1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file contains journal replay code. It runs when the file-system is being 25 * mounted and requires no locking. 26 * 27 * The larger is the journal, the longer it takes to scan it, so the longer it 28 * takes to mount UBIFS. This is why the journal has limited size which may be 29 * changed depending on the system requirements. But a larger journal gives 30 * faster I/O speed because it writes the index less frequently. So this is a 31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 32 * larger is the journal, the more memory its index may consume. 33 */ 34 35 #include "ubifs.h" 36 #include <linux/list_sort.h> 37 38 /** 39 * struct replay_entry - replay list entry. 40 * @lnum: logical eraseblock number of the node 41 * @offs: node offset 42 * @len: node length 43 * @deletion: non-zero if this entry corresponds to a node deletion 44 * @sqnum: node sequence number 45 * @list: links the replay list 46 * @key: node key 47 * @nm: directory entry name 48 * @old_size: truncation old size 49 * @new_size: truncation new size 50 * 51 * The replay process first scans all buds and builds the replay list, then 52 * sorts the replay list in nodes sequence number order, and then inserts all 53 * the replay entries to the TNC. 54 */ 55 struct replay_entry { 56 int lnum; 57 int offs; 58 int len; 59 unsigned int deletion:1; 60 unsigned long long sqnum; 61 struct list_head list; 62 union ubifs_key key; 63 union { 64 struct qstr nm; 65 struct { 66 loff_t old_size; 67 loff_t new_size; 68 }; 69 }; 70 }; 71 72 /** 73 * struct bud_entry - entry in the list of buds to replay. 74 * @list: next bud in the list 75 * @bud: bud description object 76 * @sqnum: reference node sequence number 77 * @free: free bytes in the bud 78 * @dirty: dirty bytes in the bud 79 */ 80 struct bud_entry { 81 struct list_head list; 82 struct ubifs_bud *bud; 83 unsigned long long sqnum; 84 int free; 85 int dirty; 86 }; 87 88 /** 89 * set_bud_lprops - set free and dirty space used by a bud. 90 * @c: UBIFS file-system description object 91 * @b: bud entry which describes the bud 92 * 93 * This function makes sure the LEB properties of bud @b are set correctly 94 * after the replay. Returns zero in case of success and a negative error code 95 * in case of failure. 96 */ 97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 98 { 99 const struct ubifs_lprops *lp; 100 int err = 0, dirty; 101 102 ubifs_get_lprops(c); 103 104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 105 if (IS_ERR(lp)) { 106 err = PTR_ERR(lp); 107 goto out; 108 } 109 110 dirty = lp->dirty; 111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 112 /* 113 * The LEB was added to the journal with a starting offset of 114 * zero which means the LEB must have been empty. The LEB 115 * property values should be @lp->free == @c->leb_size and 116 * @lp->dirty == 0, but that is not the case. The reason is that 117 * the LEB had been garbage collected before it became the bud, 118 * and there was not commit inbetween. The garbage collector 119 * resets the free and dirty space without recording it 120 * anywhere except lprops, so if there was no commit then 121 * lprops does not have that information. 122 * 123 * We do not need to adjust free space because the scan has told 124 * us the exact value which is recorded in the replay entry as 125 * @b->free. 126 * 127 * However we do need to subtract from the dirty space the 128 * amount of space that the garbage collector reclaimed, which 129 * is the whole LEB minus the amount of space that was free. 130 */ 131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 132 lp->free, lp->dirty); 133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 134 lp->free, lp->dirty); 135 dirty -= c->leb_size - lp->free; 136 /* 137 * If the replay order was perfect the dirty space would now be 138 * zero. The order is not perfect because the journal heads 139 * race with each other. This is not a problem but is does mean 140 * that the dirty space may temporarily exceed c->leb_size 141 * during the replay. 142 */ 143 if (dirty != 0) 144 dbg_msg("LEB %d lp: %d free %d dirty " 145 "replay: %d free %d dirty", b->bud->lnum, 146 lp->free, lp->dirty, b->free, b->dirty); 147 } 148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 149 lp->flags | LPROPS_TAKEN, 0); 150 if (IS_ERR(lp)) { 151 err = PTR_ERR(lp); 152 goto out; 153 } 154 155 /* Make sure the journal head points to the latest bud */ 156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 157 b->bud->lnum, c->leb_size - b->free, 158 UBI_SHORTTERM); 159 160 out: 161 ubifs_release_lprops(c); 162 return err; 163 } 164 165 /** 166 * set_buds_lprops - set free and dirty space for all replayed buds. 167 * @c: UBIFS file-system description object 168 * 169 * This function sets LEB properties for all replayed buds. Returns zero in 170 * case of success and a negative error code in case of failure. 171 */ 172 static int set_buds_lprops(struct ubifs_info *c) 173 { 174 struct bud_entry *b; 175 int err; 176 177 list_for_each_entry(b, &c->replay_buds, list) { 178 err = set_bud_lprops(c, b); 179 if (err) 180 return err; 181 } 182 183 return 0; 184 } 185 186 /** 187 * trun_remove_range - apply a replay entry for a truncation to the TNC. 188 * @c: UBIFS file-system description object 189 * @r: replay entry of truncation 190 */ 191 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 192 { 193 unsigned min_blk, max_blk; 194 union ubifs_key min_key, max_key; 195 ino_t ino; 196 197 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 198 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 199 min_blk += 1; 200 201 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 202 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 203 max_blk -= 1; 204 205 ino = key_inum(c, &r->key); 206 207 data_key_init(c, &min_key, ino, min_blk); 208 data_key_init(c, &max_key, ino, max_blk); 209 210 return ubifs_tnc_remove_range(c, &min_key, &max_key); 211 } 212 213 /** 214 * apply_replay_entry - apply a replay entry to the TNC. 215 * @c: UBIFS file-system description object 216 * @r: replay entry to apply 217 * 218 * Apply a replay entry to the TNC. 219 */ 220 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 221 { 222 int err; 223 224 dbg_mnt("LEB %d:%d len %d deletion %d sqnum %llu %s", r->lnum, 225 r->offs, r->len, r->deletion, r->sqnum, DBGKEY(&r->key)); 226 227 /* Set c->replay_sqnum to help deal with dangling branches. */ 228 c->replay_sqnum = r->sqnum; 229 230 if (is_hash_key(c, &r->key)) { 231 if (r->deletion) 232 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 233 else 234 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 235 r->len, &r->nm); 236 } else { 237 if (r->deletion) 238 switch (key_type(c, &r->key)) { 239 case UBIFS_INO_KEY: 240 { 241 ino_t inum = key_inum(c, &r->key); 242 243 err = ubifs_tnc_remove_ino(c, inum); 244 break; 245 } 246 case UBIFS_TRUN_KEY: 247 err = trun_remove_range(c, r); 248 break; 249 default: 250 err = ubifs_tnc_remove(c, &r->key); 251 break; 252 } 253 else 254 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 255 r->len); 256 if (err) 257 return err; 258 259 if (c->need_recovery) 260 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 261 r->new_size); 262 } 263 264 return err; 265 } 266 267 /** 268 * replay_entries_cmp - compare 2 replay entries. 269 * @priv: UBIFS file-system description object 270 * @a: first replay entry 271 * @a: second replay entry 272 * 273 * This is a comparios function for 'list_sort()' which compares 2 replay 274 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 275 * greater sequence number and %-1 otherwise. 276 */ 277 static int replay_entries_cmp(void *priv, struct list_head *a, 278 struct list_head *b) 279 { 280 struct replay_entry *ra, *rb; 281 282 cond_resched(); 283 if (a == b) 284 return 0; 285 286 ra = list_entry(a, struct replay_entry, list); 287 rb = list_entry(b, struct replay_entry, list); 288 ubifs_assert(ra->sqnum != rb->sqnum); 289 if (ra->sqnum > rb->sqnum) 290 return 1; 291 return -1; 292 } 293 294 /** 295 * apply_replay_list - apply the replay list to the TNC. 296 * @c: UBIFS file-system description object 297 * 298 * Apply all entries in the replay list to the TNC. Returns zero in case of 299 * success and a negative error code in case of failure. 300 */ 301 static int apply_replay_list(struct ubifs_info *c) 302 { 303 struct replay_entry *r; 304 int err; 305 306 list_sort(c, &c->replay_list, &replay_entries_cmp); 307 308 list_for_each_entry(r, &c->replay_list, list) { 309 cond_resched(); 310 311 err = apply_replay_entry(c, r); 312 if (err) 313 return err; 314 } 315 316 return 0; 317 } 318 319 /** 320 * destroy_replay_list - destroy the replay. 321 * @c: UBIFS file-system description object 322 * 323 * Destroy the replay list. 324 */ 325 static void destroy_replay_list(struct ubifs_info *c) 326 { 327 struct replay_entry *r, *tmp; 328 329 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 330 if (is_hash_key(c, &r->key)) 331 kfree(r->nm.name); 332 list_del(&r->list); 333 kfree(r); 334 } 335 } 336 337 /** 338 * insert_node - insert a node to the replay list 339 * @c: UBIFS file-system description object 340 * @lnum: node logical eraseblock number 341 * @offs: node offset 342 * @len: node length 343 * @key: node key 344 * @sqnum: sequence number 345 * @deletion: non-zero if this is a deletion 346 * @used: number of bytes in use in a LEB 347 * @old_size: truncation old size 348 * @new_size: truncation new size 349 * 350 * This function inserts a scanned non-direntry node to the replay list. The 351 * replay list contains @struct replay_entry elements, and we sort this list in 352 * sequence number order before applying it. The replay list is applied at the 353 * very end of the replay process. Since the list is sorted in sequence number 354 * order, the older modifications are applied first. This function returns zero 355 * in case of success and a negative error code in case of failure. 356 */ 357 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 358 union ubifs_key *key, unsigned long long sqnum, 359 int deletion, int *used, loff_t old_size, 360 loff_t new_size) 361 { 362 struct replay_entry *r; 363 364 dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key)); 365 366 if (key_inum(c, key) >= c->highest_inum) 367 c->highest_inum = key_inum(c, key); 368 369 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 370 if (!r) 371 return -ENOMEM; 372 373 if (!deletion) 374 *used += ALIGN(len, 8); 375 r->lnum = lnum; 376 r->offs = offs; 377 r->len = len; 378 r->deletion = !!deletion; 379 r->sqnum = sqnum; 380 key_copy(c, key, &r->key); 381 r->old_size = old_size; 382 r->new_size = new_size; 383 384 list_add_tail(&r->list, &c->replay_list); 385 return 0; 386 } 387 388 /** 389 * insert_dent - insert a directory entry node into the replay list. 390 * @c: UBIFS file-system description object 391 * @lnum: node logical eraseblock number 392 * @offs: node offset 393 * @len: node length 394 * @key: node key 395 * @name: directory entry name 396 * @nlen: directory entry name length 397 * @sqnum: sequence number 398 * @deletion: non-zero if this is a deletion 399 * @used: number of bytes in use in a LEB 400 * 401 * This function inserts a scanned directory entry node or an extended 402 * attribute entry to the replay list. Returns zero in case of success and a 403 * negative error code in case of failure. 404 */ 405 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 406 union ubifs_key *key, const char *name, int nlen, 407 unsigned long long sqnum, int deletion, int *used) 408 { 409 struct replay_entry *r; 410 char *nbuf; 411 412 dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key)); 413 if (key_inum(c, key) >= c->highest_inum) 414 c->highest_inum = key_inum(c, key); 415 416 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 417 if (!r) 418 return -ENOMEM; 419 420 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 421 if (!nbuf) { 422 kfree(r); 423 return -ENOMEM; 424 } 425 426 if (!deletion) 427 *used += ALIGN(len, 8); 428 r->lnum = lnum; 429 r->offs = offs; 430 r->len = len; 431 r->deletion = !!deletion; 432 r->sqnum = sqnum; 433 key_copy(c, key, &r->key); 434 r->nm.len = nlen; 435 memcpy(nbuf, name, nlen); 436 nbuf[nlen] = '\0'; 437 r->nm.name = nbuf; 438 439 list_add_tail(&r->list, &c->replay_list); 440 return 0; 441 } 442 443 /** 444 * ubifs_validate_entry - validate directory or extended attribute entry node. 445 * @c: UBIFS file-system description object 446 * @dent: the node to validate 447 * 448 * This function validates directory or extended attribute entry node @dent. 449 * Returns zero if the node is all right and a %-EINVAL if not. 450 */ 451 int ubifs_validate_entry(struct ubifs_info *c, 452 const struct ubifs_dent_node *dent) 453 { 454 int key_type = key_type_flash(c, dent->key); 455 int nlen = le16_to_cpu(dent->nlen); 456 457 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 458 dent->type >= UBIFS_ITYPES_CNT || 459 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 460 strnlen(dent->name, nlen) != nlen || 461 le64_to_cpu(dent->inum) > MAX_INUM) { 462 ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ? 463 "directory entry" : "extended attribute entry"); 464 return -EINVAL; 465 } 466 467 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 468 ubifs_err("bad key type %d", key_type); 469 return -EINVAL; 470 } 471 472 return 0; 473 } 474 475 /** 476 * is_last_bud - check if the bud is the last in the journal head. 477 * @c: UBIFS file-system description object 478 * @bud: bud description object 479 * 480 * This function checks if bud @bud is the last bud in its journal head. This 481 * information is then used by 'replay_bud()' to decide whether the bud can 482 * have corruptions or not. Indeed, only last buds can be corrupted by power 483 * cuts. Returns %1 if this is the last bud, and %0 if not. 484 */ 485 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 486 { 487 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 488 struct ubifs_bud *next; 489 uint32_t data; 490 int err; 491 492 if (list_is_last(&bud->list, &jh->buds_list)) 493 return 1; 494 495 /* 496 * The following is a quirk to make sure we work correctly with UBIFS 497 * images used with older UBIFS. 498 * 499 * Normally, the last bud will be the last in the journal head's list 500 * of bud. However, there is one exception if the UBIFS image belongs 501 * to older UBIFS. This is fairly unlikely: one would need to use old 502 * UBIFS, then have a power cut exactly at the right point, and then 503 * try to mount this image with new UBIFS. 504 * 505 * The exception is: it is possible to have 2 buds A and B, A goes 506 * before B, and B is the last, bud B is contains no data, and bud A is 507 * corrupted at the end. The reason is that in older versions when the 508 * journal code switched the next bud (from A to B), it first added a 509 * log reference node for the new bud (B), and only after this it 510 * synchronized the write-buffer of current bud (A). But later this was 511 * changed and UBIFS started to always synchronize the write-buffer of 512 * the bud (A) before writing the log reference for the new bud (B). 513 * 514 * But because older UBIFS always synchronized A's write-buffer before 515 * writing to B, we can recognize this exceptional situation but 516 * checking the contents of bud B - if it is empty, then A can be 517 * treated as the last and we can recover it. 518 * 519 * TODO: remove this piece of code in a couple of years (today it is 520 * 16.05.2011). 521 */ 522 next = list_entry(bud->list.next, struct ubifs_bud, list); 523 if (!list_is_last(&next->list, &jh->buds_list)) 524 return 0; 525 526 err = ubi_read(c->ubi, next->lnum, (char *)&data, 527 next->start, 4); 528 if (err) 529 return 0; 530 531 return data == 0xFFFFFFFF; 532 } 533 534 /** 535 * replay_bud - replay a bud logical eraseblock. 536 * @c: UBIFS file-system description object 537 * @b: bud entry which describes the bud 538 * 539 * This function replays bud @bud, recovers it if needed, and adds all nodes 540 * from this bud to the replay list. Returns zero in case of success and a 541 * negative error code in case of failure. 542 */ 543 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 544 { 545 int is_last = is_last_bud(c, b->bud); 546 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 547 struct ubifs_scan_leb *sleb; 548 struct ubifs_scan_node *snod; 549 550 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 551 lnum, b->bud->jhead, offs, is_last); 552 553 if (c->need_recovery && is_last) 554 /* 555 * Recover only last LEBs in the journal heads, because power 556 * cuts may cause corruptions only in these LEBs, because only 557 * these LEBs could possibly be written to at the power cut 558 * time. 559 */ 560 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 561 else 562 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 563 if (IS_ERR(sleb)) 564 return PTR_ERR(sleb); 565 566 /* 567 * The bud does not have to start from offset zero - the beginning of 568 * the 'lnum' LEB may contain previously committed data. One of the 569 * things we have to do in replay is to correctly update lprops with 570 * newer information about this LEB. 571 * 572 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 573 * bytes of free space because it only contain information about 574 * committed data. 575 * 576 * But we know that real amount of free space is 'c->leb_size - 577 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 578 * 'sleb->endpt' is used by bud data. We have to correctly calculate 579 * how much of these data are dirty and update lprops with this 580 * information. 581 * 582 * The dirt in that LEB region is comprised of padding nodes, deletion 583 * nodes, truncation nodes and nodes which are obsoleted by subsequent 584 * nodes in this LEB. So instead of calculating clean space, we 585 * calculate used space ('used' variable). 586 */ 587 588 list_for_each_entry(snod, &sleb->nodes, list) { 589 int deletion = 0; 590 591 cond_resched(); 592 593 if (snod->sqnum >= SQNUM_WATERMARK) { 594 ubifs_err("file system's life ended"); 595 goto out_dump; 596 } 597 598 if (snod->sqnum > c->max_sqnum) 599 c->max_sqnum = snod->sqnum; 600 601 switch (snod->type) { 602 case UBIFS_INO_NODE: 603 { 604 struct ubifs_ino_node *ino = snod->node; 605 loff_t new_size = le64_to_cpu(ino->size); 606 607 if (le32_to_cpu(ino->nlink) == 0) 608 deletion = 1; 609 err = insert_node(c, lnum, snod->offs, snod->len, 610 &snod->key, snod->sqnum, deletion, 611 &used, 0, new_size); 612 break; 613 } 614 case UBIFS_DATA_NODE: 615 { 616 struct ubifs_data_node *dn = snod->node; 617 loff_t new_size = le32_to_cpu(dn->size) + 618 key_block(c, &snod->key) * 619 UBIFS_BLOCK_SIZE; 620 621 err = insert_node(c, lnum, snod->offs, snod->len, 622 &snod->key, snod->sqnum, deletion, 623 &used, 0, new_size); 624 break; 625 } 626 case UBIFS_DENT_NODE: 627 case UBIFS_XENT_NODE: 628 { 629 struct ubifs_dent_node *dent = snod->node; 630 631 err = ubifs_validate_entry(c, dent); 632 if (err) 633 goto out_dump; 634 635 err = insert_dent(c, lnum, snod->offs, snod->len, 636 &snod->key, dent->name, 637 le16_to_cpu(dent->nlen), snod->sqnum, 638 !le64_to_cpu(dent->inum), &used); 639 break; 640 } 641 case UBIFS_TRUN_NODE: 642 { 643 struct ubifs_trun_node *trun = snod->node; 644 loff_t old_size = le64_to_cpu(trun->old_size); 645 loff_t new_size = le64_to_cpu(trun->new_size); 646 union ubifs_key key; 647 648 /* Validate truncation node */ 649 if (old_size < 0 || old_size > c->max_inode_sz || 650 new_size < 0 || new_size > c->max_inode_sz || 651 old_size <= new_size) { 652 ubifs_err("bad truncation node"); 653 goto out_dump; 654 } 655 656 /* 657 * Create a fake truncation key just to use the same 658 * functions which expect nodes to have keys. 659 */ 660 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 661 err = insert_node(c, lnum, snod->offs, snod->len, 662 &key, snod->sqnum, 1, &used, 663 old_size, new_size); 664 break; 665 } 666 default: 667 ubifs_err("unexpected node type %d in bud LEB %d:%d", 668 snod->type, lnum, snod->offs); 669 err = -EINVAL; 670 goto out_dump; 671 } 672 if (err) 673 goto out; 674 } 675 676 ubifs_assert(ubifs_search_bud(c, lnum)); 677 ubifs_assert(sleb->endpt - offs >= used); 678 ubifs_assert(sleb->endpt % c->min_io_size == 0); 679 680 b->dirty = sleb->endpt - offs - used; 681 b->free = c->leb_size - sleb->endpt; 682 dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free); 683 684 out: 685 ubifs_scan_destroy(sleb); 686 return err; 687 688 out_dump: 689 ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs); 690 dbg_dump_node(c, snod->node); 691 ubifs_scan_destroy(sleb); 692 return -EINVAL; 693 } 694 695 /** 696 * replay_buds - replay all buds. 697 * @c: UBIFS file-system description object 698 * 699 * This function returns zero in case of success and a negative error code in 700 * case of failure. 701 */ 702 static int replay_buds(struct ubifs_info *c) 703 { 704 struct bud_entry *b; 705 int err; 706 unsigned long long prev_sqnum = 0; 707 708 list_for_each_entry(b, &c->replay_buds, list) { 709 err = replay_bud(c, b); 710 if (err) 711 return err; 712 713 ubifs_assert(b->sqnum > prev_sqnum); 714 prev_sqnum = b->sqnum; 715 } 716 717 return 0; 718 } 719 720 /** 721 * destroy_bud_list - destroy the list of buds to replay. 722 * @c: UBIFS file-system description object 723 */ 724 static void destroy_bud_list(struct ubifs_info *c) 725 { 726 struct bud_entry *b; 727 728 while (!list_empty(&c->replay_buds)) { 729 b = list_entry(c->replay_buds.next, struct bud_entry, list); 730 list_del(&b->list); 731 kfree(b); 732 } 733 } 734 735 /** 736 * add_replay_bud - add a bud to the list of buds to replay. 737 * @c: UBIFS file-system description object 738 * @lnum: bud logical eraseblock number to replay 739 * @offs: bud start offset 740 * @jhead: journal head to which this bud belongs 741 * @sqnum: reference node sequence number 742 * 743 * This function returns zero in case of success and a negative error code in 744 * case of failure. 745 */ 746 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 747 unsigned long long sqnum) 748 { 749 struct ubifs_bud *bud; 750 struct bud_entry *b; 751 752 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 753 754 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 755 if (!bud) 756 return -ENOMEM; 757 758 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 759 if (!b) { 760 kfree(bud); 761 return -ENOMEM; 762 } 763 764 bud->lnum = lnum; 765 bud->start = offs; 766 bud->jhead = jhead; 767 ubifs_add_bud(c, bud); 768 769 b->bud = bud; 770 b->sqnum = sqnum; 771 list_add_tail(&b->list, &c->replay_buds); 772 773 return 0; 774 } 775 776 /** 777 * validate_ref - validate a reference node. 778 * @c: UBIFS file-system description object 779 * @ref: the reference node to validate 780 * @ref_lnum: LEB number of the reference node 781 * @ref_offs: reference node offset 782 * 783 * This function returns %1 if a bud reference already exists for the LEB. %0 is 784 * returned if the reference node is new, otherwise %-EINVAL is returned if 785 * validation failed. 786 */ 787 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 788 { 789 struct ubifs_bud *bud; 790 int lnum = le32_to_cpu(ref->lnum); 791 unsigned int offs = le32_to_cpu(ref->offs); 792 unsigned int jhead = le32_to_cpu(ref->jhead); 793 794 /* 795 * ref->offs may point to the end of LEB when the journal head points 796 * to the end of LEB and we write reference node for it during commit. 797 * So this is why we require 'offs > c->leb_size'. 798 */ 799 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 800 lnum < c->main_first || offs > c->leb_size || 801 offs & (c->min_io_size - 1)) 802 return -EINVAL; 803 804 /* Make sure we have not already looked at this bud */ 805 bud = ubifs_search_bud(c, lnum); 806 if (bud) { 807 if (bud->jhead == jhead && bud->start <= offs) 808 return 1; 809 ubifs_err("bud at LEB %d:%d was already referred", lnum, offs); 810 return -EINVAL; 811 } 812 813 return 0; 814 } 815 816 /** 817 * replay_log_leb - replay a log logical eraseblock. 818 * @c: UBIFS file-system description object 819 * @lnum: log logical eraseblock to replay 820 * @offs: offset to start replaying from 821 * @sbuf: scan buffer 822 * 823 * This function replays a log LEB and returns zero in case of success, %1 if 824 * this is the last LEB in the log, and a negative error code in case of 825 * failure. 826 */ 827 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 828 { 829 int err; 830 struct ubifs_scan_leb *sleb; 831 struct ubifs_scan_node *snod; 832 const struct ubifs_cs_node *node; 833 834 dbg_mnt("replay log LEB %d:%d", lnum, offs); 835 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 836 if (IS_ERR(sleb)) { 837 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 838 return PTR_ERR(sleb); 839 /* 840 * Note, the below function will recover this log LEB only if 841 * it is the last, because unclean reboots can possibly corrupt 842 * only the tail of the log. 843 */ 844 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 845 if (IS_ERR(sleb)) 846 return PTR_ERR(sleb); 847 } 848 849 if (sleb->nodes_cnt == 0) { 850 err = 1; 851 goto out; 852 } 853 854 node = sleb->buf; 855 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 856 if (c->cs_sqnum == 0) { 857 /* 858 * This is the first log LEB we are looking at, make sure that 859 * the first node is a commit start node. Also record its 860 * sequence number so that UBIFS can determine where the log 861 * ends, because all nodes which were have higher sequence 862 * numbers. 863 */ 864 if (snod->type != UBIFS_CS_NODE) { 865 dbg_err("first log node at LEB %d:%d is not CS node", 866 lnum, offs); 867 goto out_dump; 868 } 869 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 870 dbg_err("first CS node at LEB %d:%d has wrong " 871 "commit number %llu expected %llu", 872 lnum, offs, 873 (unsigned long long)le64_to_cpu(node->cmt_no), 874 c->cmt_no); 875 goto out_dump; 876 } 877 878 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 879 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 880 } 881 882 if (snod->sqnum < c->cs_sqnum) { 883 /* 884 * This means that we reached end of log and now 885 * look to the older log data, which was already 886 * committed but the eraseblock was not erased (UBIFS 887 * only un-maps it). So this basically means we have to 888 * exit with "end of log" code. 889 */ 890 err = 1; 891 goto out; 892 } 893 894 /* Make sure the first node sits at offset zero of the LEB */ 895 if (snod->offs != 0) { 896 dbg_err("first node is not at zero offset"); 897 goto out_dump; 898 } 899 900 list_for_each_entry(snod, &sleb->nodes, list) { 901 cond_resched(); 902 903 if (snod->sqnum >= SQNUM_WATERMARK) { 904 ubifs_err("file system's life ended"); 905 goto out_dump; 906 } 907 908 if (snod->sqnum < c->cs_sqnum) { 909 dbg_err("bad sqnum %llu, commit sqnum %llu", 910 snod->sqnum, c->cs_sqnum); 911 goto out_dump; 912 } 913 914 if (snod->sqnum > c->max_sqnum) 915 c->max_sqnum = snod->sqnum; 916 917 switch (snod->type) { 918 case UBIFS_REF_NODE: { 919 const struct ubifs_ref_node *ref = snod->node; 920 921 err = validate_ref(c, ref); 922 if (err == 1) 923 break; /* Already have this bud */ 924 if (err) 925 goto out_dump; 926 927 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 928 le32_to_cpu(ref->offs), 929 le32_to_cpu(ref->jhead), 930 snod->sqnum); 931 if (err) 932 goto out; 933 934 break; 935 } 936 case UBIFS_CS_NODE: 937 /* Make sure it sits at the beginning of LEB */ 938 if (snod->offs != 0) { 939 ubifs_err("unexpected node in log"); 940 goto out_dump; 941 } 942 break; 943 default: 944 ubifs_err("unexpected node in log"); 945 goto out_dump; 946 } 947 } 948 949 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 950 c->lhead_lnum = lnum; 951 c->lhead_offs = sleb->endpt; 952 } 953 954 err = !sleb->endpt; 955 out: 956 ubifs_scan_destroy(sleb); 957 return err; 958 959 out_dump: 960 ubifs_err("log error detected while replaying the log at LEB %d:%d", 961 lnum, offs + snod->offs); 962 dbg_dump_node(c, snod->node); 963 ubifs_scan_destroy(sleb); 964 return -EINVAL; 965 } 966 967 /** 968 * take_ihead - update the status of the index head in lprops to 'taken'. 969 * @c: UBIFS file-system description object 970 * 971 * This function returns the amount of free space in the index head LEB or a 972 * negative error code. 973 */ 974 static int take_ihead(struct ubifs_info *c) 975 { 976 const struct ubifs_lprops *lp; 977 int err, free; 978 979 ubifs_get_lprops(c); 980 981 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 982 if (IS_ERR(lp)) { 983 err = PTR_ERR(lp); 984 goto out; 985 } 986 987 free = lp->free; 988 989 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 990 lp->flags | LPROPS_TAKEN, 0); 991 if (IS_ERR(lp)) { 992 err = PTR_ERR(lp); 993 goto out; 994 } 995 996 err = free; 997 out: 998 ubifs_release_lprops(c); 999 return err; 1000 } 1001 1002 /** 1003 * ubifs_replay_journal - replay journal. 1004 * @c: UBIFS file-system description object 1005 * 1006 * This function scans the journal, replays and cleans it up. It makes sure all 1007 * memory data structures related to uncommitted journal are built (dirty TNC 1008 * tree, tree of buds, modified lprops, etc). 1009 */ 1010 int ubifs_replay_journal(struct ubifs_info *c) 1011 { 1012 int err, i, lnum, offs, free; 1013 1014 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1015 1016 /* Update the status of the index head in lprops to 'taken' */ 1017 free = take_ihead(c); 1018 if (free < 0) 1019 return free; /* Error code */ 1020 1021 if (c->ihead_offs != c->leb_size - free) { 1022 ubifs_err("bad index head LEB %d:%d", c->ihead_lnum, 1023 c->ihead_offs); 1024 return -EINVAL; 1025 } 1026 1027 dbg_mnt("start replaying the journal"); 1028 c->replaying = 1; 1029 lnum = c->ltail_lnum = c->lhead_lnum; 1030 offs = c->lhead_offs; 1031 1032 for (i = 0; i < c->log_lebs; i++, lnum++) { 1033 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) { 1034 /* 1035 * The log is logically circular, we reached the last 1036 * LEB, switch to the first one. 1037 */ 1038 lnum = UBIFS_LOG_LNUM; 1039 offs = 0; 1040 } 1041 err = replay_log_leb(c, lnum, offs, c->sbuf); 1042 if (err == 1) 1043 /* We hit the end of the log */ 1044 break; 1045 if (err) 1046 goto out; 1047 offs = 0; 1048 } 1049 1050 err = replay_buds(c); 1051 if (err) 1052 goto out; 1053 1054 err = apply_replay_list(c); 1055 if (err) 1056 goto out; 1057 1058 err = set_buds_lprops(c); 1059 if (err) 1060 goto out; 1061 1062 /* 1063 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1064 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1065 * depend on it. This means we have to initialize it to make sure 1066 * budgeting works properly. 1067 */ 1068 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1069 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1070 1071 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1072 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, " 1073 "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1074 (unsigned long)c->highest_inum); 1075 out: 1076 destroy_replay_list(c); 1077 destroy_bud_list(c); 1078 c->replaying = 0; 1079 return err; 1080 } 1081