xref: /openbmc/linux/fs/ubifs/replay.c (revision a0865368)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file contains journal replay code. It runs when the file-system is being
25  * mounted and requires no locking.
26  *
27  * The larger is the journal, the longer it takes to scan it, so the longer it
28  * takes to mount UBIFS. This is why the journal has limited size which may be
29  * changed depending on the system requirements. But a larger journal gives
30  * faster I/O speed because it writes the index less frequently. So this is a
31  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32  * larger is the journal, the more memory its index may consume.
33  */
34 
35 #include "ubifs.h"
36 
37 /*
38  * Replay flags.
39  *
40  * REPLAY_DELETION: node was deleted
41  * REPLAY_REF: node is a reference node
42  */
43 enum {
44 	REPLAY_DELETION = 1,
45 	REPLAY_REF = 2,
46 };
47 
48 /**
49  * struct replay_entry - replay tree entry.
50  * @lnum: logical eraseblock number of the node
51  * @offs: node offset
52  * @len: node length
53  * @sqnum: node sequence number
54  * @flags: replay flags
55  * @rb: links the replay tree
56  * @key: node key
57  * @nm: directory entry name
58  * @old_size: truncation old size
59  * @new_size: truncation new size
60  * @free: amount of free space in a bud
61  * @dirty: amount of dirty space in a bud from padding and deletion nodes
62  *
63  * UBIFS journal replay must compare node sequence numbers, which means it must
64  * build a tree of node information to insert into the TNC.
65  */
66 struct replay_entry {
67 	int lnum;
68 	int offs;
69 	int len;
70 	unsigned long long sqnum;
71 	int flags;
72 	struct rb_node rb;
73 	union ubifs_key key;
74 	union {
75 		struct qstr nm;
76 		struct {
77 			loff_t old_size;
78 			loff_t new_size;
79 		};
80 		struct {
81 			int free;
82 			int dirty;
83 		};
84 	};
85 };
86 
87 /**
88  * struct bud_entry - entry in the list of buds to replay.
89  * @list: next bud in the list
90  * @bud: bud description object
91  * @free: free bytes in the bud
92  * @sqnum: reference node sequence number
93  */
94 struct bud_entry {
95 	struct list_head list;
96 	struct ubifs_bud *bud;
97 	int free;
98 	unsigned long long sqnum;
99 };
100 
101 /**
102  * set_bud_lprops - set free and dirty space used by a bud.
103  * @c: UBIFS file-system description object
104  * @r: replay entry of bud
105  */
106 static int set_bud_lprops(struct ubifs_info *c, struct replay_entry *r)
107 {
108 	const struct ubifs_lprops *lp;
109 	int err = 0, dirty;
110 
111 	ubifs_get_lprops(c);
112 
113 	lp = ubifs_lpt_lookup_dirty(c, r->lnum);
114 	if (IS_ERR(lp)) {
115 		err = PTR_ERR(lp);
116 		goto out;
117 	}
118 
119 	dirty = lp->dirty;
120 	if (r->offs == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
121 		/*
122 		 * The LEB was added to the journal with a starting offset of
123 		 * zero which means the LEB must have been empty. The LEB
124 		 * property values should be lp->free == c->leb_size and
125 		 * lp->dirty == 0, but that is not the case. The reason is that
126 		 * the LEB was garbage collected. The garbage collector resets
127 		 * the free and dirty space without recording it anywhere except
128 		 * lprops, so if there is not a commit then lprops does not have
129 		 * that information next time the file system is mounted.
130 		 *
131 		 * We do not need to adjust free space because the scan has told
132 		 * us the exact value which is recorded in the replay entry as
133 		 * r->free.
134 		 *
135 		 * However we do need to subtract from the dirty space the
136 		 * amount of space that the garbage collector reclaimed, which
137 		 * is the whole LEB minus the amount of space that was free.
138 		 */
139 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
140 			lp->free, lp->dirty);
141 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
142 			lp->free, lp->dirty);
143 		dirty -= c->leb_size - lp->free;
144 		/*
145 		 * If the replay order was perfect the dirty space would now be
146 		 * zero. The order is not perfect because the journal heads
147 		 * race with each other. This is not a problem but is does mean
148 		 * that the dirty space may temporarily exceed c->leb_size
149 		 * during the replay.
150 		 */
151 		if (dirty != 0)
152 			dbg_msg("LEB %d lp: %d free %d dirty "
153 				"replay: %d free %d dirty", r->lnum, lp->free,
154 				lp->dirty, r->free, r->dirty);
155 	}
156 	lp = ubifs_change_lp(c, lp, r->free, dirty + r->dirty,
157 			     lp->flags | LPROPS_TAKEN, 0);
158 	if (IS_ERR(lp)) {
159 		err = PTR_ERR(lp);
160 		goto out;
161 	}
162 out:
163 	ubifs_release_lprops(c);
164 	return err;
165 }
166 
167 /**
168  * trun_remove_range - apply a replay entry for a truncation to the TNC.
169  * @c: UBIFS file-system description object
170  * @r: replay entry of truncation
171  */
172 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
173 {
174 	unsigned min_blk, max_blk;
175 	union ubifs_key min_key, max_key;
176 	ino_t ino;
177 
178 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
179 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
180 		min_blk += 1;
181 
182 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
183 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
184 		max_blk -= 1;
185 
186 	ino = key_inum(c, &r->key);
187 
188 	data_key_init(c, &min_key, ino, min_blk);
189 	data_key_init(c, &max_key, ino, max_blk);
190 
191 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
192 }
193 
194 /**
195  * apply_replay_entry - apply a replay entry to the TNC.
196  * @c: UBIFS file-system description object
197  * @r: replay entry to apply
198  *
199  * Apply a replay entry to the TNC.
200  */
201 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
202 {
203 	int err, deletion = ((r->flags & REPLAY_DELETION) != 0);
204 
205 	dbg_mnt("LEB %d:%d len %d flgs %d sqnum %llu %s", r->lnum,
206 		r->offs, r->len, r->flags, r->sqnum, DBGKEY(&r->key));
207 
208 	/* Set c->replay_sqnum to help deal with dangling branches. */
209 	c->replay_sqnum = r->sqnum;
210 
211 	if (r->flags & REPLAY_REF)
212 		err = set_bud_lprops(c, r);
213 	else if (is_hash_key(c, &r->key)) {
214 		if (deletion)
215 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
216 		else
217 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
218 					       r->len, &r->nm);
219 	} else {
220 		if (deletion)
221 			switch (key_type(c, &r->key)) {
222 			case UBIFS_INO_KEY:
223 			{
224 				ino_t inum = key_inum(c, &r->key);
225 
226 				err = ubifs_tnc_remove_ino(c, inum);
227 				break;
228 			}
229 			case UBIFS_TRUN_KEY:
230 				err = trun_remove_range(c, r);
231 				break;
232 			default:
233 				err = ubifs_tnc_remove(c, &r->key);
234 				break;
235 			}
236 		else
237 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
238 					    r->len);
239 		if (err)
240 			return err;
241 
242 		if (c->need_recovery)
243 			err = ubifs_recover_size_accum(c, &r->key, deletion,
244 						       r->new_size);
245 	}
246 
247 	return err;
248 }
249 
250 /**
251  * destroy_replay_tree - destroy the replay.
252  * @c: UBIFS file-system description object
253  *
254  * Destroy the replay tree.
255  */
256 static void destroy_replay_tree(struct ubifs_info *c)
257 {
258 	struct rb_node *this = c->replay_tree.rb_node;
259 	struct replay_entry *r;
260 
261 	while (this) {
262 		if (this->rb_left) {
263 			this = this->rb_left;
264 			continue;
265 		} else if (this->rb_right) {
266 			this = this->rb_right;
267 			continue;
268 		}
269 		r = rb_entry(this, struct replay_entry, rb);
270 		this = rb_parent(this);
271 		if (this) {
272 			if (this->rb_left == &r->rb)
273 				this->rb_left = NULL;
274 			else
275 				this->rb_right = NULL;
276 		}
277 		if (is_hash_key(c, &r->key))
278 			kfree(r->nm.name);
279 		kfree(r);
280 	}
281 	c->replay_tree = RB_ROOT;
282 }
283 
284 /**
285  * apply_replay_tree - apply the replay tree to the TNC.
286  * @c: UBIFS file-system description object
287  *
288  * Apply the replay tree.
289  * Returns zero in case of success and a negative error code in case of
290  * failure.
291  */
292 static int apply_replay_tree(struct ubifs_info *c)
293 {
294 	struct rb_node *this = rb_first(&c->replay_tree);
295 
296 	while (this) {
297 		struct replay_entry *r;
298 		int err;
299 
300 		cond_resched();
301 
302 		r = rb_entry(this, struct replay_entry, rb);
303 		err = apply_replay_entry(c, r);
304 		if (err)
305 			return err;
306 		this = rb_next(this);
307 	}
308 	return 0;
309 }
310 
311 /**
312  * insert_node - insert a node to the replay tree.
313  * @c: UBIFS file-system description object
314  * @lnum: node logical eraseblock number
315  * @offs: node offset
316  * @len: node length
317  * @key: node key
318  * @sqnum: sequence number
319  * @deletion: non-zero if this is a deletion
320  * @used: number of bytes in use in a LEB
321  * @old_size: truncation old size
322  * @new_size: truncation new size
323  *
324  * This function inserts a scanned non-direntry node to the replay tree. The
325  * replay tree is an RB-tree containing @struct replay_entry elements which are
326  * indexed by the sequence number. The replay tree is applied at the very end
327  * of the replay process. Since the tree is sorted in sequence number order,
328  * the older modifications are applied first. This function returns zero in
329  * case of success and a negative error code in case of failure.
330  */
331 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
332 		       union ubifs_key *key, unsigned long long sqnum,
333 		       int deletion, int *used, loff_t old_size,
334 		       loff_t new_size)
335 {
336 	struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
337 	struct replay_entry *r;
338 
339 	if (key_inum(c, key) >= c->highest_inum)
340 		c->highest_inum = key_inum(c, key);
341 
342 	dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
343 	while (*p) {
344 		parent = *p;
345 		r = rb_entry(parent, struct replay_entry, rb);
346 		if (sqnum < r->sqnum) {
347 			p = &(*p)->rb_left;
348 			continue;
349 		} else if (sqnum > r->sqnum) {
350 			p = &(*p)->rb_right;
351 			continue;
352 		}
353 		ubifs_err("duplicate sqnum in replay");
354 		return -EINVAL;
355 	}
356 
357 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
358 	if (!r)
359 		return -ENOMEM;
360 
361 	if (!deletion)
362 		*used += ALIGN(len, 8);
363 	r->lnum = lnum;
364 	r->offs = offs;
365 	r->len = len;
366 	r->sqnum = sqnum;
367 	r->flags = (deletion ? REPLAY_DELETION : 0);
368 	r->old_size = old_size;
369 	r->new_size = new_size;
370 	key_copy(c, key, &r->key);
371 
372 	rb_link_node(&r->rb, parent, p);
373 	rb_insert_color(&r->rb, &c->replay_tree);
374 	return 0;
375 }
376 
377 /**
378  * insert_dent - insert a directory entry node into the replay tree.
379  * @c: UBIFS file-system description object
380  * @lnum: node logical eraseblock number
381  * @offs: node offset
382  * @len: node length
383  * @key: node key
384  * @name: directory entry name
385  * @nlen: directory entry name length
386  * @sqnum: sequence number
387  * @deletion: non-zero if this is a deletion
388  * @used: number of bytes in use in a LEB
389  *
390  * This function inserts a scanned directory entry node to the replay tree.
391  * Returns zero in case of success and a negative error code in case of
392  * failure.
393  *
394  * This function is also used for extended attribute entries because they are
395  * implemented as directory entry nodes.
396  */
397 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
398 		       union ubifs_key *key, const char *name, int nlen,
399 		       unsigned long long sqnum, int deletion, int *used)
400 {
401 	struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
402 	struct replay_entry *r;
403 	char *nbuf;
404 
405 	if (key_inum(c, key) >= c->highest_inum)
406 		c->highest_inum = key_inum(c, key);
407 
408 	dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
409 	while (*p) {
410 		parent = *p;
411 		r = rb_entry(parent, struct replay_entry, rb);
412 		if (sqnum < r->sqnum) {
413 			p = &(*p)->rb_left;
414 			continue;
415 		}
416 		if (sqnum > r->sqnum) {
417 			p = &(*p)->rb_right;
418 			continue;
419 		}
420 		ubifs_err("duplicate sqnum in replay");
421 		return -EINVAL;
422 	}
423 
424 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
425 	if (!r)
426 		return -ENOMEM;
427 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
428 	if (!nbuf) {
429 		kfree(r);
430 		return -ENOMEM;
431 	}
432 
433 	if (!deletion)
434 		*used += ALIGN(len, 8);
435 	r->lnum = lnum;
436 	r->offs = offs;
437 	r->len = len;
438 	r->sqnum = sqnum;
439 	r->nm.len = nlen;
440 	memcpy(nbuf, name, nlen);
441 	nbuf[nlen] = '\0';
442 	r->nm.name = nbuf;
443 	r->flags = (deletion ? REPLAY_DELETION : 0);
444 	key_copy(c, key, &r->key);
445 
446 	ubifs_assert(!*p);
447 	rb_link_node(&r->rb, parent, p);
448 	rb_insert_color(&r->rb, &c->replay_tree);
449 	return 0;
450 }
451 
452 /**
453  * ubifs_validate_entry - validate directory or extended attribute entry node.
454  * @c: UBIFS file-system description object
455  * @dent: the node to validate
456  *
457  * This function validates directory or extended attribute entry node @dent.
458  * Returns zero if the node is all right and a %-EINVAL if not.
459  */
460 int ubifs_validate_entry(struct ubifs_info *c,
461 			 const struct ubifs_dent_node *dent)
462 {
463 	int key_type = key_type_flash(c, dent->key);
464 	int nlen = le16_to_cpu(dent->nlen);
465 
466 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
467 	    dent->type >= UBIFS_ITYPES_CNT ||
468 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
469 	    strnlen(dent->name, nlen) != nlen ||
470 	    le64_to_cpu(dent->inum) > MAX_INUM) {
471 		ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
472 			  "directory entry" : "extended attribute entry");
473 		return -EINVAL;
474 	}
475 
476 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
477 		ubifs_err("bad key type %d", key_type);
478 		return -EINVAL;
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  * replay_bud - replay a bud logical eraseblock.
486  * @c: UBIFS file-system description object
487  * @lnum: bud logical eraseblock number to replay
488  * @offs: bud start offset
489  * @jhead: journal head to which this bud belongs
490  * @free: amount of free space in the bud is returned here
491  * @dirty: amount of dirty space from padding and deletion nodes is returned
492  * here
493  *
494  * This function returns zero in case of success and a negative error code in
495  * case of failure.
496  */
497 static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
498 		      int *free, int *dirty)
499 {
500 	int err = 0, used = 0;
501 	struct ubifs_scan_leb *sleb;
502 	struct ubifs_scan_node *snod;
503 	struct ubifs_bud *bud;
504 
505 	dbg_mnt("replay bud LEB %d, head %d", lnum, jhead);
506 	if (c->need_recovery)
507 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, jhead != GCHD);
508 	else
509 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
510 	if (IS_ERR(sleb))
511 		return PTR_ERR(sleb);
512 
513 	/*
514 	 * The bud does not have to start from offset zero - the beginning of
515 	 * the 'lnum' LEB may contain previously committed data. One of the
516 	 * things we have to do in replay is to correctly update lprops with
517 	 * newer information about this LEB.
518 	 *
519 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
520 	 * bytes of free space because it only contain information about
521 	 * committed data.
522 	 *
523 	 * But we know that real amount of free space is 'c->leb_size -
524 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
525 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
526 	 * how much of these data are dirty and update lprops with this
527 	 * information.
528 	 *
529 	 * The dirt in that LEB region is comprised of padding nodes, deletion
530 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
531 	 * nodes in this LEB. So instead of calculating clean space, we
532 	 * calculate used space ('used' variable).
533 	 */
534 
535 	list_for_each_entry(snod, &sleb->nodes, list) {
536 		int deletion = 0;
537 
538 		cond_resched();
539 
540 		if (snod->sqnum >= SQNUM_WATERMARK) {
541 			ubifs_err("file system's life ended");
542 			goto out_dump;
543 		}
544 
545 		if (snod->sqnum > c->max_sqnum)
546 			c->max_sqnum = snod->sqnum;
547 
548 		switch (snod->type) {
549 		case UBIFS_INO_NODE:
550 		{
551 			struct ubifs_ino_node *ino = snod->node;
552 			loff_t new_size = le64_to_cpu(ino->size);
553 
554 			if (le32_to_cpu(ino->nlink) == 0)
555 				deletion = 1;
556 			err = insert_node(c, lnum, snod->offs, snod->len,
557 					  &snod->key, snod->sqnum, deletion,
558 					  &used, 0, new_size);
559 			break;
560 		}
561 		case UBIFS_DATA_NODE:
562 		{
563 			struct ubifs_data_node *dn = snod->node;
564 			loff_t new_size = le32_to_cpu(dn->size) +
565 					  key_block(c, &snod->key) *
566 					  UBIFS_BLOCK_SIZE;
567 
568 			err = insert_node(c, lnum, snod->offs, snod->len,
569 					  &snod->key, snod->sqnum, deletion,
570 					  &used, 0, new_size);
571 			break;
572 		}
573 		case UBIFS_DENT_NODE:
574 		case UBIFS_XENT_NODE:
575 		{
576 			struct ubifs_dent_node *dent = snod->node;
577 
578 			err = ubifs_validate_entry(c, dent);
579 			if (err)
580 				goto out_dump;
581 
582 			err = insert_dent(c, lnum, snod->offs, snod->len,
583 					  &snod->key, dent->name,
584 					  le16_to_cpu(dent->nlen), snod->sqnum,
585 					  !le64_to_cpu(dent->inum), &used);
586 			break;
587 		}
588 		case UBIFS_TRUN_NODE:
589 		{
590 			struct ubifs_trun_node *trun = snod->node;
591 			loff_t old_size = le64_to_cpu(trun->old_size);
592 			loff_t new_size = le64_to_cpu(trun->new_size);
593 			union ubifs_key key;
594 
595 			/* Validate truncation node */
596 			if (old_size < 0 || old_size > c->max_inode_sz ||
597 			    new_size < 0 || new_size > c->max_inode_sz ||
598 			    old_size <= new_size) {
599 				ubifs_err("bad truncation node");
600 				goto out_dump;
601 			}
602 
603 			/*
604 			 * Create a fake truncation key just to use the same
605 			 * functions which expect nodes to have keys.
606 			 */
607 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
608 			err = insert_node(c, lnum, snod->offs, snod->len,
609 					  &key, snod->sqnum, 1, &used,
610 					  old_size, new_size);
611 			break;
612 		}
613 		default:
614 			ubifs_err("unexpected node type %d in bud LEB %d:%d",
615 				  snod->type, lnum, snod->offs);
616 			err = -EINVAL;
617 			goto out_dump;
618 		}
619 		if (err)
620 			goto out;
621 	}
622 
623 	bud = ubifs_search_bud(c, lnum);
624 	if (!bud)
625 		BUG();
626 
627 	ubifs_assert(sleb->endpt - offs >= used);
628 	ubifs_assert(sleb->endpt % c->min_io_size == 0);
629 
630 	if (sleb->endpt + c->min_io_size <= c->leb_size && !c->ro_mount)
631 		err = ubifs_wbuf_seek_nolock(&c->jheads[jhead].wbuf, lnum,
632 					     sleb->endpt, UBI_SHORTTERM);
633 
634 	*dirty = sleb->endpt - offs - used;
635 	*free = c->leb_size - sleb->endpt;
636 
637 out:
638 	ubifs_scan_destroy(sleb);
639 	return err;
640 
641 out_dump:
642 	ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
643 	dbg_dump_node(c, snod->node);
644 	ubifs_scan_destroy(sleb);
645 	return -EINVAL;
646 }
647 
648 /**
649  * insert_ref_node - insert a reference node to the replay tree.
650  * @c: UBIFS file-system description object
651  * @lnum: node logical eraseblock number
652  * @offs: node offset
653  * @sqnum: sequence number
654  * @free: amount of free space in bud
655  * @dirty: amount of dirty space from padding and deletion nodes
656  *
657  * This function inserts a reference node to the replay tree and returns zero
658  * in case of success or a negative error code in case of failure.
659  */
660 static int insert_ref_node(struct ubifs_info *c, int lnum, int offs,
661 			   unsigned long long sqnum, int free, int dirty)
662 {
663 	struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
664 	struct replay_entry *r;
665 
666 	dbg_mnt("add ref LEB %d:%d", lnum, offs);
667 	while (*p) {
668 		parent = *p;
669 		r = rb_entry(parent, struct replay_entry, rb);
670 		if (sqnum < r->sqnum) {
671 			p = &(*p)->rb_left;
672 			continue;
673 		} else if (sqnum > r->sqnum) {
674 			p = &(*p)->rb_right;
675 			continue;
676 		}
677 		ubifs_err("duplicate sqnum in replay tree");
678 		return -EINVAL;
679 	}
680 
681 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
682 	if (!r)
683 		return -ENOMEM;
684 
685 	r->lnum = lnum;
686 	r->offs = offs;
687 	r->sqnum = sqnum;
688 	r->flags = REPLAY_REF;
689 	r->free = free;
690 	r->dirty = dirty;
691 
692 	rb_link_node(&r->rb, parent, p);
693 	rb_insert_color(&r->rb, &c->replay_tree);
694 	return 0;
695 }
696 
697 /**
698  * replay_buds - replay all buds.
699  * @c: UBIFS file-system description object
700  *
701  * This function returns zero in case of success and a negative error code in
702  * case of failure.
703  */
704 static int replay_buds(struct ubifs_info *c)
705 {
706 	struct bud_entry *b;
707 	int err, uninitialized_var(free), uninitialized_var(dirty);
708 
709 	list_for_each_entry(b, &c->replay_buds, list) {
710 		err = replay_bud(c, b->bud->lnum, b->bud->start, b->bud->jhead,
711 				 &free, &dirty);
712 		if (err)
713 			return err;
714 		err = insert_ref_node(c, b->bud->lnum, b->bud->start, b->sqnum,
715 				      free, dirty);
716 		if (err)
717 			return err;
718 	}
719 
720 	return 0;
721 }
722 
723 /**
724  * destroy_bud_list - destroy the list of buds to replay.
725  * @c: UBIFS file-system description object
726  */
727 static void destroy_bud_list(struct ubifs_info *c)
728 {
729 	struct bud_entry *b;
730 
731 	while (!list_empty(&c->replay_buds)) {
732 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
733 		list_del(&b->list);
734 		kfree(b);
735 	}
736 }
737 
738 /**
739  * add_replay_bud - add a bud to the list of buds to replay.
740  * @c: UBIFS file-system description object
741  * @lnum: bud logical eraseblock number to replay
742  * @offs: bud start offset
743  * @jhead: journal head to which this bud belongs
744  * @sqnum: reference node sequence number
745  *
746  * This function returns zero in case of success and a negative error code in
747  * case of failure.
748  */
749 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
750 			  unsigned long long sqnum)
751 {
752 	struct ubifs_bud *bud;
753 	struct bud_entry *b;
754 
755 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
756 
757 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
758 	if (!bud)
759 		return -ENOMEM;
760 
761 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
762 	if (!b) {
763 		kfree(bud);
764 		return -ENOMEM;
765 	}
766 
767 	bud->lnum = lnum;
768 	bud->start = offs;
769 	bud->jhead = jhead;
770 	ubifs_add_bud(c, bud);
771 
772 	b->bud = bud;
773 	b->sqnum = sqnum;
774 	list_add_tail(&b->list, &c->replay_buds);
775 
776 	return 0;
777 }
778 
779 /**
780  * validate_ref - validate a reference node.
781  * @c: UBIFS file-system description object
782  * @ref: the reference node to validate
783  * @ref_lnum: LEB number of the reference node
784  * @ref_offs: reference node offset
785  *
786  * This function returns %1 if a bud reference already exists for the LEB. %0 is
787  * returned if the reference node is new, otherwise %-EINVAL is returned if
788  * validation failed.
789  */
790 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
791 {
792 	struct ubifs_bud *bud;
793 	int lnum = le32_to_cpu(ref->lnum);
794 	unsigned int offs = le32_to_cpu(ref->offs);
795 	unsigned int jhead = le32_to_cpu(ref->jhead);
796 
797 	/*
798 	 * ref->offs may point to the end of LEB when the journal head points
799 	 * to the end of LEB and we write reference node for it during commit.
800 	 * So this is why we require 'offs > c->leb_size'.
801 	 */
802 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
803 	    lnum < c->main_first || offs > c->leb_size ||
804 	    offs & (c->min_io_size - 1))
805 		return -EINVAL;
806 
807 	/* Make sure we have not already looked at this bud */
808 	bud = ubifs_search_bud(c, lnum);
809 	if (bud) {
810 		if (bud->jhead == jhead && bud->start <= offs)
811 			return 1;
812 		ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
813 		return -EINVAL;
814 	}
815 
816 	return 0;
817 }
818 
819 /**
820  * replay_log_leb - replay a log logical eraseblock.
821  * @c: UBIFS file-system description object
822  * @lnum: log logical eraseblock to replay
823  * @offs: offset to start replaying from
824  * @sbuf: scan buffer
825  *
826  * This function replays a log LEB and returns zero in case of success, %1 if
827  * this is the last LEB in the log, and a negative error code in case of
828  * failure.
829  */
830 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
831 {
832 	int err;
833 	struct ubifs_scan_leb *sleb;
834 	struct ubifs_scan_node *snod;
835 	const struct ubifs_cs_node *node;
836 
837 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
838 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
839 	if (IS_ERR(sleb)) {
840 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
841 			return PTR_ERR(sleb);
842 		/*
843 		 * Note, the below function will recover this log LEB only if
844 		 * it is the last, because unclean reboots can possibly corrupt
845 		 * only the tail of the log.
846 		 */
847 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
848 		if (IS_ERR(sleb))
849 			return PTR_ERR(sleb);
850 	}
851 
852 	if (sleb->nodes_cnt == 0) {
853 		err = 1;
854 		goto out;
855 	}
856 
857 	node = sleb->buf;
858 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
859 	if (c->cs_sqnum == 0) {
860 		/*
861 		 * This is the first log LEB we are looking at, make sure that
862 		 * the first node is a commit start node. Also record its
863 		 * sequence number so that UBIFS can determine where the log
864 		 * ends, because all nodes which were have higher sequence
865 		 * numbers.
866 		 */
867 		if (snod->type != UBIFS_CS_NODE) {
868 			dbg_err("first log node at LEB %d:%d is not CS node",
869 				lnum, offs);
870 			goto out_dump;
871 		}
872 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
873 			dbg_err("first CS node at LEB %d:%d has wrong "
874 				"commit number %llu expected %llu",
875 				lnum, offs,
876 				(unsigned long long)le64_to_cpu(node->cmt_no),
877 				c->cmt_no);
878 			goto out_dump;
879 		}
880 
881 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
882 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
883 	}
884 
885 	if (snod->sqnum < c->cs_sqnum) {
886 		/*
887 		 * This means that we reached end of log and now
888 		 * look to the older log data, which was already
889 		 * committed but the eraseblock was not erased (UBIFS
890 		 * only un-maps it). So this basically means we have to
891 		 * exit with "end of log" code.
892 		 */
893 		err = 1;
894 		goto out;
895 	}
896 
897 	/* Make sure the first node sits at offset zero of the LEB */
898 	if (snod->offs != 0) {
899 		dbg_err("first node is not at zero offset");
900 		goto out_dump;
901 	}
902 
903 	list_for_each_entry(snod, &sleb->nodes, list) {
904 		cond_resched();
905 
906 		if (snod->sqnum >= SQNUM_WATERMARK) {
907 			ubifs_err("file system's life ended");
908 			goto out_dump;
909 		}
910 
911 		if (snod->sqnum < c->cs_sqnum) {
912 			dbg_err("bad sqnum %llu, commit sqnum %llu",
913 				snod->sqnum, c->cs_sqnum);
914 			goto out_dump;
915 		}
916 
917 		if (snod->sqnum > c->max_sqnum)
918 			c->max_sqnum = snod->sqnum;
919 
920 		switch (snod->type) {
921 		case UBIFS_REF_NODE: {
922 			const struct ubifs_ref_node *ref = snod->node;
923 
924 			err = validate_ref(c, ref);
925 			if (err == 1)
926 				break; /* Already have this bud */
927 			if (err)
928 				goto out_dump;
929 
930 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
931 					     le32_to_cpu(ref->offs),
932 					     le32_to_cpu(ref->jhead),
933 					     snod->sqnum);
934 			if (err)
935 				goto out;
936 
937 			break;
938 		}
939 		case UBIFS_CS_NODE:
940 			/* Make sure it sits at the beginning of LEB */
941 			if (snod->offs != 0) {
942 				ubifs_err("unexpected node in log");
943 				goto out_dump;
944 			}
945 			break;
946 		default:
947 			ubifs_err("unexpected node in log");
948 			goto out_dump;
949 		}
950 	}
951 
952 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
953 		c->lhead_lnum = lnum;
954 		c->lhead_offs = sleb->endpt;
955 	}
956 
957 	err = !sleb->endpt;
958 out:
959 	ubifs_scan_destroy(sleb);
960 	return err;
961 
962 out_dump:
963 	ubifs_err("log error detected while replaying the log at LEB %d:%d",
964 		  lnum, offs + snod->offs);
965 	dbg_dump_node(c, snod->node);
966 	ubifs_scan_destroy(sleb);
967 	return -EINVAL;
968 }
969 
970 /**
971  * take_ihead - update the status of the index head in lprops to 'taken'.
972  * @c: UBIFS file-system description object
973  *
974  * This function returns the amount of free space in the index head LEB or a
975  * negative error code.
976  */
977 static int take_ihead(struct ubifs_info *c)
978 {
979 	const struct ubifs_lprops *lp;
980 	int err, free;
981 
982 	ubifs_get_lprops(c);
983 
984 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
985 	if (IS_ERR(lp)) {
986 		err = PTR_ERR(lp);
987 		goto out;
988 	}
989 
990 	free = lp->free;
991 
992 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
993 			     lp->flags | LPROPS_TAKEN, 0);
994 	if (IS_ERR(lp)) {
995 		err = PTR_ERR(lp);
996 		goto out;
997 	}
998 
999 	err = free;
1000 out:
1001 	ubifs_release_lprops(c);
1002 	return err;
1003 }
1004 
1005 /**
1006  * ubifs_replay_journal - replay journal.
1007  * @c: UBIFS file-system description object
1008  *
1009  * This function scans the journal, replays and cleans it up. It makes sure all
1010  * memory data structures related to uncommitted journal are built (dirty TNC
1011  * tree, tree of buds, modified lprops, etc).
1012  */
1013 int ubifs_replay_journal(struct ubifs_info *c)
1014 {
1015 	int err, i, lnum, offs, free;
1016 
1017 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1018 
1019 	/* Update the status of the index head in lprops to 'taken' */
1020 	free = take_ihead(c);
1021 	if (free < 0)
1022 		return free; /* Error code */
1023 
1024 	if (c->ihead_offs != c->leb_size - free) {
1025 		ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1026 			  c->ihead_offs);
1027 		return -EINVAL;
1028 	}
1029 
1030 	dbg_mnt("start replaying the journal");
1031 	c->replaying = 1;
1032 	lnum = c->ltail_lnum = c->lhead_lnum;
1033 	offs = c->lhead_offs;
1034 
1035 	for (i = 0; i < c->log_lebs; i++, lnum++) {
1036 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1037 			/*
1038 			 * The log is logically circular, we reached the last
1039 			 * LEB, switch to the first one.
1040 			 */
1041 			lnum = UBIFS_LOG_LNUM;
1042 			offs = 0;
1043 		}
1044 		err = replay_log_leb(c, lnum, offs, c->sbuf);
1045 		if (err == 1)
1046 			/* We hit the end of the log */
1047 			break;
1048 		if (err)
1049 			goto out;
1050 		offs = 0;
1051 	}
1052 
1053 	err = replay_buds(c);
1054 	if (err)
1055 		goto out;
1056 
1057 	err = apply_replay_tree(c);
1058 	if (err)
1059 		goto out;
1060 
1061 	/*
1062 	 * UBIFS budgeting calculations use @c->budg_uncommitted_idx variable
1063 	 * to roughly estimate index growth. Things like @c->min_idx_lebs
1064 	 * depend on it. This means we have to initialize it to make sure
1065 	 * budgeting works properly.
1066 	 */
1067 	c->budg_uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1068 	c->budg_uncommitted_idx *= c->max_idx_node_sz;
1069 
1070 	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1071 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1072 		"highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1073 		(unsigned long)c->highest_inum);
1074 out:
1075 	destroy_replay_tree(c);
1076 	destroy_bud_list(c);
1077 	c->replaying = 0;
1078 	return err;
1079 }
1080