733  * add_replay_bud - add a bud to the list of buds to replay.
734  * @c: UBIFS file-system description object
735  * @lnum: bud logical eraseblock number to replay
736  * @offs: bud start offset
737  * @jhead: journal head to which this bud belongs
738  * @sqnum: reference node sequence number
739  *
740  * This function returns zero in case of success and a negative error code in
741  * case of failure.
742  */
743 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
744 			  unsigned long long sqnum)
745 {
746 	struct ubifs_bud *bud;
747 	struct bud_entry *b;
748 
749 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
750 
751 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
752 	if (!bud)
753 		return -ENOMEM;
754 
755 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
756 	if (!b) {
757 		kfree(bud);
758 		return -ENOMEM;
759 	}
760 
761 	bud->lnum = lnum;
762 	bud->start = offs;
763 	bud->jhead = jhead;
764 	ubifs_add_bud(c, bud);
765 
766 	b->bud = bud;
767 	b->sqnum = sqnum;
768 	list_add_tail(&b->list, &c->replay_buds);
769 
770 	return 0;
771 }
772 
773 /**
774  * validate_ref - validate a reference node.
775  * @c: UBIFS file-system description object
776  * @ref: the reference node to validate
777  * @ref_lnum: LEB number of the reference node
778  * @ref_offs: reference node offset
779  *
780  * This function returns %1 if a bud reference already exists for the LEB. %0 is
781  * returned if the reference node is new, otherwise %-EINVAL is returned if
782  * validation failed.
783  */
784 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
785 {
786 	struct ubifs_bud *bud;
787 	int lnum = le32_to_cpu(ref->lnum);
788 	unsigned int offs = le32_to_cpu(ref->offs);
789 	unsigned int jhead = le32_to_cpu(ref->jhead);
790 
791 	/*
792 	 * ref->offs may point to the end of LEB when the journal head points
793 	 * to the end of LEB and we write reference node for it during commit.
794 	 * So this is why we require 'offs > c->leb_size'.
795 	 */
796 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
797 	    lnum < c->main_first || offs > c->leb_size ||
798 	    offs & (c->min_io_size - 1))
799 		return -EINVAL;
800 
801 	/* Make sure we have not already looked at this bud */
802 	bud = ubifs_search_bud(c, lnum);
803 	if (bud) {
804 		if (bud->jhead == jhead && bud->start <= offs)
805 			return 1;
806 		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
807 		return -EINVAL;
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  * replay_log_leb - replay a log logical eraseblock.
815  * @c: UBIFS file-system description object
816  * @lnum: log logical eraseblock to replay
817  * @offs: offset to start replaying from
818  * @sbuf: scan buffer
819  *
820  * This function replays a log LEB and returns zero in case of success, %1 if
821  * this is the last LEB in the log, and a negative error code in case of
822  * failure.
823  */
824 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
825 {
826 	int err;
827 	struct ubifs_scan_leb *sleb;
828 	struct ubifs_scan_node *snod;
829 	const struct ubifs_cs_node *node;
830 
831 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
832 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
833 	if (IS_ERR(sleb)) {
834 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
835 			return PTR_ERR(sleb);
836 		/*
837 		 * Note, the below function will recover this log LEB only if
838 		 * it is the last, because unclean reboots can possibly corrupt
839 		 * only the tail of the log.
840 		 */
841 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
842 		if (IS_ERR(sleb))
843 			return PTR_ERR(sleb);
844 	}
845 
846 	if (sleb->nodes_cnt == 0) {
847 		err = 1;
848 		goto out;
849 	}
850 
851 	node = sleb->buf;
852 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
853 	if (c->cs_sqnum == 0) {
854 		/*
855 		 * This is the first log LEB we are looking at, make sure that
856 		 * the first node is a commit start node. Also record its
857 		 * sequence number so that UBIFS can determine where the log
858 		 * ends, because all nodes which were have higher sequence
859 		 * numbers.
860 		 */
861 		if (snod->type != UBIFS_CS_NODE) {
862 			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
863 				  lnum, offs);
864 			goto out_dump;
865 		}
866 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
867 			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
868 				  lnum, offs,
869 				  (unsigned long long)le64_to_cpu(node->cmt_no),
870 				  c->cmt_no);
871 			goto out_dump;
872 		}
873 
874 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
875 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
876 	}
877 
878 	if (snod->sqnum < c->cs_sqnum) {
879 		/*
880 		 * This means that we reached end of log and now
881 		 * look to the older log data, which was already
882 		 * committed but the eraseblock was not erased (UBIFS
883 		 * only un-maps it). So this basically means we have to
884 		 * exit with "end of log" code.
885 		 */
886 		err = 1;
887 		goto out;
888 	}
889 
890 	/* Make sure the first node sits at offset zero of the LEB */
891 	if (snod->offs != 0) {
892 		ubifs_err(c, "first node is not at zero offset");
893 		goto out_dump;
894 	}
895 
896 	list_for_each_entry(snod, &sleb->nodes, list) {
897 		cond_resched();
898 
899 		if (snod->sqnum >= SQNUM_WATERMARK) {
900 			ubifs_err(c, "file system's life ended");
901 			goto out_dump;
902 		}
903 
904 		if (snod->sqnum < c->cs_sqnum) {
905 			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
906 				  snod->sqnum, c->cs_sqnum);
907 			goto out_dump;
908 		}
909 
910 		if (snod->sqnum > c->max_sqnum)
911 			c->max_sqnum = snod->sqnum;
912 
913 		switch (snod->type) {
914 		case UBIFS_REF_NODE: {
915 			const struct ubifs_ref_node *ref = snod->node;
916 
917 			err = validate_ref(c, ref);
918 			if (err == 1)
919 				break; /* Already have this bud */
920 			if (err)
921 				goto out_dump;
922 
923 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
924 					     le32_to_cpu(ref->offs),
925 					     le32_to_cpu(ref->jhead),
926 					     snod->sqnum);
927 			if (err)
928 				goto out;
929 
930 			break;
931 		}
932 		case UBIFS_CS_NODE:
933 			/* Make sure it sits at the beginning of LEB */
934 			if (snod->offs != 0) {
935 				ubifs_err(c, "unexpected node in log");
936 				goto out_dump;
937 			}
938 			break;
939 		default:
940 			ubifs_err(c, "unexpected node in log");
941 			goto out_dump;
942 		}
943 	}
944 
945 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
946 		c->lhead_lnum = lnum;
947 		c->lhead_offs = sleb->endpt;
948 	}
949 
950 	err = !sleb->endpt;
951 out:
952 	ubifs_scan_destroy(sleb);
953 	return err;
954 
955 out_dump:
956 	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
957 		  lnum, offs + snod->offs);
958 	ubifs_dump_node(c, snod->node);
959 	ubifs_scan_destroy(sleb);
960 	return -EINVAL;
961 }
962 
963 /**
964  * take_ihead - update the status of the index head in lprops to 'taken'.
965  * @c: UBIFS file-system description object
966  *
967  * This function returns the amount of free space in the index head LEB or a
968  * negative error code.
969  */
970 static int take_ihead(struct ubifs_info *c)
971 {
972 	const struct ubifs_lprops *lp;
973 	int err, free;
974 
975 	ubifs_get_lprops(c);
976 
977 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
978 	if (IS_ERR(lp)) {
979 		err = PTR_ERR(lp);
980 		goto out;
981 	}
982 
983 	free = lp->free;
984 
985 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
986 			     lp->flags | LPROPS_TAKEN, 0);
987 	if (IS_ERR(lp)) {
988 		err = PTR_ERR(lp);
989 		goto out;
990 	}
991 
992 	err = free;
993 out:
994 	ubifs_release_lprops(c);
995 	return err;
996 }
997 
998 /**
999  * ubifs_replay_journal - replay journal.
1000  * @c: UBIFS file-system description object
1001  *
1002  * This function scans the journal, replays and cleans it up. It makes sure all
1003  * memory data structures related to uncommitted journal are built (dirty TNC
1004  * tree, tree of buds, modified lprops, etc).
1005  */
1006 int ubifs_replay_journal(struct ubifs_info *c)
1007 {
1008 	int err, lnum, free;
1009 
1010 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1011 
1012 	/* Update the status of the index head in lprops to 'taken' */
1013 	free = take_ihead(c);
1014 	if (free < 0)
1015 		return free; /* Error code */
1016 
1017 	if (c->ihead_offs != c->leb_size - free) {
1018 		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1019 			  c->ihead_offs);
1020 		return -EINVAL;
1021 	}
1022 
1023 	dbg_mnt("start replaying the journal");
1024 	c->replaying = 1;
1025 	lnum = c->ltail_lnum = c->lhead_lnum;
1026 
1027 	do {
1028 		err = replay_log_leb(c, lnum, 0, c->sbuf);
1029 		if (err == 1) {
1030 			if (lnum != c->lhead_lnum)
1031 				/* We hit the end of the log */
1032 				break;
1033 
1034 			/*
1035 			 * The head of the log must always start with the
1036 			 * "commit start" node on a properly formatted UBIFS.
1037 			 * But we found no nodes at all, which means that
1038 			 * something went wrong and we cannot proceed mounting
1039 			 * the file-system.
1040 			 */
1041 			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1042 				  lnum, 0);
1043 			err = -EINVAL;
1044 		}
1045 		if (err)
1046 			goto out;
1047 		lnum = ubifs_next_log_lnum(c, lnum);
1048 	} while (lnum != c->ltail_lnum);
1049 
1050 	err = replay_buds(c);
1051 	if (err)
1052 		goto out;
1053 
1054 	err = apply_replay_list(c);
1055 	if (err)
1056 		goto out;
1057 
1058 	err = set_buds_lprops(c);
1059 	if (err)
1060 		goto out;
1061 
1062 	/*
1063 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1064 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1065 	 * depend on it. This means we have to initialize it to make sure
1066 	 * budgeting works properly.
1067 	 */
1068 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1069 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1070 
1071 	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1072 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1073 		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1074 		(unsigned long)c->highest_inum);
1075 out:
1076 	destroy_replay_list(c);
1077 	destroy_bud_list(c);
1078 	c->replaying = 0;
1079 	return err;
1080 }
1081