1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions needed to recover from unclean un-mounts. 25 * When UBIFS is mounted, it checks a flag on the master node to determine if 26 * an un-mount was completed successfully. If not, the process of mounting 27 * incorporates additional checking and fixing of on-flash data structures. 28 * UBIFS always cleans away all remnants of an unclean un-mount, so that 29 * errors do not accumulate. However UBIFS defers recovery if it is mounted 30 * read-only, and the flash is not modified in that case. 31 * 32 * The general UBIFS approach to the recovery is that it recovers from 33 * corruptions which could be caused by power cuts, but it refuses to recover 34 * from corruption caused by other reasons. And UBIFS tries to distinguish 35 * between these 2 reasons of corruptions and silently recover in the former 36 * case and loudly complain in the latter case. 37 * 38 * UBIFS writes only to erased LEBs, so it writes only to the flash space 39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning 40 * of the LEB to the end. And UBIFS assumes that the underlying flash media 41 * writes in @c->max_write_size bytes at a time. 42 * 43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. 44 * I/O unit corresponding to offset X to contain corrupted data, all the 45 * following min. I/O units have to contain empty space (all 0xFFs). If this is 46 * not true, the corruption cannot be the result of a power cut, and UBIFS 47 * refuses to mount. 48 */ 49 50 #include <linux/crc32.h> 51 #include <linux/slab.h> 52 #include "ubifs.h" 53 54 /** 55 * is_empty - determine whether a buffer is empty (contains all 0xff). 56 * @buf: buffer to clean 57 * @len: length of buffer 58 * 59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 60 * %0 is returned. 61 */ 62 static int is_empty(void *buf, int len) 63 { 64 uint8_t *p = buf; 65 int i; 66 67 for (i = 0; i < len; i++) 68 if (*p++ != 0xff) 69 return 0; 70 return 1; 71 } 72 73 /** 74 * first_non_ff - find offset of the first non-0xff byte. 75 * @buf: buffer to search in 76 * @len: length of buffer 77 * 78 * This function returns offset of the first non-0xff byte in @buf or %-1 if 79 * the buffer contains only 0xff bytes. 80 */ 81 static int first_non_ff(void *buf, int len) 82 { 83 uint8_t *p = buf; 84 int i; 85 86 for (i = 0; i < len; i++) 87 if (*p++ != 0xff) 88 return i; 89 return -1; 90 } 91 92 /** 93 * get_master_node - get the last valid master node allowing for corruption. 94 * @c: UBIFS file-system description object 95 * @lnum: LEB number 96 * @pbuf: buffer containing the LEB read, is returned here 97 * @mst: master node, if found, is returned here 98 * @cor: corruption, if found, is returned here 99 * 100 * This function allocates a buffer, reads the LEB into it, and finds and 101 * returns the last valid master node allowing for one area of corruption. 102 * The corrupt area, if there is one, must be consistent with the assumption 103 * that it is the result of an unclean unmount while the master node was being 104 * written. Under those circumstances, it is valid to use the previously written 105 * master node. 106 * 107 * This function returns %0 on success and a negative error code on failure. 108 */ 109 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 110 struct ubifs_mst_node **mst, void **cor) 111 { 112 const int sz = c->mst_node_alsz; 113 int err, offs, len; 114 void *sbuf, *buf; 115 116 sbuf = vmalloc(c->leb_size); 117 if (!sbuf) 118 return -ENOMEM; 119 120 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); 121 if (err && err != -EBADMSG) 122 goto out_free; 123 124 /* Find the first position that is definitely not a node */ 125 offs = 0; 126 buf = sbuf; 127 len = c->leb_size; 128 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 129 struct ubifs_ch *ch = buf; 130 131 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 132 break; 133 offs += sz; 134 buf += sz; 135 len -= sz; 136 } 137 /* See if there was a valid master node before that */ 138 if (offs) { 139 int ret; 140 141 offs -= sz; 142 buf -= sz; 143 len += sz; 144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 145 if (ret != SCANNED_A_NODE && offs) { 146 /* Could have been corruption so check one place back */ 147 offs -= sz; 148 buf -= sz; 149 len += sz; 150 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 151 if (ret != SCANNED_A_NODE) 152 /* 153 * We accept only one area of corruption because 154 * we are assuming that it was caused while 155 * trying to write a master node. 156 */ 157 goto out_err; 158 } 159 if (ret == SCANNED_A_NODE) { 160 struct ubifs_ch *ch = buf; 161 162 if (ch->node_type != UBIFS_MST_NODE) 163 goto out_err; 164 dbg_rcvry("found a master node at %d:%d", lnum, offs); 165 *mst = buf; 166 offs += sz; 167 buf += sz; 168 len -= sz; 169 } 170 } 171 /* Check for corruption */ 172 if (offs < c->leb_size) { 173 if (!is_empty(buf, min_t(int, len, sz))) { 174 *cor = buf; 175 dbg_rcvry("found corruption at %d:%d", lnum, offs); 176 } 177 offs += sz; 178 buf += sz; 179 len -= sz; 180 } 181 /* Check remaining empty space */ 182 if (offs < c->leb_size) 183 if (!is_empty(buf, len)) 184 goto out_err; 185 *pbuf = sbuf; 186 return 0; 187 188 out_err: 189 err = -EINVAL; 190 out_free: 191 vfree(sbuf); 192 *mst = NULL; 193 *cor = NULL; 194 return err; 195 } 196 197 /** 198 * write_rcvrd_mst_node - write recovered master node. 199 * @c: UBIFS file-system description object 200 * @mst: master node 201 * 202 * This function returns %0 on success and a negative error code on failure. 203 */ 204 static int write_rcvrd_mst_node(struct ubifs_info *c, 205 struct ubifs_mst_node *mst) 206 { 207 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 208 __le32 save_flags; 209 210 dbg_rcvry("recovery"); 211 212 save_flags = mst->flags; 213 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 214 215 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 216 err = ubifs_leb_change(c, lnum, mst, sz); 217 if (err) 218 goto out; 219 err = ubifs_leb_change(c, lnum + 1, mst, sz); 220 if (err) 221 goto out; 222 out: 223 mst->flags = save_flags; 224 return err; 225 } 226 227 /** 228 * ubifs_recover_master_node - recover the master node. 229 * @c: UBIFS file-system description object 230 * 231 * This function recovers the master node from corruption that may occur due to 232 * an unclean unmount. 233 * 234 * This function returns %0 on success and a negative error code on failure. 235 */ 236 int ubifs_recover_master_node(struct ubifs_info *c) 237 { 238 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 239 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 240 const int sz = c->mst_node_alsz; 241 int err, offs1, offs2; 242 243 dbg_rcvry("recovery"); 244 245 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 246 if (err) 247 goto out_free; 248 249 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 250 if (err) 251 goto out_free; 252 253 if (mst1) { 254 offs1 = (void *)mst1 - buf1; 255 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 256 (offs1 == 0 && !cor1)) { 257 /* 258 * mst1 was written by recovery at offset 0 with no 259 * corruption. 260 */ 261 dbg_rcvry("recovery recovery"); 262 mst = mst1; 263 } else if (mst2) { 264 offs2 = (void *)mst2 - buf2; 265 if (offs1 == offs2) { 266 /* Same offset, so must be the same */ 267 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 268 (void *)mst2 + UBIFS_CH_SZ, 269 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 270 goto out_err; 271 mst = mst1; 272 } else if (offs2 + sz == offs1) { 273 /* 1st LEB was written, 2nd was not */ 274 if (cor1) 275 goto out_err; 276 mst = mst1; 277 } else if (offs1 == 0 && 278 c->leb_size - offs2 - sz < sz) { 279 /* 1st LEB was unmapped and written, 2nd not */ 280 if (cor1) 281 goto out_err; 282 mst = mst1; 283 } else 284 goto out_err; 285 } else { 286 /* 287 * 2nd LEB was unmapped and about to be written, so 288 * there must be only one master node in the first LEB 289 * and no corruption. 290 */ 291 if (offs1 != 0 || cor1) 292 goto out_err; 293 mst = mst1; 294 } 295 } else { 296 if (!mst2) 297 goto out_err; 298 /* 299 * 1st LEB was unmapped and about to be written, so there must 300 * be no room left in 2nd LEB. 301 */ 302 offs2 = (void *)mst2 - buf2; 303 if (offs2 + sz + sz <= c->leb_size) 304 goto out_err; 305 mst = mst2; 306 } 307 308 ubifs_msg(c, "recovered master node from LEB %d", 309 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 310 311 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 312 313 if (c->ro_mount) { 314 /* Read-only mode. Keep a copy for switching to rw mode */ 315 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 316 if (!c->rcvrd_mst_node) { 317 err = -ENOMEM; 318 goto out_free; 319 } 320 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 321 322 /* 323 * We had to recover the master node, which means there was an 324 * unclean reboot. However, it is possible that the master node 325 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. 326 * E.g., consider the following chain of events: 327 * 328 * 1. UBIFS was cleanly unmounted, so the master node is clean 329 * 2. UBIFS is being mounted R/W and starts changing the master 330 * node in the first (%UBIFS_MST_LNUM). A power cut happens, 331 * so this LEB ends up with some amount of garbage at the 332 * end. 333 * 3. UBIFS is being mounted R/O. We reach this place and 334 * recover the master node from the second LEB 335 * (%UBIFS_MST_LNUM + 1). But we cannot update the media 336 * because we are being mounted R/O. We have to defer the 337 * operation. 338 * 4. However, this master node (@c->mst_node) is marked as 339 * clean (since the step 1). And if we just return, the 340 * mount code will be confused and won't recover the master 341 * node when it is re-mounter R/W later. 342 * 343 * Thus, to force the recovery by marking the master node as 344 * dirty. 345 */ 346 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 347 } else { 348 /* Write the recovered master node */ 349 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 350 err = write_rcvrd_mst_node(c, c->mst_node); 351 if (err) 352 goto out_free; 353 } 354 355 vfree(buf2); 356 vfree(buf1); 357 358 return 0; 359 360 out_err: 361 err = -EINVAL; 362 out_free: 363 ubifs_err(c, "failed to recover master node"); 364 if (mst1) { 365 ubifs_err(c, "dumping first master node"); 366 ubifs_dump_node(c, mst1); 367 } 368 if (mst2) { 369 ubifs_err(c, "dumping second master node"); 370 ubifs_dump_node(c, mst2); 371 } 372 vfree(buf2); 373 vfree(buf1); 374 return err; 375 } 376 377 /** 378 * ubifs_write_rcvrd_mst_node - write the recovered master node. 379 * @c: UBIFS file-system description object 380 * 381 * This function writes the master node that was recovered during mounting in 382 * read-only mode and must now be written because we are remounting rw. 383 * 384 * This function returns %0 on success and a negative error code on failure. 385 */ 386 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 387 { 388 int err; 389 390 if (!c->rcvrd_mst_node) 391 return 0; 392 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 393 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 394 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 395 if (err) 396 return err; 397 kfree(c->rcvrd_mst_node); 398 c->rcvrd_mst_node = NULL; 399 return 0; 400 } 401 402 /** 403 * is_last_write - determine if an offset was in the last write to a LEB. 404 * @c: UBIFS file-system description object 405 * @buf: buffer to check 406 * @offs: offset to check 407 * 408 * This function returns %1 if @offs was in the last write to the LEB whose data 409 * is in @buf, otherwise %0 is returned. The determination is made by checking 410 * for subsequent empty space starting from the next @c->max_write_size 411 * boundary. 412 */ 413 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 414 { 415 int empty_offs, check_len; 416 uint8_t *p; 417 418 /* 419 * Round up to the next @c->max_write_size boundary i.e. @offs is in 420 * the last wbuf written. After that should be empty space. 421 */ 422 empty_offs = ALIGN(offs + 1, c->max_write_size); 423 check_len = c->leb_size - empty_offs; 424 p = buf + empty_offs - offs; 425 return is_empty(p, check_len); 426 } 427 428 /** 429 * clean_buf - clean the data from an LEB sitting in a buffer. 430 * @c: UBIFS file-system description object 431 * @buf: buffer to clean 432 * @lnum: LEB number to clean 433 * @offs: offset from which to clean 434 * @len: length of buffer 435 * 436 * This function pads up to the next min_io_size boundary (if there is one) and 437 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 438 * @c->min_io_size boundary. 439 */ 440 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 441 int *offs, int *len) 442 { 443 int empty_offs, pad_len; 444 445 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 446 447 ubifs_assert(c, !(*offs & 7)); 448 empty_offs = ALIGN(*offs, c->min_io_size); 449 pad_len = empty_offs - *offs; 450 ubifs_pad(c, *buf, pad_len); 451 *offs += pad_len; 452 *buf += pad_len; 453 *len -= pad_len; 454 memset(*buf, 0xff, c->leb_size - empty_offs); 455 } 456 457 /** 458 * no_more_nodes - determine if there are no more nodes in a buffer. 459 * @c: UBIFS file-system description object 460 * @buf: buffer to check 461 * @len: length of buffer 462 * @lnum: LEB number of the LEB from which @buf was read 463 * @offs: offset from which @buf was read 464 * 465 * This function ensures that the corrupted node at @offs is the last thing 466 * written to a LEB. This function returns %1 if more data is not found and 467 * %0 if more data is found. 468 */ 469 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 470 int lnum, int offs) 471 { 472 struct ubifs_ch *ch = buf; 473 int skip, dlen = le32_to_cpu(ch->len); 474 475 /* Check for empty space after the corrupt node's common header */ 476 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; 477 if (is_empty(buf + skip, len - skip)) 478 return 1; 479 /* 480 * The area after the common header size is not empty, so the common 481 * header must be intact. Check it. 482 */ 483 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { 484 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); 485 return 0; 486 } 487 /* Now we know the corrupt node's length we can skip over it */ 488 skip = ALIGN(offs + dlen, c->max_write_size) - offs; 489 /* After which there should be empty space */ 490 if (is_empty(buf + skip, len - skip)) 491 return 1; 492 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); 493 return 0; 494 } 495 496 /** 497 * fix_unclean_leb - fix an unclean LEB. 498 * @c: UBIFS file-system description object 499 * @sleb: scanned LEB information 500 * @start: offset where scan started 501 */ 502 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 503 int start) 504 { 505 int lnum = sleb->lnum, endpt = start; 506 507 /* Get the end offset of the last node we are keeping */ 508 if (!list_empty(&sleb->nodes)) { 509 struct ubifs_scan_node *snod; 510 511 snod = list_entry(sleb->nodes.prev, 512 struct ubifs_scan_node, list); 513 endpt = snod->offs + snod->len; 514 } 515 516 if (c->ro_mount && !c->remounting_rw) { 517 /* Add to recovery list */ 518 struct ubifs_unclean_leb *ucleb; 519 520 dbg_rcvry("need to fix LEB %d start %d endpt %d", 521 lnum, start, sleb->endpt); 522 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 523 if (!ucleb) 524 return -ENOMEM; 525 ucleb->lnum = lnum; 526 ucleb->endpt = endpt; 527 list_add_tail(&ucleb->list, &c->unclean_leb_list); 528 } else { 529 /* Write the fixed LEB back to flash */ 530 int err; 531 532 dbg_rcvry("fixing LEB %d start %d endpt %d", 533 lnum, start, sleb->endpt); 534 if (endpt == 0) { 535 err = ubifs_leb_unmap(c, lnum); 536 if (err) 537 return err; 538 } else { 539 int len = ALIGN(endpt, c->min_io_size); 540 541 if (start) { 542 err = ubifs_leb_read(c, lnum, sleb->buf, 0, 543 start, 1); 544 if (err) 545 return err; 546 } 547 /* Pad to min_io_size */ 548 if (len > endpt) { 549 int pad_len = len - ALIGN(endpt, 8); 550 551 if (pad_len > 0) { 552 void *buf = sleb->buf + len - pad_len; 553 554 ubifs_pad(c, buf, pad_len); 555 } 556 } 557 err = ubifs_leb_change(c, lnum, sleb->buf, len); 558 if (err) 559 return err; 560 } 561 } 562 return 0; 563 } 564 565 /** 566 * drop_last_group - drop the last group of nodes. 567 * @sleb: scanned LEB information 568 * @offs: offset of dropped nodes is returned here 569 * 570 * This is a helper function for 'ubifs_recover_leb()' which drops the last 571 * group of nodes of the scanned LEB. 572 */ 573 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) 574 { 575 while (!list_empty(&sleb->nodes)) { 576 struct ubifs_scan_node *snod; 577 struct ubifs_ch *ch; 578 579 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 580 list); 581 ch = snod->node; 582 if (ch->group_type != UBIFS_IN_NODE_GROUP) 583 break; 584 585 dbg_rcvry("dropping grouped node at %d:%d", 586 sleb->lnum, snod->offs); 587 *offs = snod->offs; 588 list_del(&snod->list); 589 kfree(snod); 590 sleb->nodes_cnt -= 1; 591 } 592 } 593 594 /** 595 * drop_last_node - drop the last node. 596 * @sleb: scanned LEB information 597 * @offs: offset of dropped nodes is returned here 598 * 599 * This is a helper function for 'ubifs_recover_leb()' which drops the last 600 * node of the scanned LEB. 601 */ 602 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) 603 { 604 struct ubifs_scan_node *snod; 605 606 if (!list_empty(&sleb->nodes)) { 607 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 608 list); 609 610 dbg_rcvry("dropping last node at %d:%d", 611 sleb->lnum, snod->offs); 612 *offs = snod->offs; 613 list_del(&snod->list); 614 kfree(snod); 615 sleb->nodes_cnt -= 1; 616 } 617 } 618 619 /** 620 * ubifs_recover_leb - scan and recover a LEB. 621 * @c: UBIFS file-system description object 622 * @lnum: LEB number 623 * @offs: offset 624 * @sbuf: LEB-sized buffer to use 625 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not 626 * belong to any journal head) 627 * 628 * This function does a scan of a LEB, but caters for errors that might have 629 * been caused by the unclean unmount from which we are attempting to recover. 630 * Returns the scanned information on success and a negative error code on 631 * failure. 632 */ 633 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 634 int offs, void *sbuf, int jhead) 635 { 636 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; 637 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; 638 struct ubifs_scan_leb *sleb; 639 void *buf = sbuf + offs; 640 641 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); 642 643 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 644 if (IS_ERR(sleb)) 645 return sleb; 646 647 ubifs_assert(c, len >= 8); 648 while (len >= 8) { 649 dbg_scan("look at LEB %d:%d (%d bytes left)", 650 lnum, offs, len); 651 652 cond_resched(); 653 654 /* 655 * Scan quietly until there is an error from which we cannot 656 * recover 657 */ 658 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 659 if (ret == SCANNED_A_NODE) { 660 /* A valid node, and not a padding node */ 661 struct ubifs_ch *ch = buf; 662 int node_len; 663 664 err = ubifs_add_snod(c, sleb, buf, offs); 665 if (err) 666 goto error; 667 node_len = ALIGN(le32_to_cpu(ch->len), 8); 668 offs += node_len; 669 buf += node_len; 670 len -= node_len; 671 } else if (ret > 0) { 672 /* Padding bytes or a valid padding node */ 673 offs += ret; 674 buf += ret; 675 len -= ret; 676 } else if (ret == SCANNED_EMPTY_SPACE || 677 ret == SCANNED_GARBAGE || 678 ret == SCANNED_A_BAD_PAD_NODE || 679 ret == SCANNED_A_CORRUPT_NODE) { 680 dbg_rcvry("found corruption (%d) at %d:%d", 681 ret, lnum, offs); 682 break; 683 } else { 684 ubifs_err(c, "unexpected return value %d", ret); 685 err = -EINVAL; 686 goto error; 687 } 688 } 689 690 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { 691 if (!is_last_write(c, buf, offs)) 692 goto corrupted_rescan; 693 } else if (ret == SCANNED_A_CORRUPT_NODE) { 694 if (!no_more_nodes(c, buf, len, lnum, offs)) 695 goto corrupted_rescan; 696 } else if (!is_empty(buf, len)) { 697 if (!is_last_write(c, buf, offs)) { 698 int corruption = first_non_ff(buf, len); 699 700 /* 701 * See header comment for this file for more 702 * explanations about the reasons we have this check. 703 */ 704 ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d", 705 lnum, offs, corruption); 706 /* Make sure we dump interesting non-0xFF data */ 707 offs += corruption; 708 buf += corruption; 709 goto corrupted; 710 } 711 } 712 713 min_io_unit = round_down(offs, c->min_io_size); 714 if (grouped) 715 /* 716 * If nodes are grouped, always drop the incomplete group at 717 * the end. 718 */ 719 drop_last_group(sleb, &offs); 720 721 if (jhead == GCHD) { 722 /* 723 * If this LEB belongs to the GC head then while we are in the 724 * middle of the same min. I/O unit keep dropping nodes. So 725 * basically, what we want is to make sure that the last min. 726 * I/O unit where we saw the corruption is dropped completely 727 * with all the uncorrupted nodes which may possibly sit there. 728 * 729 * In other words, let's name the min. I/O unit where the 730 * corruption starts B, and the previous min. I/O unit A. The 731 * below code tries to deal with a situation when half of B 732 * contains valid nodes or the end of a valid node, and the 733 * second half of B contains corrupted data or garbage. This 734 * means that UBIFS had been writing to B just before the power 735 * cut happened. I do not know how realistic is this scenario 736 * that half of the min. I/O unit had been written successfully 737 * and the other half not, but this is possible in our 'failure 738 * mode emulation' infrastructure at least. 739 * 740 * So what is the problem, why we need to drop those nodes? Why 741 * can't we just clean-up the second half of B by putting a 742 * padding node there? We can, and this works fine with one 743 * exception which was reproduced with power cut emulation 744 * testing and happens extremely rarely. 745 * 746 * Imagine the file-system is full, we run GC which starts 747 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is 748 * the current GC head LEB). The @c->gc_lnum is -1, which means 749 * that GC will retain LEB X and will try to continue. Imagine 750 * that LEB X is currently the dirtiest LEB, and the amount of 751 * used space in LEB Y is exactly the same as amount of free 752 * space in LEB X. 753 * 754 * And a power cut happens when nodes are moved from LEB X to 755 * LEB Y. We are here trying to recover LEB Y which is the GC 756 * head LEB. We find the min. I/O unit B as described above. 757 * Then we clean-up LEB Y by padding min. I/O unit. And later 758 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot 759 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X 760 * does not match because the amount of valid nodes there does 761 * not fit the free space in LEB Y any more! And this is 762 * because of the padding node which we added to LEB Y. The 763 * user-visible effect of this which I once observed and 764 * analysed is that we cannot mount the file-system with 765 * -ENOSPC error. 766 * 767 * So obviously, to make sure that situation does not happen we 768 * should free min. I/O unit B in LEB Y completely and the last 769 * used min. I/O unit in LEB Y should be A. This is basically 770 * what the below code tries to do. 771 */ 772 while (offs > min_io_unit) 773 drop_last_node(sleb, &offs); 774 } 775 776 buf = sbuf + offs; 777 len = c->leb_size - offs; 778 779 clean_buf(c, &buf, lnum, &offs, &len); 780 ubifs_end_scan(c, sleb, lnum, offs); 781 782 err = fix_unclean_leb(c, sleb, start); 783 if (err) 784 goto error; 785 786 return sleb; 787 788 corrupted_rescan: 789 /* Re-scan the corrupted data with verbose messages */ 790 ubifs_err(c, "corruption %d", ret); 791 ubifs_scan_a_node(c, buf, len, lnum, offs, 0); 792 corrupted: 793 ubifs_scanned_corruption(c, lnum, offs, buf); 794 err = -EUCLEAN; 795 error: 796 ubifs_err(c, "LEB %d scanning failed", lnum); 797 ubifs_scan_destroy(sleb); 798 return ERR_PTR(err); 799 } 800 801 /** 802 * get_cs_sqnum - get commit start sequence number. 803 * @c: UBIFS file-system description object 804 * @lnum: LEB number of commit start node 805 * @offs: offset of commit start node 806 * @cs_sqnum: commit start sequence number is returned here 807 * 808 * This function returns %0 on success and a negative error code on failure. 809 */ 810 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 811 unsigned long long *cs_sqnum) 812 { 813 struct ubifs_cs_node *cs_node = NULL; 814 int err, ret; 815 816 dbg_rcvry("at %d:%d", lnum, offs); 817 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 818 if (!cs_node) 819 return -ENOMEM; 820 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 821 goto out_err; 822 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, 823 UBIFS_CS_NODE_SZ, 0); 824 if (err && err != -EBADMSG) 825 goto out_free; 826 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 827 if (ret != SCANNED_A_NODE) { 828 ubifs_err(c, "Not a valid node"); 829 goto out_err; 830 } 831 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 832 ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type); 833 goto out_err; 834 } 835 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 836 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu", 837 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 838 c->cmt_no); 839 goto out_err; 840 } 841 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 842 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 843 kfree(cs_node); 844 return 0; 845 846 out_err: 847 err = -EINVAL; 848 out_free: 849 ubifs_err(c, "failed to get CS sqnum"); 850 kfree(cs_node); 851 return err; 852 } 853 854 /** 855 * ubifs_recover_log_leb - scan and recover a log LEB. 856 * @c: UBIFS file-system description object 857 * @lnum: LEB number 858 * @offs: offset 859 * @sbuf: LEB-sized buffer to use 860 * 861 * This function does a scan of a LEB, but caters for errors that might have 862 * been caused by unclean reboots from which we are attempting to recover 863 * (assume that only the last log LEB can be corrupted by an unclean reboot). 864 * 865 * This function returns %0 on success and a negative error code on failure. 866 */ 867 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 868 int offs, void *sbuf) 869 { 870 struct ubifs_scan_leb *sleb; 871 int next_lnum; 872 873 dbg_rcvry("LEB %d", lnum); 874 next_lnum = lnum + 1; 875 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 876 next_lnum = UBIFS_LOG_LNUM; 877 if (next_lnum != c->ltail_lnum) { 878 /* 879 * We can only recover at the end of the log, so check that the 880 * next log LEB is empty or out of date. 881 */ 882 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); 883 if (IS_ERR(sleb)) 884 return sleb; 885 if (sleb->nodes_cnt) { 886 struct ubifs_scan_node *snod; 887 unsigned long long cs_sqnum = c->cs_sqnum; 888 889 snod = list_entry(sleb->nodes.next, 890 struct ubifs_scan_node, list); 891 if (cs_sqnum == 0) { 892 int err; 893 894 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 895 if (err) { 896 ubifs_scan_destroy(sleb); 897 return ERR_PTR(err); 898 } 899 } 900 if (snod->sqnum > cs_sqnum) { 901 ubifs_err(c, "unrecoverable log corruption in LEB %d", 902 lnum); 903 ubifs_scan_destroy(sleb); 904 return ERR_PTR(-EUCLEAN); 905 } 906 } 907 ubifs_scan_destroy(sleb); 908 } 909 return ubifs_recover_leb(c, lnum, offs, sbuf, -1); 910 } 911 912 /** 913 * recover_head - recover a head. 914 * @c: UBIFS file-system description object 915 * @lnum: LEB number of head to recover 916 * @offs: offset of head to recover 917 * @sbuf: LEB-sized buffer to use 918 * 919 * This function ensures that there is no data on the flash at a head location. 920 * 921 * This function returns %0 on success and a negative error code on failure. 922 */ 923 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) 924 { 925 int len = c->max_write_size, err; 926 927 if (offs + len > c->leb_size) 928 len = c->leb_size - offs; 929 930 if (!len) 931 return 0; 932 933 /* Read at the head location and check it is empty flash */ 934 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); 935 if (err || !is_empty(sbuf, len)) { 936 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 937 if (offs == 0) 938 return ubifs_leb_unmap(c, lnum); 939 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); 940 if (err) 941 return err; 942 return ubifs_leb_change(c, lnum, sbuf, offs); 943 } 944 945 return 0; 946 } 947 948 /** 949 * ubifs_recover_inl_heads - recover index and LPT heads. 950 * @c: UBIFS file-system description object 951 * @sbuf: LEB-sized buffer to use 952 * 953 * This function ensures that there is no data on the flash at the index and 954 * LPT head locations. 955 * 956 * This deals with the recovery of a half-completed journal commit. UBIFS is 957 * careful never to overwrite the last version of the index or the LPT. Because 958 * the index and LPT are wandering trees, data from a half-completed commit will 959 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 960 * assumed to be empty and will be unmapped anyway before use, or in the index 961 * and LPT heads. 962 * 963 * This function returns %0 on success and a negative error code on failure. 964 */ 965 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) 966 { 967 int err; 968 969 ubifs_assert(c, !c->ro_mount || c->remounting_rw); 970 971 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 972 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 973 if (err) 974 return err; 975 976 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 977 978 return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 979 } 980 981 /** 982 * clean_an_unclean_leb - read and write a LEB to remove corruption. 983 * @c: UBIFS file-system description object 984 * @ucleb: unclean LEB information 985 * @sbuf: LEB-sized buffer to use 986 * 987 * This function reads a LEB up to a point pre-determined by the mount recovery, 988 * checks the nodes, and writes the result back to the flash, thereby cleaning 989 * off any following corruption, or non-fatal ECC errors. 990 * 991 * This function returns %0 on success and a negative error code on failure. 992 */ 993 static int clean_an_unclean_leb(struct ubifs_info *c, 994 struct ubifs_unclean_leb *ucleb, void *sbuf) 995 { 996 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 997 void *buf = sbuf; 998 999 dbg_rcvry("LEB %d len %d", lnum, len); 1000 1001 if (len == 0) { 1002 /* Nothing to read, just unmap it */ 1003 return ubifs_leb_unmap(c, lnum); 1004 } 1005 1006 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1007 if (err && err != -EBADMSG) 1008 return err; 1009 1010 while (len >= 8) { 1011 int ret; 1012 1013 cond_resched(); 1014 1015 /* Scan quietly until there is an error */ 1016 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 1017 1018 if (ret == SCANNED_A_NODE) { 1019 /* A valid node, and not a padding node */ 1020 struct ubifs_ch *ch = buf; 1021 int node_len; 1022 1023 node_len = ALIGN(le32_to_cpu(ch->len), 8); 1024 offs += node_len; 1025 buf += node_len; 1026 len -= node_len; 1027 continue; 1028 } 1029 1030 if (ret > 0) { 1031 /* Padding bytes or a valid padding node */ 1032 offs += ret; 1033 buf += ret; 1034 len -= ret; 1035 continue; 1036 } 1037 1038 if (ret == SCANNED_EMPTY_SPACE) { 1039 ubifs_err(c, "unexpected empty space at %d:%d", 1040 lnum, offs); 1041 return -EUCLEAN; 1042 } 1043 1044 if (quiet) { 1045 /* Redo the last scan but noisily */ 1046 quiet = 0; 1047 continue; 1048 } 1049 1050 ubifs_scanned_corruption(c, lnum, offs, buf); 1051 return -EUCLEAN; 1052 } 1053 1054 /* Pad to min_io_size */ 1055 len = ALIGN(ucleb->endpt, c->min_io_size); 1056 if (len > ucleb->endpt) { 1057 int pad_len = len - ALIGN(ucleb->endpt, 8); 1058 1059 if (pad_len > 0) { 1060 buf = c->sbuf + len - pad_len; 1061 ubifs_pad(c, buf, pad_len); 1062 } 1063 } 1064 1065 /* Write back the LEB atomically */ 1066 err = ubifs_leb_change(c, lnum, sbuf, len); 1067 if (err) 1068 return err; 1069 1070 dbg_rcvry("cleaned LEB %d", lnum); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1077 * @c: UBIFS file-system description object 1078 * @sbuf: LEB-sized buffer to use 1079 * 1080 * This function cleans a LEB identified during recovery that needs to be 1081 * written but was not because UBIFS was mounted read-only. This happens when 1082 * remounting to read-write mode. 1083 * 1084 * This function returns %0 on success and a negative error code on failure. 1085 */ 1086 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) 1087 { 1088 dbg_rcvry("recovery"); 1089 while (!list_empty(&c->unclean_leb_list)) { 1090 struct ubifs_unclean_leb *ucleb; 1091 int err; 1092 1093 ucleb = list_entry(c->unclean_leb_list.next, 1094 struct ubifs_unclean_leb, list); 1095 err = clean_an_unclean_leb(c, ucleb, sbuf); 1096 if (err) 1097 return err; 1098 list_del(&ucleb->list); 1099 kfree(ucleb); 1100 } 1101 return 0; 1102 } 1103 1104 /** 1105 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. 1106 * @c: UBIFS file-system description object 1107 * 1108 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty 1109 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns 1110 * zero in case of success and a negative error code in case of failure. 1111 */ 1112 static int grab_empty_leb(struct ubifs_info *c) 1113 { 1114 int lnum, err; 1115 1116 /* 1117 * Note, it is very important to first search for an empty LEB and then 1118 * run the commit, not vice-versa. The reason is that there might be 1119 * only one empty LEB at the moment, the one which has been the 1120 * @c->gc_lnum just before the power cut happened. During the regular 1121 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no 1122 * one but GC can grab it. But at this moment this single empty LEB is 1123 * not marked as taken, so if we run commit - what happens? Right, the 1124 * commit will grab it and write the index there. Remember that the 1125 * index always expands as long as there is free space, and it only 1126 * starts consolidating when we run out of space. 1127 * 1128 * IOW, if we run commit now, we might not be able to find a free LEB 1129 * after this. 1130 */ 1131 lnum = ubifs_find_free_leb_for_idx(c); 1132 if (lnum < 0) { 1133 ubifs_err(c, "could not find an empty LEB"); 1134 ubifs_dump_lprops(c); 1135 ubifs_dump_budg(c, &c->bi); 1136 return lnum; 1137 } 1138 1139 /* Reset the index flag */ 1140 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1141 LPROPS_INDEX, 0); 1142 if (err) 1143 return err; 1144 1145 c->gc_lnum = lnum; 1146 dbg_rcvry("found empty LEB %d, run commit", lnum); 1147 1148 return ubifs_run_commit(c); 1149 } 1150 1151 /** 1152 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1153 * @c: UBIFS file-system description object 1154 * 1155 * Out-of-place garbage collection requires always one empty LEB with which to 1156 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1157 * written to the master node on unmounting. In the case of an unclean unmount 1158 * the value of gc_lnum recorded in the master node is out of date and cannot 1159 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1160 * However, there may not be enough empty space, in which case it must be 1161 * possible to GC the dirtiest LEB into the GC head LEB. 1162 * 1163 * This function also runs the commit which causes the TNC updates from 1164 * size-recovery and orphans to be written to the flash. That is important to 1165 * ensure correct replay order for subsequent mounts. 1166 * 1167 * This function returns %0 on success and a negative error code on failure. 1168 */ 1169 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1170 { 1171 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1172 struct ubifs_lprops lp; 1173 int err; 1174 1175 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); 1176 1177 c->gc_lnum = -1; 1178 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) 1179 return grab_empty_leb(c); 1180 1181 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1182 if (err) { 1183 if (err != -ENOSPC) 1184 return err; 1185 1186 dbg_rcvry("could not find a dirty LEB"); 1187 return grab_empty_leb(c); 1188 } 1189 1190 ubifs_assert(c, !(lp.flags & LPROPS_INDEX)); 1191 ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs); 1192 1193 /* 1194 * We run the commit before garbage collection otherwise subsequent 1195 * mounts will see the GC and orphan deletion in a different order. 1196 */ 1197 dbg_rcvry("committing"); 1198 err = ubifs_run_commit(c); 1199 if (err) 1200 return err; 1201 1202 dbg_rcvry("GC'ing LEB %d", lp.lnum); 1203 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1204 err = ubifs_garbage_collect_leb(c, &lp); 1205 if (err >= 0) { 1206 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1207 1208 if (err2) 1209 err = err2; 1210 } 1211 mutex_unlock(&wbuf->io_mutex); 1212 if (err < 0) { 1213 ubifs_err(c, "GC failed, error %d", err); 1214 if (err == -EAGAIN) 1215 err = -EINVAL; 1216 return err; 1217 } 1218 1219 ubifs_assert(c, err == LEB_RETAINED); 1220 if (err != LEB_RETAINED) 1221 return -EINVAL; 1222 1223 err = ubifs_leb_unmap(c, c->gc_lnum); 1224 if (err) 1225 return err; 1226 1227 dbg_rcvry("allocated LEB %d for GC", lp.lnum); 1228 return 0; 1229 } 1230 1231 /** 1232 * struct size_entry - inode size information for recovery. 1233 * @rb: link in the RB-tree of sizes 1234 * @inum: inode number 1235 * @i_size: size on inode 1236 * @d_size: maximum size based on data nodes 1237 * @exists: indicates whether the inode exists 1238 * @inode: inode if pinned in memory awaiting rw mode to fix it 1239 */ 1240 struct size_entry { 1241 struct rb_node rb; 1242 ino_t inum; 1243 loff_t i_size; 1244 loff_t d_size; 1245 int exists; 1246 struct inode *inode; 1247 }; 1248 1249 /** 1250 * add_ino - add an entry to the size tree. 1251 * @c: UBIFS file-system description object 1252 * @inum: inode number 1253 * @i_size: size on inode 1254 * @d_size: maximum size based on data nodes 1255 * @exists: indicates whether the inode exists 1256 */ 1257 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1258 loff_t d_size, int exists) 1259 { 1260 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1261 struct size_entry *e; 1262 1263 while (*p) { 1264 parent = *p; 1265 e = rb_entry(parent, struct size_entry, rb); 1266 if (inum < e->inum) 1267 p = &(*p)->rb_left; 1268 else 1269 p = &(*p)->rb_right; 1270 } 1271 1272 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1273 if (!e) 1274 return -ENOMEM; 1275 1276 e->inum = inum; 1277 e->i_size = i_size; 1278 e->d_size = d_size; 1279 e->exists = exists; 1280 1281 rb_link_node(&e->rb, parent, p); 1282 rb_insert_color(&e->rb, &c->size_tree); 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * find_ino - find an entry on the size tree. 1289 * @c: UBIFS file-system description object 1290 * @inum: inode number 1291 */ 1292 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1293 { 1294 struct rb_node *p = c->size_tree.rb_node; 1295 struct size_entry *e; 1296 1297 while (p) { 1298 e = rb_entry(p, struct size_entry, rb); 1299 if (inum < e->inum) 1300 p = p->rb_left; 1301 else if (inum > e->inum) 1302 p = p->rb_right; 1303 else 1304 return e; 1305 } 1306 return NULL; 1307 } 1308 1309 /** 1310 * remove_ino - remove an entry from the size tree. 1311 * @c: UBIFS file-system description object 1312 * @inum: inode number 1313 */ 1314 static void remove_ino(struct ubifs_info *c, ino_t inum) 1315 { 1316 struct size_entry *e = find_ino(c, inum); 1317 1318 if (!e) 1319 return; 1320 rb_erase(&e->rb, &c->size_tree); 1321 kfree(e); 1322 } 1323 1324 /** 1325 * ubifs_destroy_size_tree - free resources related to the size tree. 1326 * @c: UBIFS file-system description object 1327 */ 1328 void ubifs_destroy_size_tree(struct ubifs_info *c) 1329 { 1330 struct size_entry *e, *n; 1331 1332 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { 1333 iput(e->inode); 1334 kfree(e); 1335 } 1336 1337 c->size_tree = RB_ROOT; 1338 } 1339 1340 /** 1341 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1342 * @c: UBIFS file-system description object 1343 * @key: node key 1344 * @deletion: node is for a deletion 1345 * @new_size: inode size 1346 * 1347 * This function has two purposes: 1348 * 1) to ensure there are no data nodes that fall outside the inode size 1349 * 2) to ensure there are no data nodes for inodes that do not exist 1350 * To accomplish those purposes, a rb-tree is constructed containing an entry 1351 * for each inode number in the journal that has not been deleted, and recording 1352 * the size from the inode node, the maximum size of any data node (also altered 1353 * by truncations) and a flag indicating a inode number for which no inode node 1354 * was present in the journal. 1355 * 1356 * Note that there is still the possibility that there are data nodes that have 1357 * been committed that are beyond the inode size, however the only way to find 1358 * them would be to scan the entire index. Alternatively, some provision could 1359 * be made to record the size of inodes at the start of commit, which would seem 1360 * very cumbersome for a scenario that is quite unlikely and the only negative 1361 * consequence of which is wasted space. 1362 * 1363 * This functions returns %0 on success and a negative error code on failure. 1364 */ 1365 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1366 int deletion, loff_t new_size) 1367 { 1368 ino_t inum = key_inum(c, key); 1369 struct size_entry *e; 1370 int err; 1371 1372 switch (key_type(c, key)) { 1373 case UBIFS_INO_KEY: 1374 if (deletion) 1375 remove_ino(c, inum); 1376 else { 1377 e = find_ino(c, inum); 1378 if (e) { 1379 e->i_size = new_size; 1380 e->exists = 1; 1381 } else { 1382 err = add_ino(c, inum, new_size, 0, 1); 1383 if (err) 1384 return err; 1385 } 1386 } 1387 break; 1388 case UBIFS_DATA_KEY: 1389 e = find_ino(c, inum); 1390 if (e) { 1391 if (new_size > e->d_size) 1392 e->d_size = new_size; 1393 } else { 1394 err = add_ino(c, inum, 0, new_size, 0); 1395 if (err) 1396 return err; 1397 } 1398 break; 1399 case UBIFS_TRUN_KEY: 1400 e = find_ino(c, inum); 1401 if (e) 1402 e->d_size = new_size; 1403 break; 1404 } 1405 return 0; 1406 } 1407 1408 /** 1409 * fix_size_in_place - fix inode size in place on flash. 1410 * @c: UBIFS file-system description object 1411 * @e: inode size information for recovery 1412 */ 1413 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1414 { 1415 struct ubifs_ino_node *ino = c->sbuf; 1416 unsigned char *p; 1417 union ubifs_key key; 1418 int err, lnum, offs, len; 1419 loff_t i_size; 1420 uint32_t crc; 1421 1422 /* Locate the inode node LEB number and offset */ 1423 ino_key_init(c, &key, e->inum); 1424 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1425 if (err) 1426 goto out; 1427 /* 1428 * If the size recorded on the inode node is greater than the size that 1429 * was calculated from nodes in the journal then don't change the inode. 1430 */ 1431 i_size = le64_to_cpu(ino->size); 1432 if (i_size >= e->d_size) 1433 return 0; 1434 /* Read the LEB */ 1435 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); 1436 if (err) 1437 goto out; 1438 /* Change the size field and recalculate the CRC */ 1439 ino = c->sbuf + offs; 1440 ino->size = cpu_to_le64(e->d_size); 1441 len = le32_to_cpu(ino->ch.len); 1442 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1443 ino->ch.crc = cpu_to_le32(crc); 1444 /* Work out where data in the LEB ends and free space begins */ 1445 p = c->sbuf; 1446 len = c->leb_size - 1; 1447 while (p[len] == 0xff) 1448 len -= 1; 1449 len = ALIGN(len + 1, c->min_io_size); 1450 /* Atomically write the fixed LEB back again */ 1451 err = ubifs_leb_change(c, lnum, c->sbuf, len); 1452 if (err) 1453 goto out; 1454 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", 1455 (unsigned long)e->inum, lnum, offs, i_size, e->d_size); 1456 return 0; 1457 1458 out: 1459 ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d", 1460 (unsigned long)e->inum, e->i_size, e->d_size, err); 1461 return err; 1462 } 1463 1464 /** 1465 * ubifs_recover_size - recover inode size. 1466 * @c: UBIFS file-system description object 1467 * 1468 * This function attempts to fix inode size discrepancies identified by the 1469 * 'ubifs_recover_size_accum()' function. 1470 * 1471 * This functions returns %0 on success and a negative error code on failure. 1472 */ 1473 int ubifs_recover_size(struct ubifs_info *c) 1474 { 1475 struct rb_node *this = rb_first(&c->size_tree); 1476 1477 while (this) { 1478 struct size_entry *e; 1479 int err; 1480 1481 e = rb_entry(this, struct size_entry, rb); 1482 if (!e->exists) { 1483 union ubifs_key key; 1484 1485 ino_key_init(c, &key, e->inum); 1486 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1487 if (err && err != -ENOENT) 1488 return err; 1489 if (err == -ENOENT) { 1490 /* Remove data nodes that have no inode */ 1491 dbg_rcvry("removing ino %lu", 1492 (unsigned long)e->inum); 1493 err = ubifs_tnc_remove_ino(c, e->inum); 1494 if (err) 1495 return err; 1496 } else { 1497 struct ubifs_ino_node *ino = c->sbuf; 1498 1499 e->exists = 1; 1500 e->i_size = le64_to_cpu(ino->size); 1501 } 1502 } 1503 1504 if (e->exists && e->i_size < e->d_size) { 1505 if (c->ro_mount) { 1506 /* Fix the inode size and pin it in memory */ 1507 struct inode *inode; 1508 struct ubifs_inode *ui; 1509 1510 ubifs_assert(c, !e->inode); 1511 1512 inode = ubifs_iget(c->vfs_sb, e->inum); 1513 if (IS_ERR(inode)) 1514 return PTR_ERR(inode); 1515 1516 ui = ubifs_inode(inode); 1517 if (inode->i_size < e->d_size) { 1518 dbg_rcvry("ino %lu size %lld -> %lld", 1519 (unsigned long)e->inum, 1520 inode->i_size, e->d_size); 1521 inode->i_size = e->d_size; 1522 ui->ui_size = e->d_size; 1523 ui->synced_i_size = e->d_size; 1524 e->inode = inode; 1525 this = rb_next(this); 1526 continue; 1527 } 1528 iput(inode); 1529 } else { 1530 /* Fix the size in place */ 1531 err = fix_size_in_place(c, e); 1532 if (err) 1533 return err; 1534 iput(e->inode); 1535 } 1536 } 1537 1538 this = rb_next(this); 1539 rb_erase(&e->rb, &c->size_tree); 1540 kfree(e); 1541 } 1542 1543 return 0; 1544 } 1545