1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file contains journal replay code. It runs when the file-system is being 25 * mounted and requires no locking. 26 * 27 * The larger is the journal, the longer it takes to scan it, so the longer it 28 * takes to mount UBIFS. This is why the journal has limited size which may be 29 * changed depending on the system requirements. But a larger journal gives 30 * faster I/O speed because it writes the index less frequently. So this is a 31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 32 * larger is the journal, the more memory its index may consume. 33 */ 34 35 #include "ubifs.h" 36 #include <linux/list_sort.h> 37 38 /** 39 * struct replay_entry - replay list entry. 40 * @lnum: logical eraseblock number of the node 41 * @offs: node offset 42 * @len: node length 43 * @deletion: non-zero if this entry corresponds to a node deletion 44 * @sqnum: node sequence number 45 * @list: links the replay list 46 * @key: node key 47 * @nm: directory entry name 48 * @old_size: truncation old size 49 * @new_size: truncation new size 50 * 51 * The replay process first scans all buds and builds the replay list, then 52 * sorts the replay list in nodes sequence number order, and then inserts all 53 * the replay entries to the TNC. 54 */ 55 struct replay_entry { 56 int lnum; 57 int offs; 58 int len; 59 unsigned int deletion:1; 60 unsigned long long sqnum; 61 struct list_head list; 62 union ubifs_key key; 63 union { 64 struct qstr nm; 65 struct { 66 loff_t old_size; 67 loff_t new_size; 68 }; 69 }; 70 }; 71 72 /** 73 * struct bud_entry - entry in the list of buds to replay. 74 * @list: next bud in the list 75 * @bud: bud description object 76 * @sqnum: reference node sequence number 77 * @free: free bytes in the bud 78 * @dirty: dirty bytes in the bud 79 */ 80 struct bud_entry { 81 struct list_head list; 82 struct ubifs_bud *bud; 83 unsigned long long sqnum; 84 int free; 85 int dirty; 86 }; 87 88 /** 89 * set_bud_lprops - set free and dirty space used by a bud. 90 * @c: UBIFS file-system description object 91 * @b: bud entry which describes the bud 92 * 93 * This function makes sure the LEB properties of bud @b are set correctly 94 * after the replay. Returns zero in case of success and a negative error code 95 * in case of failure. 96 */ 97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 98 { 99 const struct ubifs_lprops *lp; 100 int err = 0, dirty; 101 102 ubifs_get_lprops(c); 103 104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 105 if (IS_ERR(lp)) { 106 err = PTR_ERR(lp); 107 goto out; 108 } 109 110 dirty = lp->dirty; 111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 112 /* 113 * The LEB was added to the journal with a starting offset of 114 * zero which means the LEB must have been empty. The LEB 115 * property values should be @lp->free == @c->leb_size and 116 * @lp->dirty == 0, but that is not the case. The reason is that 117 * the LEB had been garbage collected before it became the bud, 118 * and there was not commit inbetween. The garbage collector 119 * resets the free and dirty space without recording it 120 * anywhere except lprops, so if there was no commit then 121 * lprops does not have that information. 122 * 123 * We do not need to adjust free space because the scan has told 124 * us the exact value which is recorded in the replay entry as 125 * @b->free. 126 * 127 * However we do need to subtract from the dirty space the 128 * amount of space that the garbage collector reclaimed, which 129 * is the whole LEB minus the amount of space that was free. 130 */ 131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 132 lp->free, lp->dirty); 133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 134 lp->free, lp->dirty); 135 dirty -= c->leb_size - lp->free; 136 /* 137 * If the replay order was perfect the dirty space would now be 138 * zero. The order is not perfect because the journal heads 139 * race with each other. This is not a problem but is does mean 140 * that the dirty space may temporarily exceed c->leb_size 141 * during the replay. 142 */ 143 if (dirty != 0) 144 dbg_msg("LEB %d lp: %d free %d dirty " 145 "replay: %d free %d dirty", b->bud->lnum, 146 lp->free, lp->dirty, b->free, b->dirty); 147 } 148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 149 lp->flags | LPROPS_TAKEN, 0); 150 if (IS_ERR(lp)) { 151 err = PTR_ERR(lp); 152 goto out; 153 } 154 155 /* Make sure the journal head points to the latest bud */ 156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 157 b->bud->lnum, c->leb_size - b->free, 158 UBI_SHORTTERM); 159 160 out: 161 ubifs_release_lprops(c); 162 return err; 163 } 164 165 /** 166 * set_buds_lprops - set free and dirty space for all replayed buds. 167 * @c: UBIFS file-system description object 168 * 169 * This function sets LEB properties for all replayed buds. Returns zero in 170 * case of success and a negative error code in case of failure. 171 */ 172 static int set_buds_lprops(struct ubifs_info *c) 173 { 174 struct bud_entry *b; 175 int err; 176 177 list_for_each_entry(b, &c->replay_buds, list) { 178 err = set_bud_lprops(c, b); 179 if (err) 180 return err; 181 } 182 183 return 0; 184 } 185 186 /** 187 * trun_remove_range - apply a replay entry for a truncation to the TNC. 188 * @c: UBIFS file-system description object 189 * @r: replay entry of truncation 190 */ 191 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 192 { 193 unsigned min_blk, max_blk; 194 union ubifs_key min_key, max_key; 195 ino_t ino; 196 197 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 198 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 199 min_blk += 1; 200 201 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 202 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 203 max_blk -= 1; 204 205 ino = key_inum(c, &r->key); 206 207 data_key_init(c, &min_key, ino, min_blk); 208 data_key_init(c, &max_key, ino, max_blk); 209 210 return ubifs_tnc_remove_range(c, &min_key, &max_key); 211 } 212 213 /** 214 * apply_replay_entry - apply a replay entry to the TNC. 215 * @c: UBIFS file-system description object 216 * @r: replay entry to apply 217 * 218 * Apply a replay entry to the TNC. 219 */ 220 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 221 { 222 int err; 223 224 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", 225 r->lnum, r->offs, r->len, r->deletion, r->sqnum); 226 227 /* Set c->replay_sqnum to help deal with dangling branches. */ 228 c->replay_sqnum = r->sqnum; 229 230 if (is_hash_key(c, &r->key)) { 231 if (r->deletion) 232 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 233 else 234 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 235 r->len, &r->nm); 236 } else { 237 if (r->deletion) 238 switch (key_type(c, &r->key)) { 239 case UBIFS_INO_KEY: 240 { 241 ino_t inum = key_inum(c, &r->key); 242 243 err = ubifs_tnc_remove_ino(c, inum); 244 break; 245 } 246 case UBIFS_TRUN_KEY: 247 err = trun_remove_range(c, r); 248 break; 249 default: 250 err = ubifs_tnc_remove(c, &r->key); 251 break; 252 } 253 else 254 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 255 r->len); 256 if (err) 257 return err; 258 259 if (c->need_recovery) 260 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 261 r->new_size); 262 } 263 264 return err; 265 } 266 267 /** 268 * replay_entries_cmp - compare 2 replay entries. 269 * @priv: UBIFS file-system description object 270 * @a: first replay entry 271 * @a: second replay entry 272 * 273 * This is a comparios function for 'list_sort()' which compares 2 replay 274 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 275 * greater sequence number and %-1 otherwise. 276 */ 277 static int replay_entries_cmp(void *priv, struct list_head *a, 278 struct list_head *b) 279 { 280 struct replay_entry *ra, *rb; 281 282 cond_resched(); 283 if (a == b) 284 return 0; 285 286 ra = list_entry(a, struct replay_entry, list); 287 rb = list_entry(b, struct replay_entry, list); 288 ubifs_assert(ra->sqnum != rb->sqnum); 289 if (ra->sqnum > rb->sqnum) 290 return 1; 291 return -1; 292 } 293 294 /** 295 * apply_replay_list - apply the replay list to the TNC. 296 * @c: UBIFS file-system description object 297 * 298 * Apply all entries in the replay list to the TNC. Returns zero in case of 299 * success and a negative error code in case of failure. 300 */ 301 static int apply_replay_list(struct ubifs_info *c) 302 { 303 struct replay_entry *r; 304 int err; 305 306 list_sort(c, &c->replay_list, &replay_entries_cmp); 307 308 list_for_each_entry(r, &c->replay_list, list) { 309 cond_resched(); 310 311 err = apply_replay_entry(c, r); 312 if (err) 313 return err; 314 } 315 316 return 0; 317 } 318 319 /** 320 * destroy_replay_list - destroy the replay. 321 * @c: UBIFS file-system description object 322 * 323 * Destroy the replay list. 324 */ 325 static void destroy_replay_list(struct ubifs_info *c) 326 { 327 struct replay_entry *r, *tmp; 328 329 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 330 if (is_hash_key(c, &r->key)) 331 kfree(r->nm.name); 332 list_del(&r->list); 333 kfree(r); 334 } 335 } 336 337 /** 338 * insert_node - insert a node to the replay list 339 * @c: UBIFS file-system description object 340 * @lnum: node logical eraseblock number 341 * @offs: node offset 342 * @len: node length 343 * @key: node key 344 * @sqnum: sequence number 345 * @deletion: non-zero if this is a deletion 346 * @used: number of bytes in use in a LEB 347 * @old_size: truncation old size 348 * @new_size: truncation new size 349 * 350 * This function inserts a scanned non-direntry node to the replay list. The 351 * replay list contains @struct replay_entry elements, and we sort this list in 352 * sequence number order before applying it. The replay list is applied at the 353 * very end of the replay process. Since the list is sorted in sequence number 354 * order, the older modifications are applied first. This function returns zero 355 * in case of success and a negative error code in case of failure. 356 */ 357 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 358 union ubifs_key *key, unsigned long long sqnum, 359 int deletion, int *used, loff_t old_size, 360 loff_t new_size) 361 { 362 struct replay_entry *r; 363 364 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 365 366 if (key_inum(c, key) >= c->highest_inum) 367 c->highest_inum = key_inum(c, key); 368 369 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 370 if (!r) 371 return -ENOMEM; 372 373 if (!deletion) 374 *used += ALIGN(len, 8); 375 r->lnum = lnum; 376 r->offs = offs; 377 r->len = len; 378 r->deletion = !!deletion; 379 r->sqnum = sqnum; 380 key_copy(c, key, &r->key); 381 r->old_size = old_size; 382 r->new_size = new_size; 383 384 list_add_tail(&r->list, &c->replay_list); 385 return 0; 386 } 387 388 /** 389 * insert_dent - insert a directory entry node into the replay list. 390 * @c: UBIFS file-system description object 391 * @lnum: node logical eraseblock number 392 * @offs: node offset 393 * @len: node length 394 * @key: node key 395 * @name: directory entry name 396 * @nlen: directory entry name length 397 * @sqnum: sequence number 398 * @deletion: non-zero if this is a deletion 399 * @used: number of bytes in use in a LEB 400 * 401 * This function inserts a scanned directory entry node or an extended 402 * attribute entry to the replay list. Returns zero in case of success and a 403 * negative error code in case of failure. 404 */ 405 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 406 union ubifs_key *key, const char *name, int nlen, 407 unsigned long long sqnum, int deletion, int *used) 408 { 409 struct replay_entry *r; 410 char *nbuf; 411 412 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 413 if (key_inum(c, key) >= c->highest_inum) 414 c->highest_inum = key_inum(c, key); 415 416 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 417 if (!r) 418 return -ENOMEM; 419 420 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 421 if (!nbuf) { 422 kfree(r); 423 return -ENOMEM; 424 } 425 426 if (!deletion) 427 *used += ALIGN(len, 8); 428 r->lnum = lnum; 429 r->offs = offs; 430 r->len = len; 431 r->deletion = !!deletion; 432 r->sqnum = sqnum; 433 key_copy(c, key, &r->key); 434 r->nm.len = nlen; 435 memcpy(nbuf, name, nlen); 436 nbuf[nlen] = '\0'; 437 r->nm.name = nbuf; 438 439 list_add_tail(&r->list, &c->replay_list); 440 return 0; 441 } 442 443 /** 444 * ubifs_validate_entry - validate directory or extended attribute entry node. 445 * @c: UBIFS file-system description object 446 * @dent: the node to validate 447 * 448 * This function validates directory or extended attribute entry node @dent. 449 * Returns zero if the node is all right and a %-EINVAL if not. 450 */ 451 int ubifs_validate_entry(struct ubifs_info *c, 452 const struct ubifs_dent_node *dent) 453 { 454 int key_type = key_type_flash(c, dent->key); 455 int nlen = le16_to_cpu(dent->nlen); 456 457 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 458 dent->type >= UBIFS_ITYPES_CNT || 459 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 460 strnlen(dent->name, nlen) != nlen || 461 le64_to_cpu(dent->inum) > MAX_INUM) { 462 ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ? 463 "directory entry" : "extended attribute entry"); 464 return -EINVAL; 465 } 466 467 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 468 ubifs_err("bad key type %d", key_type); 469 return -EINVAL; 470 } 471 472 return 0; 473 } 474 475 /** 476 * is_last_bud - check if the bud is the last in the journal head. 477 * @c: UBIFS file-system description object 478 * @bud: bud description object 479 * 480 * This function checks if bud @bud is the last bud in its journal head. This 481 * information is then used by 'replay_bud()' to decide whether the bud can 482 * have corruptions or not. Indeed, only last buds can be corrupted by power 483 * cuts. Returns %1 if this is the last bud, and %0 if not. 484 */ 485 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 486 { 487 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 488 struct ubifs_bud *next; 489 uint32_t data; 490 int err; 491 492 if (list_is_last(&bud->list, &jh->buds_list)) 493 return 1; 494 495 /* 496 * The following is a quirk to make sure we work correctly with UBIFS 497 * images used with older UBIFS. 498 * 499 * Normally, the last bud will be the last in the journal head's list 500 * of bud. However, there is one exception if the UBIFS image belongs 501 * to older UBIFS. This is fairly unlikely: one would need to use old 502 * UBIFS, then have a power cut exactly at the right point, and then 503 * try to mount this image with new UBIFS. 504 * 505 * The exception is: it is possible to have 2 buds A and B, A goes 506 * before B, and B is the last, bud B is contains no data, and bud A is 507 * corrupted at the end. The reason is that in older versions when the 508 * journal code switched the next bud (from A to B), it first added a 509 * log reference node for the new bud (B), and only after this it 510 * synchronized the write-buffer of current bud (A). But later this was 511 * changed and UBIFS started to always synchronize the write-buffer of 512 * the bud (A) before writing the log reference for the new bud (B). 513 * 514 * But because older UBIFS always synchronized A's write-buffer before 515 * writing to B, we can recognize this exceptional situation but 516 * checking the contents of bud B - if it is empty, then A can be 517 * treated as the last and we can recover it. 518 * 519 * TODO: remove this piece of code in a couple of years (today it is 520 * 16.05.2011). 521 */ 522 next = list_entry(bud->list.next, struct ubifs_bud, list); 523 if (!list_is_last(&next->list, &jh->buds_list)) 524 return 0; 525 526 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); 527 if (err) 528 return 0; 529 530 return data == 0xFFFFFFFF; 531 } 532 533 /** 534 * replay_bud - replay a bud logical eraseblock. 535 * @c: UBIFS file-system description object 536 * @b: bud entry which describes the bud 537 * 538 * This function replays bud @bud, recovers it if needed, and adds all nodes 539 * from this bud to the replay list. Returns zero in case of success and a 540 * negative error code in case of failure. 541 */ 542 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 543 { 544 int is_last = is_last_bud(c, b->bud); 545 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 546 struct ubifs_scan_leb *sleb; 547 struct ubifs_scan_node *snod; 548 549 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 550 lnum, b->bud->jhead, offs, is_last); 551 552 if (c->need_recovery && is_last) 553 /* 554 * Recover only last LEBs in the journal heads, because power 555 * cuts may cause corruptions only in these LEBs, because only 556 * these LEBs could possibly be written to at the power cut 557 * time. 558 */ 559 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 560 else 561 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 562 if (IS_ERR(sleb)) 563 return PTR_ERR(sleb); 564 565 /* 566 * The bud does not have to start from offset zero - the beginning of 567 * the 'lnum' LEB may contain previously committed data. One of the 568 * things we have to do in replay is to correctly update lprops with 569 * newer information about this LEB. 570 * 571 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 572 * bytes of free space because it only contain information about 573 * committed data. 574 * 575 * But we know that real amount of free space is 'c->leb_size - 576 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 577 * 'sleb->endpt' is used by bud data. We have to correctly calculate 578 * how much of these data are dirty and update lprops with this 579 * information. 580 * 581 * The dirt in that LEB region is comprised of padding nodes, deletion 582 * nodes, truncation nodes and nodes which are obsoleted by subsequent 583 * nodes in this LEB. So instead of calculating clean space, we 584 * calculate used space ('used' variable). 585 */ 586 587 list_for_each_entry(snod, &sleb->nodes, list) { 588 int deletion = 0; 589 590 cond_resched(); 591 592 if (snod->sqnum >= SQNUM_WATERMARK) { 593 ubifs_err("file system's life ended"); 594 goto out_dump; 595 } 596 597 if (snod->sqnum > c->max_sqnum) 598 c->max_sqnum = snod->sqnum; 599 600 switch (snod->type) { 601 case UBIFS_INO_NODE: 602 { 603 struct ubifs_ino_node *ino = snod->node; 604 loff_t new_size = le64_to_cpu(ino->size); 605 606 if (le32_to_cpu(ino->nlink) == 0) 607 deletion = 1; 608 err = insert_node(c, lnum, snod->offs, snod->len, 609 &snod->key, snod->sqnum, deletion, 610 &used, 0, new_size); 611 break; 612 } 613 case UBIFS_DATA_NODE: 614 { 615 struct ubifs_data_node *dn = snod->node; 616 loff_t new_size = le32_to_cpu(dn->size) + 617 key_block(c, &snod->key) * 618 UBIFS_BLOCK_SIZE; 619 620 err = insert_node(c, lnum, snod->offs, snod->len, 621 &snod->key, snod->sqnum, deletion, 622 &used, 0, new_size); 623 break; 624 } 625 case UBIFS_DENT_NODE: 626 case UBIFS_XENT_NODE: 627 { 628 struct ubifs_dent_node *dent = snod->node; 629 630 err = ubifs_validate_entry(c, dent); 631 if (err) 632 goto out_dump; 633 634 err = insert_dent(c, lnum, snod->offs, snod->len, 635 &snod->key, dent->name, 636 le16_to_cpu(dent->nlen), snod->sqnum, 637 !le64_to_cpu(dent->inum), &used); 638 break; 639 } 640 case UBIFS_TRUN_NODE: 641 { 642 struct ubifs_trun_node *trun = snod->node; 643 loff_t old_size = le64_to_cpu(trun->old_size); 644 loff_t new_size = le64_to_cpu(trun->new_size); 645 union ubifs_key key; 646 647 /* Validate truncation node */ 648 if (old_size < 0 || old_size > c->max_inode_sz || 649 new_size < 0 || new_size > c->max_inode_sz || 650 old_size <= new_size) { 651 ubifs_err("bad truncation node"); 652 goto out_dump; 653 } 654 655 /* 656 * Create a fake truncation key just to use the same 657 * functions which expect nodes to have keys. 658 */ 659 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 660 err = insert_node(c, lnum, snod->offs, snod->len, 661 &key, snod->sqnum, 1, &used, 662 old_size, new_size); 663 break; 664 } 665 default: 666 ubifs_err("unexpected node type %d in bud LEB %d:%d", 667 snod->type, lnum, snod->offs); 668 err = -EINVAL; 669 goto out_dump; 670 } 671 if (err) 672 goto out; 673 } 674 675 ubifs_assert(ubifs_search_bud(c, lnum)); 676 ubifs_assert(sleb->endpt - offs >= used); 677 ubifs_assert(sleb->endpt % c->min_io_size == 0); 678 679 b->dirty = sleb->endpt - offs - used; 680 b->free = c->leb_size - sleb->endpt; 681 dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free); 682 683 out: 684 ubifs_scan_destroy(sleb); 685 return err; 686 687 out_dump: 688 ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs); 689 dbg_dump_node(c, snod->node); 690 ubifs_scan_destroy(sleb); 691 return -EINVAL; 692 } 693 694 /** 695 * replay_buds - replay all buds. 696 * @c: UBIFS file-system description object 697 * 698 * This function returns zero in case of success and a negative error code in 699 * case of failure. 700 */ 701 static int replay_buds(struct ubifs_info *c) 702 { 703 struct bud_entry *b; 704 int err; 705 unsigned long long prev_sqnum = 0; 706 707 list_for_each_entry(b, &c->replay_buds, list) { 708 err = replay_bud(c, b); 709 if (err) 710 return err; 711 712 ubifs_assert(b->sqnum > prev_sqnum); 713 prev_sqnum = b->sqnum; 714 } 715 716 return 0; 717 } 718 719 /** 720 * destroy_bud_list - destroy the list of buds to replay. 721 * @c: UBIFS file-system description object 722 */ 723 static void destroy_bud_list(struct ubifs_info *c) 724 { 725 struct bud_entry *b; 726 727 while (!list_empty(&c->replay_buds)) { 728 b = list_entry(c->replay_buds.next, struct bud_entry, list); 729 list_del(&b->list); 730 kfree(b); 731 } 732 } 733 734 /** 735 * add_replay_bud - add a bud to the list of buds to replay. 736 * @c: UBIFS file-system description object 737 * @lnum: bud logical eraseblock number to replay 738 * @offs: bud start offset 739 * @jhead: journal head to which this bud belongs 740 * @sqnum: reference node sequence number 741 * 742 * This function returns zero in case of success and a negative error code in 743 * case of failure. 744 */ 745 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 746 unsigned long long sqnum) 747 { 748 struct ubifs_bud *bud; 749 struct bud_entry *b; 750 751 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 752 753 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 754 if (!bud) 755 return -ENOMEM; 756 757 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 758 if (!b) { 759 kfree(bud); 760 return -ENOMEM; 761 } 762 763 bud->lnum = lnum; 764 bud->start = offs; 765 bud->jhead = jhead; 766 ubifs_add_bud(c, bud); 767 768 b->bud = bud; 769 b->sqnum = sqnum; 770 list_add_tail(&b->list, &c->replay_buds); 771 772 return 0; 773 } 774 775 /** 776 * validate_ref - validate a reference node. 777 * @c: UBIFS file-system description object 778 * @ref: the reference node to validate 779 * @ref_lnum: LEB number of the reference node 780 * @ref_offs: reference node offset 781 * 782 * This function returns %1 if a bud reference already exists for the LEB. %0 is 783 * returned if the reference node is new, otherwise %-EINVAL is returned if 784 * validation failed. 785 */ 786 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 787 { 788 struct ubifs_bud *bud; 789 int lnum = le32_to_cpu(ref->lnum); 790 unsigned int offs = le32_to_cpu(ref->offs); 791 unsigned int jhead = le32_to_cpu(ref->jhead); 792 793 /* 794 * ref->offs may point to the end of LEB when the journal head points 795 * to the end of LEB and we write reference node for it during commit. 796 * So this is why we require 'offs > c->leb_size'. 797 */ 798 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 799 lnum < c->main_first || offs > c->leb_size || 800 offs & (c->min_io_size - 1)) 801 return -EINVAL; 802 803 /* Make sure we have not already looked at this bud */ 804 bud = ubifs_search_bud(c, lnum); 805 if (bud) { 806 if (bud->jhead == jhead && bud->start <= offs) 807 return 1; 808 ubifs_err("bud at LEB %d:%d was already referred", lnum, offs); 809 return -EINVAL; 810 } 811 812 return 0; 813 } 814 815 /** 816 * replay_log_leb - replay a log logical eraseblock. 817 * @c: UBIFS file-system description object 818 * @lnum: log logical eraseblock to replay 819 * @offs: offset to start replaying from 820 * @sbuf: scan buffer 821 * 822 * This function replays a log LEB and returns zero in case of success, %1 if 823 * this is the last LEB in the log, and a negative error code in case of 824 * failure. 825 */ 826 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 827 { 828 int err; 829 struct ubifs_scan_leb *sleb; 830 struct ubifs_scan_node *snod; 831 const struct ubifs_cs_node *node; 832 833 dbg_mnt("replay log LEB %d:%d", lnum, offs); 834 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 835 if (IS_ERR(sleb)) { 836 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 837 return PTR_ERR(sleb); 838 /* 839 * Note, the below function will recover this log LEB only if 840 * it is the last, because unclean reboots can possibly corrupt 841 * only the tail of the log. 842 */ 843 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 844 if (IS_ERR(sleb)) 845 return PTR_ERR(sleb); 846 } 847 848 if (sleb->nodes_cnt == 0) { 849 err = 1; 850 goto out; 851 } 852 853 node = sleb->buf; 854 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 855 if (c->cs_sqnum == 0) { 856 /* 857 * This is the first log LEB we are looking at, make sure that 858 * the first node is a commit start node. Also record its 859 * sequence number so that UBIFS can determine where the log 860 * ends, because all nodes which were have higher sequence 861 * numbers. 862 */ 863 if (snod->type != UBIFS_CS_NODE) { 864 dbg_err("first log node at LEB %d:%d is not CS node", 865 lnum, offs); 866 goto out_dump; 867 } 868 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 869 dbg_err("first CS node at LEB %d:%d has wrong " 870 "commit number %llu expected %llu", 871 lnum, offs, 872 (unsigned long long)le64_to_cpu(node->cmt_no), 873 c->cmt_no); 874 goto out_dump; 875 } 876 877 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 878 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 879 } 880 881 if (snod->sqnum < c->cs_sqnum) { 882 /* 883 * This means that we reached end of log and now 884 * look to the older log data, which was already 885 * committed but the eraseblock was not erased (UBIFS 886 * only un-maps it). So this basically means we have to 887 * exit with "end of log" code. 888 */ 889 err = 1; 890 goto out; 891 } 892 893 /* Make sure the first node sits at offset zero of the LEB */ 894 if (snod->offs != 0) { 895 dbg_err("first node is not at zero offset"); 896 goto out_dump; 897 } 898 899 list_for_each_entry(snod, &sleb->nodes, list) { 900 cond_resched(); 901 902 if (snod->sqnum >= SQNUM_WATERMARK) { 903 ubifs_err("file system's life ended"); 904 goto out_dump; 905 } 906 907 if (snod->sqnum < c->cs_sqnum) { 908 dbg_err("bad sqnum %llu, commit sqnum %llu", 909 snod->sqnum, c->cs_sqnum); 910 goto out_dump; 911 } 912 913 if (snod->sqnum > c->max_sqnum) 914 c->max_sqnum = snod->sqnum; 915 916 switch (snod->type) { 917 case UBIFS_REF_NODE: { 918 const struct ubifs_ref_node *ref = snod->node; 919 920 err = validate_ref(c, ref); 921 if (err == 1) 922 break; /* Already have this bud */ 923 if (err) 924 goto out_dump; 925 926 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 927 le32_to_cpu(ref->offs), 928 le32_to_cpu(ref->jhead), 929 snod->sqnum); 930 if (err) 931 goto out; 932 933 break; 934 } 935 case UBIFS_CS_NODE: 936 /* Make sure it sits at the beginning of LEB */ 937 if (snod->offs != 0) { 938 ubifs_err("unexpected node in log"); 939 goto out_dump; 940 } 941 break; 942 default: 943 ubifs_err("unexpected node in log"); 944 goto out_dump; 945 } 946 } 947 948 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 949 c->lhead_lnum = lnum; 950 c->lhead_offs = sleb->endpt; 951 } 952 953 err = !sleb->endpt; 954 out: 955 ubifs_scan_destroy(sleb); 956 return err; 957 958 out_dump: 959 ubifs_err("log error detected while replaying the log at LEB %d:%d", 960 lnum, offs + snod->offs); 961 dbg_dump_node(c, snod->node); 962 ubifs_scan_destroy(sleb); 963 return -EINVAL; 964 } 965 966 /** 967 * take_ihead - update the status of the index head in lprops to 'taken'. 968 * @c: UBIFS file-system description object 969 * 970 * This function returns the amount of free space in the index head LEB or a 971 * negative error code. 972 */ 973 static int take_ihead(struct ubifs_info *c) 974 { 975 const struct ubifs_lprops *lp; 976 int err, free; 977 978 ubifs_get_lprops(c); 979 980 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 981 if (IS_ERR(lp)) { 982 err = PTR_ERR(lp); 983 goto out; 984 } 985 986 free = lp->free; 987 988 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 989 lp->flags | LPROPS_TAKEN, 0); 990 if (IS_ERR(lp)) { 991 err = PTR_ERR(lp); 992 goto out; 993 } 994 995 err = free; 996 out: 997 ubifs_release_lprops(c); 998 return err; 999 } 1000 1001 /** 1002 * ubifs_replay_journal - replay journal. 1003 * @c: UBIFS file-system description object 1004 * 1005 * This function scans the journal, replays and cleans it up. It makes sure all 1006 * memory data structures related to uncommitted journal are built (dirty TNC 1007 * tree, tree of buds, modified lprops, etc). 1008 */ 1009 int ubifs_replay_journal(struct ubifs_info *c) 1010 { 1011 int err, i, lnum, offs, free; 1012 1013 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1014 1015 /* Update the status of the index head in lprops to 'taken' */ 1016 free = take_ihead(c); 1017 if (free < 0) 1018 return free; /* Error code */ 1019 1020 if (c->ihead_offs != c->leb_size - free) { 1021 ubifs_err("bad index head LEB %d:%d", c->ihead_lnum, 1022 c->ihead_offs); 1023 return -EINVAL; 1024 } 1025 1026 dbg_mnt("start replaying the journal"); 1027 c->replaying = 1; 1028 lnum = c->ltail_lnum = c->lhead_lnum; 1029 offs = c->lhead_offs; 1030 1031 for (i = 0; i < c->log_lebs; i++, lnum++) { 1032 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) { 1033 /* 1034 * The log is logically circular, we reached the last 1035 * LEB, switch to the first one. 1036 */ 1037 lnum = UBIFS_LOG_LNUM; 1038 offs = 0; 1039 } 1040 err = replay_log_leb(c, lnum, offs, c->sbuf); 1041 if (err == 1) 1042 /* We hit the end of the log */ 1043 break; 1044 if (err) 1045 goto out; 1046 offs = 0; 1047 } 1048 1049 err = replay_buds(c); 1050 if (err) 1051 goto out; 1052 1053 err = apply_replay_list(c); 1054 if (err) 1055 goto out; 1056 1057 err = set_buds_lprops(c); 1058 if (err) 1059 goto out; 1060 1061 /* 1062 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1063 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1064 * depend on it. This means we have to initialize it to make sure 1065 * budgeting works properly. 1066 */ 1067 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1068 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1069 1070 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1071 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, " 1072 "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1073 (unsigned long)c->highest_inum); 1074 out: 1075 destroy_replay_list(c); 1076 destroy_bud_list(c); 1077 c->replaying = 0; 1078 return err; 1079 } 1080