xref: /openbmc/linux/fs/ubifs/recovery.c (revision a09d2831)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions needed to recover from unclean un-mounts.
25  * When UBIFS is mounted, it checks a flag on the master node to determine if
26  * an un-mount was completed successfully. If not, the process of mounting
27  * incorparates additional checking and fixing of on-flash data structures.
28  * UBIFS always cleans away all remnants of an unclean un-mount, so that
29  * errors do not accumulate. However UBIFS defers recovery if it is mounted
30  * read-only, and the flash is not modified in that case.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /**
37  * is_empty - determine whether a buffer is empty (contains all 0xff).
38  * @buf: buffer to clean
39  * @len: length of buffer
40  *
41  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
42  * %0 is returned.
43  */
44 static int is_empty(void *buf, int len)
45 {
46 	uint8_t *p = buf;
47 	int i;
48 
49 	for (i = 0; i < len; i++)
50 		if (*p++ != 0xff)
51 			return 0;
52 	return 1;
53 }
54 
55 /**
56  * first_non_ff - find offset of the first non-0xff byte.
57  * @buf: buffer to search in
58  * @len: length of buffer
59  *
60  * This function returns offset of the first non-0xff byte in @buf or %-1 if
61  * the buffer contains only 0xff bytes.
62  */
63 static int first_non_ff(void *buf, int len)
64 {
65 	uint8_t *p = buf;
66 	int i;
67 
68 	for (i = 0; i < len; i++)
69 		if (*p++ != 0xff)
70 			return i;
71 	return -1;
72 }
73 
74 /**
75  * get_master_node - get the last valid master node allowing for corruption.
76  * @c: UBIFS file-system description object
77  * @lnum: LEB number
78  * @pbuf: buffer containing the LEB read, is returned here
79  * @mst: master node, if found, is returned here
80  * @cor: corruption, if found, is returned here
81  *
82  * This function allocates a buffer, reads the LEB into it, and finds and
83  * returns the last valid master node allowing for one area of corruption.
84  * The corrupt area, if there is one, must be consistent with the assumption
85  * that it is the result of an unclean unmount while the master node was being
86  * written. Under those circumstances, it is valid to use the previously written
87  * master node.
88  *
89  * This function returns %0 on success and a negative error code on failure.
90  */
91 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
92 			   struct ubifs_mst_node **mst, void **cor)
93 {
94 	const int sz = c->mst_node_alsz;
95 	int err, offs, len;
96 	void *sbuf, *buf;
97 
98 	sbuf = vmalloc(c->leb_size);
99 	if (!sbuf)
100 		return -ENOMEM;
101 
102 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
103 	if (err && err != -EBADMSG)
104 		goto out_free;
105 
106 	/* Find the first position that is definitely not a node */
107 	offs = 0;
108 	buf = sbuf;
109 	len = c->leb_size;
110 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
111 		struct ubifs_ch *ch = buf;
112 
113 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
114 			break;
115 		offs += sz;
116 		buf  += sz;
117 		len  -= sz;
118 	}
119 	/* See if there was a valid master node before that */
120 	if (offs) {
121 		int ret;
122 
123 		offs -= sz;
124 		buf  -= sz;
125 		len  += sz;
126 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
127 		if (ret != SCANNED_A_NODE && offs) {
128 			/* Could have been corruption so check one place back */
129 			offs -= sz;
130 			buf  -= sz;
131 			len  += sz;
132 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
133 			if (ret != SCANNED_A_NODE)
134 				/*
135 				 * We accept only one area of corruption because
136 				 * we are assuming that it was caused while
137 				 * trying to write a master node.
138 				 */
139 				goto out_err;
140 		}
141 		if (ret == SCANNED_A_NODE) {
142 			struct ubifs_ch *ch = buf;
143 
144 			if (ch->node_type != UBIFS_MST_NODE)
145 				goto out_err;
146 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
147 			*mst = buf;
148 			offs += sz;
149 			buf  += sz;
150 			len  -= sz;
151 		}
152 	}
153 	/* Check for corruption */
154 	if (offs < c->leb_size) {
155 		if (!is_empty(buf, min_t(int, len, sz))) {
156 			*cor = buf;
157 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
158 		}
159 		offs += sz;
160 		buf  += sz;
161 		len  -= sz;
162 	}
163 	/* Check remaining empty space */
164 	if (offs < c->leb_size)
165 		if (!is_empty(buf, len))
166 			goto out_err;
167 	*pbuf = sbuf;
168 	return 0;
169 
170 out_err:
171 	err = -EINVAL;
172 out_free:
173 	vfree(sbuf);
174 	*mst = NULL;
175 	*cor = NULL;
176 	return err;
177 }
178 
179 /**
180  * write_rcvrd_mst_node - write recovered master node.
181  * @c: UBIFS file-system description object
182  * @mst: master node
183  *
184  * This function returns %0 on success and a negative error code on failure.
185  */
186 static int write_rcvrd_mst_node(struct ubifs_info *c,
187 				struct ubifs_mst_node *mst)
188 {
189 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
190 	__le32 save_flags;
191 
192 	dbg_rcvry("recovery");
193 
194 	save_flags = mst->flags;
195 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
196 
197 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
198 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
199 	if (err)
200 		goto out;
201 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
202 	if (err)
203 		goto out;
204 out:
205 	mst->flags = save_flags;
206 	return err;
207 }
208 
209 /**
210  * ubifs_recover_master_node - recover the master node.
211  * @c: UBIFS file-system description object
212  *
213  * This function recovers the master node from corruption that may occur due to
214  * an unclean unmount.
215  *
216  * This function returns %0 on success and a negative error code on failure.
217  */
218 int ubifs_recover_master_node(struct ubifs_info *c)
219 {
220 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
221 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
222 	const int sz = c->mst_node_alsz;
223 	int err, offs1, offs2;
224 
225 	dbg_rcvry("recovery");
226 
227 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
228 	if (err)
229 		goto out_free;
230 
231 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
232 	if (err)
233 		goto out_free;
234 
235 	if (mst1) {
236 		offs1 = (void *)mst1 - buf1;
237 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
238 		    (offs1 == 0 && !cor1)) {
239 			/*
240 			 * mst1 was written by recovery at offset 0 with no
241 			 * corruption.
242 			 */
243 			dbg_rcvry("recovery recovery");
244 			mst = mst1;
245 		} else if (mst2) {
246 			offs2 = (void *)mst2 - buf2;
247 			if (offs1 == offs2) {
248 				/* Same offset, so must be the same */
249 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
250 					   (void *)mst2 + UBIFS_CH_SZ,
251 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
252 					goto out_err;
253 				mst = mst1;
254 			} else if (offs2 + sz == offs1) {
255 				/* 1st LEB was written, 2nd was not */
256 				if (cor1)
257 					goto out_err;
258 				mst = mst1;
259 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
260 				/* 1st LEB was unmapped and written, 2nd not */
261 				if (cor1)
262 					goto out_err;
263 				mst = mst1;
264 			} else
265 				goto out_err;
266 		} else {
267 			/*
268 			 * 2nd LEB was unmapped and about to be written, so
269 			 * there must be only one master node in the first LEB
270 			 * and no corruption.
271 			 */
272 			if (offs1 != 0 || cor1)
273 				goto out_err;
274 			mst = mst1;
275 		}
276 	} else {
277 		if (!mst2)
278 			goto out_err;
279 		/*
280 		 * 1st LEB was unmapped and about to be written, so there must
281 		 * be no room left in 2nd LEB.
282 		 */
283 		offs2 = (void *)mst2 - buf2;
284 		if (offs2 + sz + sz <= c->leb_size)
285 			goto out_err;
286 		mst = mst2;
287 	}
288 
289 	ubifs_msg("recovered master node from LEB %d",
290 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
291 
292 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
293 
294 	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
295 		/* Read-only mode. Keep a copy for switching to rw mode */
296 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
297 		if (!c->rcvrd_mst_node) {
298 			err = -ENOMEM;
299 			goto out_free;
300 		}
301 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
302 	} else {
303 		/* Write the recovered master node */
304 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
305 		err = write_rcvrd_mst_node(c, c->mst_node);
306 		if (err)
307 			goto out_free;
308 	}
309 
310 	vfree(buf2);
311 	vfree(buf1);
312 
313 	return 0;
314 
315 out_err:
316 	err = -EINVAL;
317 out_free:
318 	ubifs_err("failed to recover master node");
319 	if (mst1) {
320 		dbg_err("dumping first master node");
321 		dbg_dump_node(c, mst1);
322 	}
323 	if (mst2) {
324 		dbg_err("dumping second master node");
325 		dbg_dump_node(c, mst2);
326 	}
327 	vfree(buf2);
328 	vfree(buf1);
329 	return err;
330 }
331 
332 /**
333  * ubifs_write_rcvrd_mst_node - write the recovered master node.
334  * @c: UBIFS file-system description object
335  *
336  * This function writes the master node that was recovered during mounting in
337  * read-only mode and must now be written because we are remounting rw.
338  *
339  * This function returns %0 on success and a negative error code on failure.
340  */
341 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
342 {
343 	int err;
344 
345 	if (!c->rcvrd_mst_node)
346 		return 0;
347 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
348 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
349 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
350 	if (err)
351 		return err;
352 	kfree(c->rcvrd_mst_node);
353 	c->rcvrd_mst_node = NULL;
354 	return 0;
355 }
356 
357 /**
358  * is_last_write - determine if an offset was in the last write to a LEB.
359  * @c: UBIFS file-system description object
360  * @buf: buffer to check
361  * @offs: offset to check
362  *
363  * This function returns %1 if @offs was in the last write to the LEB whose data
364  * is in @buf, otherwise %0 is returned.  The determination is made by checking
365  * for subsequent empty space starting from the next @c->min_io_size boundary.
366  */
367 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
368 {
369 	int empty_offs, check_len;
370 	uint8_t *p;
371 
372 	/*
373 	 * Round up to the next @c->min_io_size boundary i.e. @offs is in the
374 	 * last wbuf written. After that should be empty space.
375 	 */
376 	empty_offs = ALIGN(offs + 1, c->min_io_size);
377 	check_len = c->leb_size - empty_offs;
378 	p = buf + empty_offs - offs;
379 	return is_empty(p, check_len);
380 }
381 
382 /**
383  * clean_buf - clean the data from an LEB sitting in a buffer.
384  * @c: UBIFS file-system description object
385  * @buf: buffer to clean
386  * @lnum: LEB number to clean
387  * @offs: offset from which to clean
388  * @len: length of buffer
389  *
390  * This function pads up to the next min_io_size boundary (if there is one) and
391  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
392  * @c->min_io_size boundary.
393  */
394 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
395 		      int *offs, int *len)
396 {
397 	int empty_offs, pad_len;
398 
399 	lnum = lnum;
400 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
401 
402 	ubifs_assert(!(*offs & 7));
403 	empty_offs = ALIGN(*offs, c->min_io_size);
404 	pad_len = empty_offs - *offs;
405 	ubifs_pad(c, *buf, pad_len);
406 	*offs += pad_len;
407 	*buf += pad_len;
408 	*len -= pad_len;
409 	memset(*buf, 0xff, c->leb_size - empty_offs);
410 }
411 
412 /**
413  * no_more_nodes - determine if there are no more nodes in a buffer.
414  * @c: UBIFS file-system description object
415  * @buf: buffer to check
416  * @len: length of buffer
417  * @lnum: LEB number of the LEB from which @buf was read
418  * @offs: offset from which @buf was read
419  *
420  * This function ensures that the corrupted node at @offs is the last thing
421  * written to a LEB. This function returns %1 if more data is not found and
422  * %0 if more data is found.
423  */
424 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
425 			int lnum, int offs)
426 {
427 	struct ubifs_ch *ch = buf;
428 	int skip, dlen = le32_to_cpu(ch->len);
429 
430 	/* Check for empty space after the corrupt node's common header */
431 	skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
432 	if (is_empty(buf + skip, len - skip))
433 		return 1;
434 	/*
435 	 * The area after the common header size is not empty, so the common
436 	 * header must be intact. Check it.
437 	 */
438 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
439 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
440 		return 0;
441 	}
442 	/* Now we know the corrupt node's length we can skip over it */
443 	skip = ALIGN(offs + dlen, c->min_io_size) - offs;
444 	/* After which there should be empty space */
445 	if (is_empty(buf + skip, len - skip))
446 		return 1;
447 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
448 	return 0;
449 }
450 
451 /**
452  * fix_unclean_leb - fix an unclean LEB.
453  * @c: UBIFS file-system description object
454  * @sleb: scanned LEB information
455  * @start: offset where scan started
456  */
457 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
458 			   int start)
459 {
460 	int lnum = sleb->lnum, endpt = start;
461 
462 	/* Get the end offset of the last node we are keeping */
463 	if (!list_empty(&sleb->nodes)) {
464 		struct ubifs_scan_node *snod;
465 
466 		snod = list_entry(sleb->nodes.prev,
467 				  struct ubifs_scan_node, list);
468 		endpt = snod->offs + snod->len;
469 	}
470 
471 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
472 		/* Add to recovery list */
473 		struct ubifs_unclean_leb *ucleb;
474 
475 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
476 			  lnum, start, sleb->endpt);
477 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
478 		if (!ucleb)
479 			return -ENOMEM;
480 		ucleb->lnum = lnum;
481 		ucleb->endpt = endpt;
482 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
483 	} else {
484 		/* Write the fixed LEB back to flash */
485 		int err;
486 
487 		dbg_rcvry("fixing LEB %d start %d endpt %d",
488 			  lnum, start, sleb->endpt);
489 		if (endpt == 0) {
490 			err = ubifs_leb_unmap(c, lnum);
491 			if (err)
492 				return err;
493 		} else {
494 			int len = ALIGN(endpt, c->min_io_size);
495 
496 			if (start) {
497 				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
498 					       start);
499 				if (err)
500 					return err;
501 			}
502 			/* Pad to min_io_size */
503 			if (len > endpt) {
504 				int pad_len = len - ALIGN(endpt, 8);
505 
506 				if (pad_len > 0) {
507 					void *buf = sleb->buf + len - pad_len;
508 
509 					ubifs_pad(c, buf, pad_len);
510 				}
511 			}
512 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
513 					     UBI_UNKNOWN);
514 			if (err)
515 				return err;
516 		}
517 	}
518 	return 0;
519 }
520 
521 /**
522  * drop_incomplete_group - drop nodes from an incomplete group.
523  * @sleb: scanned LEB information
524  * @offs: offset of dropped nodes is returned here
525  *
526  * This function returns %1 if nodes are dropped and %0 otherwise.
527  */
528 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
529 {
530 	int dropped = 0;
531 
532 	while (!list_empty(&sleb->nodes)) {
533 		struct ubifs_scan_node *snod;
534 		struct ubifs_ch *ch;
535 
536 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
537 				  list);
538 		ch = snod->node;
539 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
540 			return dropped;
541 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
542 		*offs = snod->offs;
543 		list_del(&snod->list);
544 		kfree(snod);
545 		sleb->nodes_cnt -= 1;
546 		dropped = 1;
547 	}
548 	return dropped;
549 }
550 
551 /**
552  * ubifs_recover_leb - scan and recover a LEB.
553  * @c: UBIFS file-system description object
554  * @lnum: LEB number
555  * @offs: offset
556  * @sbuf: LEB-sized buffer to use
557  * @grouped: nodes may be grouped for recovery
558  *
559  * This function does a scan of a LEB, but caters for errors that might have
560  * been caused by the unclean unmount from which we are attempting to recover.
561  * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
562  * found, and a negative error code in case of failure.
563  */
564 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
565 					 int offs, void *sbuf, int grouped)
566 {
567 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
568 	int empty_chkd = 0, start = offs;
569 	struct ubifs_scan_leb *sleb;
570 	void *buf = sbuf + offs;
571 
572 	dbg_rcvry("%d:%d", lnum, offs);
573 
574 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
575 	if (IS_ERR(sleb))
576 		return sleb;
577 
578 	if (sleb->ecc)
579 		need_clean = 1;
580 
581 	while (len >= 8) {
582 		int ret;
583 
584 		dbg_scan("look at LEB %d:%d (%d bytes left)",
585 			 lnum, offs, len);
586 
587 		cond_resched();
588 
589 		/*
590 		 * Scan quietly until there is an error from which we cannot
591 		 * recover
592 		 */
593 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
594 
595 		if (ret == SCANNED_A_NODE) {
596 			/* A valid node, and not a padding node */
597 			struct ubifs_ch *ch = buf;
598 			int node_len;
599 
600 			err = ubifs_add_snod(c, sleb, buf, offs);
601 			if (err)
602 				goto error;
603 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
604 			offs += node_len;
605 			buf += node_len;
606 			len -= node_len;
607 			continue;
608 		}
609 
610 		if (ret > 0) {
611 			/* Padding bytes or a valid padding node */
612 			offs += ret;
613 			buf += ret;
614 			len -= ret;
615 			continue;
616 		}
617 
618 		if (ret == SCANNED_EMPTY_SPACE) {
619 			if (!is_empty(buf, len)) {
620 				if (!is_last_write(c, buf, offs))
621 					break;
622 				clean_buf(c, &buf, lnum, &offs, &len);
623 				need_clean = 1;
624 			}
625 			empty_chkd = 1;
626 			break;
627 		}
628 
629 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
630 			if (is_last_write(c, buf, offs)) {
631 				clean_buf(c, &buf, lnum, &offs, &len);
632 				need_clean = 1;
633 				empty_chkd = 1;
634 				break;
635 			}
636 
637 		if (ret == SCANNED_A_CORRUPT_NODE)
638 			if (no_more_nodes(c, buf, len, lnum, offs)) {
639 				clean_buf(c, &buf, lnum, &offs, &len);
640 				need_clean = 1;
641 				empty_chkd = 1;
642 				break;
643 			}
644 
645 		if (quiet) {
646 			/* Redo the last scan but noisily */
647 			quiet = 0;
648 			continue;
649 		}
650 
651 		switch (ret) {
652 		case SCANNED_GARBAGE:
653 			dbg_err("garbage");
654 			goto corrupted;
655 		case SCANNED_A_CORRUPT_NODE:
656 		case SCANNED_A_BAD_PAD_NODE:
657 			dbg_err("bad node");
658 			goto corrupted;
659 		default:
660 			dbg_err("unknown");
661 			err = -EINVAL;
662 			goto error;
663 		}
664 	}
665 
666 	if (!empty_chkd && !is_empty(buf, len)) {
667 		if (is_last_write(c, buf, offs)) {
668 			clean_buf(c, &buf, lnum, &offs, &len);
669 			need_clean = 1;
670 		} else {
671 			int corruption = first_non_ff(buf, len);
672 
673 			ubifs_err("corrupt empty space LEB %d:%d, corruption "
674 				  "starts at %d", lnum, offs, corruption);
675 			/* Make sure we dump interesting non-0xFF data */
676 			offs = corruption;
677 			buf += corruption;
678 			goto corrupted;
679 		}
680 	}
681 
682 	/* Drop nodes from incomplete group */
683 	if (grouped && drop_incomplete_group(sleb, &offs)) {
684 		buf = sbuf + offs;
685 		len = c->leb_size - offs;
686 		clean_buf(c, &buf, lnum, &offs, &len);
687 		need_clean = 1;
688 	}
689 
690 	if (offs % c->min_io_size) {
691 		clean_buf(c, &buf, lnum, &offs, &len);
692 		need_clean = 1;
693 	}
694 
695 	ubifs_end_scan(c, sleb, lnum, offs);
696 
697 	if (need_clean) {
698 		err = fix_unclean_leb(c, sleb, start);
699 		if (err)
700 			goto error;
701 	}
702 
703 	return sleb;
704 
705 corrupted:
706 	ubifs_scanned_corruption(c, lnum, offs, buf);
707 	err = -EUCLEAN;
708 error:
709 	ubifs_err("LEB %d scanning failed", lnum);
710 	ubifs_scan_destroy(sleb);
711 	return ERR_PTR(err);
712 }
713 
714 /**
715  * get_cs_sqnum - get commit start sequence number.
716  * @c: UBIFS file-system description object
717  * @lnum: LEB number of commit start node
718  * @offs: offset of commit start node
719  * @cs_sqnum: commit start sequence number is returned here
720  *
721  * This function returns %0 on success and a negative error code on failure.
722  */
723 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
724 			unsigned long long *cs_sqnum)
725 {
726 	struct ubifs_cs_node *cs_node = NULL;
727 	int err, ret;
728 
729 	dbg_rcvry("at %d:%d", lnum, offs);
730 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
731 	if (!cs_node)
732 		return -ENOMEM;
733 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
734 		goto out_err;
735 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
736 	if (err && err != -EBADMSG)
737 		goto out_free;
738 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
739 	if (ret != SCANNED_A_NODE) {
740 		dbg_err("Not a valid node");
741 		goto out_err;
742 	}
743 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
744 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
745 		goto out_err;
746 	}
747 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
748 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
749 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
750 			c->cmt_no);
751 		goto out_err;
752 	}
753 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
754 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
755 	kfree(cs_node);
756 	return 0;
757 
758 out_err:
759 	err = -EINVAL;
760 out_free:
761 	ubifs_err("failed to get CS sqnum");
762 	kfree(cs_node);
763 	return err;
764 }
765 
766 /**
767  * ubifs_recover_log_leb - scan and recover a log LEB.
768  * @c: UBIFS file-system description object
769  * @lnum: LEB number
770  * @offs: offset
771  * @sbuf: LEB-sized buffer to use
772  *
773  * This function does a scan of a LEB, but caters for errors that might have
774  * been caused by the unclean unmount from which we are attempting to recover.
775  *
776  * This function returns %0 on success and a negative error code on failure.
777  */
778 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
779 					     int offs, void *sbuf)
780 {
781 	struct ubifs_scan_leb *sleb;
782 	int next_lnum;
783 
784 	dbg_rcvry("LEB %d", lnum);
785 	next_lnum = lnum + 1;
786 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
787 		next_lnum = UBIFS_LOG_LNUM;
788 	if (next_lnum != c->ltail_lnum) {
789 		/*
790 		 * We can only recover at the end of the log, so check that the
791 		 * next log LEB is empty or out of date.
792 		 */
793 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
794 		if (IS_ERR(sleb))
795 			return sleb;
796 		if (sleb->nodes_cnt) {
797 			struct ubifs_scan_node *snod;
798 			unsigned long long cs_sqnum = c->cs_sqnum;
799 
800 			snod = list_entry(sleb->nodes.next,
801 					  struct ubifs_scan_node, list);
802 			if (cs_sqnum == 0) {
803 				int err;
804 
805 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
806 				if (err) {
807 					ubifs_scan_destroy(sleb);
808 					return ERR_PTR(err);
809 				}
810 			}
811 			if (snod->sqnum > cs_sqnum) {
812 				ubifs_err("unrecoverable log corruption "
813 					  "in LEB %d", lnum);
814 				ubifs_scan_destroy(sleb);
815 				return ERR_PTR(-EUCLEAN);
816 			}
817 		}
818 		ubifs_scan_destroy(sleb);
819 	}
820 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
821 }
822 
823 /**
824  * recover_head - recover a head.
825  * @c: UBIFS file-system description object
826  * @lnum: LEB number of head to recover
827  * @offs: offset of head to recover
828  * @sbuf: LEB-sized buffer to use
829  *
830  * This function ensures that there is no data on the flash at a head location.
831  *
832  * This function returns %0 on success and a negative error code on failure.
833  */
834 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
835 			void *sbuf)
836 {
837 	int len, err;
838 
839 	if (c->min_io_size > 1)
840 		len = c->min_io_size;
841 	else
842 		len = 512;
843 	if (offs + len > c->leb_size)
844 		len = c->leb_size - offs;
845 
846 	if (!len)
847 		return 0;
848 
849 	/* Read at the head location and check it is empty flash */
850 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
851 	if (err || !is_empty(sbuf, len)) {
852 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
853 		if (offs == 0)
854 			return ubifs_leb_unmap(c, lnum);
855 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
856 		if (err)
857 			return err;
858 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  * ubifs_recover_inl_heads - recover index and LPT heads.
866  * @c: UBIFS file-system description object
867  * @sbuf: LEB-sized buffer to use
868  *
869  * This function ensures that there is no data on the flash at the index and
870  * LPT head locations.
871  *
872  * This deals with the recovery of a half-completed journal commit. UBIFS is
873  * careful never to overwrite the last version of the index or the LPT. Because
874  * the index and LPT are wandering trees, data from a half-completed commit will
875  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
876  * assumed to be empty and will be unmapped anyway before use, or in the index
877  * and LPT heads.
878  *
879  * This function returns %0 on success and a negative error code on failure.
880  */
881 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
882 {
883 	int err;
884 
885 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
886 
887 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
888 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
889 	if (err)
890 		return err;
891 
892 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
893 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
894 	if (err)
895 		return err;
896 
897 	return 0;
898 }
899 
900 /**
901  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
902  * @c: UBIFS file-system description object
903  * @ucleb: unclean LEB information
904  * @sbuf: LEB-sized buffer to use
905  *
906  * This function reads a LEB up to a point pre-determined by the mount recovery,
907  * checks the nodes, and writes the result back to the flash, thereby cleaning
908  * off any following corruption, or non-fatal ECC errors.
909  *
910  * This function returns %0 on success and a negative error code on failure.
911  */
912 static int clean_an_unclean_leb(const struct ubifs_info *c,
913 				struct ubifs_unclean_leb *ucleb, void *sbuf)
914 {
915 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
916 	void *buf = sbuf;
917 
918 	dbg_rcvry("LEB %d len %d", lnum, len);
919 
920 	if (len == 0) {
921 		/* Nothing to read, just unmap it */
922 		err = ubifs_leb_unmap(c, lnum);
923 		if (err)
924 			return err;
925 		return 0;
926 	}
927 
928 	err = ubi_read(c->ubi, lnum, buf, offs, len);
929 	if (err && err != -EBADMSG)
930 		return err;
931 
932 	while (len >= 8) {
933 		int ret;
934 
935 		cond_resched();
936 
937 		/* Scan quietly until there is an error */
938 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
939 
940 		if (ret == SCANNED_A_NODE) {
941 			/* A valid node, and not a padding node */
942 			struct ubifs_ch *ch = buf;
943 			int node_len;
944 
945 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
946 			offs += node_len;
947 			buf += node_len;
948 			len -= node_len;
949 			continue;
950 		}
951 
952 		if (ret > 0) {
953 			/* Padding bytes or a valid padding node */
954 			offs += ret;
955 			buf += ret;
956 			len -= ret;
957 			continue;
958 		}
959 
960 		if (ret == SCANNED_EMPTY_SPACE) {
961 			ubifs_err("unexpected empty space at %d:%d",
962 				  lnum, offs);
963 			return -EUCLEAN;
964 		}
965 
966 		if (quiet) {
967 			/* Redo the last scan but noisily */
968 			quiet = 0;
969 			continue;
970 		}
971 
972 		ubifs_scanned_corruption(c, lnum, offs, buf);
973 		return -EUCLEAN;
974 	}
975 
976 	/* Pad to min_io_size */
977 	len = ALIGN(ucleb->endpt, c->min_io_size);
978 	if (len > ucleb->endpt) {
979 		int pad_len = len - ALIGN(ucleb->endpt, 8);
980 
981 		if (pad_len > 0) {
982 			buf = c->sbuf + len - pad_len;
983 			ubifs_pad(c, buf, pad_len);
984 		}
985 	}
986 
987 	/* Write back the LEB atomically */
988 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
989 	if (err)
990 		return err;
991 
992 	dbg_rcvry("cleaned LEB %d", lnum);
993 
994 	return 0;
995 }
996 
997 /**
998  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
999  * @c: UBIFS file-system description object
1000  * @sbuf: LEB-sized buffer to use
1001  *
1002  * This function cleans a LEB identified during recovery that needs to be
1003  * written but was not because UBIFS was mounted read-only. This happens when
1004  * remounting to read-write mode.
1005  *
1006  * This function returns %0 on success and a negative error code on failure.
1007  */
1008 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1009 {
1010 	dbg_rcvry("recovery");
1011 	while (!list_empty(&c->unclean_leb_list)) {
1012 		struct ubifs_unclean_leb *ucleb;
1013 		int err;
1014 
1015 		ucleb = list_entry(c->unclean_leb_list.next,
1016 				   struct ubifs_unclean_leb, list);
1017 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1018 		if (err)
1019 			return err;
1020 		list_del(&ucleb->list);
1021 		kfree(ucleb);
1022 	}
1023 	return 0;
1024 }
1025 
1026 /**
1027  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1028  * @c: UBIFS file-system description object
1029  *
1030  * Out-of-place garbage collection requires always one empty LEB with which to
1031  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1032  * written to the master node on unmounting. In the case of an unclean unmount
1033  * the value of gc_lnum recorded in the master node is out of date and cannot
1034  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1035  * However, there may not be enough empty space, in which case it must be
1036  * possible to GC the dirtiest LEB into the GC head LEB.
1037  *
1038  * This function also runs the commit which causes the TNC updates from
1039  * size-recovery and orphans to be written to the flash. That is important to
1040  * ensure correct replay order for subsequent mounts.
1041  *
1042  * This function returns %0 on success and a negative error code on failure.
1043  */
1044 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1045 {
1046 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1047 	struct ubifs_lprops lp;
1048 	int lnum, err;
1049 
1050 	c->gc_lnum = -1;
1051 	if (wbuf->lnum == -1) {
1052 		dbg_rcvry("no GC head LEB");
1053 		goto find_free;
1054 	}
1055 	/*
1056 	 * See whether the used space in the dirtiest LEB fits in the GC head
1057 	 * LEB.
1058 	 */
1059 	if (wbuf->offs == c->leb_size) {
1060 		dbg_rcvry("no room in GC head LEB");
1061 		goto find_free;
1062 	}
1063 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1064 	if (err) {
1065 		if (err == -ENOSPC)
1066 			dbg_err("could not find a dirty LEB");
1067 		return err;
1068 	}
1069 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1070 	lnum = lp.lnum;
1071 	if (lp.free + lp.dirty == c->leb_size) {
1072 		/* An empty LEB was returned */
1073 		if (lp.free != c->leb_size) {
1074 			err = ubifs_change_one_lp(c, lnum, c->leb_size,
1075 						  0, 0, 0, 0);
1076 			if (err)
1077 				return err;
1078 		}
1079 		err = ubifs_leb_unmap(c, lnum);
1080 		if (err)
1081 			return err;
1082 		c->gc_lnum = lnum;
1083 		dbg_rcvry("allocated LEB %d for GC", lnum);
1084 		/* Run the commit */
1085 		dbg_rcvry("committing");
1086 		return ubifs_run_commit(c);
1087 	}
1088 	/*
1089 	 * There was no empty LEB so the used space in the dirtiest LEB must fit
1090 	 * in the GC head LEB.
1091 	 */
1092 	if (lp.free + lp.dirty < wbuf->offs) {
1093 		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1094 			  lnum, wbuf->lnum, wbuf->offs);
1095 		err = ubifs_return_leb(c, lnum);
1096 		if (err)
1097 			return err;
1098 		goto find_free;
1099 	}
1100 	/*
1101 	 * We run the commit before garbage collection otherwise subsequent
1102 	 * mounts will see the GC and orphan deletion in a different order.
1103 	 */
1104 	dbg_rcvry("committing");
1105 	err = ubifs_run_commit(c);
1106 	if (err)
1107 		return err;
1108 	/*
1109 	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1110 	 * - use locking to keep 'ubifs_assert()' happy.
1111 	 */
1112 	dbg_rcvry("GC'ing LEB %d", lnum);
1113 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1114 	err = ubifs_garbage_collect_leb(c, &lp);
1115 	if (err >= 0) {
1116 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1117 
1118 		if (err2)
1119 			err = err2;
1120 	}
1121 	mutex_unlock(&wbuf->io_mutex);
1122 	if (err < 0) {
1123 		dbg_err("GC failed, error %d", err);
1124 		if (err == -EAGAIN)
1125 			err = -EINVAL;
1126 		return err;
1127 	}
1128 	if (err != LEB_RETAINED) {
1129 		dbg_err("GC returned %d", err);
1130 		return -EINVAL;
1131 	}
1132 	err = ubifs_leb_unmap(c, c->gc_lnum);
1133 	if (err)
1134 		return err;
1135 	dbg_rcvry("allocated LEB %d for GC", lnum);
1136 	return 0;
1137 
1138 find_free:
1139 	/*
1140 	 * There is no GC head LEB or the free space in the GC head LEB is too
1141 	 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1142 	 * GC is not run.
1143 	 */
1144 	lnum = ubifs_find_free_leb_for_idx(c);
1145 	if (lnum < 0) {
1146 		dbg_err("could not find an empty LEB");
1147 		return lnum;
1148 	}
1149 	/* And reset the index flag */
1150 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1151 				  LPROPS_INDEX, 0);
1152 	if (err)
1153 		return err;
1154 	c->gc_lnum = lnum;
1155 	dbg_rcvry("allocated LEB %d for GC", lnum);
1156 	/* Run the commit */
1157 	dbg_rcvry("committing");
1158 	return ubifs_run_commit(c);
1159 }
1160 
1161 /**
1162  * struct size_entry - inode size information for recovery.
1163  * @rb: link in the RB-tree of sizes
1164  * @inum: inode number
1165  * @i_size: size on inode
1166  * @d_size: maximum size based on data nodes
1167  * @exists: indicates whether the inode exists
1168  * @inode: inode if pinned in memory awaiting rw mode to fix it
1169  */
1170 struct size_entry {
1171 	struct rb_node rb;
1172 	ino_t inum;
1173 	loff_t i_size;
1174 	loff_t d_size;
1175 	int exists;
1176 	struct inode *inode;
1177 };
1178 
1179 /**
1180  * add_ino - add an entry to the size tree.
1181  * @c: UBIFS file-system description object
1182  * @inum: inode number
1183  * @i_size: size on inode
1184  * @d_size: maximum size based on data nodes
1185  * @exists: indicates whether the inode exists
1186  */
1187 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1188 		   loff_t d_size, int exists)
1189 {
1190 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1191 	struct size_entry *e;
1192 
1193 	while (*p) {
1194 		parent = *p;
1195 		e = rb_entry(parent, struct size_entry, rb);
1196 		if (inum < e->inum)
1197 			p = &(*p)->rb_left;
1198 		else
1199 			p = &(*p)->rb_right;
1200 	}
1201 
1202 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1203 	if (!e)
1204 		return -ENOMEM;
1205 
1206 	e->inum = inum;
1207 	e->i_size = i_size;
1208 	e->d_size = d_size;
1209 	e->exists = exists;
1210 
1211 	rb_link_node(&e->rb, parent, p);
1212 	rb_insert_color(&e->rb, &c->size_tree);
1213 
1214 	return 0;
1215 }
1216 
1217 /**
1218  * find_ino - find an entry on the size tree.
1219  * @c: UBIFS file-system description object
1220  * @inum: inode number
1221  */
1222 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1223 {
1224 	struct rb_node *p = c->size_tree.rb_node;
1225 	struct size_entry *e;
1226 
1227 	while (p) {
1228 		e = rb_entry(p, struct size_entry, rb);
1229 		if (inum < e->inum)
1230 			p = p->rb_left;
1231 		else if (inum > e->inum)
1232 			p = p->rb_right;
1233 		else
1234 			return e;
1235 	}
1236 	return NULL;
1237 }
1238 
1239 /**
1240  * remove_ino - remove an entry from the size tree.
1241  * @c: UBIFS file-system description object
1242  * @inum: inode number
1243  */
1244 static void remove_ino(struct ubifs_info *c, ino_t inum)
1245 {
1246 	struct size_entry *e = find_ino(c, inum);
1247 
1248 	if (!e)
1249 		return;
1250 	rb_erase(&e->rb, &c->size_tree);
1251 	kfree(e);
1252 }
1253 
1254 /**
1255  * ubifs_destroy_size_tree - free resources related to the size tree.
1256  * @c: UBIFS file-system description object
1257  */
1258 void ubifs_destroy_size_tree(struct ubifs_info *c)
1259 {
1260 	struct rb_node *this = c->size_tree.rb_node;
1261 	struct size_entry *e;
1262 
1263 	while (this) {
1264 		if (this->rb_left) {
1265 			this = this->rb_left;
1266 			continue;
1267 		} else if (this->rb_right) {
1268 			this = this->rb_right;
1269 			continue;
1270 		}
1271 		e = rb_entry(this, struct size_entry, rb);
1272 		if (e->inode)
1273 			iput(e->inode);
1274 		this = rb_parent(this);
1275 		if (this) {
1276 			if (this->rb_left == &e->rb)
1277 				this->rb_left = NULL;
1278 			else
1279 				this->rb_right = NULL;
1280 		}
1281 		kfree(e);
1282 	}
1283 	c->size_tree = RB_ROOT;
1284 }
1285 
1286 /**
1287  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1288  * @c: UBIFS file-system description object
1289  * @key: node key
1290  * @deletion: node is for a deletion
1291  * @new_size: inode size
1292  *
1293  * This function has two purposes:
1294  *     1) to ensure there are no data nodes that fall outside the inode size
1295  *     2) to ensure there are no data nodes for inodes that do not exist
1296  * To accomplish those purposes, a rb-tree is constructed containing an entry
1297  * for each inode number in the journal that has not been deleted, and recording
1298  * the size from the inode node, the maximum size of any data node (also altered
1299  * by truncations) and a flag indicating a inode number for which no inode node
1300  * was present in the journal.
1301  *
1302  * Note that there is still the possibility that there are data nodes that have
1303  * been committed that are beyond the inode size, however the only way to find
1304  * them would be to scan the entire index. Alternatively, some provision could
1305  * be made to record the size of inodes at the start of commit, which would seem
1306  * very cumbersome for a scenario that is quite unlikely and the only negative
1307  * consequence of which is wasted space.
1308  *
1309  * This functions returns %0 on success and a negative error code on failure.
1310  */
1311 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1312 			     int deletion, loff_t new_size)
1313 {
1314 	ino_t inum = key_inum(c, key);
1315 	struct size_entry *e;
1316 	int err;
1317 
1318 	switch (key_type(c, key)) {
1319 	case UBIFS_INO_KEY:
1320 		if (deletion)
1321 			remove_ino(c, inum);
1322 		else {
1323 			e = find_ino(c, inum);
1324 			if (e) {
1325 				e->i_size = new_size;
1326 				e->exists = 1;
1327 			} else {
1328 				err = add_ino(c, inum, new_size, 0, 1);
1329 				if (err)
1330 					return err;
1331 			}
1332 		}
1333 		break;
1334 	case UBIFS_DATA_KEY:
1335 		e = find_ino(c, inum);
1336 		if (e) {
1337 			if (new_size > e->d_size)
1338 				e->d_size = new_size;
1339 		} else {
1340 			err = add_ino(c, inum, 0, new_size, 0);
1341 			if (err)
1342 				return err;
1343 		}
1344 		break;
1345 	case UBIFS_TRUN_KEY:
1346 		e = find_ino(c, inum);
1347 		if (e)
1348 			e->d_size = new_size;
1349 		break;
1350 	}
1351 	return 0;
1352 }
1353 
1354 /**
1355  * fix_size_in_place - fix inode size in place on flash.
1356  * @c: UBIFS file-system description object
1357  * @e: inode size information for recovery
1358  */
1359 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1360 {
1361 	struct ubifs_ino_node *ino = c->sbuf;
1362 	unsigned char *p;
1363 	union ubifs_key key;
1364 	int err, lnum, offs, len;
1365 	loff_t i_size;
1366 	uint32_t crc;
1367 
1368 	/* Locate the inode node LEB number and offset */
1369 	ino_key_init(c, &key, e->inum);
1370 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1371 	if (err)
1372 		goto out;
1373 	/*
1374 	 * If the size recorded on the inode node is greater than the size that
1375 	 * was calculated from nodes in the journal then don't change the inode.
1376 	 */
1377 	i_size = le64_to_cpu(ino->size);
1378 	if (i_size >= e->d_size)
1379 		return 0;
1380 	/* Read the LEB */
1381 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1382 	if (err)
1383 		goto out;
1384 	/* Change the size field and recalculate the CRC */
1385 	ino = c->sbuf + offs;
1386 	ino->size = cpu_to_le64(e->d_size);
1387 	len = le32_to_cpu(ino->ch.len);
1388 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1389 	ino->ch.crc = cpu_to_le32(crc);
1390 	/* Work out where data in the LEB ends and free space begins */
1391 	p = c->sbuf;
1392 	len = c->leb_size - 1;
1393 	while (p[len] == 0xff)
1394 		len -= 1;
1395 	len = ALIGN(len + 1, c->min_io_size);
1396 	/* Atomically write the fixed LEB back again */
1397 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1398 	if (err)
1399 		goto out;
1400 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1401 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1402 	return 0;
1403 
1404 out:
1405 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1406 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1407 	return err;
1408 }
1409 
1410 /**
1411  * ubifs_recover_size - recover inode size.
1412  * @c: UBIFS file-system description object
1413  *
1414  * This function attempts to fix inode size discrepancies identified by the
1415  * 'ubifs_recover_size_accum()' function.
1416  *
1417  * This functions returns %0 on success and a negative error code on failure.
1418  */
1419 int ubifs_recover_size(struct ubifs_info *c)
1420 {
1421 	struct rb_node *this = rb_first(&c->size_tree);
1422 
1423 	while (this) {
1424 		struct size_entry *e;
1425 		int err;
1426 
1427 		e = rb_entry(this, struct size_entry, rb);
1428 		if (!e->exists) {
1429 			union ubifs_key key;
1430 
1431 			ino_key_init(c, &key, e->inum);
1432 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1433 			if (err && err != -ENOENT)
1434 				return err;
1435 			if (err == -ENOENT) {
1436 				/* Remove data nodes that have no inode */
1437 				dbg_rcvry("removing ino %lu",
1438 					  (unsigned long)e->inum);
1439 				err = ubifs_tnc_remove_ino(c, e->inum);
1440 				if (err)
1441 					return err;
1442 			} else {
1443 				struct ubifs_ino_node *ino = c->sbuf;
1444 
1445 				e->exists = 1;
1446 				e->i_size = le64_to_cpu(ino->size);
1447 			}
1448 		}
1449 		if (e->exists && e->i_size < e->d_size) {
1450 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1451 				/* Fix the inode size and pin it in memory */
1452 				struct inode *inode;
1453 
1454 				inode = ubifs_iget(c->vfs_sb, e->inum);
1455 				if (IS_ERR(inode))
1456 					return PTR_ERR(inode);
1457 				if (inode->i_size < e->d_size) {
1458 					dbg_rcvry("ino %lu size %lld -> %lld",
1459 						  (unsigned long)e->inum,
1460 						  e->d_size, inode->i_size);
1461 					inode->i_size = e->d_size;
1462 					ubifs_inode(inode)->ui_size = e->d_size;
1463 					e->inode = inode;
1464 					this = rb_next(this);
1465 					continue;
1466 				}
1467 				iput(inode);
1468 			} else {
1469 				/* Fix the size in place */
1470 				err = fix_size_in_place(c, e);
1471 				if (err)
1472 					return err;
1473 				if (e->inode)
1474 					iput(e->inode);
1475 			}
1476 		}
1477 		this = rb_next(this);
1478 		rb_erase(&e->rb, &c->size_tree);
1479 		kfree(e);
1480 	}
1481 	return 0;
1482 }
1483