1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions needed to recover from unclean un-mounts. 25 * When UBIFS is mounted, it checks a flag on the master node to determine if 26 * an un-mount was completed sucessfully. If not, the process of mounting 27 * incorparates additional checking and fixing of on-flash data structures. 28 * UBIFS always cleans away all remnants of an unclean un-mount, so that 29 * errors do not accumulate. However UBIFS defers recovery if it is mounted 30 * read-only, and the flash is not modified in that case. 31 */ 32 33 #include <linux/crc32.h> 34 #include "ubifs.h" 35 36 /** 37 * is_empty - determine whether a buffer is empty (contains all 0xff). 38 * @buf: buffer to clean 39 * @len: length of buffer 40 * 41 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 42 * %0 is returned. 43 */ 44 static int is_empty(void *buf, int len) 45 { 46 uint8_t *p = buf; 47 int i; 48 49 for (i = 0; i < len; i++) 50 if (*p++ != 0xff) 51 return 0; 52 return 1; 53 } 54 55 /** 56 * get_master_node - get the last valid master node allowing for corruption. 57 * @c: UBIFS file-system description object 58 * @lnum: LEB number 59 * @pbuf: buffer containing the LEB read, is returned here 60 * @mst: master node, if found, is returned here 61 * @cor: corruption, if found, is returned here 62 * 63 * This function allocates a buffer, reads the LEB into it, and finds and 64 * returns the last valid master node allowing for one area of corruption. 65 * The corrupt area, if there is one, must be consistent with the assumption 66 * that it is the result of an unclean unmount while the master node was being 67 * written. Under those circumstances, it is valid to use the previously written 68 * master node. 69 * 70 * This function returns %0 on success and a negative error code on failure. 71 */ 72 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 73 struct ubifs_mst_node **mst, void **cor) 74 { 75 const int sz = c->mst_node_alsz; 76 int err, offs, len; 77 void *sbuf, *buf; 78 79 sbuf = vmalloc(c->leb_size); 80 if (!sbuf) 81 return -ENOMEM; 82 83 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); 84 if (err && err != -EBADMSG) 85 goto out_free; 86 87 /* Find the first position that is definitely not a node */ 88 offs = 0; 89 buf = sbuf; 90 len = c->leb_size; 91 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 92 struct ubifs_ch *ch = buf; 93 94 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 95 break; 96 offs += sz; 97 buf += sz; 98 len -= sz; 99 } 100 /* See if there was a valid master node before that */ 101 if (offs) { 102 int ret; 103 104 offs -= sz; 105 buf -= sz; 106 len += sz; 107 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 108 if (ret != SCANNED_A_NODE && offs) { 109 /* Could have been corruption so check one place back */ 110 offs -= sz; 111 buf -= sz; 112 len += sz; 113 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 114 if (ret != SCANNED_A_NODE) 115 /* 116 * We accept only one area of corruption because 117 * we are assuming that it was caused while 118 * trying to write a master node. 119 */ 120 goto out_err; 121 } 122 if (ret == SCANNED_A_NODE) { 123 struct ubifs_ch *ch = buf; 124 125 if (ch->node_type != UBIFS_MST_NODE) 126 goto out_err; 127 dbg_rcvry("found a master node at %d:%d", lnum, offs); 128 *mst = buf; 129 offs += sz; 130 buf += sz; 131 len -= sz; 132 } 133 } 134 /* Check for corruption */ 135 if (offs < c->leb_size) { 136 if (!is_empty(buf, min_t(int, len, sz))) { 137 *cor = buf; 138 dbg_rcvry("found corruption at %d:%d", lnum, offs); 139 } 140 offs += sz; 141 buf += sz; 142 len -= sz; 143 } 144 /* Check remaining empty space */ 145 if (offs < c->leb_size) 146 if (!is_empty(buf, len)) 147 goto out_err; 148 *pbuf = sbuf; 149 return 0; 150 151 out_err: 152 err = -EINVAL; 153 out_free: 154 vfree(sbuf); 155 *mst = NULL; 156 *cor = NULL; 157 return err; 158 } 159 160 /** 161 * write_rcvrd_mst_node - write recovered master node. 162 * @c: UBIFS file-system description object 163 * @mst: master node 164 * 165 * This function returns %0 on success and a negative error code on failure. 166 */ 167 static int write_rcvrd_mst_node(struct ubifs_info *c, 168 struct ubifs_mst_node *mst) 169 { 170 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 171 __le32 save_flags; 172 173 dbg_rcvry("recovery"); 174 175 save_flags = mst->flags; 176 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 177 178 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 179 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); 180 if (err) 181 goto out; 182 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); 183 if (err) 184 goto out; 185 out: 186 mst->flags = save_flags; 187 return err; 188 } 189 190 /** 191 * ubifs_recover_master_node - recover the master node. 192 * @c: UBIFS file-system description object 193 * 194 * This function recovers the master node from corruption that may occur due to 195 * an unclean unmount. 196 * 197 * This function returns %0 on success and a negative error code on failure. 198 */ 199 int ubifs_recover_master_node(struct ubifs_info *c) 200 { 201 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 202 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 203 const int sz = c->mst_node_alsz; 204 int err, offs1, offs2; 205 206 dbg_rcvry("recovery"); 207 208 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 209 if (err) 210 goto out_free; 211 212 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 213 if (err) 214 goto out_free; 215 216 if (mst1) { 217 offs1 = (void *)mst1 - buf1; 218 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 219 (offs1 == 0 && !cor1)) { 220 /* 221 * mst1 was written by recovery at offset 0 with no 222 * corruption. 223 */ 224 dbg_rcvry("recovery recovery"); 225 mst = mst1; 226 } else if (mst2) { 227 offs2 = (void *)mst2 - buf2; 228 if (offs1 == offs2) { 229 /* Same offset, so must be the same */ 230 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 231 (void *)mst2 + UBIFS_CH_SZ, 232 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 233 goto out_err; 234 mst = mst1; 235 } else if (offs2 + sz == offs1) { 236 /* 1st LEB was written, 2nd was not */ 237 if (cor1) 238 goto out_err; 239 mst = mst1; 240 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { 241 /* 1st LEB was unmapped and written, 2nd not */ 242 if (cor1) 243 goto out_err; 244 mst = mst1; 245 } else 246 goto out_err; 247 } else { 248 /* 249 * 2nd LEB was unmapped and about to be written, so 250 * there must be only one master node in the first LEB 251 * and no corruption. 252 */ 253 if (offs1 != 0 || cor1) 254 goto out_err; 255 mst = mst1; 256 } 257 } else { 258 if (!mst2) 259 goto out_err; 260 /* 261 * 1st LEB was unmapped and about to be written, so there must 262 * be no room left in 2nd LEB. 263 */ 264 offs2 = (void *)mst2 - buf2; 265 if (offs2 + sz + sz <= c->leb_size) 266 goto out_err; 267 mst = mst2; 268 } 269 270 dbg_rcvry("recovered master node from LEB %d", 271 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 272 273 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 274 275 if ((c->vfs_sb->s_flags & MS_RDONLY)) { 276 /* Read-only mode. Keep a copy for switching to rw mode */ 277 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 278 if (!c->rcvrd_mst_node) { 279 err = -ENOMEM; 280 goto out_free; 281 } 282 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 283 } else { 284 /* Write the recovered master node */ 285 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 286 err = write_rcvrd_mst_node(c, c->mst_node); 287 if (err) 288 goto out_free; 289 } 290 291 vfree(buf2); 292 vfree(buf1); 293 294 return 0; 295 296 out_err: 297 err = -EINVAL; 298 out_free: 299 ubifs_err("failed to recover master node"); 300 if (mst1) { 301 dbg_err("dumping first master node"); 302 dbg_dump_node(c, mst1); 303 } 304 if (mst2) { 305 dbg_err("dumping second master node"); 306 dbg_dump_node(c, mst2); 307 } 308 vfree(buf2); 309 vfree(buf1); 310 return err; 311 } 312 313 /** 314 * ubifs_write_rcvrd_mst_node - write the recovered master node. 315 * @c: UBIFS file-system description object 316 * 317 * This function writes the master node that was recovered during mounting in 318 * read-only mode and must now be written because we are remounting rw. 319 * 320 * This function returns %0 on success and a negative error code on failure. 321 */ 322 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 323 { 324 int err; 325 326 if (!c->rcvrd_mst_node) 327 return 0; 328 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 329 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 330 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 331 if (err) 332 return err; 333 kfree(c->rcvrd_mst_node); 334 c->rcvrd_mst_node = NULL; 335 return 0; 336 } 337 338 /** 339 * is_last_write - determine if an offset was in the last write to a LEB. 340 * @c: UBIFS file-system description object 341 * @buf: buffer to check 342 * @offs: offset to check 343 * 344 * This function returns %1 if @offs was in the last write to the LEB whose data 345 * is in @buf, otherwise %0 is returned. The determination is made by checking 346 * for subsequent empty space starting from the next min_io_size boundary (or a 347 * bit less than the common header size if min_io_size is one). 348 */ 349 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 350 { 351 int empty_offs; 352 int check_len; 353 uint8_t *p; 354 355 if (c->min_io_size == 1) { 356 check_len = c->leb_size - offs; 357 p = buf + check_len; 358 for (; check_len > 0; check_len--) 359 if (*--p != 0xff) 360 break; 361 /* 362 * 'check_len' is the size of the corruption which cannot be 363 * more than the size of 1 node if it was caused by an unclean 364 * unmount. 365 */ 366 if (check_len > UBIFS_MAX_NODE_SZ) 367 return 0; 368 return 1; 369 } 370 371 /* 372 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the 373 * last wbuf written. After that should be empty space. 374 */ 375 empty_offs = ALIGN(offs + 1, c->min_io_size); 376 check_len = c->leb_size - empty_offs; 377 p = buf + empty_offs - offs; 378 379 for (; check_len > 0; check_len--) 380 if (*p++ != 0xff) 381 return 0; 382 return 1; 383 } 384 385 /** 386 * clean_buf - clean the data from an LEB sitting in a buffer. 387 * @c: UBIFS file-system description object 388 * @buf: buffer to clean 389 * @lnum: LEB number to clean 390 * @offs: offset from which to clean 391 * @len: length of buffer 392 * 393 * This function pads up to the next min_io_size boundary (if there is one) and 394 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 395 * min_io_size boundary (if there is one). 396 */ 397 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 398 int *offs, int *len) 399 { 400 int empty_offs, pad_len; 401 402 lnum = lnum; 403 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 404 405 if (c->min_io_size == 1) { 406 memset(*buf, 0xff, c->leb_size - *offs); 407 return; 408 } 409 410 ubifs_assert(!(*offs & 7)); 411 empty_offs = ALIGN(*offs, c->min_io_size); 412 pad_len = empty_offs - *offs; 413 ubifs_pad(c, *buf, pad_len); 414 *offs += pad_len; 415 *buf += pad_len; 416 *len -= pad_len; 417 memset(*buf, 0xff, c->leb_size - empty_offs); 418 } 419 420 /** 421 * no_more_nodes - determine if there are no more nodes in a buffer. 422 * @c: UBIFS file-system description object 423 * @buf: buffer to check 424 * @len: length of buffer 425 * @lnum: LEB number of the LEB from which @buf was read 426 * @offs: offset from which @buf was read 427 * 428 * This function ensures that the corrupted node at @offs is the last thing 429 * written to a LEB. This function returns %1 if more data is not found and 430 * %0 if more data is found. 431 */ 432 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 433 int lnum, int offs) 434 { 435 struct ubifs_ch *ch = buf; 436 int skip, dlen = le32_to_cpu(ch->len); 437 438 /* Check for empty space after the corrupt node's common header */ 439 skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs; 440 if (is_empty(buf + skip, len - skip)) 441 return 1; 442 /* 443 * The area after the common header size is not empty, so the common 444 * header must be intact. Check it. 445 */ 446 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { 447 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); 448 return 0; 449 } 450 /* Now we know the corrupt node's length we can skip over it */ 451 skip = ALIGN(offs + dlen, c->min_io_size) - offs; 452 /* After which there should be empty space */ 453 if (is_empty(buf + skip, len - skip)) 454 return 1; 455 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); 456 return 0; 457 } 458 459 /** 460 * fix_unclean_leb - fix an unclean LEB. 461 * @c: UBIFS file-system description object 462 * @sleb: scanned LEB information 463 * @start: offset where scan started 464 */ 465 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 466 int start) 467 { 468 int lnum = sleb->lnum, endpt = start; 469 470 /* Get the end offset of the last node we are keeping */ 471 if (!list_empty(&sleb->nodes)) { 472 struct ubifs_scan_node *snod; 473 474 snod = list_entry(sleb->nodes.prev, 475 struct ubifs_scan_node, list); 476 endpt = snod->offs + snod->len; 477 } 478 479 if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { 480 /* Add to recovery list */ 481 struct ubifs_unclean_leb *ucleb; 482 483 dbg_rcvry("need to fix LEB %d start %d endpt %d", 484 lnum, start, sleb->endpt); 485 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 486 if (!ucleb) 487 return -ENOMEM; 488 ucleb->lnum = lnum; 489 ucleb->endpt = endpt; 490 list_add_tail(&ucleb->list, &c->unclean_leb_list); 491 } else { 492 /* Write the fixed LEB back to flash */ 493 int err; 494 495 dbg_rcvry("fixing LEB %d start %d endpt %d", 496 lnum, start, sleb->endpt); 497 if (endpt == 0) { 498 err = ubifs_leb_unmap(c, lnum); 499 if (err) 500 return err; 501 } else { 502 int len = ALIGN(endpt, c->min_io_size); 503 504 if (start) { 505 err = ubi_read(c->ubi, lnum, sleb->buf, 0, 506 start); 507 if (err) 508 return err; 509 } 510 /* Pad to min_io_size */ 511 if (len > endpt) { 512 int pad_len = len - ALIGN(endpt, 8); 513 514 if (pad_len > 0) { 515 void *buf = sleb->buf + len - pad_len; 516 517 ubifs_pad(c, buf, pad_len); 518 } 519 } 520 err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, 521 UBI_UNKNOWN); 522 if (err) 523 return err; 524 } 525 } 526 return 0; 527 } 528 529 /** 530 * drop_incomplete_group - drop nodes from an incomplete group. 531 * @sleb: scanned LEB information 532 * @offs: offset of dropped nodes is returned here 533 * 534 * This function returns %1 if nodes are dropped and %0 otherwise. 535 */ 536 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) 537 { 538 int dropped = 0; 539 540 while (!list_empty(&sleb->nodes)) { 541 struct ubifs_scan_node *snod; 542 struct ubifs_ch *ch; 543 544 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 545 list); 546 ch = snod->node; 547 if (ch->group_type != UBIFS_IN_NODE_GROUP) 548 return dropped; 549 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); 550 *offs = snod->offs; 551 list_del(&snod->list); 552 kfree(snod); 553 sleb->nodes_cnt -= 1; 554 dropped = 1; 555 } 556 return dropped; 557 } 558 559 /** 560 * ubifs_recover_leb - scan and recover a LEB. 561 * @c: UBIFS file-system description object 562 * @lnum: LEB number 563 * @offs: offset 564 * @sbuf: LEB-sized buffer to use 565 * @grouped: nodes may be grouped for recovery 566 * 567 * This function does a scan of a LEB, but caters for errors that might have 568 * been caused by the unclean unmount from which we are attempting to recover. 569 * 570 * This function returns %0 on success and a negative error code on failure. 571 */ 572 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 573 int offs, void *sbuf, int grouped) 574 { 575 int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; 576 int empty_chkd = 0, start = offs; 577 struct ubifs_scan_leb *sleb; 578 void *buf = sbuf + offs; 579 580 dbg_rcvry("%d:%d", lnum, offs); 581 582 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 583 if (IS_ERR(sleb)) 584 return sleb; 585 586 if (sleb->ecc) 587 need_clean = 1; 588 589 while (len >= 8) { 590 int ret; 591 592 dbg_scan("look at LEB %d:%d (%d bytes left)", 593 lnum, offs, len); 594 595 cond_resched(); 596 597 /* 598 * Scan quietly until there is an error from which we cannot 599 * recover 600 */ 601 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 602 603 if (ret == SCANNED_A_NODE) { 604 /* A valid node, and not a padding node */ 605 struct ubifs_ch *ch = buf; 606 int node_len; 607 608 err = ubifs_add_snod(c, sleb, buf, offs); 609 if (err) 610 goto error; 611 node_len = ALIGN(le32_to_cpu(ch->len), 8); 612 offs += node_len; 613 buf += node_len; 614 len -= node_len; 615 continue; 616 } 617 618 if (ret > 0) { 619 /* Padding bytes or a valid padding node */ 620 offs += ret; 621 buf += ret; 622 len -= ret; 623 continue; 624 } 625 626 if (ret == SCANNED_EMPTY_SPACE) { 627 if (!is_empty(buf, len)) { 628 if (!is_last_write(c, buf, offs)) 629 break; 630 clean_buf(c, &buf, lnum, &offs, &len); 631 need_clean = 1; 632 } 633 empty_chkd = 1; 634 break; 635 } 636 637 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) 638 if (is_last_write(c, buf, offs)) { 639 clean_buf(c, &buf, lnum, &offs, &len); 640 need_clean = 1; 641 empty_chkd = 1; 642 break; 643 } 644 645 if (ret == SCANNED_A_CORRUPT_NODE) 646 if (no_more_nodes(c, buf, len, lnum, offs)) { 647 clean_buf(c, &buf, lnum, &offs, &len); 648 need_clean = 1; 649 empty_chkd = 1; 650 break; 651 } 652 653 if (quiet) { 654 /* Redo the last scan but noisily */ 655 quiet = 0; 656 continue; 657 } 658 659 switch (ret) { 660 case SCANNED_GARBAGE: 661 dbg_err("garbage"); 662 goto corrupted; 663 case SCANNED_A_CORRUPT_NODE: 664 case SCANNED_A_BAD_PAD_NODE: 665 dbg_err("bad node"); 666 goto corrupted; 667 default: 668 dbg_err("unknown"); 669 goto corrupted; 670 } 671 } 672 673 if (!empty_chkd && !is_empty(buf, len)) { 674 if (is_last_write(c, buf, offs)) { 675 clean_buf(c, &buf, lnum, &offs, &len); 676 need_clean = 1; 677 } else { 678 ubifs_err("corrupt empty space at LEB %d:%d", 679 lnum, offs); 680 goto corrupted; 681 } 682 } 683 684 /* Drop nodes from incomplete group */ 685 if (grouped && drop_incomplete_group(sleb, &offs)) { 686 buf = sbuf + offs; 687 len = c->leb_size - offs; 688 clean_buf(c, &buf, lnum, &offs, &len); 689 need_clean = 1; 690 } 691 692 if (offs % c->min_io_size) { 693 clean_buf(c, &buf, lnum, &offs, &len); 694 need_clean = 1; 695 } 696 697 ubifs_end_scan(c, sleb, lnum, offs); 698 699 if (need_clean) { 700 err = fix_unclean_leb(c, sleb, start); 701 if (err) 702 goto error; 703 } 704 705 return sleb; 706 707 corrupted: 708 ubifs_scanned_corruption(c, lnum, offs, buf); 709 err = -EUCLEAN; 710 error: 711 ubifs_err("LEB %d scanning failed", lnum); 712 ubifs_scan_destroy(sleb); 713 return ERR_PTR(err); 714 } 715 716 /** 717 * get_cs_sqnum - get commit start sequence number. 718 * @c: UBIFS file-system description object 719 * @lnum: LEB number of commit start node 720 * @offs: offset of commit start node 721 * @cs_sqnum: commit start sequence number is returned here 722 * 723 * This function returns %0 on success and a negative error code on failure. 724 */ 725 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 726 unsigned long long *cs_sqnum) 727 { 728 struct ubifs_cs_node *cs_node = NULL; 729 int err, ret; 730 731 dbg_rcvry("at %d:%d", lnum, offs); 732 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 733 if (!cs_node) 734 return -ENOMEM; 735 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 736 goto out_err; 737 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); 738 if (err && err != -EBADMSG) 739 goto out_free; 740 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 741 if (ret != SCANNED_A_NODE) { 742 dbg_err("Not a valid node"); 743 goto out_err; 744 } 745 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 746 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); 747 goto out_err; 748 } 749 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 750 dbg_err("CS node cmt_no %llu != current cmt_no %llu", 751 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 752 c->cmt_no); 753 goto out_err; 754 } 755 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 756 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 757 kfree(cs_node); 758 return 0; 759 760 out_err: 761 err = -EINVAL; 762 out_free: 763 ubifs_err("failed to get CS sqnum"); 764 kfree(cs_node); 765 return err; 766 } 767 768 /** 769 * ubifs_recover_log_leb - scan and recover a log LEB. 770 * @c: UBIFS file-system description object 771 * @lnum: LEB number 772 * @offs: offset 773 * @sbuf: LEB-sized buffer to use 774 * 775 * This function does a scan of a LEB, but caters for errors that might have 776 * been caused by the unclean unmount from which we are attempting to recover. 777 * 778 * This function returns %0 on success and a negative error code on failure. 779 */ 780 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 781 int offs, void *sbuf) 782 { 783 struct ubifs_scan_leb *sleb; 784 int next_lnum; 785 786 dbg_rcvry("LEB %d", lnum); 787 next_lnum = lnum + 1; 788 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 789 next_lnum = UBIFS_LOG_LNUM; 790 if (next_lnum != c->ltail_lnum) { 791 /* 792 * We can only recover at the end of the log, so check that the 793 * next log LEB is empty or out of date. 794 */ 795 sleb = ubifs_scan(c, next_lnum, 0, sbuf); 796 if (IS_ERR(sleb)) 797 return sleb; 798 if (sleb->nodes_cnt) { 799 struct ubifs_scan_node *snod; 800 unsigned long long cs_sqnum = c->cs_sqnum; 801 802 snod = list_entry(sleb->nodes.next, 803 struct ubifs_scan_node, list); 804 if (cs_sqnum == 0) { 805 int err; 806 807 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 808 if (err) { 809 ubifs_scan_destroy(sleb); 810 return ERR_PTR(err); 811 } 812 } 813 if (snod->sqnum > cs_sqnum) { 814 ubifs_err("unrecoverable log corruption " 815 "in LEB %d", lnum); 816 ubifs_scan_destroy(sleb); 817 return ERR_PTR(-EUCLEAN); 818 } 819 } 820 ubifs_scan_destroy(sleb); 821 } 822 return ubifs_recover_leb(c, lnum, offs, sbuf, 0); 823 } 824 825 /** 826 * recover_head - recover a head. 827 * @c: UBIFS file-system description object 828 * @lnum: LEB number of head to recover 829 * @offs: offset of head to recover 830 * @sbuf: LEB-sized buffer to use 831 * 832 * This function ensures that there is no data on the flash at a head location. 833 * 834 * This function returns %0 on success and a negative error code on failure. 835 */ 836 static int recover_head(const struct ubifs_info *c, int lnum, int offs, 837 void *sbuf) 838 { 839 int len, err, need_clean = 0; 840 841 if (c->min_io_size > 1) 842 len = c->min_io_size; 843 else 844 len = 512; 845 if (offs + len > c->leb_size) 846 len = c->leb_size - offs; 847 848 if (!len) 849 return 0; 850 851 /* Read at the head location and check it is empty flash */ 852 err = ubi_read(c->ubi, lnum, sbuf, offs, len); 853 if (err) 854 need_clean = 1; 855 else { 856 uint8_t *p = sbuf; 857 858 while (len--) 859 if (*p++ != 0xff) { 860 need_clean = 1; 861 break; 862 } 863 } 864 865 if (need_clean) { 866 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 867 if (offs == 0) 868 return ubifs_leb_unmap(c, lnum); 869 err = ubi_read(c->ubi, lnum, sbuf, 0, offs); 870 if (err) 871 return err; 872 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); 873 } 874 875 return 0; 876 } 877 878 /** 879 * ubifs_recover_inl_heads - recover index and LPT heads. 880 * @c: UBIFS file-system description object 881 * @sbuf: LEB-sized buffer to use 882 * 883 * This function ensures that there is no data on the flash at the index and 884 * LPT head locations. 885 * 886 * This deals with the recovery of a half-completed journal commit. UBIFS is 887 * careful never to overwrite the last version of the index or the LPT. Because 888 * the index and LPT are wandering trees, data from a half-completed commit will 889 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 890 * assumed to be empty and will be unmapped anyway before use, or in the index 891 * and LPT heads. 892 * 893 * This function returns %0 on success and a negative error code on failure. 894 */ 895 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) 896 { 897 int err; 898 899 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); 900 901 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 902 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 903 if (err) 904 return err; 905 906 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 907 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 908 if (err) 909 return err; 910 911 return 0; 912 } 913 914 /** 915 * clean_an_unclean_leb - read and write a LEB to remove corruption. 916 * @c: UBIFS file-system description object 917 * @ucleb: unclean LEB information 918 * @sbuf: LEB-sized buffer to use 919 * 920 * This function reads a LEB up to a point pre-determined by the mount recovery, 921 * checks the nodes, and writes the result back to the flash, thereby cleaning 922 * off any following corruption, or non-fatal ECC errors. 923 * 924 * This function returns %0 on success and a negative error code on failure. 925 */ 926 static int clean_an_unclean_leb(const struct ubifs_info *c, 927 struct ubifs_unclean_leb *ucleb, void *sbuf) 928 { 929 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 930 void *buf = sbuf; 931 932 dbg_rcvry("LEB %d len %d", lnum, len); 933 934 if (len == 0) { 935 /* Nothing to read, just unmap it */ 936 err = ubifs_leb_unmap(c, lnum); 937 if (err) 938 return err; 939 return 0; 940 } 941 942 err = ubi_read(c->ubi, lnum, buf, offs, len); 943 if (err && err != -EBADMSG) 944 return err; 945 946 while (len >= 8) { 947 int ret; 948 949 cond_resched(); 950 951 /* Scan quietly until there is an error */ 952 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 953 954 if (ret == SCANNED_A_NODE) { 955 /* A valid node, and not a padding node */ 956 struct ubifs_ch *ch = buf; 957 int node_len; 958 959 node_len = ALIGN(le32_to_cpu(ch->len), 8); 960 offs += node_len; 961 buf += node_len; 962 len -= node_len; 963 continue; 964 } 965 966 if (ret > 0) { 967 /* Padding bytes or a valid padding node */ 968 offs += ret; 969 buf += ret; 970 len -= ret; 971 continue; 972 } 973 974 if (ret == SCANNED_EMPTY_SPACE) { 975 ubifs_err("unexpected empty space at %d:%d", 976 lnum, offs); 977 return -EUCLEAN; 978 } 979 980 if (quiet) { 981 /* Redo the last scan but noisily */ 982 quiet = 0; 983 continue; 984 } 985 986 ubifs_scanned_corruption(c, lnum, offs, buf); 987 return -EUCLEAN; 988 } 989 990 /* Pad to min_io_size */ 991 len = ALIGN(ucleb->endpt, c->min_io_size); 992 if (len > ucleb->endpt) { 993 int pad_len = len - ALIGN(ucleb->endpt, 8); 994 995 if (pad_len > 0) { 996 buf = c->sbuf + len - pad_len; 997 ubifs_pad(c, buf, pad_len); 998 } 999 } 1000 1001 /* Write back the LEB atomically */ 1002 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); 1003 if (err) 1004 return err; 1005 1006 dbg_rcvry("cleaned LEB %d", lnum); 1007 1008 return 0; 1009 } 1010 1011 /** 1012 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1013 * @c: UBIFS file-system description object 1014 * @sbuf: LEB-sized buffer to use 1015 * 1016 * This function cleans a LEB identified during recovery that needs to be 1017 * written but was not because UBIFS was mounted read-only. This happens when 1018 * remounting to read-write mode. 1019 * 1020 * This function returns %0 on success and a negative error code on failure. 1021 */ 1022 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) 1023 { 1024 dbg_rcvry("recovery"); 1025 while (!list_empty(&c->unclean_leb_list)) { 1026 struct ubifs_unclean_leb *ucleb; 1027 int err; 1028 1029 ucleb = list_entry(c->unclean_leb_list.next, 1030 struct ubifs_unclean_leb, list); 1031 err = clean_an_unclean_leb(c, ucleb, sbuf); 1032 if (err) 1033 return err; 1034 list_del(&ucleb->list); 1035 kfree(ucleb); 1036 } 1037 return 0; 1038 } 1039 1040 /** 1041 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1042 * @c: UBIFS file-system description object 1043 * 1044 * Out-of-place garbage collection requires always one empty LEB with which to 1045 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1046 * written to the master node on unmounting. In the case of an unclean unmount 1047 * the value of gc_lnum recorded in the master node is out of date and cannot 1048 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1049 * However, there may not be enough empty space, in which case it must be 1050 * possible to GC the dirtiest LEB into the GC head LEB. 1051 * 1052 * This function also runs the commit which causes the TNC updates from 1053 * size-recovery and orphans to be written to the flash. That is important to 1054 * ensure correct replay order for subsequent mounts. 1055 * 1056 * This function returns %0 on success and a negative error code on failure. 1057 */ 1058 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1059 { 1060 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1061 struct ubifs_lprops lp; 1062 int lnum, err; 1063 1064 c->gc_lnum = -1; 1065 if (wbuf->lnum == -1) { 1066 dbg_rcvry("no GC head LEB"); 1067 goto find_free; 1068 } 1069 /* 1070 * See whether the used space in the dirtiest LEB fits in the GC head 1071 * LEB. 1072 */ 1073 if (wbuf->offs == c->leb_size) { 1074 dbg_rcvry("no room in GC head LEB"); 1075 goto find_free; 1076 } 1077 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1078 if (err) { 1079 if (err == -ENOSPC) 1080 dbg_err("could not find a dirty LEB"); 1081 return err; 1082 } 1083 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 1084 lnum = lp.lnum; 1085 if (lp.free + lp.dirty == c->leb_size) { 1086 /* An empty LEB was returned */ 1087 if (lp.free != c->leb_size) { 1088 err = ubifs_change_one_lp(c, lnum, c->leb_size, 1089 0, 0, 0, 0); 1090 if (err) 1091 return err; 1092 } 1093 err = ubifs_leb_unmap(c, lnum); 1094 if (err) 1095 return err; 1096 c->gc_lnum = lnum; 1097 dbg_rcvry("allocated LEB %d for GC", lnum); 1098 /* Run the commit */ 1099 dbg_rcvry("committing"); 1100 return ubifs_run_commit(c); 1101 } 1102 /* 1103 * There was no empty LEB so the used space in the dirtiest LEB must fit 1104 * in the GC head LEB. 1105 */ 1106 if (lp.free + lp.dirty < wbuf->offs) { 1107 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", 1108 lnum, wbuf->lnum, wbuf->offs); 1109 err = ubifs_return_leb(c, lnum); 1110 if (err) 1111 return err; 1112 goto find_free; 1113 } 1114 /* 1115 * We run the commit before garbage collection otherwise subsequent 1116 * mounts will see the GC and orphan deletion in a different order. 1117 */ 1118 dbg_rcvry("committing"); 1119 err = ubifs_run_commit(c); 1120 if (err) 1121 return err; 1122 /* 1123 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC 1124 * - use locking to keep 'ubifs_assert()' happy. 1125 */ 1126 dbg_rcvry("GC'ing LEB %d", lnum); 1127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1128 err = ubifs_garbage_collect_leb(c, &lp); 1129 if (err >= 0) { 1130 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1131 1132 if (err2) 1133 err = err2; 1134 } 1135 mutex_unlock(&wbuf->io_mutex); 1136 if (err < 0) { 1137 dbg_err("GC failed, error %d", err); 1138 if (err == -EAGAIN) 1139 err = -EINVAL; 1140 return err; 1141 } 1142 if (err != LEB_RETAINED) { 1143 dbg_err("GC returned %d", err); 1144 return -EINVAL; 1145 } 1146 err = ubifs_leb_unmap(c, c->gc_lnum); 1147 if (err) 1148 return err; 1149 dbg_rcvry("allocated LEB %d for GC", lnum); 1150 return 0; 1151 1152 find_free: 1153 /* 1154 * There is no GC head LEB or the free space in the GC head LEB is too 1155 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so 1156 * GC is not run. 1157 */ 1158 lnum = ubifs_find_free_leb_for_idx(c); 1159 if (lnum < 0) { 1160 dbg_err("could not find an empty LEB"); 1161 return lnum; 1162 } 1163 /* And reset the index flag */ 1164 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1165 LPROPS_INDEX, 0); 1166 if (err) 1167 return err; 1168 c->gc_lnum = lnum; 1169 dbg_rcvry("allocated LEB %d for GC", lnum); 1170 /* Run the commit */ 1171 dbg_rcvry("committing"); 1172 return ubifs_run_commit(c); 1173 } 1174 1175 /** 1176 * struct size_entry - inode size information for recovery. 1177 * @rb: link in the RB-tree of sizes 1178 * @inum: inode number 1179 * @i_size: size on inode 1180 * @d_size: maximum size based on data nodes 1181 * @exists: indicates whether the inode exists 1182 * @inode: inode if pinned in memory awaiting rw mode to fix it 1183 */ 1184 struct size_entry { 1185 struct rb_node rb; 1186 ino_t inum; 1187 loff_t i_size; 1188 loff_t d_size; 1189 int exists; 1190 struct inode *inode; 1191 }; 1192 1193 /** 1194 * add_ino - add an entry to the size tree. 1195 * @c: UBIFS file-system description object 1196 * @inum: inode number 1197 * @i_size: size on inode 1198 * @d_size: maximum size based on data nodes 1199 * @exists: indicates whether the inode exists 1200 */ 1201 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1202 loff_t d_size, int exists) 1203 { 1204 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1205 struct size_entry *e; 1206 1207 while (*p) { 1208 parent = *p; 1209 e = rb_entry(parent, struct size_entry, rb); 1210 if (inum < e->inum) 1211 p = &(*p)->rb_left; 1212 else 1213 p = &(*p)->rb_right; 1214 } 1215 1216 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1217 if (!e) 1218 return -ENOMEM; 1219 1220 e->inum = inum; 1221 e->i_size = i_size; 1222 e->d_size = d_size; 1223 e->exists = exists; 1224 1225 rb_link_node(&e->rb, parent, p); 1226 rb_insert_color(&e->rb, &c->size_tree); 1227 1228 return 0; 1229 } 1230 1231 /** 1232 * find_ino - find an entry on the size tree. 1233 * @c: UBIFS file-system description object 1234 * @inum: inode number 1235 */ 1236 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1237 { 1238 struct rb_node *p = c->size_tree.rb_node; 1239 struct size_entry *e; 1240 1241 while (p) { 1242 e = rb_entry(p, struct size_entry, rb); 1243 if (inum < e->inum) 1244 p = p->rb_left; 1245 else if (inum > e->inum) 1246 p = p->rb_right; 1247 else 1248 return e; 1249 } 1250 return NULL; 1251 } 1252 1253 /** 1254 * remove_ino - remove an entry from the size tree. 1255 * @c: UBIFS file-system description object 1256 * @inum: inode number 1257 */ 1258 static void remove_ino(struct ubifs_info *c, ino_t inum) 1259 { 1260 struct size_entry *e = find_ino(c, inum); 1261 1262 if (!e) 1263 return; 1264 rb_erase(&e->rb, &c->size_tree); 1265 kfree(e); 1266 } 1267 1268 /** 1269 * ubifs_destroy_size_tree - free resources related to the size tree. 1270 * @c: UBIFS file-system description object 1271 */ 1272 void ubifs_destroy_size_tree(struct ubifs_info *c) 1273 { 1274 struct rb_node *this = c->size_tree.rb_node; 1275 struct size_entry *e; 1276 1277 while (this) { 1278 if (this->rb_left) { 1279 this = this->rb_left; 1280 continue; 1281 } else if (this->rb_right) { 1282 this = this->rb_right; 1283 continue; 1284 } 1285 e = rb_entry(this, struct size_entry, rb); 1286 if (e->inode) 1287 iput(e->inode); 1288 this = rb_parent(this); 1289 if (this) { 1290 if (this->rb_left == &e->rb) 1291 this->rb_left = NULL; 1292 else 1293 this->rb_right = NULL; 1294 } 1295 kfree(e); 1296 } 1297 c->size_tree = RB_ROOT; 1298 } 1299 1300 /** 1301 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1302 * @c: UBIFS file-system description object 1303 * @key: node key 1304 * @deletion: node is for a deletion 1305 * @new_size: inode size 1306 * 1307 * This function has two purposes: 1308 * 1) to ensure there are no data nodes that fall outside the inode size 1309 * 2) to ensure there are no data nodes for inodes that do not exist 1310 * To accomplish those purposes, a rb-tree is constructed containing an entry 1311 * for each inode number in the journal that has not been deleted, and recording 1312 * the size from the inode node, the maximum size of any data node (also altered 1313 * by truncations) and a flag indicating a inode number for which no inode node 1314 * was present in the journal. 1315 * 1316 * Note that there is still the possibility that there are data nodes that have 1317 * been committed that are beyond the inode size, however the only way to find 1318 * them would be to scan the entire index. Alternatively, some provision could 1319 * be made to record the size of inodes at the start of commit, which would seem 1320 * very cumbersome for a scenario that is quite unlikely and the only negative 1321 * consequence of which is wasted space. 1322 * 1323 * This functions returns %0 on success and a negative error code on failure. 1324 */ 1325 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1326 int deletion, loff_t new_size) 1327 { 1328 ino_t inum = key_inum(c, key); 1329 struct size_entry *e; 1330 int err; 1331 1332 switch (key_type(c, key)) { 1333 case UBIFS_INO_KEY: 1334 if (deletion) 1335 remove_ino(c, inum); 1336 else { 1337 e = find_ino(c, inum); 1338 if (e) { 1339 e->i_size = new_size; 1340 e->exists = 1; 1341 } else { 1342 err = add_ino(c, inum, new_size, 0, 1); 1343 if (err) 1344 return err; 1345 } 1346 } 1347 break; 1348 case UBIFS_DATA_KEY: 1349 e = find_ino(c, inum); 1350 if (e) { 1351 if (new_size > e->d_size) 1352 e->d_size = new_size; 1353 } else { 1354 err = add_ino(c, inum, 0, new_size, 0); 1355 if (err) 1356 return err; 1357 } 1358 break; 1359 case UBIFS_TRUN_KEY: 1360 e = find_ino(c, inum); 1361 if (e) 1362 e->d_size = new_size; 1363 break; 1364 } 1365 return 0; 1366 } 1367 1368 /** 1369 * fix_size_in_place - fix inode size in place on flash. 1370 * @c: UBIFS file-system description object 1371 * @e: inode size information for recovery 1372 */ 1373 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1374 { 1375 struct ubifs_ino_node *ino = c->sbuf; 1376 unsigned char *p; 1377 union ubifs_key key; 1378 int err, lnum, offs, len; 1379 loff_t i_size; 1380 uint32_t crc; 1381 1382 /* Locate the inode node LEB number and offset */ 1383 ino_key_init(c, &key, e->inum); 1384 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1385 if (err) 1386 goto out; 1387 /* 1388 * If the size recorded on the inode node is greater than the size that 1389 * was calculated from nodes in the journal then don't change the inode. 1390 */ 1391 i_size = le64_to_cpu(ino->size); 1392 if (i_size >= e->d_size) 1393 return 0; 1394 /* Read the LEB */ 1395 err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); 1396 if (err) 1397 goto out; 1398 /* Change the size field and recalculate the CRC */ 1399 ino = c->sbuf + offs; 1400 ino->size = cpu_to_le64(e->d_size); 1401 len = le32_to_cpu(ino->ch.len); 1402 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1403 ino->ch.crc = cpu_to_le32(crc); 1404 /* Work out where data in the LEB ends and free space begins */ 1405 p = c->sbuf; 1406 len = c->leb_size - 1; 1407 while (p[len] == 0xff) 1408 len -= 1; 1409 len = ALIGN(len + 1, c->min_io_size); 1410 /* Atomically write the fixed LEB back again */ 1411 err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); 1412 if (err) 1413 goto out; 1414 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", 1415 (unsigned long)e->inum, lnum, offs, i_size, e->d_size); 1416 return 0; 1417 1418 out: 1419 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", 1420 (unsigned long)e->inum, e->i_size, e->d_size, err); 1421 return err; 1422 } 1423 1424 /** 1425 * ubifs_recover_size - recover inode size. 1426 * @c: UBIFS file-system description object 1427 * 1428 * This function attempts to fix inode size discrepancies identified by the 1429 * 'ubifs_recover_size_accum()' function. 1430 * 1431 * This functions returns %0 on success and a negative error code on failure. 1432 */ 1433 int ubifs_recover_size(struct ubifs_info *c) 1434 { 1435 struct rb_node *this = rb_first(&c->size_tree); 1436 1437 while (this) { 1438 struct size_entry *e; 1439 int err; 1440 1441 e = rb_entry(this, struct size_entry, rb); 1442 if (!e->exists) { 1443 union ubifs_key key; 1444 1445 ino_key_init(c, &key, e->inum); 1446 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1447 if (err && err != -ENOENT) 1448 return err; 1449 if (err == -ENOENT) { 1450 /* Remove data nodes that have no inode */ 1451 dbg_rcvry("removing ino %lu", 1452 (unsigned long)e->inum); 1453 err = ubifs_tnc_remove_ino(c, e->inum); 1454 if (err) 1455 return err; 1456 } else { 1457 struct ubifs_ino_node *ino = c->sbuf; 1458 1459 e->exists = 1; 1460 e->i_size = le64_to_cpu(ino->size); 1461 } 1462 } 1463 if (e->exists && e->i_size < e->d_size) { 1464 if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { 1465 /* Fix the inode size and pin it in memory */ 1466 struct inode *inode; 1467 1468 inode = ubifs_iget(c->vfs_sb, e->inum); 1469 if (IS_ERR(inode)) 1470 return PTR_ERR(inode); 1471 if (inode->i_size < e->d_size) { 1472 dbg_rcvry("ino %lu size %lld -> %lld", 1473 (unsigned long)e->inum, 1474 e->d_size, inode->i_size); 1475 inode->i_size = e->d_size; 1476 ubifs_inode(inode)->ui_size = e->d_size; 1477 e->inode = inode; 1478 this = rb_next(this); 1479 continue; 1480 } 1481 iput(inode); 1482 } else { 1483 /* Fix the size in place */ 1484 err = fix_size_in_place(c, e); 1485 if (err) 1486 return err; 1487 if (e->inode) 1488 iput(e->inode); 1489 } 1490 } 1491 this = rb_next(this); 1492 rb_erase(&e->rb, &c->size_tree); 1493 kfree(e); 1494 } 1495 return 0; 1496 } 1497