1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file contains journal replay code. It runs when the file-system is being 25 * mounted and requires no locking. 26 * 27 * The larger is the journal, the longer it takes to scan it, so the longer it 28 * takes to mount UBIFS. This is why the journal has limited size which may be 29 * changed depending on the system requirements. But a larger journal gives 30 * faster I/O speed because it writes the index less frequently. So this is a 31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 32 * larger is the journal, the more memory its index may consume. 33 */ 34 35 #include "ubifs.h" 36 #include <linux/list_sort.h> 37 #include <crypto/hash.h> 38 #include <crypto/algapi.h> 39 40 /** 41 * struct replay_entry - replay list entry. 42 * @lnum: logical eraseblock number of the node 43 * @offs: node offset 44 * @len: node length 45 * @deletion: non-zero if this entry corresponds to a node deletion 46 * @sqnum: node sequence number 47 * @list: links the replay list 48 * @key: node key 49 * @nm: directory entry name 50 * @old_size: truncation old size 51 * @new_size: truncation new size 52 * 53 * The replay process first scans all buds and builds the replay list, then 54 * sorts the replay list in nodes sequence number order, and then inserts all 55 * the replay entries to the TNC. 56 */ 57 struct replay_entry { 58 int lnum; 59 int offs; 60 int len; 61 u8 hash[UBIFS_HASH_ARR_SZ]; 62 unsigned int deletion:1; 63 unsigned long long sqnum; 64 struct list_head list; 65 union ubifs_key key; 66 union { 67 struct fscrypt_name nm; 68 struct { 69 loff_t old_size; 70 loff_t new_size; 71 }; 72 }; 73 }; 74 75 /** 76 * struct bud_entry - entry in the list of buds to replay. 77 * @list: next bud in the list 78 * @bud: bud description object 79 * @sqnum: reference node sequence number 80 * @free: free bytes in the bud 81 * @dirty: dirty bytes in the bud 82 */ 83 struct bud_entry { 84 struct list_head list; 85 struct ubifs_bud *bud; 86 unsigned long long sqnum; 87 int free; 88 int dirty; 89 }; 90 91 /** 92 * set_bud_lprops - set free and dirty space used by a bud. 93 * @c: UBIFS file-system description object 94 * @b: bud entry which describes the bud 95 * 96 * This function makes sure the LEB properties of bud @b are set correctly 97 * after the replay. Returns zero in case of success and a negative error code 98 * in case of failure. 99 */ 100 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 101 { 102 const struct ubifs_lprops *lp; 103 int err = 0, dirty; 104 105 ubifs_get_lprops(c); 106 107 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 108 if (IS_ERR(lp)) { 109 err = PTR_ERR(lp); 110 goto out; 111 } 112 113 dirty = lp->dirty; 114 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 115 /* 116 * The LEB was added to the journal with a starting offset of 117 * zero which means the LEB must have been empty. The LEB 118 * property values should be @lp->free == @c->leb_size and 119 * @lp->dirty == 0, but that is not the case. The reason is that 120 * the LEB had been garbage collected before it became the bud, 121 * and there was not commit inbetween. The garbage collector 122 * resets the free and dirty space without recording it 123 * anywhere except lprops, so if there was no commit then 124 * lprops does not have that information. 125 * 126 * We do not need to adjust free space because the scan has told 127 * us the exact value which is recorded in the replay entry as 128 * @b->free. 129 * 130 * However we do need to subtract from the dirty space the 131 * amount of space that the garbage collector reclaimed, which 132 * is the whole LEB minus the amount of space that was free. 133 */ 134 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 135 lp->free, lp->dirty); 136 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 137 lp->free, lp->dirty); 138 dirty -= c->leb_size - lp->free; 139 /* 140 * If the replay order was perfect the dirty space would now be 141 * zero. The order is not perfect because the journal heads 142 * race with each other. This is not a problem but is does mean 143 * that the dirty space may temporarily exceed c->leb_size 144 * during the replay. 145 */ 146 if (dirty != 0) 147 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", 148 b->bud->lnum, lp->free, lp->dirty, b->free, 149 b->dirty); 150 } 151 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 152 lp->flags | LPROPS_TAKEN, 0); 153 if (IS_ERR(lp)) { 154 err = PTR_ERR(lp); 155 goto out; 156 } 157 158 /* Make sure the journal head points to the latest bud */ 159 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 160 b->bud->lnum, c->leb_size - b->free); 161 162 out: 163 ubifs_release_lprops(c); 164 return err; 165 } 166 167 /** 168 * set_buds_lprops - set free and dirty space for all replayed buds. 169 * @c: UBIFS file-system description object 170 * 171 * This function sets LEB properties for all replayed buds. Returns zero in 172 * case of success and a negative error code in case of failure. 173 */ 174 static int set_buds_lprops(struct ubifs_info *c) 175 { 176 struct bud_entry *b; 177 int err; 178 179 list_for_each_entry(b, &c->replay_buds, list) { 180 err = set_bud_lprops(c, b); 181 if (err) 182 return err; 183 } 184 185 return 0; 186 } 187 188 /** 189 * trun_remove_range - apply a replay entry for a truncation to the TNC. 190 * @c: UBIFS file-system description object 191 * @r: replay entry of truncation 192 */ 193 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 194 { 195 unsigned min_blk, max_blk; 196 union ubifs_key min_key, max_key; 197 ino_t ino; 198 199 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 200 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 201 min_blk += 1; 202 203 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 204 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 205 max_blk -= 1; 206 207 ino = key_inum(c, &r->key); 208 209 data_key_init(c, &min_key, ino, min_blk); 210 data_key_init(c, &max_key, ino, max_blk); 211 212 return ubifs_tnc_remove_range(c, &min_key, &max_key); 213 } 214 215 /** 216 * inode_still_linked - check whether inode in question will be re-linked. 217 * @c: UBIFS file-system description object 218 * @rino: replay entry to test 219 * 220 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1. 221 * This case needs special care, otherwise all references to the inode will 222 * be removed upon the first replay entry of an inode with link count 0 223 * is found. 224 */ 225 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino) 226 { 227 struct replay_entry *r; 228 229 ubifs_assert(c, rino->deletion); 230 ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY); 231 232 /* 233 * Find the most recent entry for the inode behind @rino and check 234 * whether it is a deletion. 235 */ 236 list_for_each_entry_reverse(r, &c->replay_list, list) { 237 ubifs_assert(c, r->sqnum >= rino->sqnum); 238 if (key_inum(c, &r->key) == key_inum(c, &rino->key)) 239 return r->deletion == 0; 240 241 } 242 243 ubifs_assert(c, 0); 244 return false; 245 } 246 247 /** 248 * apply_replay_entry - apply a replay entry to the TNC. 249 * @c: UBIFS file-system description object 250 * @r: replay entry to apply 251 * 252 * Apply a replay entry to the TNC. 253 */ 254 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 255 { 256 int err; 257 258 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", 259 r->lnum, r->offs, r->len, r->deletion, r->sqnum); 260 261 if (is_hash_key(c, &r->key)) { 262 if (r->deletion) 263 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 264 else 265 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 266 r->len, r->hash, &r->nm); 267 } else { 268 if (r->deletion) 269 switch (key_type(c, &r->key)) { 270 case UBIFS_INO_KEY: 271 { 272 ino_t inum = key_inum(c, &r->key); 273 274 if (inode_still_linked(c, r)) { 275 err = 0; 276 break; 277 } 278 279 err = ubifs_tnc_remove_ino(c, inum); 280 break; 281 } 282 case UBIFS_TRUN_KEY: 283 err = trun_remove_range(c, r); 284 break; 285 default: 286 err = ubifs_tnc_remove(c, &r->key); 287 break; 288 } 289 else 290 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 291 r->len, r->hash); 292 if (err) 293 return err; 294 295 if (c->need_recovery) 296 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 297 r->new_size); 298 } 299 300 return err; 301 } 302 303 /** 304 * replay_entries_cmp - compare 2 replay entries. 305 * @priv: UBIFS file-system description object 306 * @a: first replay entry 307 * @b: second replay entry 308 * 309 * This is a comparios function for 'list_sort()' which compares 2 replay 310 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 311 * greater sequence number and %-1 otherwise. 312 */ 313 static int replay_entries_cmp(void *priv, struct list_head *a, 314 struct list_head *b) 315 { 316 struct ubifs_info *c = priv; 317 struct replay_entry *ra, *rb; 318 319 cond_resched(); 320 if (a == b) 321 return 0; 322 323 ra = list_entry(a, struct replay_entry, list); 324 rb = list_entry(b, struct replay_entry, list); 325 ubifs_assert(c, ra->sqnum != rb->sqnum); 326 if (ra->sqnum > rb->sqnum) 327 return 1; 328 return -1; 329 } 330 331 /** 332 * apply_replay_list - apply the replay list to the TNC. 333 * @c: UBIFS file-system description object 334 * 335 * Apply all entries in the replay list to the TNC. Returns zero in case of 336 * success and a negative error code in case of failure. 337 */ 338 static int apply_replay_list(struct ubifs_info *c) 339 { 340 struct replay_entry *r; 341 int err; 342 343 list_sort(c, &c->replay_list, &replay_entries_cmp); 344 345 list_for_each_entry(r, &c->replay_list, list) { 346 cond_resched(); 347 348 err = apply_replay_entry(c, r); 349 if (err) 350 return err; 351 } 352 353 return 0; 354 } 355 356 /** 357 * destroy_replay_list - destroy the replay. 358 * @c: UBIFS file-system description object 359 * 360 * Destroy the replay list. 361 */ 362 static void destroy_replay_list(struct ubifs_info *c) 363 { 364 struct replay_entry *r, *tmp; 365 366 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 367 if (is_hash_key(c, &r->key)) 368 kfree(fname_name(&r->nm)); 369 list_del(&r->list); 370 kfree(r); 371 } 372 } 373 374 /** 375 * insert_node - insert a node to the replay list 376 * @c: UBIFS file-system description object 377 * @lnum: node logical eraseblock number 378 * @offs: node offset 379 * @len: node length 380 * @key: node key 381 * @sqnum: sequence number 382 * @deletion: non-zero if this is a deletion 383 * @used: number of bytes in use in a LEB 384 * @old_size: truncation old size 385 * @new_size: truncation new size 386 * 387 * This function inserts a scanned non-direntry node to the replay list. The 388 * replay list contains @struct replay_entry elements, and we sort this list in 389 * sequence number order before applying it. The replay list is applied at the 390 * very end of the replay process. Since the list is sorted in sequence number 391 * order, the older modifications are applied first. This function returns zero 392 * in case of success and a negative error code in case of failure. 393 */ 394 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 395 const u8 *hash, union ubifs_key *key, 396 unsigned long long sqnum, int deletion, int *used, 397 loff_t old_size, loff_t new_size) 398 { 399 struct replay_entry *r; 400 401 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 402 403 if (key_inum(c, key) >= c->highest_inum) 404 c->highest_inum = key_inum(c, key); 405 406 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 407 if (!r) 408 return -ENOMEM; 409 410 if (!deletion) 411 *used += ALIGN(len, 8); 412 r->lnum = lnum; 413 r->offs = offs; 414 r->len = len; 415 ubifs_copy_hash(c, hash, r->hash); 416 r->deletion = !!deletion; 417 r->sqnum = sqnum; 418 key_copy(c, key, &r->key); 419 r->old_size = old_size; 420 r->new_size = new_size; 421 422 list_add_tail(&r->list, &c->replay_list); 423 return 0; 424 } 425 426 /** 427 * insert_dent - insert a directory entry node into the replay list. 428 * @c: UBIFS file-system description object 429 * @lnum: node logical eraseblock number 430 * @offs: node offset 431 * @len: node length 432 * @key: node key 433 * @name: directory entry name 434 * @nlen: directory entry name length 435 * @sqnum: sequence number 436 * @deletion: non-zero if this is a deletion 437 * @used: number of bytes in use in a LEB 438 * 439 * This function inserts a scanned directory entry node or an extended 440 * attribute entry to the replay list. Returns zero in case of success and a 441 * negative error code in case of failure. 442 */ 443 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 444 const u8 *hash, union ubifs_key *key, 445 const char *name, int nlen, unsigned long long sqnum, 446 int deletion, int *used) 447 { 448 struct replay_entry *r; 449 char *nbuf; 450 451 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 452 if (key_inum(c, key) >= c->highest_inum) 453 c->highest_inum = key_inum(c, key); 454 455 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 456 if (!r) 457 return -ENOMEM; 458 459 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 460 if (!nbuf) { 461 kfree(r); 462 return -ENOMEM; 463 } 464 465 if (!deletion) 466 *used += ALIGN(len, 8); 467 r->lnum = lnum; 468 r->offs = offs; 469 r->len = len; 470 ubifs_copy_hash(c, hash, r->hash); 471 r->deletion = !!deletion; 472 r->sqnum = sqnum; 473 key_copy(c, key, &r->key); 474 fname_len(&r->nm) = nlen; 475 memcpy(nbuf, name, nlen); 476 nbuf[nlen] = '\0'; 477 fname_name(&r->nm) = nbuf; 478 479 list_add_tail(&r->list, &c->replay_list); 480 return 0; 481 } 482 483 /** 484 * ubifs_validate_entry - validate directory or extended attribute entry node. 485 * @c: UBIFS file-system description object 486 * @dent: the node to validate 487 * 488 * This function validates directory or extended attribute entry node @dent. 489 * Returns zero if the node is all right and a %-EINVAL if not. 490 */ 491 int ubifs_validate_entry(struct ubifs_info *c, 492 const struct ubifs_dent_node *dent) 493 { 494 int key_type = key_type_flash(c, dent->key); 495 int nlen = le16_to_cpu(dent->nlen); 496 497 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 498 dent->type >= UBIFS_ITYPES_CNT || 499 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 500 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) || 501 le64_to_cpu(dent->inum) > MAX_INUM) { 502 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ? 503 "directory entry" : "extended attribute entry"); 504 return -EINVAL; 505 } 506 507 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 508 ubifs_err(c, "bad key type %d", key_type); 509 return -EINVAL; 510 } 511 512 return 0; 513 } 514 515 /** 516 * is_last_bud - check if the bud is the last in the journal head. 517 * @c: UBIFS file-system description object 518 * @bud: bud description object 519 * 520 * This function checks if bud @bud is the last bud in its journal head. This 521 * information is then used by 'replay_bud()' to decide whether the bud can 522 * have corruptions or not. Indeed, only last buds can be corrupted by power 523 * cuts. Returns %1 if this is the last bud, and %0 if not. 524 */ 525 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 526 { 527 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 528 struct ubifs_bud *next; 529 uint32_t data; 530 int err; 531 532 if (list_is_last(&bud->list, &jh->buds_list)) 533 return 1; 534 535 /* 536 * The following is a quirk to make sure we work correctly with UBIFS 537 * images used with older UBIFS. 538 * 539 * Normally, the last bud will be the last in the journal head's list 540 * of bud. However, there is one exception if the UBIFS image belongs 541 * to older UBIFS. This is fairly unlikely: one would need to use old 542 * UBIFS, then have a power cut exactly at the right point, and then 543 * try to mount this image with new UBIFS. 544 * 545 * The exception is: it is possible to have 2 buds A and B, A goes 546 * before B, and B is the last, bud B is contains no data, and bud A is 547 * corrupted at the end. The reason is that in older versions when the 548 * journal code switched the next bud (from A to B), it first added a 549 * log reference node for the new bud (B), and only after this it 550 * synchronized the write-buffer of current bud (A). But later this was 551 * changed and UBIFS started to always synchronize the write-buffer of 552 * the bud (A) before writing the log reference for the new bud (B). 553 * 554 * But because older UBIFS always synchronized A's write-buffer before 555 * writing to B, we can recognize this exceptional situation but 556 * checking the contents of bud B - if it is empty, then A can be 557 * treated as the last and we can recover it. 558 * 559 * TODO: remove this piece of code in a couple of years (today it is 560 * 16.05.2011). 561 */ 562 next = list_entry(bud->list.next, struct ubifs_bud, list); 563 if (!list_is_last(&next->list, &jh->buds_list)) 564 return 0; 565 566 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); 567 if (err) 568 return 0; 569 570 return data == 0xFFFFFFFF; 571 } 572 573 /* authenticate_sleb_hash and authenticate_sleb_hmac are split out for stack usage */ 574 static int authenticate_sleb_hash(struct ubifs_info *c, struct shash_desc *log_hash, u8 *hash) 575 { 576 SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm); 577 578 hash_desc->tfm = c->hash_tfm; 579 hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 580 581 ubifs_shash_copy_state(c, log_hash, hash_desc); 582 return crypto_shash_final(hash_desc, hash); 583 } 584 585 static int authenticate_sleb_hmac(struct ubifs_info *c, u8 *hash, u8 *hmac) 586 { 587 SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm); 588 589 hmac_desc->tfm = c->hmac_tfm; 590 hmac_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 591 592 return crypto_shash_digest(hmac_desc, hash, c->hash_len, hmac); 593 } 594 595 /** 596 * authenticate_sleb - authenticate one scan LEB 597 * @c: UBIFS file-system description object 598 * @sleb: the scan LEB to authenticate 599 * @log_hash: 600 * @is_last: if true, this is is the last LEB 601 * 602 * This function iterates over the buds of a single LEB authenticating all buds 603 * with the authentication nodes on this LEB. Authentication nodes are written 604 * after some buds and contain a HMAC covering the authentication node itself 605 * and the buds between the last authentication node and the current 606 * authentication node. It can happen that the last buds cannot be authenticated 607 * because a powercut happened when some nodes were written but not the 608 * corresponding authentication node. This function returns the number of nodes 609 * that could be authenticated or a negative error code. 610 */ 611 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 612 struct shash_desc *log_hash, int is_last) 613 { 614 int n_not_auth = 0; 615 struct ubifs_scan_node *snod; 616 int n_nodes = 0; 617 int err; 618 u8 *hash, *hmac; 619 620 if (!ubifs_authenticated(c)) 621 return sleb->nodes_cnt; 622 623 hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS); 624 hmac = kmalloc(c->hmac_desc_len, GFP_NOFS); 625 if (!hash || !hmac) { 626 err = -ENOMEM; 627 goto out; 628 } 629 630 list_for_each_entry(snod, &sleb->nodes, list) { 631 632 n_nodes++; 633 634 if (snod->type == UBIFS_AUTH_NODE) { 635 struct ubifs_auth_node *auth = snod->node; 636 637 err = authenticate_sleb_hash(c, log_hash, hash); 638 if (err) 639 goto out; 640 641 err = authenticate_sleb_hmac(c, hash, hmac); 642 if (err) 643 goto out; 644 645 err = ubifs_check_hmac(c, auth->hmac, hmac); 646 if (err) { 647 err = -EPERM; 648 goto out; 649 } 650 n_not_auth = 0; 651 } else { 652 err = crypto_shash_update(log_hash, snod->node, 653 snod->len); 654 if (err) 655 goto out; 656 n_not_auth++; 657 } 658 } 659 660 /* 661 * A powercut can happen when some nodes were written, but not yet 662 * the corresponding authentication node. This may only happen on 663 * the last bud though. 664 */ 665 if (n_not_auth) { 666 if (is_last) { 667 dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them", 668 n_not_auth, sleb->lnum); 669 err = 0; 670 } else { 671 dbg_mnt("%d unauthenticated nodes found on non-last LEB %d", 672 n_not_auth, sleb->lnum); 673 err = -EPERM; 674 } 675 } else { 676 err = 0; 677 } 678 out: 679 kfree(hash); 680 kfree(hmac); 681 682 return err ? err : n_nodes - n_not_auth; 683 } 684 685 /** 686 * replay_bud - replay a bud logical eraseblock. 687 * @c: UBIFS file-system description object 688 * @b: bud entry which describes the bud 689 * 690 * This function replays bud @bud, recovers it if needed, and adds all nodes 691 * from this bud to the replay list. Returns zero in case of success and a 692 * negative error code in case of failure. 693 */ 694 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 695 { 696 int is_last = is_last_bud(c, b->bud); 697 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 698 int n_nodes, n = 0; 699 struct ubifs_scan_leb *sleb; 700 struct ubifs_scan_node *snod; 701 702 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 703 lnum, b->bud->jhead, offs, is_last); 704 705 if (c->need_recovery && is_last) 706 /* 707 * Recover only last LEBs in the journal heads, because power 708 * cuts may cause corruptions only in these LEBs, because only 709 * these LEBs could possibly be written to at the power cut 710 * time. 711 */ 712 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 713 else 714 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 715 if (IS_ERR(sleb)) 716 return PTR_ERR(sleb); 717 718 n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last); 719 if (n_nodes < 0) { 720 err = n_nodes; 721 goto out; 722 } 723 724 ubifs_shash_copy_state(c, b->bud->log_hash, 725 c->jheads[b->bud->jhead].log_hash); 726 727 /* 728 * The bud does not have to start from offset zero - the beginning of 729 * the 'lnum' LEB may contain previously committed data. One of the 730 * things we have to do in replay is to correctly update lprops with 731 * newer information about this LEB. 732 * 733 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 734 * bytes of free space because it only contain information about 735 * committed data. 736 * 737 * But we know that real amount of free space is 'c->leb_size - 738 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 739 * 'sleb->endpt' is used by bud data. We have to correctly calculate 740 * how much of these data are dirty and update lprops with this 741 * information. 742 * 743 * The dirt in that LEB region is comprised of padding nodes, deletion 744 * nodes, truncation nodes and nodes which are obsoleted by subsequent 745 * nodes in this LEB. So instead of calculating clean space, we 746 * calculate used space ('used' variable). 747 */ 748 749 list_for_each_entry(snod, &sleb->nodes, list) { 750 u8 hash[UBIFS_HASH_ARR_SZ]; 751 int deletion = 0; 752 753 cond_resched(); 754 755 if (snod->sqnum >= SQNUM_WATERMARK) { 756 ubifs_err(c, "file system's life ended"); 757 goto out_dump; 758 } 759 760 ubifs_node_calc_hash(c, snod->node, hash); 761 762 if (snod->sqnum > c->max_sqnum) 763 c->max_sqnum = snod->sqnum; 764 765 switch (snod->type) { 766 case UBIFS_INO_NODE: 767 { 768 struct ubifs_ino_node *ino = snod->node; 769 loff_t new_size = le64_to_cpu(ino->size); 770 771 if (le32_to_cpu(ino->nlink) == 0) 772 deletion = 1; 773 err = insert_node(c, lnum, snod->offs, snod->len, hash, 774 &snod->key, snod->sqnum, deletion, 775 &used, 0, new_size); 776 break; 777 } 778 case UBIFS_DATA_NODE: 779 { 780 struct ubifs_data_node *dn = snod->node; 781 loff_t new_size = le32_to_cpu(dn->size) + 782 key_block(c, &snod->key) * 783 UBIFS_BLOCK_SIZE; 784 785 err = insert_node(c, lnum, snod->offs, snod->len, hash, 786 &snod->key, snod->sqnum, deletion, 787 &used, 0, new_size); 788 break; 789 } 790 case UBIFS_DENT_NODE: 791 case UBIFS_XENT_NODE: 792 { 793 struct ubifs_dent_node *dent = snod->node; 794 795 err = ubifs_validate_entry(c, dent); 796 if (err) 797 goto out_dump; 798 799 err = insert_dent(c, lnum, snod->offs, snod->len, hash, 800 &snod->key, dent->name, 801 le16_to_cpu(dent->nlen), snod->sqnum, 802 !le64_to_cpu(dent->inum), &used); 803 break; 804 } 805 case UBIFS_TRUN_NODE: 806 { 807 struct ubifs_trun_node *trun = snod->node; 808 loff_t old_size = le64_to_cpu(trun->old_size); 809 loff_t new_size = le64_to_cpu(trun->new_size); 810 union ubifs_key key; 811 812 /* Validate truncation node */ 813 if (old_size < 0 || old_size > c->max_inode_sz || 814 new_size < 0 || new_size > c->max_inode_sz || 815 old_size <= new_size) { 816 ubifs_err(c, "bad truncation node"); 817 goto out_dump; 818 } 819 820 /* 821 * Create a fake truncation key just to use the same 822 * functions which expect nodes to have keys. 823 */ 824 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 825 err = insert_node(c, lnum, snod->offs, snod->len, hash, 826 &key, snod->sqnum, 1, &used, 827 old_size, new_size); 828 break; 829 } 830 case UBIFS_AUTH_NODE: 831 break; 832 default: 833 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d", 834 snod->type, lnum, snod->offs); 835 err = -EINVAL; 836 goto out_dump; 837 } 838 if (err) 839 goto out; 840 841 n++; 842 if (n == n_nodes) 843 break; 844 } 845 846 ubifs_assert(c, ubifs_search_bud(c, lnum)); 847 ubifs_assert(c, sleb->endpt - offs >= used); 848 ubifs_assert(c, sleb->endpt % c->min_io_size == 0); 849 850 b->dirty = sleb->endpt - offs - used; 851 b->free = c->leb_size - sleb->endpt; 852 dbg_mnt("bud LEB %d replied: dirty %d, free %d", 853 lnum, b->dirty, b->free); 854 855 out: 856 ubifs_scan_destroy(sleb); 857 return err; 858 859 out_dump: 860 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs); 861 ubifs_dump_node(c, snod->node); 862 ubifs_scan_destroy(sleb); 863 return -EINVAL; 864 } 865 866 /** 867 * replay_buds - replay all buds. 868 * @c: UBIFS file-system description object 869 * 870 * This function returns zero in case of success and a negative error code in 871 * case of failure. 872 */ 873 static int replay_buds(struct ubifs_info *c) 874 { 875 struct bud_entry *b; 876 int err; 877 unsigned long long prev_sqnum = 0; 878 879 list_for_each_entry(b, &c->replay_buds, list) { 880 err = replay_bud(c, b); 881 if (err) 882 return err; 883 884 ubifs_assert(c, b->sqnum > prev_sqnum); 885 prev_sqnum = b->sqnum; 886 } 887 888 return 0; 889 } 890 891 /** 892 * destroy_bud_list - destroy the list of buds to replay. 893 * @c: UBIFS file-system description object 894 */ 895 static void destroy_bud_list(struct ubifs_info *c) 896 { 897 struct bud_entry *b; 898 899 while (!list_empty(&c->replay_buds)) { 900 b = list_entry(c->replay_buds.next, struct bud_entry, list); 901 list_del(&b->list); 902 kfree(b); 903 } 904 } 905 906 /** 907 * add_replay_bud - add a bud to the list of buds to replay. 908 * @c: UBIFS file-system description object 909 * @lnum: bud logical eraseblock number to replay 910 * @offs: bud start offset 911 * @jhead: journal head to which this bud belongs 912 * @sqnum: reference node sequence number 913 * 914 * This function returns zero in case of success and a negative error code in 915 * case of failure. 916 */ 917 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 918 unsigned long long sqnum) 919 { 920 struct ubifs_bud *bud; 921 struct bud_entry *b; 922 int err; 923 924 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 925 926 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 927 if (!bud) 928 return -ENOMEM; 929 930 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 931 if (!b) { 932 err = -ENOMEM; 933 goto out; 934 } 935 936 bud->lnum = lnum; 937 bud->start = offs; 938 bud->jhead = jhead; 939 bud->log_hash = ubifs_hash_get_desc(c); 940 if (IS_ERR(bud->log_hash)) { 941 err = PTR_ERR(bud->log_hash); 942 goto out; 943 } 944 945 ubifs_shash_copy_state(c, c->log_hash, bud->log_hash); 946 947 ubifs_add_bud(c, bud); 948 949 b->bud = bud; 950 b->sqnum = sqnum; 951 list_add_tail(&b->list, &c->replay_buds); 952 953 return 0; 954 out: 955 kfree(bud); 956 kfree(b); 957 958 return err; 959 } 960 961 /** 962 * validate_ref - validate a reference node. 963 * @c: UBIFS file-system description object 964 * @ref: the reference node to validate 965 * @ref_lnum: LEB number of the reference node 966 * @ref_offs: reference node offset 967 * 968 * This function returns %1 if a bud reference already exists for the LEB. %0 is 969 * returned if the reference node is new, otherwise %-EINVAL is returned if 970 * validation failed. 971 */ 972 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 973 { 974 struct ubifs_bud *bud; 975 int lnum = le32_to_cpu(ref->lnum); 976 unsigned int offs = le32_to_cpu(ref->offs); 977 unsigned int jhead = le32_to_cpu(ref->jhead); 978 979 /* 980 * ref->offs may point to the end of LEB when the journal head points 981 * to the end of LEB and we write reference node for it during commit. 982 * So this is why we require 'offs > c->leb_size'. 983 */ 984 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 985 lnum < c->main_first || offs > c->leb_size || 986 offs & (c->min_io_size - 1)) 987 return -EINVAL; 988 989 /* Make sure we have not already looked at this bud */ 990 bud = ubifs_search_bud(c, lnum); 991 if (bud) { 992 if (bud->jhead == jhead && bud->start <= offs) 993 return 1; 994 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs); 995 return -EINVAL; 996 } 997 998 return 0; 999 } 1000 1001 /** 1002 * replay_log_leb - replay a log logical eraseblock. 1003 * @c: UBIFS file-system description object 1004 * @lnum: log logical eraseblock to replay 1005 * @offs: offset to start replaying from 1006 * @sbuf: scan buffer 1007 * 1008 * This function replays a log LEB and returns zero in case of success, %1 if 1009 * this is the last LEB in the log, and a negative error code in case of 1010 * failure. 1011 */ 1012 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 1013 { 1014 int err; 1015 struct ubifs_scan_leb *sleb; 1016 struct ubifs_scan_node *snod; 1017 const struct ubifs_cs_node *node; 1018 1019 dbg_mnt("replay log LEB %d:%d", lnum, offs); 1020 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 1021 if (IS_ERR(sleb)) { 1022 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 1023 return PTR_ERR(sleb); 1024 /* 1025 * Note, the below function will recover this log LEB only if 1026 * it is the last, because unclean reboots can possibly corrupt 1027 * only the tail of the log. 1028 */ 1029 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 1030 if (IS_ERR(sleb)) 1031 return PTR_ERR(sleb); 1032 } 1033 1034 if (sleb->nodes_cnt == 0) { 1035 err = 1; 1036 goto out; 1037 } 1038 1039 node = sleb->buf; 1040 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 1041 if (c->cs_sqnum == 0) { 1042 /* 1043 * This is the first log LEB we are looking at, make sure that 1044 * the first node is a commit start node. Also record its 1045 * sequence number so that UBIFS can determine where the log 1046 * ends, because all nodes which were have higher sequence 1047 * numbers. 1048 */ 1049 if (snod->type != UBIFS_CS_NODE) { 1050 ubifs_err(c, "first log node at LEB %d:%d is not CS node", 1051 lnum, offs); 1052 goto out_dump; 1053 } 1054 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 1055 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu", 1056 lnum, offs, 1057 (unsigned long long)le64_to_cpu(node->cmt_no), 1058 c->cmt_no); 1059 goto out_dump; 1060 } 1061 1062 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 1063 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 1064 1065 err = ubifs_shash_init(c, c->log_hash); 1066 if (err) 1067 goto out; 1068 1069 err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ); 1070 if (err < 0) 1071 goto out; 1072 } 1073 1074 if (snod->sqnum < c->cs_sqnum) { 1075 /* 1076 * This means that we reached end of log and now 1077 * look to the older log data, which was already 1078 * committed but the eraseblock was not erased (UBIFS 1079 * only un-maps it). So this basically means we have to 1080 * exit with "end of log" code. 1081 */ 1082 err = 1; 1083 goto out; 1084 } 1085 1086 /* Make sure the first node sits at offset zero of the LEB */ 1087 if (snod->offs != 0) { 1088 ubifs_err(c, "first node is not at zero offset"); 1089 goto out_dump; 1090 } 1091 1092 list_for_each_entry(snod, &sleb->nodes, list) { 1093 cond_resched(); 1094 1095 if (snod->sqnum >= SQNUM_WATERMARK) { 1096 ubifs_err(c, "file system's life ended"); 1097 goto out_dump; 1098 } 1099 1100 if (snod->sqnum < c->cs_sqnum) { 1101 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu", 1102 snod->sqnum, c->cs_sqnum); 1103 goto out_dump; 1104 } 1105 1106 if (snod->sqnum > c->max_sqnum) 1107 c->max_sqnum = snod->sqnum; 1108 1109 switch (snod->type) { 1110 case UBIFS_REF_NODE: { 1111 const struct ubifs_ref_node *ref = snod->node; 1112 1113 err = validate_ref(c, ref); 1114 if (err == 1) 1115 break; /* Already have this bud */ 1116 if (err) 1117 goto out_dump; 1118 1119 err = ubifs_shash_update(c, c->log_hash, ref, 1120 UBIFS_REF_NODE_SZ); 1121 if (err) 1122 goto out; 1123 1124 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 1125 le32_to_cpu(ref->offs), 1126 le32_to_cpu(ref->jhead), 1127 snod->sqnum); 1128 if (err) 1129 goto out; 1130 1131 break; 1132 } 1133 case UBIFS_CS_NODE: 1134 /* Make sure it sits at the beginning of LEB */ 1135 if (snod->offs != 0) { 1136 ubifs_err(c, "unexpected node in log"); 1137 goto out_dump; 1138 } 1139 break; 1140 default: 1141 ubifs_err(c, "unexpected node in log"); 1142 goto out_dump; 1143 } 1144 } 1145 1146 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 1147 c->lhead_lnum = lnum; 1148 c->lhead_offs = sleb->endpt; 1149 } 1150 1151 err = !sleb->endpt; 1152 out: 1153 ubifs_scan_destroy(sleb); 1154 return err; 1155 1156 out_dump: 1157 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d", 1158 lnum, offs + snod->offs); 1159 ubifs_dump_node(c, snod->node); 1160 ubifs_scan_destroy(sleb); 1161 return -EINVAL; 1162 } 1163 1164 /** 1165 * take_ihead - update the status of the index head in lprops to 'taken'. 1166 * @c: UBIFS file-system description object 1167 * 1168 * This function returns the amount of free space in the index head LEB or a 1169 * negative error code. 1170 */ 1171 static int take_ihead(struct ubifs_info *c) 1172 { 1173 const struct ubifs_lprops *lp; 1174 int err, free; 1175 1176 ubifs_get_lprops(c); 1177 1178 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 1179 if (IS_ERR(lp)) { 1180 err = PTR_ERR(lp); 1181 goto out; 1182 } 1183 1184 free = lp->free; 1185 1186 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 1187 lp->flags | LPROPS_TAKEN, 0); 1188 if (IS_ERR(lp)) { 1189 err = PTR_ERR(lp); 1190 goto out; 1191 } 1192 1193 err = free; 1194 out: 1195 ubifs_release_lprops(c); 1196 return err; 1197 } 1198 1199 /** 1200 * ubifs_replay_journal - replay journal. 1201 * @c: UBIFS file-system description object 1202 * 1203 * This function scans the journal, replays and cleans it up. It makes sure all 1204 * memory data structures related to uncommitted journal are built (dirty TNC 1205 * tree, tree of buds, modified lprops, etc). 1206 */ 1207 int ubifs_replay_journal(struct ubifs_info *c) 1208 { 1209 int err, lnum, free; 1210 1211 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1212 1213 /* Update the status of the index head in lprops to 'taken' */ 1214 free = take_ihead(c); 1215 if (free < 0) 1216 return free; /* Error code */ 1217 1218 if (c->ihead_offs != c->leb_size - free) { 1219 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum, 1220 c->ihead_offs); 1221 return -EINVAL; 1222 } 1223 1224 dbg_mnt("start replaying the journal"); 1225 c->replaying = 1; 1226 lnum = c->ltail_lnum = c->lhead_lnum; 1227 1228 do { 1229 err = replay_log_leb(c, lnum, 0, c->sbuf); 1230 if (err == 1) { 1231 if (lnum != c->lhead_lnum) 1232 /* We hit the end of the log */ 1233 break; 1234 1235 /* 1236 * The head of the log must always start with the 1237 * "commit start" node on a properly formatted UBIFS. 1238 * But we found no nodes at all, which means that 1239 * something went wrong and we cannot proceed mounting 1240 * the file-system. 1241 */ 1242 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted", 1243 lnum, 0); 1244 err = -EINVAL; 1245 } 1246 if (err) 1247 goto out; 1248 lnum = ubifs_next_log_lnum(c, lnum); 1249 } while (lnum != c->ltail_lnum); 1250 1251 err = replay_buds(c); 1252 if (err) 1253 goto out; 1254 1255 err = apply_replay_list(c); 1256 if (err) 1257 goto out; 1258 1259 err = set_buds_lprops(c); 1260 if (err) 1261 goto out; 1262 1263 /* 1264 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1265 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1266 * depend on it. This means we have to initialize it to make sure 1267 * budgeting works properly. 1268 */ 1269 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1270 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1271 1272 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1273 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", 1274 c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1275 (unsigned long)c->highest_inum); 1276 out: 1277 destroy_replay_list(c); 1278 destroy_bud_list(c); 1279 c->replaying = 0; 1280 return err; 1281 } 1282