xref: /openbmc/linux/fs/ubifs/recovery.c (revision 82ced6fd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions needed to recover from unclean un-mounts.
25  * When UBIFS is mounted, it checks a flag on the master node to determine if
26  * an un-mount was completed sucessfully. If not, the process of mounting
27  * incorparates additional checking and fixing of on-flash data structures.
28  * UBIFS always cleans away all remnants of an unclean un-mount, so that
29  * errors do not accumulate. However UBIFS defers recovery if it is mounted
30  * read-only, and the flash is not modified in that case.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /**
37  * is_empty - determine whether a buffer is empty (contains all 0xff).
38  * @buf: buffer to clean
39  * @len: length of buffer
40  *
41  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
42  * %0 is returned.
43  */
44 static int is_empty(void *buf, int len)
45 {
46 	uint8_t *p = buf;
47 	int i;
48 
49 	for (i = 0; i < len; i++)
50 		if (*p++ != 0xff)
51 			return 0;
52 	return 1;
53 }
54 
55 /**
56  * get_master_node - get the last valid master node allowing for corruption.
57  * @c: UBIFS file-system description object
58  * @lnum: LEB number
59  * @pbuf: buffer containing the LEB read, is returned here
60  * @mst: master node, if found, is returned here
61  * @cor: corruption, if found, is returned here
62  *
63  * This function allocates a buffer, reads the LEB into it, and finds and
64  * returns the last valid master node allowing for one area of corruption.
65  * The corrupt area, if there is one, must be consistent with the assumption
66  * that it is the result of an unclean unmount while the master node was being
67  * written. Under those circumstances, it is valid to use the previously written
68  * master node.
69  *
70  * This function returns %0 on success and a negative error code on failure.
71  */
72 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
73 			   struct ubifs_mst_node **mst, void **cor)
74 {
75 	const int sz = c->mst_node_alsz;
76 	int err, offs, len;
77 	void *sbuf, *buf;
78 
79 	sbuf = vmalloc(c->leb_size);
80 	if (!sbuf)
81 		return -ENOMEM;
82 
83 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
84 	if (err && err != -EBADMSG)
85 		goto out_free;
86 
87 	/* Find the first position that is definitely not a node */
88 	offs = 0;
89 	buf = sbuf;
90 	len = c->leb_size;
91 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
92 		struct ubifs_ch *ch = buf;
93 
94 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
95 			break;
96 		offs += sz;
97 		buf  += sz;
98 		len  -= sz;
99 	}
100 	/* See if there was a valid master node before that */
101 	if (offs) {
102 		int ret;
103 
104 		offs -= sz;
105 		buf  -= sz;
106 		len  += sz;
107 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
108 		if (ret != SCANNED_A_NODE && offs) {
109 			/* Could have been corruption so check one place back */
110 			offs -= sz;
111 			buf  -= sz;
112 			len  += sz;
113 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
114 			if (ret != SCANNED_A_NODE)
115 				/*
116 				 * We accept only one area of corruption because
117 				 * we are assuming that it was caused while
118 				 * trying to write a master node.
119 				 */
120 				goto out_err;
121 		}
122 		if (ret == SCANNED_A_NODE) {
123 			struct ubifs_ch *ch = buf;
124 
125 			if (ch->node_type != UBIFS_MST_NODE)
126 				goto out_err;
127 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
128 			*mst = buf;
129 			offs += sz;
130 			buf  += sz;
131 			len  -= sz;
132 		}
133 	}
134 	/* Check for corruption */
135 	if (offs < c->leb_size) {
136 		if (!is_empty(buf, min_t(int, len, sz))) {
137 			*cor = buf;
138 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
139 		}
140 		offs += sz;
141 		buf  += sz;
142 		len  -= sz;
143 	}
144 	/* Check remaining empty space */
145 	if (offs < c->leb_size)
146 		if (!is_empty(buf, len))
147 			goto out_err;
148 	*pbuf = sbuf;
149 	return 0;
150 
151 out_err:
152 	err = -EINVAL;
153 out_free:
154 	vfree(sbuf);
155 	*mst = NULL;
156 	*cor = NULL;
157 	return err;
158 }
159 
160 /**
161  * write_rcvrd_mst_node - write recovered master node.
162  * @c: UBIFS file-system description object
163  * @mst: master node
164  *
165  * This function returns %0 on success and a negative error code on failure.
166  */
167 static int write_rcvrd_mst_node(struct ubifs_info *c,
168 				struct ubifs_mst_node *mst)
169 {
170 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
171 	__le32 save_flags;
172 
173 	dbg_rcvry("recovery");
174 
175 	save_flags = mst->flags;
176 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
177 
178 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
179 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
180 	if (err)
181 		goto out;
182 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
183 	if (err)
184 		goto out;
185 out:
186 	mst->flags = save_flags;
187 	return err;
188 }
189 
190 /**
191  * ubifs_recover_master_node - recover the master node.
192  * @c: UBIFS file-system description object
193  *
194  * This function recovers the master node from corruption that may occur due to
195  * an unclean unmount.
196  *
197  * This function returns %0 on success and a negative error code on failure.
198  */
199 int ubifs_recover_master_node(struct ubifs_info *c)
200 {
201 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
202 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
203 	const int sz = c->mst_node_alsz;
204 	int err, offs1, offs2;
205 
206 	dbg_rcvry("recovery");
207 
208 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
209 	if (err)
210 		goto out_free;
211 
212 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
213 	if (err)
214 		goto out_free;
215 
216 	if (mst1) {
217 		offs1 = (void *)mst1 - buf1;
218 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
219 		    (offs1 == 0 && !cor1)) {
220 			/*
221 			 * mst1 was written by recovery at offset 0 with no
222 			 * corruption.
223 			 */
224 			dbg_rcvry("recovery recovery");
225 			mst = mst1;
226 		} else if (mst2) {
227 			offs2 = (void *)mst2 - buf2;
228 			if (offs1 == offs2) {
229 				/* Same offset, so must be the same */
230 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
231 					   (void *)mst2 + UBIFS_CH_SZ,
232 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
233 					goto out_err;
234 				mst = mst1;
235 			} else if (offs2 + sz == offs1) {
236 				/* 1st LEB was written, 2nd was not */
237 				if (cor1)
238 					goto out_err;
239 				mst = mst1;
240 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
241 				/* 1st LEB was unmapped and written, 2nd not */
242 				if (cor1)
243 					goto out_err;
244 				mst = mst1;
245 			} else
246 				goto out_err;
247 		} else {
248 			/*
249 			 * 2nd LEB was unmapped and about to be written, so
250 			 * there must be only one master node in the first LEB
251 			 * and no corruption.
252 			 */
253 			if (offs1 != 0 || cor1)
254 				goto out_err;
255 			mst = mst1;
256 		}
257 	} else {
258 		if (!mst2)
259 			goto out_err;
260 		/*
261 		 * 1st LEB was unmapped and about to be written, so there must
262 		 * be no room left in 2nd LEB.
263 		 */
264 		offs2 = (void *)mst2 - buf2;
265 		if (offs2 + sz + sz <= c->leb_size)
266 			goto out_err;
267 		mst = mst2;
268 	}
269 
270 	dbg_rcvry("recovered master node from LEB %d",
271 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
272 
273 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
274 
275 	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
276 		/* Read-only mode. Keep a copy for switching to rw mode */
277 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
278 		if (!c->rcvrd_mst_node) {
279 			err = -ENOMEM;
280 			goto out_free;
281 		}
282 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
283 	} else {
284 		/* Write the recovered master node */
285 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
286 		err = write_rcvrd_mst_node(c, c->mst_node);
287 		if (err)
288 			goto out_free;
289 	}
290 
291 	vfree(buf2);
292 	vfree(buf1);
293 
294 	return 0;
295 
296 out_err:
297 	err = -EINVAL;
298 out_free:
299 	ubifs_err("failed to recover master node");
300 	if (mst1) {
301 		dbg_err("dumping first master node");
302 		dbg_dump_node(c, mst1);
303 	}
304 	if (mst2) {
305 		dbg_err("dumping second master node");
306 		dbg_dump_node(c, mst2);
307 	}
308 	vfree(buf2);
309 	vfree(buf1);
310 	return err;
311 }
312 
313 /**
314  * ubifs_write_rcvrd_mst_node - write the recovered master node.
315  * @c: UBIFS file-system description object
316  *
317  * This function writes the master node that was recovered during mounting in
318  * read-only mode and must now be written because we are remounting rw.
319  *
320  * This function returns %0 on success and a negative error code on failure.
321  */
322 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
323 {
324 	int err;
325 
326 	if (!c->rcvrd_mst_node)
327 		return 0;
328 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
329 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
330 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
331 	if (err)
332 		return err;
333 	kfree(c->rcvrd_mst_node);
334 	c->rcvrd_mst_node = NULL;
335 	return 0;
336 }
337 
338 /**
339  * is_last_write - determine if an offset was in the last write to a LEB.
340  * @c: UBIFS file-system description object
341  * @buf: buffer to check
342  * @offs: offset to check
343  *
344  * This function returns %1 if @offs was in the last write to the LEB whose data
345  * is in @buf, otherwise %0 is returned.  The determination is made by checking
346  * for subsequent empty space starting from the next min_io_size boundary (or a
347  * bit less than the common header size if min_io_size is one).
348  */
349 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
350 {
351 	int empty_offs;
352 	int check_len;
353 	uint8_t *p;
354 
355 	if (c->min_io_size == 1) {
356 		check_len = c->leb_size - offs;
357 		p = buf + check_len;
358 		for (; check_len > 0; check_len--)
359 			if (*--p != 0xff)
360 				break;
361 		/*
362 		 * 'check_len' is the size of the corruption which cannot be
363 		 * more than the size of 1 node if it was caused by an unclean
364 		 * unmount.
365 		 */
366 		if (check_len > UBIFS_MAX_NODE_SZ)
367 			return 0;
368 		return 1;
369 	}
370 
371 	/*
372 	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
373 	 * last wbuf written. After that should be empty space.
374 	 */
375 	empty_offs = ALIGN(offs + 1, c->min_io_size);
376 	check_len = c->leb_size - empty_offs;
377 	p = buf + empty_offs - offs;
378 
379 	for (; check_len > 0; check_len--)
380 		if (*p++ != 0xff)
381 			return 0;
382 	return 1;
383 }
384 
385 /**
386  * clean_buf - clean the data from an LEB sitting in a buffer.
387  * @c: UBIFS file-system description object
388  * @buf: buffer to clean
389  * @lnum: LEB number to clean
390  * @offs: offset from which to clean
391  * @len: length of buffer
392  *
393  * This function pads up to the next min_io_size boundary (if there is one) and
394  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
395  * min_io_size boundary (if there is one).
396  */
397 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
398 		      int *offs, int *len)
399 {
400 	int empty_offs, pad_len;
401 
402 	lnum = lnum;
403 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
404 
405 	if (c->min_io_size == 1) {
406 		memset(*buf, 0xff, c->leb_size - *offs);
407 		return;
408 	}
409 
410 	ubifs_assert(!(*offs & 7));
411 	empty_offs = ALIGN(*offs, c->min_io_size);
412 	pad_len = empty_offs - *offs;
413 	ubifs_pad(c, *buf, pad_len);
414 	*offs += pad_len;
415 	*buf += pad_len;
416 	*len -= pad_len;
417 	memset(*buf, 0xff, c->leb_size - empty_offs);
418 }
419 
420 /**
421  * no_more_nodes - determine if there are no more nodes in a buffer.
422  * @c: UBIFS file-system description object
423  * @buf: buffer to check
424  * @len: length of buffer
425  * @lnum: LEB number of the LEB from which @buf was read
426  * @offs: offset from which @buf was read
427  *
428  * This function ensures that the corrupted node at @offs is the last thing
429  * written to a LEB. This function returns %1 if more data is not found and
430  * %0 if more data is found.
431  */
432 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
433 			int lnum, int offs)
434 {
435 	struct ubifs_ch *ch = buf;
436 	int skip, dlen = le32_to_cpu(ch->len);
437 
438 	/* Check for empty space after the corrupt node's common header */
439 	skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
440 	if (is_empty(buf + skip, len - skip))
441 		return 1;
442 	/*
443 	 * The area after the common header size is not empty, so the common
444 	 * header must be intact. Check it.
445 	 */
446 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
447 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
448 		return 0;
449 	}
450 	/* Now we know the corrupt node's length we can skip over it */
451 	skip = ALIGN(offs + dlen, c->min_io_size) - offs;
452 	/* After which there should be empty space */
453 	if (is_empty(buf + skip, len - skip))
454 		return 1;
455 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
456 	return 0;
457 }
458 
459 /**
460  * fix_unclean_leb - fix an unclean LEB.
461  * @c: UBIFS file-system description object
462  * @sleb: scanned LEB information
463  * @start: offset where scan started
464  */
465 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
466 			   int start)
467 {
468 	int lnum = sleb->lnum, endpt = start;
469 
470 	/* Get the end offset of the last node we are keeping */
471 	if (!list_empty(&sleb->nodes)) {
472 		struct ubifs_scan_node *snod;
473 
474 		snod = list_entry(sleb->nodes.prev,
475 				  struct ubifs_scan_node, list);
476 		endpt = snod->offs + snod->len;
477 	}
478 
479 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
480 		/* Add to recovery list */
481 		struct ubifs_unclean_leb *ucleb;
482 
483 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
484 			  lnum, start, sleb->endpt);
485 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
486 		if (!ucleb)
487 			return -ENOMEM;
488 		ucleb->lnum = lnum;
489 		ucleb->endpt = endpt;
490 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
491 	} else {
492 		/* Write the fixed LEB back to flash */
493 		int err;
494 
495 		dbg_rcvry("fixing LEB %d start %d endpt %d",
496 			  lnum, start, sleb->endpt);
497 		if (endpt == 0) {
498 			err = ubifs_leb_unmap(c, lnum);
499 			if (err)
500 				return err;
501 		} else {
502 			int len = ALIGN(endpt, c->min_io_size);
503 
504 			if (start) {
505 				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
506 					       start);
507 				if (err)
508 					return err;
509 			}
510 			/* Pad to min_io_size */
511 			if (len > endpt) {
512 				int pad_len = len - ALIGN(endpt, 8);
513 
514 				if (pad_len > 0) {
515 					void *buf = sleb->buf + len - pad_len;
516 
517 					ubifs_pad(c, buf, pad_len);
518 				}
519 			}
520 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
521 					     UBI_UNKNOWN);
522 			if (err)
523 				return err;
524 		}
525 	}
526 	return 0;
527 }
528 
529 /**
530  * drop_incomplete_group - drop nodes from an incomplete group.
531  * @sleb: scanned LEB information
532  * @offs: offset of dropped nodes is returned here
533  *
534  * This function returns %1 if nodes are dropped and %0 otherwise.
535  */
536 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
537 {
538 	int dropped = 0;
539 
540 	while (!list_empty(&sleb->nodes)) {
541 		struct ubifs_scan_node *snod;
542 		struct ubifs_ch *ch;
543 
544 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
545 				  list);
546 		ch = snod->node;
547 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
548 			return dropped;
549 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
550 		*offs = snod->offs;
551 		list_del(&snod->list);
552 		kfree(snod);
553 		sleb->nodes_cnt -= 1;
554 		dropped = 1;
555 	}
556 	return dropped;
557 }
558 
559 /**
560  * ubifs_recover_leb - scan and recover a LEB.
561  * @c: UBIFS file-system description object
562  * @lnum: LEB number
563  * @offs: offset
564  * @sbuf: LEB-sized buffer to use
565  * @grouped: nodes may be grouped for recovery
566  *
567  * This function does a scan of a LEB, but caters for errors that might have
568  * been caused by the unclean unmount from which we are attempting to recover.
569  *
570  * This function returns %0 on success and a negative error code on failure.
571  */
572 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
573 					 int offs, void *sbuf, int grouped)
574 {
575 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
576 	int empty_chkd = 0, start = offs;
577 	struct ubifs_scan_leb *sleb;
578 	void *buf = sbuf + offs;
579 
580 	dbg_rcvry("%d:%d", lnum, offs);
581 
582 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
583 	if (IS_ERR(sleb))
584 		return sleb;
585 
586 	if (sleb->ecc)
587 		need_clean = 1;
588 
589 	while (len >= 8) {
590 		int ret;
591 
592 		dbg_scan("look at LEB %d:%d (%d bytes left)",
593 			 lnum, offs, len);
594 
595 		cond_resched();
596 
597 		/*
598 		 * Scan quietly until there is an error from which we cannot
599 		 * recover
600 		 */
601 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
602 
603 		if (ret == SCANNED_A_NODE) {
604 			/* A valid node, and not a padding node */
605 			struct ubifs_ch *ch = buf;
606 			int node_len;
607 
608 			err = ubifs_add_snod(c, sleb, buf, offs);
609 			if (err)
610 				goto error;
611 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
612 			offs += node_len;
613 			buf += node_len;
614 			len -= node_len;
615 			continue;
616 		}
617 
618 		if (ret > 0) {
619 			/* Padding bytes or a valid padding node */
620 			offs += ret;
621 			buf += ret;
622 			len -= ret;
623 			continue;
624 		}
625 
626 		if (ret == SCANNED_EMPTY_SPACE) {
627 			if (!is_empty(buf, len)) {
628 				if (!is_last_write(c, buf, offs))
629 					break;
630 				clean_buf(c, &buf, lnum, &offs, &len);
631 				need_clean = 1;
632 			}
633 			empty_chkd = 1;
634 			break;
635 		}
636 
637 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
638 			if (is_last_write(c, buf, offs)) {
639 				clean_buf(c, &buf, lnum, &offs, &len);
640 				need_clean = 1;
641 				empty_chkd = 1;
642 				break;
643 			}
644 
645 		if (ret == SCANNED_A_CORRUPT_NODE)
646 			if (no_more_nodes(c, buf, len, lnum, offs)) {
647 				clean_buf(c, &buf, lnum, &offs, &len);
648 				need_clean = 1;
649 				empty_chkd = 1;
650 				break;
651 			}
652 
653 		if (quiet) {
654 			/* Redo the last scan but noisily */
655 			quiet = 0;
656 			continue;
657 		}
658 
659 		switch (ret) {
660 		case SCANNED_GARBAGE:
661 			dbg_err("garbage");
662 			goto corrupted;
663 		case SCANNED_A_CORRUPT_NODE:
664 		case SCANNED_A_BAD_PAD_NODE:
665 			dbg_err("bad node");
666 			goto corrupted;
667 		default:
668 			dbg_err("unknown");
669 			goto corrupted;
670 		}
671 	}
672 
673 	if (!empty_chkd && !is_empty(buf, len)) {
674 		if (is_last_write(c, buf, offs)) {
675 			clean_buf(c, &buf, lnum, &offs, &len);
676 			need_clean = 1;
677 		} else {
678 			ubifs_err("corrupt empty space at LEB %d:%d",
679 				  lnum, offs);
680 			goto corrupted;
681 		}
682 	}
683 
684 	/* Drop nodes from incomplete group */
685 	if (grouped && drop_incomplete_group(sleb, &offs)) {
686 		buf = sbuf + offs;
687 		len = c->leb_size - offs;
688 		clean_buf(c, &buf, lnum, &offs, &len);
689 		need_clean = 1;
690 	}
691 
692 	if (offs % c->min_io_size) {
693 		clean_buf(c, &buf, lnum, &offs, &len);
694 		need_clean = 1;
695 	}
696 
697 	ubifs_end_scan(c, sleb, lnum, offs);
698 
699 	if (need_clean) {
700 		err = fix_unclean_leb(c, sleb, start);
701 		if (err)
702 			goto error;
703 	}
704 
705 	return sleb;
706 
707 corrupted:
708 	ubifs_scanned_corruption(c, lnum, offs, buf);
709 	err = -EUCLEAN;
710 error:
711 	ubifs_err("LEB %d scanning failed", lnum);
712 	ubifs_scan_destroy(sleb);
713 	return ERR_PTR(err);
714 }
715 
716 /**
717  * get_cs_sqnum - get commit start sequence number.
718  * @c: UBIFS file-system description object
719  * @lnum: LEB number of commit start node
720  * @offs: offset of commit start node
721  * @cs_sqnum: commit start sequence number is returned here
722  *
723  * This function returns %0 on success and a negative error code on failure.
724  */
725 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
726 			unsigned long long *cs_sqnum)
727 {
728 	struct ubifs_cs_node *cs_node = NULL;
729 	int err, ret;
730 
731 	dbg_rcvry("at %d:%d", lnum, offs);
732 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
733 	if (!cs_node)
734 		return -ENOMEM;
735 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
736 		goto out_err;
737 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
738 	if (err && err != -EBADMSG)
739 		goto out_free;
740 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
741 	if (ret != SCANNED_A_NODE) {
742 		dbg_err("Not a valid node");
743 		goto out_err;
744 	}
745 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
746 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
747 		goto out_err;
748 	}
749 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
750 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
751 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
752 			c->cmt_no);
753 		goto out_err;
754 	}
755 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
756 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
757 	kfree(cs_node);
758 	return 0;
759 
760 out_err:
761 	err = -EINVAL;
762 out_free:
763 	ubifs_err("failed to get CS sqnum");
764 	kfree(cs_node);
765 	return err;
766 }
767 
768 /**
769  * ubifs_recover_log_leb - scan and recover a log LEB.
770  * @c: UBIFS file-system description object
771  * @lnum: LEB number
772  * @offs: offset
773  * @sbuf: LEB-sized buffer to use
774  *
775  * This function does a scan of a LEB, but caters for errors that might have
776  * been caused by the unclean unmount from which we are attempting to recover.
777  *
778  * This function returns %0 on success and a negative error code on failure.
779  */
780 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
781 					     int offs, void *sbuf)
782 {
783 	struct ubifs_scan_leb *sleb;
784 	int next_lnum;
785 
786 	dbg_rcvry("LEB %d", lnum);
787 	next_lnum = lnum + 1;
788 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
789 		next_lnum = UBIFS_LOG_LNUM;
790 	if (next_lnum != c->ltail_lnum) {
791 		/*
792 		 * We can only recover at the end of the log, so check that the
793 		 * next log LEB is empty or out of date.
794 		 */
795 		sleb = ubifs_scan(c, next_lnum, 0, sbuf);
796 		if (IS_ERR(sleb))
797 			return sleb;
798 		if (sleb->nodes_cnt) {
799 			struct ubifs_scan_node *snod;
800 			unsigned long long cs_sqnum = c->cs_sqnum;
801 
802 			snod = list_entry(sleb->nodes.next,
803 					  struct ubifs_scan_node, list);
804 			if (cs_sqnum == 0) {
805 				int err;
806 
807 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
808 				if (err) {
809 					ubifs_scan_destroy(sleb);
810 					return ERR_PTR(err);
811 				}
812 			}
813 			if (snod->sqnum > cs_sqnum) {
814 				ubifs_err("unrecoverable log corruption "
815 					  "in LEB %d", lnum);
816 				ubifs_scan_destroy(sleb);
817 				return ERR_PTR(-EUCLEAN);
818 			}
819 		}
820 		ubifs_scan_destroy(sleb);
821 	}
822 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
823 }
824 
825 /**
826  * recover_head - recover a head.
827  * @c: UBIFS file-system description object
828  * @lnum: LEB number of head to recover
829  * @offs: offset of head to recover
830  * @sbuf: LEB-sized buffer to use
831  *
832  * This function ensures that there is no data on the flash at a head location.
833  *
834  * This function returns %0 on success and a negative error code on failure.
835  */
836 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
837 			void *sbuf)
838 {
839 	int len, err, need_clean = 0;
840 
841 	if (c->min_io_size > 1)
842 		len = c->min_io_size;
843 	else
844 		len = 512;
845 	if (offs + len > c->leb_size)
846 		len = c->leb_size - offs;
847 
848 	if (!len)
849 		return 0;
850 
851 	/* Read at the head location and check it is empty flash */
852 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
853 	if (err)
854 		need_clean = 1;
855 	else {
856 		uint8_t *p = sbuf;
857 
858 		while (len--)
859 			if (*p++ != 0xff) {
860 				need_clean = 1;
861 				break;
862 			}
863 	}
864 
865 	if (need_clean) {
866 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
867 		if (offs == 0)
868 			return ubifs_leb_unmap(c, lnum);
869 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
870 		if (err)
871 			return err;
872 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
873 	}
874 
875 	return 0;
876 }
877 
878 /**
879  * ubifs_recover_inl_heads - recover index and LPT heads.
880  * @c: UBIFS file-system description object
881  * @sbuf: LEB-sized buffer to use
882  *
883  * This function ensures that there is no data on the flash at the index and
884  * LPT head locations.
885  *
886  * This deals with the recovery of a half-completed journal commit. UBIFS is
887  * careful never to overwrite the last version of the index or the LPT. Because
888  * the index and LPT are wandering trees, data from a half-completed commit will
889  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
890  * assumed to be empty and will be unmapped anyway before use, or in the index
891  * and LPT heads.
892  *
893  * This function returns %0 on success and a negative error code on failure.
894  */
895 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
896 {
897 	int err;
898 
899 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
900 
901 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
902 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
903 	if (err)
904 		return err;
905 
906 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
907 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
908 	if (err)
909 		return err;
910 
911 	return 0;
912 }
913 
914 /**
915  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
916  * @c: UBIFS file-system description object
917  * @ucleb: unclean LEB information
918  * @sbuf: LEB-sized buffer to use
919  *
920  * This function reads a LEB up to a point pre-determined by the mount recovery,
921  * checks the nodes, and writes the result back to the flash, thereby cleaning
922  * off any following corruption, or non-fatal ECC errors.
923  *
924  * This function returns %0 on success and a negative error code on failure.
925  */
926 static int clean_an_unclean_leb(const struct ubifs_info *c,
927 				struct ubifs_unclean_leb *ucleb, void *sbuf)
928 {
929 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
930 	void *buf = sbuf;
931 
932 	dbg_rcvry("LEB %d len %d", lnum, len);
933 
934 	if (len == 0) {
935 		/* Nothing to read, just unmap it */
936 		err = ubifs_leb_unmap(c, lnum);
937 		if (err)
938 			return err;
939 		return 0;
940 	}
941 
942 	err = ubi_read(c->ubi, lnum, buf, offs, len);
943 	if (err && err != -EBADMSG)
944 		return err;
945 
946 	while (len >= 8) {
947 		int ret;
948 
949 		cond_resched();
950 
951 		/* Scan quietly until there is an error */
952 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
953 
954 		if (ret == SCANNED_A_NODE) {
955 			/* A valid node, and not a padding node */
956 			struct ubifs_ch *ch = buf;
957 			int node_len;
958 
959 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
960 			offs += node_len;
961 			buf += node_len;
962 			len -= node_len;
963 			continue;
964 		}
965 
966 		if (ret > 0) {
967 			/* Padding bytes or a valid padding node */
968 			offs += ret;
969 			buf += ret;
970 			len -= ret;
971 			continue;
972 		}
973 
974 		if (ret == SCANNED_EMPTY_SPACE) {
975 			ubifs_err("unexpected empty space at %d:%d",
976 				  lnum, offs);
977 			return -EUCLEAN;
978 		}
979 
980 		if (quiet) {
981 			/* Redo the last scan but noisily */
982 			quiet = 0;
983 			continue;
984 		}
985 
986 		ubifs_scanned_corruption(c, lnum, offs, buf);
987 		return -EUCLEAN;
988 	}
989 
990 	/* Pad to min_io_size */
991 	len = ALIGN(ucleb->endpt, c->min_io_size);
992 	if (len > ucleb->endpt) {
993 		int pad_len = len - ALIGN(ucleb->endpt, 8);
994 
995 		if (pad_len > 0) {
996 			buf = c->sbuf + len - pad_len;
997 			ubifs_pad(c, buf, pad_len);
998 		}
999 	}
1000 
1001 	/* Write back the LEB atomically */
1002 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
1003 	if (err)
1004 		return err;
1005 
1006 	dbg_rcvry("cleaned LEB %d", lnum);
1007 
1008 	return 0;
1009 }
1010 
1011 /**
1012  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1013  * @c: UBIFS file-system description object
1014  * @sbuf: LEB-sized buffer to use
1015  *
1016  * This function cleans a LEB identified during recovery that needs to be
1017  * written but was not because UBIFS was mounted read-only. This happens when
1018  * remounting to read-write mode.
1019  *
1020  * This function returns %0 on success and a negative error code on failure.
1021  */
1022 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1023 {
1024 	dbg_rcvry("recovery");
1025 	while (!list_empty(&c->unclean_leb_list)) {
1026 		struct ubifs_unclean_leb *ucleb;
1027 		int err;
1028 
1029 		ucleb = list_entry(c->unclean_leb_list.next,
1030 				   struct ubifs_unclean_leb, list);
1031 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1032 		if (err)
1033 			return err;
1034 		list_del(&ucleb->list);
1035 		kfree(ucleb);
1036 	}
1037 	return 0;
1038 }
1039 
1040 /**
1041  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1042  * @c: UBIFS file-system description object
1043  *
1044  * Out-of-place garbage collection requires always one empty LEB with which to
1045  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1046  * written to the master node on unmounting. In the case of an unclean unmount
1047  * the value of gc_lnum recorded in the master node is out of date and cannot
1048  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1049  * However, there may not be enough empty space, in which case it must be
1050  * possible to GC the dirtiest LEB into the GC head LEB.
1051  *
1052  * This function also runs the commit which causes the TNC updates from
1053  * size-recovery and orphans to be written to the flash. That is important to
1054  * ensure correct replay order for subsequent mounts.
1055  *
1056  * This function returns %0 on success and a negative error code on failure.
1057  */
1058 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1059 {
1060 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1061 	struct ubifs_lprops lp;
1062 	int lnum, err;
1063 
1064 	c->gc_lnum = -1;
1065 	if (wbuf->lnum == -1) {
1066 		dbg_rcvry("no GC head LEB");
1067 		goto find_free;
1068 	}
1069 	/*
1070 	 * See whether the used space in the dirtiest LEB fits in the GC head
1071 	 * LEB.
1072 	 */
1073 	if (wbuf->offs == c->leb_size) {
1074 		dbg_rcvry("no room in GC head LEB");
1075 		goto find_free;
1076 	}
1077 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1078 	if (err) {
1079 		if (err == -ENOSPC)
1080 			dbg_err("could not find a dirty LEB");
1081 		return err;
1082 	}
1083 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1084 	lnum = lp.lnum;
1085 	if (lp.free + lp.dirty == c->leb_size) {
1086 		/* An empty LEB was returned */
1087 		if (lp.free != c->leb_size) {
1088 			err = ubifs_change_one_lp(c, lnum, c->leb_size,
1089 						  0, 0, 0, 0);
1090 			if (err)
1091 				return err;
1092 		}
1093 		err = ubifs_leb_unmap(c, lnum);
1094 		if (err)
1095 			return err;
1096 		c->gc_lnum = lnum;
1097 		dbg_rcvry("allocated LEB %d for GC", lnum);
1098 		/* Run the commit */
1099 		dbg_rcvry("committing");
1100 		return ubifs_run_commit(c);
1101 	}
1102 	/*
1103 	 * There was no empty LEB so the used space in the dirtiest LEB must fit
1104 	 * in the GC head LEB.
1105 	 */
1106 	if (lp.free + lp.dirty < wbuf->offs) {
1107 		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1108 			  lnum, wbuf->lnum, wbuf->offs);
1109 		err = ubifs_return_leb(c, lnum);
1110 		if (err)
1111 			return err;
1112 		goto find_free;
1113 	}
1114 	/*
1115 	 * We run the commit before garbage collection otherwise subsequent
1116 	 * mounts will see the GC and orphan deletion in a different order.
1117 	 */
1118 	dbg_rcvry("committing");
1119 	err = ubifs_run_commit(c);
1120 	if (err)
1121 		return err;
1122 	/*
1123 	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1124 	 * - use locking to keep 'ubifs_assert()' happy.
1125 	 */
1126 	dbg_rcvry("GC'ing LEB %d", lnum);
1127 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1128 	err = ubifs_garbage_collect_leb(c, &lp);
1129 	if (err >= 0) {
1130 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1131 
1132 		if (err2)
1133 			err = err2;
1134 	}
1135 	mutex_unlock(&wbuf->io_mutex);
1136 	if (err < 0) {
1137 		dbg_err("GC failed, error %d", err);
1138 		if (err == -EAGAIN)
1139 			err = -EINVAL;
1140 		return err;
1141 	}
1142 	if (err != LEB_RETAINED) {
1143 		dbg_err("GC returned %d", err);
1144 		return -EINVAL;
1145 	}
1146 	err = ubifs_leb_unmap(c, c->gc_lnum);
1147 	if (err)
1148 		return err;
1149 	dbg_rcvry("allocated LEB %d for GC", lnum);
1150 	return 0;
1151 
1152 find_free:
1153 	/*
1154 	 * There is no GC head LEB or the free space in the GC head LEB is too
1155 	 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1156 	 * GC is not run.
1157 	 */
1158 	lnum = ubifs_find_free_leb_for_idx(c);
1159 	if (lnum < 0) {
1160 		dbg_err("could not find an empty LEB");
1161 		return lnum;
1162 	}
1163 	/* And reset the index flag */
1164 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1165 				  LPROPS_INDEX, 0);
1166 	if (err)
1167 		return err;
1168 	c->gc_lnum = lnum;
1169 	dbg_rcvry("allocated LEB %d for GC", lnum);
1170 	/* Run the commit */
1171 	dbg_rcvry("committing");
1172 	return ubifs_run_commit(c);
1173 }
1174 
1175 /**
1176  * struct size_entry - inode size information for recovery.
1177  * @rb: link in the RB-tree of sizes
1178  * @inum: inode number
1179  * @i_size: size on inode
1180  * @d_size: maximum size based on data nodes
1181  * @exists: indicates whether the inode exists
1182  * @inode: inode if pinned in memory awaiting rw mode to fix it
1183  */
1184 struct size_entry {
1185 	struct rb_node rb;
1186 	ino_t inum;
1187 	loff_t i_size;
1188 	loff_t d_size;
1189 	int exists;
1190 	struct inode *inode;
1191 };
1192 
1193 /**
1194  * add_ino - add an entry to the size tree.
1195  * @c: UBIFS file-system description object
1196  * @inum: inode number
1197  * @i_size: size on inode
1198  * @d_size: maximum size based on data nodes
1199  * @exists: indicates whether the inode exists
1200  */
1201 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1202 		   loff_t d_size, int exists)
1203 {
1204 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1205 	struct size_entry *e;
1206 
1207 	while (*p) {
1208 		parent = *p;
1209 		e = rb_entry(parent, struct size_entry, rb);
1210 		if (inum < e->inum)
1211 			p = &(*p)->rb_left;
1212 		else
1213 			p = &(*p)->rb_right;
1214 	}
1215 
1216 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1217 	if (!e)
1218 		return -ENOMEM;
1219 
1220 	e->inum = inum;
1221 	e->i_size = i_size;
1222 	e->d_size = d_size;
1223 	e->exists = exists;
1224 
1225 	rb_link_node(&e->rb, parent, p);
1226 	rb_insert_color(&e->rb, &c->size_tree);
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * find_ino - find an entry on the size tree.
1233  * @c: UBIFS file-system description object
1234  * @inum: inode number
1235  */
1236 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1237 {
1238 	struct rb_node *p = c->size_tree.rb_node;
1239 	struct size_entry *e;
1240 
1241 	while (p) {
1242 		e = rb_entry(p, struct size_entry, rb);
1243 		if (inum < e->inum)
1244 			p = p->rb_left;
1245 		else if (inum > e->inum)
1246 			p = p->rb_right;
1247 		else
1248 			return e;
1249 	}
1250 	return NULL;
1251 }
1252 
1253 /**
1254  * remove_ino - remove an entry from the size tree.
1255  * @c: UBIFS file-system description object
1256  * @inum: inode number
1257  */
1258 static void remove_ino(struct ubifs_info *c, ino_t inum)
1259 {
1260 	struct size_entry *e = find_ino(c, inum);
1261 
1262 	if (!e)
1263 		return;
1264 	rb_erase(&e->rb, &c->size_tree);
1265 	kfree(e);
1266 }
1267 
1268 /**
1269  * ubifs_destroy_size_tree - free resources related to the size tree.
1270  * @c: UBIFS file-system description object
1271  */
1272 void ubifs_destroy_size_tree(struct ubifs_info *c)
1273 {
1274 	struct rb_node *this = c->size_tree.rb_node;
1275 	struct size_entry *e;
1276 
1277 	while (this) {
1278 		if (this->rb_left) {
1279 			this = this->rb_left;
1280 			continue;
1281 		} else if (this->rb_right) {
1282 			this = this->rb_right;
1283 			continue;
1284 		}
1285 		e = rb_entry(this, struct size_entry, rb);
1286 		if (e->inode)
1287 			iput(e->inode);
1288 		this = rb_parent(this);
1289 		if (this) {
1290 			if (this->rb_left == &e->rb)
1291 				this->rb_left = NULL;
1292 			else
1293 				this->rb_right = NULL;
1294 		}
1295 		kfree(e);
1296 	}
1297 	c->size_tree = RB_ROOT;
1298 }
1299 
1300 /**
1301  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1302  * @c: UBIFS file-system description object
1303  * @key: node key
1304  * @deletion: node is for a deletion
1305  * @new_size: inode size
1306  *
1307  * This function has two purposes:
1308  *     1) to ensure there are no data nodes that fall outside the inode size
1309  *     2) to ensure there are no data nodes for inodes that do not exist
1310  * To accomplish those purposes, a rb-tree is constructed containing an entry
1311  * for each inode number in the journal that has not been deleted, and recording
1312  * the size from the inode node, the maximum size of any data node (also altered
1313  * by truncations) and a flag indicating a inode number for which no inode node
1314  * was present in the journal.
1315  *
1316  * Note that there is still the possibility that there are data nodes that have
1317  * been committed that are beyond the inode size, however the only way to find
1318  * them would be to scan the entire index. Alternatively, some provision could
1319  * be made to record the size of inodes at the start of commit, which would seem
1320  * very cumbersome for a scenario that is quite unlikely and the only negative
1321  * consequence of which is wasted space.
1322  *
1323  * This functions returns %0 on success and a negative error code on failure.
1324  */
1325 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1326 			     int deletion, loff_t new_size)
1327 {
1328 	ino_t inum = key_inum(c, key);
1329 	struct size_entry *e;
1330 	int err;
1331 
1332 	switch (key_type(c, key)) {
1333 	case UBIFS_INO_KEY:
1334 		if (deletion)
1335 			remove_ino(c, inum);
1336 		else {
1337 			e = find_ino(c, inum);
1338 			if (e) {
1339 				e->i_size = new_size;
1340 				e->exists = 1;
1341 			} else {
1342 				err = add_ino(c, inum, new_size, 0, 1);
1343 				if (err)
1344 					return err;
1345 			}
1346 		}
1347 		break;
1348 	case UBIFS_DATA_KEY:
1349 		e = find_ino(c, inum);
1350 		if (e) {
1351 			if (new_size > e->d_size)
1352 				e->d_size = new_size;
1353 		} else {
1354 			err = add_ino(c, inum, 0, new_size, 0);
1355 			if (err)
1356 				return err;
1357 		}
1358 		break;
1359 	case UBIFS_TRUN_KEY:
1360 		e = find_ino(c, inum);
1361 		if (e)
1362 			e->d_size = new_size;
1363 		break;
1364 	}
1365 	return 0;
1366 }
1367 
1368 /**
1369  * fix_size_in_place - fix inode size in place on flash.
1370  * @c: UBIFS file-system description object
1371  * @e: inode size information for recovery
1372  */
1373 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1374 {
1375 	struct ubifs_ino_node *ino = c->sbuf;
1376 	unsigned char *p;
1377 	union ubifs_key key;
1378 	int err, lnum, offs, len;
1379 	loff_t i_size;
1380 	uint32_t crc;
1381 
1382 	/* Locate the inode node LEB number and offset */
1383 	ino_key_init(c, &key, e->inum);
1384 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1385 	if (err)
1386 		goto out;
1387 	/*
1388 	 * If the size recorded on the inode node is greater than the size that
1389 	 * was calculated from nodes in the journal then don't change the inode.
1390 	 */
1391 	i_size = le64_to_cpu(ino->size);
1392 	if (i_size >= e->d_size)
1393 		return 0;
1394 	/* Read the LEB */
1395 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1396 	if (err)
1397 		goto out;
1398 	/* Change the size field and recalculate the CRC */
1399 	ino = c->sbuf + offs;
1400 	ino->size = cpu_to_le64(e->d_size);
1401 	len = le32_to_cpu(ino->ch.len);
1402 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1403 	ino->ch.crc = cpu_to_le32(crc);
1404 	/* Work out where data in the LEB ends and free space begins */
1405 	p = c->sbuf;
1406 	len = c->leb_size - 1;
1407 	while (p[len] == 0xff)
1408 		len -= 1;
1409 	len = ALIGN(len + 1, c->min_io_size);
1410 	/* Atomically write the fixed LEB back again */
1411 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1412 	if (err)
1413 		goto out;
1414 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1415 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1416 	return 0;
1417 
1418 out:
1419 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1420 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1421 	return err;
1422 }
1423 
1424 /**
1425  * ubifs_recover_size - recover inode size.
1426  * @c: UBIFS file-system description object
1427  *
1428  * This function attempts to fix inode size discrepancies identified by the
1429  * 'ubifs_recover_size_accum()' function.
1430  *
1431  * This functions returns %0 on success and a negative error code on failure.
1432  */
1433 int ubifs_recover_size(struct ubifs_info *c)
1434 {
1435 	struct rb_node *this = rb_first(&c->size_tree);
1436 
1437 	while (this) {
1438 		struct size_entry *e;
1439 		int err;
1440 
1441 		e = rb_entry(this, struct size_entry, rb);
1442 		if (!e->exists) {
1443 			union ubifs_key key;
1444 
1445 			ino_key_init(c, &key, e->inum);
1446 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1447 			if (err && err != -ENOENT)
1448 				return err;
1449 			if (err == -ENOENT) {
1450 				/* Remove data nodes that have no inode */
1451 				dbg_rcvry("removing ino %lu",
1452 					  (unsigned long)e->inum);
1453 				err = ubifs_tnc_remove_ino(c, e->inum);
1454 				if (err)
1455 					return err;
1456 			} else {
1457 				struct ubifs_ino_node *ino = c->sbuf;
1458 
1459 				e->exists = 1;
1460 				e->i_size = le64_to_cpu(ino->size);
1461 			}
1462 		}
1463 		if (e->exists && e->i_size < e->d_size) {
1464 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1465 				/* Fix the inode size and pin it in memory */
1466 				struct inode *inode;
1467 
1468 				inode = ubifs_iget(c->vfs_sb, e->inum);
1469 				if (IS_ERR(inode))
1470 					return PTR_ERR(inode);
1471 				if (inode->i_size < e->d_size) {
1472 					dbg_rcvry("ino %lu size %lld -> %lld",
1473 						  (unsigned long)e->inum,
1474 						  e->d_size, inode->i_size);
1475 					inode->i_size = e->d_size;
1476 					ubifs_inode(inode)->ui_size = e->d_size;
1477 					e->inode = inode;
1478 					this = rb_next(this);
1479 					continue;
1480 				}
1481 				iput(inode);
1482 			} else {
1483 				/* Fix the size in place */
1484 				err = fix_size_in_place(c, e);
1485 				if (err)
1486 					return err;
1487 				if (e->inode)
1488 					iput(e->inode);
1489 			}
1490 		}
1491 		this = rb_next(this);
1492 		rb_erase(&e->rb, &c->size_tree);
1493 		kfree(e);
1494 	}
1495 	return 0;
1496 }
1497