1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file contains journal replay code. It runs when the file-system is being 25 * mounted and requires no locking. 26 * 27 * The larger is the journal, the longer it takes to scan it, so the longer it 28 * takes to mount UBIFS. This is why the journal has limited size which may be 29 * changed depending on the system requirements. But a larger journal gives 30 * faster I/O speed because it writes the index less frequently. So this is a 31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 32 * larger is the journal, the more memory its index may consume. 33 */ 34 35 #include "ubifs.h" 36 #include <linux/list_sort.h> 37 #include <crypto/hash.h> 38 #include <crypto/algapi.h> 39 40 /** 41 * struct replay_entry - replay list entry. 42 * @lnum: logical eraseblock number of the node 43 * @offs: node offset 44 * @len: node length 45 * @deletion: non-zero if this entry corresponds to a node deletion 46 * @sqnum: node sequence number 47 * @list: links the replay list 48 * @key: node key 49 * @nm: directory entry name 50 * @old_size: truncation old size 51 * @new_size: truncation new size 52 * 53 * The replay process first scans all buds and builds the replay list, then 54 * sorts the replay list in nodes sequence number order, and then inserts all 55 * the replay entries to the TNC. 56 */ 57 struct replay_entry { 58 int lnum; 59 int offs; 60 int len; 61 u8 hash[UBIFS_HASH_ARR_SZ]; 62 unsigned int deletion:1; 63 unsigned long long sqnum; 64 struct list_head list; 65 union ubifs_key key; 66 union { 67 struct fscrypt_name nm; 68 struct { 69 loff_t old_size; 70 loff_t new_size; 71 }; 72 }; 73 }; 74 75 /** 76 * struct bud_entry - entry in the list of buds to replay. 77 * @list: next bud in the list 78 * @bud: bud description object 79 * @sqnum: reference node sequence number 80 * @free: free bytes in the bud 81 * @dirty: dirty bytes in the bud 82 */ 83 struct bud_entry { 84 struct list_head list; 85 struct ubifs_bud *bud; 86 unsigned long long sqnum; 87 int free; 88 int dirty; 89 }; 90 91 /** 92 * set_bud_lprops - set free and dirty space used by a bud. 93 * @c: UBIFS file-system description object 94 * @b: bud entry which describes the bud 95 * 96 * This function makes sure the LEB properties of bud @b are set correctly 97 * after the replay. Returns zero in case of success and a negative error code 98 * in case of failure. 99 */ 100 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 101 { 102 const struct ubifs_lprops *lp; 103 int err = 0, dirty; 104 105 ubifs_get_lprops(c); 106 107 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 108 if (IS_ERR(lp)) { 109 err = PTR_ERR(lp); 110 goto out; 111 } 112 113 dirty = lp->dirty; 114 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 115 /* 116 * The LEB was added to the journal with a starting offset of 117 * zero which means the LEB must have been empty. The LEB 118 * property values should be @lp->free == @c->leb_size and 119 * @lp->dirty == 0, but that is not the case. The reason is that 120 * the LEB had been garbage collected before it became the bud, 121 * and there was not commit inbetween. The garbage collector 122 * resets the free and dirty space without recording it 123 * anywhere except lprops, so if there was no commit then 124 * lprops does not have that information. 125 * 126 * We do not need to adjust free space because the scan has told 127 * us the exact value which is recorded in the replay entry as 128 * @b->free. 129 * 130 * However we do need to subtract from the dirty space the 131 * amount of space that the garbage collector reclaimed, which 132 * is the whole LEB minus the amount of space that was free. 133 */ 134 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 135 lp->free, lp->dirty); 136 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 137 lp->free, lp->dirty); 138 dirty -= c->leb_size - lp->free; 139 /* 140 * If the replay order was perfect the dirty space would now be 141 * zero. The order is not perfect because the journal heads 142 * race with each other. This is not a problem but is does mean 143 * that the dirty space may temporarily exceed c->leb_size 144 * during the replay. 145 */ 146 if (dirty != 0) 147 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", 148 b->bud->lnum, lp->free, lp->dirty, b->free, 149 b->dirty); 150 } 151 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 152 lp->flags | LPROPS_TAKEN, 0); 153 if (IS_ERR(lp)) { 154 err = PTR_ERR(lp); 155 goto out; 156 } 157 158 /* Make sure the journal head points to the latest bud */ 159 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 160 b->bud->lnum, c->leb_size - b->free); 161 162 out: 163 ubifs_release_lprops(c); 164 return err; 165 } 166 167 /** 168 * set_buds_lprops - set free and dirty space for all replayed buds. 169 * @c: UBIFS file-system description object 170 * 171 * This function sets LEB properties for all replayed buds. Returns zero in 172 * case of success and a negative error code in case of failure. 173 */ 174 static int set_buds_lprops(struct ubifs_info *c) 175 { 176 struct bud_entry *b; 177 int err; 178 179 list_for_each_entry(b, &c->replay_buds, list) { 180 err = set_bud_lprops(c, b); 181 if (err) 182 return err; 183 } 184 185 return 0; 186 } 187 188 /** 189 * trun_remove_range - apply a replay entry for a truncation to the TNC. 190 * @c: UBIFS file-system description object 191 * @r: replay entry of truncation 192 */ 193 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 194 { 195 unsigned min_blk, max_blk; 196 union ubifs_key min_key, max_key; 197 ino_t ino; 198 199 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 200 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 201 min_blk += 1; 202 203 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 204 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 205 max_blk -= 1; 206 207 ino = key_inum(c, &r->key); 208 209 data_key_init(c, &min_key, ino, min_blk); 210 data_key_init(c, &max_key, ino, max_blk); 211 212 return ubifs_tnc_remove_range(c, &min_key, &max_key); 213 } 214 215 /** 216 * inode_still_linked - check whether inode in question will be re-linked. 217 * @c: UBIFS file-system description object 218 * @rino: replay entry to test 219 * 220 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1. 221 * This case needs special care, otherwise all references to the inode will 222 * be removed upon the first replay entry of an inode with link count 0 223 * is found. 224 */ 225 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino) 226 { 227 struct replay_entry *r; 228 229 ubifs_assert(c, rino->deletion); 230 ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY); 231 232 /* 233 * Find the most recent entry for the inode behind @rino and check 234 * whether it is a deletion. 235 */ 236 list_for_each_entry_reverse(r, &c->replay_list, list) { 237 ubifs_assert(c, r->sqnum >= rino->sqnum); 238 if (key_inum(c, &r->key) == key_inum(c, &rino->key)) 239 return r->deletion == 0; 240 241 } 242 243 ubifs_assert(c, 0); 244 return false; 245 } 246 247 /** 248 * apply_replay_entry - apply a replay entry to the TNC. 249 * @c: UBIFS file-system description object 250 * @r: replay entry to apply 251 * 252 * Apply a replay entry to the TNC. 253 */ 254 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 255 { 256 int err; 257 258 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", 259 r->lnum, r->offs, r->len, r->deletion, r->sqnum); 260 261 if (is_hash_key(c, &r->key)) { 262 if (r->deletion) 263 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 264 else 265 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 266 r->len, r->hash, &r->nm); 267 } else { 268 if (r->deletion) 269 switch (key_type(c, &r->key)) { 270 case UBIFS_INO_KEY: 271 { 272 ino_t inum = key_inum(c, &r->key); 273 274 if (inode_still_linked(c, r)) { 275 err = 0; 276 break; 277 } 278 279 err = ubifs_tnc_remove_ino(c, inum); 280 break; 281 } 282 case UBIFS_TRUN_KEY: 283 err = trun_remove_range(c, r); 284 break; 285 default: 286 err = ubifs_tnc_remove(c, &r->key); 287 break; 288 } 289 else 290 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 291 r->len, r->hash); 292 if (err) 293 return err; 294 295 if (c->need_recovery) 296 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 297 r->new_size); 298 } 299 300 return err; 301 } 302 303 /** 304 * replay_entries_cmp - compare 2 replay entries. 305 * @priv: UBIFS file-system description object 306 * @a: first replay entry 307 * @b: second replay entry 308 * 309 * This is a comparios function for 'list_sort()' which compares 2 replay 310 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 311 * greater sequence number and %-1 otherwise. 312 */ 313 static int replay_entries_cmp(void *priv, struct list_head *a, 314 struct list_head *b) 315 { 316 struct ubifs_info *c = priv; 317 struct replay_entry *ra, *rb; 318 319 cond_resched(); 320 if (a == b) 321 return 0; 322 323 ra = list_entry(a, struct replay_entry, list); 324 rb = list_entry(b, struct replay_entry, list); 325 ubifs_assert(c, ra->sqnum != rb->sqnum); 326 if (ra->sqnum > rb->sqnum) 327 return 1; 328 return -1; 329 } 330 331 /** 332 * apply_replay_list - apply the replay list to the TNC. 333 * @c: UBIFS file-system description object 334 * 335 * Apply all entries in the replay list to the TNC. Returns zero in case of 336 * success and a negative error code in case of failure. 337 */ 338 static int apply_replay_list(struct ubifs_info *c) 339 { 340 struct replay_entry *r; 341 int err; 342 343 list_sort(c, &c->replay_list, &replay_entries_cmp); 344 345 list_for_each_entry(r, &c->replay_list, list) { 346 cond_resched(); 347 348 err = apply_replay_entry(c, r); 349 if (err) 350 return err; 351 } 352 353 return 0; 354 } 355 356 /** 357 * destroy_replay_list - destroy the replay. 358 * @c: UBIFS file-system description object 359 * 360 * Destroy the replay list. 361 */ 362 static void destroy_replay_list(struct ubifs_info *c) 363 { 364 struct replay_entry *r, *tmp; 365 366 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 367 if (is_hash_key(c, &r->key)) 368 kfree(fname_name(&r->nm)); 369 list_del(&r->list); 370 kfree(r); 371 } 372 } 373 374 /** 375 * insert_node - insert a node to the replay list 376 * @c: UBIFS file-system description object 377 * @lnum: node logical eraseblock number 378 * @offs: node offset 379 * @len: node length 380 * @key: node key 381 * @sqnum: sequence number 382 * @deletion: non-zero if this is a deletion 383 * @used: number of bytes in use in a LEB 384 * @old_size: truncation old size 385 * @new_size: truncation new size 386 * 387 * This function inserts a scanned non-direntry node to the replay list. The 388 * replay list contains @struct replay_entry elements, and we sort this list in 389 * sequence number order before applying it. The replay list is applied at the 390 * very end of the replay process. Since the list is sorted in sequence number 391 * order, the older modifications are applied first. This function returns zero 392 * in case of success and a negative error code in case of failure. 393 */ 394 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 395 const u8 *hash, union ubifs_key *key, 396 unsigned long long sqnum, int deletion, int *used, 397 loff_t old_size, loff_t new_size) 398 { 399 struct replay_entry *r; 400 401 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 402 403 if (key_inum(c, key) >= c->highest_inum) 404 c->highest_inum = key_inum(c, key); 405 406 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 407 if (!r) 408 return -ENOMEM; 409 410 if (!deletion) 411 *used += ALIGN(len, 8); 412 r->lnum = lnum; 413 r->offs = offs; 414 r->len = len; 415 ubifs_copy_hash(c, hash, r->hash); 416 r->deletion = !!deletion; 417 r->sqnum = sqnum; 418 key_copy(c, key, &r->key); 419 r->old_size = old_size; 420 r->new_size = new_size; 421 422 list_add_tail(&r->list, &c->replay_list); 423 return 0; 424 } 425 426 /** 427 * insert_dent - insert a directory entry node into the replay list. 428 * @c: UBIFS file-system description object 429 * @lnum: node logical eraseblock number 430 * @offs: node offset 431 * @len: node length 432 * @key: node key 433 * @name: directory entry name 434 * @nlen: directory entry name length 435 * @sqnum: sequence number 436 * @deletion: non-zero if this is a deletion 437 * @used: number of bytes in use in a LEB 438 * 439 * This function inserts a scanned directory entry node or an extended 440 * attribute entry to the replay list. Returns zero in case of success and a 441 * negative error code in case of failure. 442 */ 443 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 444 const u8 *hash, union ubifs_key *key, 445 const char *name, int nlen, unsigned long long sqnum, 446 int deletion, int *used) 447 { 448 struct replay_entry *r; 449 char *nbuf; 450 451 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 452 if (key_inum(c, key) >= c->highest_inum) 453 c->highest_inum = key_inum(c, key); 454 455 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 456 if (!r) 457 return -ENOMEM; 458 459 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 460 if (!nbuf) { 461 kfree(r); 462 return -ENOMEM; 463 } 464 465 if (!deletion) 466 *used += ALIGN(len, 8); 467 r->lnum = lnum; 468 r->offs = offs; 469 r->len = len; 470 ubifs_copy_hash(c, hash, r->hash); 471 r->deletion = !!deletion; 472 r->sqnum = sqnum; 473 key_copy(c, key, &r->key); 474 fname_len(&r->nm) = nlen; 475 memcpy(nbuf, name, nlen); 476 nbuf[nlen] = '\0'; 477 fname_name(&r->nm) = nbuf; 478 479 list_add_tail(&r->list, &c->replay_list); 480 return 0; 481 } 482 483 /** 484 * ubifs_validate_entry - validate directory or extended attribute entry node. 485 * @c: UBIFS file-system description object 486 * @dent: the node to validate 487 * 488 * This function validates directory or extended attribute entry node @dent. 489 * Returns zero if the node is all right and a %-EINVAL if not. 490 */ 491 int ubifs_validate_entry(struct ubifs_info *c, 492 const struct ubifs_dent_node *dent) 493 { 494 int key_type = key_type_flash(c, dent->key); 495 int nlen = le16_to_cpu(dent->nlen); 496 497 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 498 dent->type >= UBIFS_ITYPES_CNT || 499 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 500 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) || 501 le64_to_cpu(dent->inum) > MAX_INUM) { 502 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? 503 "directory entry" : "extended attribute entry"); 504 return -EINVAL; 505 } 506 507 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 508 ubifs_err(c, "bad key type %d", key_type); 509 return -EINVAL; 510 } 511 512 return 0; 513 } 514 515 /** 516 * is_last_bud - check if the bud is the last in the journal head. 517 * @c: UBIFS file-system description object 518 * @bud: bud description object 519 * 520 * This function checks if bud @bud is the last bud in its journal head. This 521 * information is then used by 'replay_bud()' to decide whether the bud can 522 * have corruptions or not. Indeed, only last buds can be corrupted by power 523 * cuts. Returns %1 if this is the last bud, and %0 if not. 524 */ 525 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 526 { 527 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 528 struct ubifs_bud *next; 529 uint32_t data; 530 int err; 531 532 if (list_is_last(&bud->list, &jh->buds_list)) 533 return 1; 534 535 /* 536 * The following is a quirk to make sure we work correctly with UBIFS 537 * images used with older UBIFS. 538 * 539 * Normally, the last bud will be the last in the journal head's list 540 * of bud. However, there is one exception if the UBIFS image belongs 541 * to older UBIFS. This is fairly unlikely: one would need to use old 542 * UBIFS, then have a power cut exactly at the right point, and then 543 * try to mount this image with new UBIFS. 544 * 545 * The exception is: it is possible to have 2 buds A and B, A goes 546 * before B, and B is the last, bud B is contains no data, and bud A is 547 * corrupted at the end. The reason is that in older versions when the 548 * journal code switched the next bud (from A to B), it first added a 549 * log reference node for the new bud (B), and only after this it 550 * synchronized the write-buffer of current bud (A). But later this was 551 * changed and UBIFS started to always synchronize the write-buffer of 552 * the bud (A) before writing the log reference for the new bud (B). 553 * 554 * But because older UBIFS always synchronized A's write-buffer before 555 * writing to B, we can recognize this exceptional situation but 556 * checking the contents of bud B - if it is empty, then A can be 557 * treated as the last and we can recover it. 558 * 559 * TODO: remove this piece of code in a couple of years (today it is 560 * 16.05.2011). 561 */ 562 next = list_entry(bud->list.next, struct ubifs_bud, list); 563 if (!list_is_last(&next->list, &jh->buds_list)) 564 return 0; 565 566 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); 567 if (err) 568 return 0; 569 570 return data == 0xFFFFFFFF; 571 } 572 573 /* authenticate_sleb_hash and authenticate_sleb_hmac are split out for stack usage */ 574 static int authenticate_sleb_hash(struct ubifs_info *c, struct shash_desc *log_hash, u8 *hash) 575 { 576 SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm); 577 578 hash_desc->tfm = c->hash_tfm; 579 580 ubifs_shash_copy_state(c, log_hash, hash_desc); 581 return crypto_shash_final(hash_desc, hash); 582 } 583 584 static int authenticate_sleb_hmac(struct ubifs_info *c, u8 *hash, u8 *hmac) 585 { 586 SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm); 587 588 hmac_desc->tfm = c->hmac_tfm; 589 590 return crypto_shash_digest(hmac_desc, hash, c->hash_len, hmac); 591 } 592 593 /** 594 * authenticate_sleb - authenticate one scan LEB 595 * @c: UBIFS file-system description object 596 * @sleb: the scan LEB to authenticate 597 * @log_hash: 598 * @is_last: if true, this is is the last LEB 599 * 600 * This function iterates over the buds of a single LEB authenticating all buds 601 * with the authentication nodes on this LEB. Authentication nodes are written 602 * after some buds and contain a HMAC covering the authentication node itself 603 * and the buds between the last authentication node and the current 604 * authentication node. It can happen that the last buds cannot be authenticated 605 * because a powercut happened when some nodes were written but not the 606 * corresponding authentication node. This function returns the number of nodes 607 * that could be authenticated or a negative error code. 608 */ 609 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 610 struct shash_desc *log_hash, int is_last) 611 { 612 int n_not_auth = 0; 613 struct ubifs_scan_node *snod; 614 int n_nodes = 0; 615 int err; 616 u8 *hash, *hmac; 617 618 if (!ubifs_authenticated(c)) 619 return sleb->nodes_cnt; 620 621 hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS); 622 hmac = kmalloc(c->hmac_desc_len, GFP_NOFS); 623 if (!hash || !hmac) { 624 err = -ENOMEM; 625 goto out; 626 } 627 628 list_for_each_entry(snod, &sleb->nodes, list) { 629 630 n_nodes++; 631 632 if (snod->type == UBIFS_AUTH_NODE) { 633 struct ubifs_auth_node *auth = snod->node; 634 635 err = authenticate_sleb_hash(c, log_hash, hash); 636 if (err) 637 goto out; 638 639 err = authenticate_sleb_hmac(c, hash, hmac); 640 if (err) 641 goto out; 642 643 err = ubifs_check_hmac(c, auth->hmac, hmac); 644 if (err) { 645 err = -EPERM; 646 goto out; 647 } 648 n_not_auth = 0; 649 } else { 650 err = crypto_shash_update(log_hash, snod->node, 651 snod->len); 652 if (err) 653 goto out; 654 n_not_auth++; 655 } 656 } 657 658 /* 659 * A powercut can happen when some nodes were written, but not yet 660 * the corresponding authentication node. This may only happen on 661 * the last bud though. 662 */ 663 if (n_not_auth) { 664 if (is_last) { 665 dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them", 666 n_not_auth, sleb->lnum); 667 err = 0; 668 } else { 669 dbg_mnt("%d unauthenticated nodes found on non-last LEB %d", 670 n_not_auth, sleb->lnum); 671 err = -EPERM; 672 } 673 } else { 674 err = 0; 675 } 676 out: 677 kfree(hash); 678 kfree(hmac); 679 680 return err ? err : n_nodes - n_not_auth; 681 } 682 683 /** 684 * replay_bud - replay a bud logical eraseblock. 685 * @c: UBIFS file-system description object 686 * @b: bud entry which describes the bud 687 * 688 * This function replays bud @bud, recovers it if needed, and adds all nodes 689 * from this bud to the replay list. Returns zero in case of success and a 690 * negative error code in case of failure. 691 */ 692 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 693 { 694 int is_last = is_last_bud(c, b->bud); 695 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 696 int n_nodes, n = 0; 697 struct ubifs_scan_leb *sleb; 698 struct ubifs_scan_node *snod; 699 700 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 701 lnum, b->bud->jhead, offs, is_last); 702 703 if (c->need_recovery && is_last) 704 /* 705 * Recover only last LEBs in the journal heads, because power 706 * cuts may cause corruptions only in these LEBs, because only 707 * these LEBs could possibly be written to at the power cut 708 * time. 709 */ 710 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 711 else 712 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 713 if (IS_ERR(sleb)) 714 return PTR_ERR(sleb); 715 716 n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last); 717 if (n_nodes < 0) { 718 err = n_nodes; 719 goto out; 720 } 721 722 ubifs_shash_copy_state(c, b->bud->log_hash, 723 c->jheads[b->bud->jhead].log_hash); 724 725 /* 726 * The bud does not have to start from offset zero - the beginning of 727 * the 'lnum' LEB may contain previously committed data. One of the 728 * things we have to do in replay is to correctly update lprops with 729 * newer information about this LEB. 730 * 731 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 732 * bytes of free space because it only contain information about 733 * committed data. 734 * 735 * But we know that real amount of free space is 'c->leb_size - 736 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 737 * 'sleb->endpt' is used by bud data. We have to correctly calculate 738 * how much of these data are dirty and update lprops with this 739 * information. 740 * 741 * The dirt in that LEB region is comprised of padding nodes, deletion 742 * nodes, truncation nodes and nodes which are obsoleted by subsequent 743 * nodes in this LEB. So instead of calculating clean space, we 744 * calculate used space ('used' variable). 745 */ 746 747 list_for_each_entry(snod, &sleb->nodes, list) { 748 u8 hash[UBIFS_HASH_ARR_SZ]; 749 int deletion = 0; 750 751 cond_resched(); 752 753 if (snod->sqnum >= SQNUM_WATERMARK) { 754 ubifs_err(c, "file system's life ended"); 755 goto out_dump; 756 } 757 758 ubifs_node_calc_hash(c, snod->node, hash); 759 760 if (snod->sqnum > c->max_sqnum) 761 c->max_sqnum = snod->sqnum; 762 763 switch (snod->type) { 764 case UBIFS_INO_NODE: 765 { 766 struct ubifs_ino_node *ino = snod->node; 767 loff_t new_size = le64_to_cpu(ino->size); 768 769 if (le32_to_cpu(ino->nlink) == 0) 770 deletion = 1; 771 err = insert_node(c, lnum, snod->offs, snod->len, hash, 772 &snod->key, snod->sqnum, deletion, 773 &used, 0, new_size); 774 break; 775 } 776 case UBIFS_DATA_NODE: 777 { 778 struct ubifs_data_node *dn = snod->node; 779 loff_t new_size = le32_to_cpu(dn->size) + 780 key_block(c, &snod->key) * 781 UBIFS_BLOCK_SIZE; 782 783 err = insert_node(c, lnum, snod->offs, snod->len, hash, 784 &snod->key, snod->sqnum, deletion, 785 &used, 0, new_size); 786 break; 787 } 788 case UBIFS_DENT_NODE: 789 case UBIFS_XENT_NODE: 790 { 791 struct ubifs_dent_node *dent = snod->node; 792 793 err = ubifs_validate_entry(c, dent); 794 if (err) 795 goto out_dump; 796 797 err = insert_dent(c, lnum, snod->offs, snod->len, hash, 798 &snod->key, dent->name, 799 le16_to_cpu(dent->nlen), snod->sqnum, 800 !le64_to_cpu(dent->inum), &used); 801 break; 802 } 803 case UBIFS_TRUN_NODE: 804 { 805 struct ubifs_trun_node *trun = snod->node; 806 loff_t old_size = le64_to_cpu(trun->old_size); 807 loff_t new_size = le64_to_cpu(trun->new_size); 808 union ubifs_key key; 809 810 /* Validate truncation node */ 811 if (old_size < 0 || old_size > c->max_inode_sz || 812 new_size < 0 || new_size > c->max_inode_sz || 813 old_size <= new_size) { 814 ubifs_err(c, "bad truncation node"); 815 goto out_dump; 816 } 817 818 /* 819 * Create a fake truncation key just to use the same 820 * functions which expect nodes to have keys. 821 */ 822 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 823 err = insert_node(c, lnum, snod->offs, snod->len, hash, 824 &key, snod->sqnum, 1, &used, 825 old_size, new_size); 826 break; 827 } 828 case UBIFS_AUTH_NODE: 829 break; 830 default: 831 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", 832 snod->type, lnum, snod->offs); 833 err = -EINVAL; 834 goto out_dump; 835 } 836 if (err) 837 goto out; 838 839 n++; 840 if (n == n_nodes) 841 break; 842 } 843 844 ubifs_assert(c, ubifs_search_bud(c, lnum)); 845 ubifs_assert(c, sleb->endpt - offs >= used); 846 ubifs_assert(c, sleb->endpt % c->min_io_size == 0); 847 848 b->dirty = sleb->endpt - offs - used; 849 b->free = c->leb_size - sleb->endpt; 850 dbg_mnt("bud LEB %d replied: dirty %d, free %d", 851 lnum, b->dirty, b->free); 852 853 out: 854 ubifs_scan_destroy(sleb); 855 return err; 856 857 out_dump: 858 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); 859 ubifs_dump_node(c, snod->node); 860 ubifs_scan_destroy(sleb); 861 return -EINVAL; 862 } 863 864 /** 865 * replay_buds - replay all buds. 866 * @c: UBIFS file-system description object 867 * 868 * This function returns zero in case of success and a negative error code in 869 * case of failure. 870 */ 871 static int replay_buds(struct ubifs_info *c) 872 { 873 struct bud_entry *b; 874 int err; 875 unsigned long long prev_sqnum = 0; 876 877 list_for_each_entry(b, &c->replay_buds, list) { 878 err = replay_bud(c, b); 879 if (err) 880 return err; 881 882 ubifs_assert(c, b->sqnum > prev_sqnum); 883 prev_sqnum = b->sqnum; 884 } 885 886 return 0; 887 } 888 889 /** 890 * destroy_bud_list - destroy the list of buds to replay. 891 * @c: UBIFS file-system description object 892 */ 893 static void destroy_bud_list(struct ubifs_info *c) 894 { 895 struct bud_entry *b; 896 897 while (!list_empty(&c->replay_buds)) { 898 b = list_entry(c->replay_buds.next, struct bud_entry, list); 899 list_del(&b->list); 900 kfree(b); 901 } 902 } 903 904 /** 905 * add_replay_bud - add a bud to the list of buds to replay. 906 * @c: UBIFS file-system description object 907 * @lnum: bud logical eraseblock number to replay 908 * @offs: bud start offset 909 * @jhead: journal head to which this bud belongs 910 * @sqnum: reference node sequence number 911 * 912 * This function returns zero in case of success and a negative error code in 913 * case of failure. 914 */ 915 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 916 unsigned long long sqnum) 917 { 918 struct ubifs_bud *bud; 919 struct bud_entry *b; 920 int err; 921 922 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 923 924 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 925 if (!bud) 926 return -ENOMEM; 927 928 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 929 if (!b) { 930 err = -ENOMEM; 931 goto out; 932 } 933 934 bud->lnum = lnum; 935 bud->start = offs; 936 bud->jhead = jhead; 937 bud->log_hash = ubifs_hash_get_desc(c); 938 if (IS_ERR(bud->log_hash)) { 939 err = PTR_ERR(bud->log_hash); 940 goto out; 941 } 942 943 ubifs_shash_copy_state(c, c->log_hash, bud->log_hash); 944 945 ubifs_add_bud(c, bud); 946 947 b->bud = bud; 948 b->sqnum = sqnum; 949 list_add_tail(&b->list, &c->replay_buds); 950 951 return 0; 952 out: 953 kfree(bud); 954 kfree(b); 955 956 return err; 957 } 958 959 /** 960 * validate_ref - validate a reference node. 961 * @c: UBIFS file-system description object 962 * @ref: the reference node to validate 963 * @ref_lnum: LEB number of the reference node 964 * @ref_offs: reference node offset 965 * 966 * This function returns %1 if a bud reference already exists for the LEB. %0 is 967 * returned if the reference node is new, otherwise %-EINVAL is returned if 968 * validation failed. 969 */ 970 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 971 { 972 struct ubifs_bud *bud; 973 int lnum = le32_to_cpu(ref->lnum); 974 unsigned int offs = le32_to_cpu(ref->offs); 975 unsigned int jhead = le32_to_cpu(ref->jhead); 976 977 /* 978 * ref->offs may point to the end of LEB when the journal head points 979 * to the end of LEB and we write reference node for it during commit. 980 * So this is why we require 'offs > c->leb_size'. 981 */ 982 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 983 lnum < c->main_first || offs > c->leb_size || 984 offs & (c->min_io_size - 1)) 985 return -EINVAL; 986 987 /* Make sure we have not already looked at this bud */ 988 bud = ubifs_search_bud(c, lnum); 989 if (bud) { 990 if (bud->jhead == jhead && bud->start <= offs) 991 return 1; 992 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); 993 return -EINVAL; 994 } 995 996 return 0; 997 } 998 999 /** 1000 * replay_log_leb - replay a log logical eraseblock. 1001 * @c: UBIFS file-system description object 1002 * @lnum: log logical eraseblock to replay 1003 * @offs: offset to start replaying from 1004 * @sbuf: scan buffer 1005 * 1006 * This function replays a log LEB and returns zero in case of success, %1 if 1007 * this is the last LEB in the log, and a negative error code in case of 1008 * failure. 1009 */ 1010 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 1011 { 1012 int err; 1013 struct ubifs_scan_leb *sleb; 1014 struct ubifs_scan_node *snod; 1015 const struct ubifs_cs_node *node; 1016 1017 dbg_mnt("replay log LEB %d:%d", lnum, offs); 1018 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 1019 if (IS_ERR(sleb)) { 1020 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 1021 return PTR_ERR(sleb); 1022 /* 1023 * Note, the below function will recover this log LEB only if 1024 * it is the last, because unclean reboots can possibly corrupt 1025 * only the tail of the log. 1026 */ 1027 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 1028 if (IS_ERR(sleb)) 1029 return PTR_ERR(sleb); 1030 } 1031 1032 if (sleb->nodes_cnt == 0) { 1033 err = 1; 1034 goto out; 1035 } 1036 1037 node = sleb->buf; 1038 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 1039 if (c->cs_sqnum == 0) { 1040 /* 1041 * This is the first log LEB we are looking at, make sure that 1042 * the first node is a commit start node. Also record its 1043 * sequence number so that UBIFS can determine where the log 1044 * ends, because all nodes which were have higher sequence 1045 * numbers. 1046 */ 1047 if (snod->type != UBIFS_CS_NODE) { 1048 ubifs_err(c, "first log node at LEB %d:%d is not CS node", 1049 lnum, offs); 1050 goto out_dump; 1051 } 1052 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 1053 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", 1054 lnum, offs, 1055 (unsigned long long)le64_to_cpu(node->cmt_no), 1056 c->cmt_no); 1057 goto out_dump; 1058 } 1059 1060 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 1061 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 1062 1063 err = ubifs_shash_init(c, c->log_hash); 1064 if (err) 1065 goto out; 1066 1067 err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ); 1068 if (err < 0) 1069 goto out; 1070 } 1071 1072 if (snod->sqnum < c->cs_sqnum) { 1073 /* 1074 * This means that we reached end of log and now 1075 * look to the older log data, which was already 1076 * committed but the eraseblock was not erased (UBIFS 1077 * only un-maps it). So this basically means we have to 1078 * exit with "end of log" code. 1079 */ 1080 err = 1; 1081 goto out; 1082 } 1083 1084 /* Make sure the first node sits at offset zero of the LEB */ 1085 if (snod->offs != 0) { 1086 ubifs_err(c, "first node is not at zero offset"); 1087 goto out_dump; 1088 } 1089 1090 list_for_each_entry(snod, &sleb->nodes, list) { 1091 cond_resched(); 1092 1093 if (snod->sqnum >= SQNUM_WATERMARK) { 1094 ubifs_err(c, "file system's life ended"); 1095 goto out_dump; 1096 } 1097 1098 if (snod->sqnum < c->cs_sqnum) { 1099 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", 1100 snod->sqnum, c->cs_sqnum); 1101 goto out_dump; 1102 } 1103 1104 if (snod->sqnum > c->max_sqnum) 1105 c->max_sqnum = snod->sqnum; 1106 1107 switch (snod->type) { 1108 case UBIFS_REF_NODE: { 1109 const struct ubifs_ref_node *ref = snod->node; 1110 1111 err = validate_ref(c, ref); 1112 if (err == 1) 1113 break; /* Already have this bud */ 1114 if (err) 1115 goto out_dump; 1116 1117 err = ubifs_shash_update(c, c->log_hash, ref, 1118 UBIFS_REF_NODE_SZ); 1119 if (err) 1120 goto out; 1121 1122 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 1123 le32_to_cpu(ref->offs), 1124 le32_to_cpu(ref->jhead), 1125 snod->sqnum); 1126 if (err) 1127 goto out; 1128 1129 break; 1130 } 1131 case UBIFS_CS_NODE: 1132 /* Make sure it sits at the beginning of LEB */ 1133 if (snod->offs != 0) { 1134 ubifs_err(c, "unexpected node in log"); 1135 goto out_dump; 1136 } 1137 break; 1138 default: 1139 ubifs_err(c, "unexpected node in log"); 1140 goto out_dump; 1141 } 1142 } 1143 1144 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 1145 c->lhead_lnum = lnum; 1146 c->lhead_offs = sleb->endpt; 1147 } 1148 1149 err = !sleb->endpt; 1150 out: 1151 ubifs_scan_destroy(sleb); 1152 return err; 1153 1154 out_dump: 1155 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", 1156 lnum, offs + snod->offs); 1157 ubifs_dump_node(c, snod->node); 1158 ubifs_scan_destroy(sleb); 1159 return -EINVAL; 1160 } 1161 1162 /** 1163 * take_ihead - update the status of the index head in lprops to 'taken'. 1164 * @c: UBIFS file-system description object 1165 * 1166 * This function returns the amount of free space in the index head LEB or a 1167 * negative error code. 1168 */ 1169 static int take_ihead(struct ubifs_info *c) 1170 { 1171 const struct ubifs_lprops *lp; 1172 int err, free; 1173 1174 ubifs_get_lprops(c); 1175 1176 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 1177 if (IS_ERR(lp)) { 1178 err = PTR_ERR(lp); 1179 goto out; 1180 } 1181 1182 free = lp->free; 1183 1184 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 1185 lp->flags | LPROPS_TAKEN, 0); 1186 if (IS_ERR(lp)) { 1187 err = PTR_ERR(lp); 1188 goto out; 1189 } 1190 1191 err = free; 1192 out: 1193 ubifs_release_lprops(c); 1194 return err; 1195 } 1196 1197 /** 1198 * ubifs_replay_journal - replay journal. 1199 * @c: UBIFS file-system description object 1200 * 1201 * This function scans the journal, replays and cleans it up. It makes sure all 1202 * memory data structures related to uncommitted journal are built (dirty TNC 1203 * tree, tree of buds, modified lprops, etc). 1204 */ 1205 int ubifs_replay_journal(struct ubifs_info *c) 1206 { 1207 int err, lnum, free; 1208 1209 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1210 1211 /* Update the status of the index head in lprops to 'taken' */ 1212 free = take_ihead(c); 1213 if (free < 0) 1214 return free; /* Error code */ 1215 1216 if (c->ihead_offs != c->leb_size - free) { 1217 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, 1218 c->ihead_offs); 1219 return -EINVAL; 1220 } 1221 1222 dbg_mnt("start replaying the journal"); 1223 c->replaying = 1; 1224 lnum = c->ltail_lnum = c->lhead_lnum; 1225 1226 do { 1227 err = replay_log_leb(c, lnum, 0, c->sbuf); 1228 if (err == 1) { 1229 if (lnum != c->lhead_lnum) 1230 /* We hit the end of the log */ 1231 break; 1232 1233 /* 1234 * The head of the log must always start with the 1235 * "commit start" node on a properly formatted UBIFS. 1236 * But we found no nodes at all, which means that 1237 * something went wrong and we cannot proceed mounting 1238 * the file-system. 1239 */ 1240 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", 1241 lnum, 0); 1242 err = -EINVAL; 1243 } 1244 if (err) 1245 goto out; 1246 lnum = ubifs_next_log_lnum(c, lnum); 1247 } while (lnum != c->ltail_lnum); 1248 1249 err = replay_buds(c); 1250 if (err) 1251 goto out; 1252 1253 err = apply_replay_list(c); 1254 if (err) 1255 goto out; 1256 1257 err = set_buds_lprops(c); 1258 if (err) 1259 goto out; 1260 1261 /* 1262 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1263 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1264 * depend on it. This means we have to initialize it to make sure 1265 * budgeting works properly. 1266 */ 1267 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1268 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1269 1270 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1271 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", 1272 c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1273 (unsigned long)c->highest_inum); 1274 out: 1275 destroy_replay_list(c); 1276 destroy_bud_list(c); 1277 c->replaying = 0; 1278 return err; 1279 } 1280