1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions needed to recover from unclean un-mounts. 25 * When UBIFS is mounted, it checks a flag on the master node to determine if 26 * an un-mount was completed sucessfully. If not, the process of mounting 27 * incorparates additional checking and fixing of on-flash data structures. 28 * UBIFS always cleans away all remnants of an unclean un-mount, so that 29 * errors do not accumulate. However UBIFS defers recovery if it is mounted 30 * read-only, and the flash is not modified in that case. 31 */ 32 33 #include <linux/crc32.h> 34 #include "ubifs.h" 35 36 /** 37 * is_empty - determine whether a buffer is empty (contains all 0xff). 38 * @buf: buffer to clean 39 * @len: length of buffer 40 * 41 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 42 * %0 is returned. 43 */ 44 static int is_empty(void *buf, int len) 45 { 46 uint8_t *p = buf; 47 int i; 48 49 for (i = 0; i < len; i++) 50 if (*p++ != 0xff) 51 return 0; 52 return 1; 53 } 54 55 /** 56 * get_master_node - get the last valid master node allowing for corruption. 57 * @c: UBIFS file-system description object 58 * @lnum: LEB number 59 * @pbuf: buffer containing the LEB read, is returned here 60 * @mst: master node, if found, is returned here 61 * @cor: corruption, if found, is returned here 62 * 63 * This function allocates a buffer, reads the LEB into it, and finds and 64 * returns the last valid master node allowing for one area of corruption. 65 * The corrupt area, if there is one, must be consistent with the assumption 66 * that it is the result of an unclean unmount while the master node was being 67 * written. Under those circumstances, it is valid to use the previously written 68 * master node. 69 * 70 * This function returns %0 on success and a negative error code on failure. 71 */ 72 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 73 struct ubifs_mst_node **mst, void **cor) 74 { 75 const int sz = c->mst_node_alsz; 76 int err, offs, len; 77 void *sbuf, *buf; 78 79 sbuf = vmalloc(c->leb_size); 80 if (!sbuf) 81 return -ENOMEM; 82 83 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); 84 if (err && err != -EBADMSG) 85 goto out_free; 86 87 /* Find the first position that is definitely not a node */ 88 offs = 0; 89 buf = sbuf; 90 len = c->leb_size; 91 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 92 struct ubifs_ch *ch = buf; 93 94 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 95 break; 96 offs += sz; 97 buf += sz; 98 len -= sz; 99 } 100 /* See if there was a valid master node before that */ 101 if (offs) { 102 int ret; 103 104 offs -= sz; 105 buf -= sz; 106 len += sz; 107 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 108 if (ret != SCANNED_A_NODE && offs) { 109 /* Could have been corruption so check one place back */ 110 offs -= sz; 111 buf -= sz; 112 len += sz; 113 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 114 if (ret != SCANNED_A_NODE) 115 /* 116 * We accept only one area of corruption because 117 * we are assuming that it was caused while 118 * trying to write a master node. 119 */ 120 goto out_err; 121 } 122 if (ret == SCANNED_A_NODE) { 123 struct ubifs_ch *ch = buf; 124 125 if (ch->node_type != UBIFS_MST_NODE) 126 goto out_err; 127 dbg_rcvry("found a master node at %d:%d", lnum, offs); 128 *mst = buf; 129 offs += sz; 130 buf += sz; 131 len -= sz; 132 } 133 } 134 /* Check for corruption */ 135 if (offs < c->leb_size) { 136 if (!is_empty(buf, min_t(int, len, sz))) { 137 *cor = buf; 138 dbg_rcvry("found corruption at %d:%d", lnum, offs); 139 } 140 offs += sz; 141 buf += sz; 142 len -= sz; 143 } 144 /* Check remaining empty space */ 145 if (offs < c->leb_size) 146 if (!is_empty(buf, len)) 147 goto out_err; 148 *pbuf = sbuf; 149 return 0; 150 151 out_err: 152 err = -EINVAL; 153 out_free: 154 vfree(sbuf); 155 *mst = NULL; 156 *cor = NULL; 157 return err; 158 } 159 160 /** 161 * write_rcvrd_mst_node - write recovered master node. 162 * @c: UBIFS file-system description object 163 * @mst: master node 164 * 165 * This function returns %0 on success and a negative error code on failure. 166 */ 167 static int write_rcvrd_mst_node(struct ubifs_info *c, 168 struct ubifs_mst_node *mst) 169 { 170 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 171 uint32_t save_flags; 172 173 dbg_rcvry("recovery"); 174 175 save_flags = mst->flags; 176 mst->flags = cpu_to_le32(le32_to_cpu(mst->flags) | UBIFS_MST_RCVRY); 177 178 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 179 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); 180 if (err) 181 goto out; 182 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); 183 if (err) 184 goto out; 185 out: 186 mst->flags = save_flags; 187 return err; 188 } 189 190 /** 191 * ubifs_recover_master_node - recover the master node. 192 * @c: UBIFS file-system description object 193 * 194 * This function recovers the master node from corruption that may occur due to 195 * an unclean unmount. 196 * 197 * This function returns %0 on success and a negative error code on failure. 198 */ 199 int ubifs_recover_master_node(struct ubifs_info *c) 200 { 201 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 202 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 203 const int sz = c->mst_node_alsz; 204 int err, offs1, offs2; 205 206 dbg_rcvry("recovery"); 207 208 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 209 if (err) 210 goto out_free; 211 212 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 213 if (err) 214 goto out_free; 215 216 if (mst1) { 217 offs1 = (void *)mst1 - buf1; 218 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 219 (offs1 == 0 && !cor1)) { 220 /* 221 * mst1 was written by recovery at offset 0 with no 222 * corruption. 223 */ 224 dbg_rcvry("recovery recovery"); 225 mst = mst1; 226 } else if (mst2) { 227 offs2 = (void *)mst2 - buf2; 228 if (offs1 == offs2) { 229 /* Same offset, so must be the same */ 230 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 231 (void *)mst2 + UBIFS_CH_SZ, 232 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 233 goto out_err; 234 mst = mst1; 235 } else if (offs2 + sz == offs1) { 236 /* 1st LEB was written, 2nd was not */ 237 if (cor1) 238 goto out_err; 239 mst = mst1; 240 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { 241 /* 1st LEB was unmapped and written, 2nd not */ 242 if (cor1) 243 goto out_err; 244 mst = mst1; 245 } else 246 goto out_err; 247 } else { 248 /* 249 * 2nd LEB was unmapped and about to be written, so 250 * there must be only one master node in the first LEB 251 * and no corruption. 252 */ 253 if (offs1 != 0 || cor1) 254 goto out_err; 255 mst = mst1; 256 } 257 } else { 258 if (!mst2) 259 goto out_err; 260 /* 261 * 1st LEB was unmapped and about to be written, so there must 262 * be no room left in 2nd LEB. 263 */ 264 offs2 = (void *)mst2 - buf2; 265 if (offs2 + sz + sz <= c->leb_size) 266 goto out_err; 267 mst = mst2; 268 } 269 270 dbg_rcvry("recovered master node from LEB %d", 271 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 272 273 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 274 275 if ((c->vfs_sb->s_flags & MS_RDONLY)) { 276 /* Read-only mode. Keep a copy for switching to rw mode */ 277 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 278 if (!c->rcvrd_mst_node) { 279 err = -ENOMEM; 280 goto out_free; 281 } 282 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 283 } else { 284 /* Write the recovered master node */ 285 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 286 err = write_rcvrd_mst_node(c, c->mst_node); 287 if (err) 288 goto out_free; 289 } 290 291 vfree(buf2); 292 vfree(buf1); 293 294 return 0; 295 296 out_err: 297 err = -EINVAL; 298 out_free: 299 ubifs_err("failed to recover master node"); 300 if (mst1) { 301 dbg_err("dumping first master node"); 302 dbg_dump_node(c, mst1); 303 } 304 if (mst2) { 305 dbg_err("dumping second master node"); 306 dbg_dump_node(c, mst2); 307 } 308 vfree(buf2); 309 vfree(buf1); 310 return err; 311 } 312 313 /** 314 * ubifs_write_rcvrd_mst_node - write the recovered master node. 315 * @c: UBIFS file-system description object 316 * 317 * This function writes the master node that was recovered during mounting in 318 * read-only mode and must now be written because we are remounting rw. 319 * 320 * This function returns %0 on success and a negative error code on failure. 321 */ 322 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 323 { 324 int err; 325 326 if (!c->rcvrd_mst_node) 327 return 0; 328 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 329 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 330 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 331 if (err) 332 return err; 333 kfree(c->rcvrd_mst_node); 334 c->rcvrd_mst_node = NULL; 335 return 0; 336 } 337 338 /** 339 * is_last_write - determine if an offset was in the last write to a LEB. 340 * @c: UBIFS file-system description object 341 * @buf: buffer to check 342 * @offs: offset to check 343 * 344 * This function returns %1 if @offs was in the last write to the LEB whose data 345 * is in @buf, otherwise %0 is returned. The determination is made by checking 346 * for subsequent empty space starting from the next min_io_size boundary (or a 347 * bit less than the common header size if min_io_size is one). 348 */ 349 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 350 { 351 int empty_offs; 352 int check_len; 353 uint8_t *p; 354 355 if (c->min_io_size == 1) { 356 check_len = c->leb_size - offs; 357 p = buf + check_len; 358 for (; check_len > 0; check_len--) 359 if (*--p != 0xff) 360 break; 361 /* 362 * 'check_len' is the size of the corruption which cannot be 363 * more than the size of 1 node if it was caused by an unclean 364 * unmount. 365 */ 366 if (check_len > UBIFS_MAX_NODE_SZ) 367 return 0; 368 return 1; 369 } 370 371 /* 372 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the 373 * last wbuf written. After that should be empty space. 374 */ 375 empty_offs = ALIGN(offs + 1, c->min_io_size); 376 check_len = c->leb_size - empty_offs; 377 p = buf + empty_offs - offs; 378 379 for (; check_len > 0; check_len--) 380 if (*p++ != 0xff) 381 return 0; 382 return 1; 383 } 384 385 /** 386 * clean_buf - clean the data from an LEB sitting in a buffer. 387 * @c: UBIFS file-system description object 388 * @buf: buffer to clean 389 * @lnum: LEB number to clean 390 * @offs: offset from which to clean 391 * @len: length of buffer 392 * 393 * This function pads up to the next min_io_size boundary (if there is one) and 394 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 395 * min_io_size boundary (if there is one). 396 */ 397 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 398 int *offs, int *len) 399 { 400 int empty_offs, pad_len; 401 402 lnum = lnum; 403 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 404 405 if (c->min_io_size == 1) { 406 memset(*buf, 0xff, c->leb_size - *offs); 407 return; 408 } 409 410 ubifs_assert(!(*offs & 7)); 411 empty_offs = ALIGN(*offs, c->min_io_size); 412 pad_len = empty_offs - *offs; 413 ubifs_pad(c, *buf, pad_len); 414 *offs += pad_len; 415 *buf += pad_len; 416 *len -= pad_len; 417 memset(*buf, 0xff, c->leb_size - empty_offs); 418 } 419 420 /** 421 * no_more_nodes - determine if there are no more nodes in a buffer. 422 * @c: UBIFS file-system description object 423 * @buf: buffer to check 424 * @len: length of buffer 425 * @lnum: LEB number of the LEB from which @buf was read 426 * @offs: offset from which @buf was read 427 * 428 * This function scans @buf for more nodes and returns %0 is a node is found and 429 * %1 if no more nodes are found. 430 */ 431 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 432 int lnum, int offs) 433 { 434 int skip, next_offs = 0; 435 436 if (len > UBIFS_DATA_NODE_SZ) { 437 struct ubifs_ch *ch = buf; 438 int dlen = le32_to_cpu(ch->len); 439 440 if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ && 441 dlen <= UBIFS_MAX_DATA_NODE_SZ) 442 /* The corrupt node looks like a data node */ 443 next_offs = ALIGN(offs + dlen, 8); 444 } 445 446 if (c->min_io_size == 1) 447 skip = 8; 448 else 449 skip = ALIGN(offs + 1, c->min_io_size) - offs; 450 451 offs += skip; 452 buf += skip; 453 len -= skip; 454 while (len > 8) { 455 struct ubifs_ch *ch = buf; 456 uint32_t magic = le32_to_cpu(ch->magic); 457 int ret; 458 459 if (magic == UBIFS_NODE_MAGIC) { 460 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 461 if (ret == SCANNED_A_NODE || ret > 0) { 462 /* 463 * There is a small chance this is just data in 464 * a data node, so check that possibility. e.g. 465 * this is part of a file that itself contains 466 * a UBIFS image. 467 */ 468 if (next_offs && offs + le32_to_cpu(ch->len) <= 469 next_offs) 470 continue; 471 dbg_rcvry("unexpected node at %d:%d", lnum, 472 offs); 473 return 0; 474 } 475 } 476 offs += 8; 477 buf += 8; 478 len -= 8; 479 } 480 return 1; 481 } 482 483 /** 484 * fix_unclean_leb - fix an unclean LEB. 485 * @c: UBIFS file-system description object 486 * @sleb: scanned LEB information 487 * @start: offset where scan started 488 */ 489 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 490 int start) 491 { 492 int lnum = sleb->lnum, endpt = start; 493 494 /* Get the end offset of the last node we are keeping */ 495 if (!list_empty(&sleb->nodes)) { 496 struct ubifs_scan_node *snod; 497 498 snod = list_entry(sleb->nodes.prev, 499 struct ubifs_scan_node, list); 500 endpt = snod->offs + snod->len; 501 } 502 503 if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { 504 /* Add to recovery list */ 505 struct ubifs_unclean_leb *ucleb; 506 507 dbg_rcvry("need to fix LEB %d start %d endpt %d", 508 lnum, start, sleb->endpt); 509 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 510 if (!ucleb) 511 return -ENOMEM; 512 ucleb->lnum = lnum; 513 ucleb->endpt = endpt; 514 list_add_tail(&ucleb->list, &c->unclean_leb_list); 515 } else { 516 /* Write the fixed LEB back to flash */ 517 int err; 518 519 dbg_rcvry("fixing LEB %d start %d endpt %d", 520 lnum, start, sleb->endpt); 521 if (endpt == 0) { 522 err = ubifs_leb_unmap(c, lnum); 523 if (err) 524 return err; 525 } else { 526 int len = ALIGN(endpt, c->min_io_size); 527 528 if (start) { 529 err = ubi_read(c->ubi, lnum, sleb->buf, 0, 530 start); 531 if (err) 532 return err; 533 } 534 /* Pad to min_io_size */ 535 if (len > endpt) { 536 int pad_len = len - ALIGN(endpt, 8); 537 538 if (pad_len > 0) { 539 void *buf = sleb->buf + len - pad_len; 540 541 ubifs_pad(c, buf, pad_len); 542 } 543 } 544 err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, 545 UBI_UNKNOWN); 546 if (err) 547 return err; 548 } 549 } 550 return 0; 551 } 552 553 /** 554 * drop_incomplete_group - drop nodes from an incomplete group. 555 * @sleb: scanned LEB information 556 * @offs: offset of dropped nodes is returned here 557 * 558 * This function returns %1 if nodes are dropped and %0 otherwise. 559 */ 560 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) 561 { 562 int dropped = 0; 563 564 while (!list_empty(&sleb->nodes)) { 565 struct ubifs_scan_node *snod; 566 struct ubifs_ch *ch; 567 568 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 569 list); 570 ch = snod->node; 571 if (ch->group_type != UBIFS_IN_NODE_GROUP) 572 return dropped; 573 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); 574 *offs = snod->offs; 575 list_del(&snod->list); 576 kfree(snod); 577 sleb->nodes_cnt -= 1; 578 dropped = 1; 579 } 580 return dropped; 581 } 582 583 /** 584 * ubifs_recover_leb - scan and recover a LEB. 585 * @c: UBIFS file-system description object 586 * @lnum: LEB number 587 * @offs: offset 588 * @sbuf: LEB-sized buffer to use 589 * @grouped: nodes may be grouped for recovery 590 * 591 * This function does a scan of a LEB, but caters for errors that might have 592 * been caused by the unclean unmount from which we are attempting to recover. 593 * 594 * This function returns %0 on success and a negative error code on failure. 595 */ 596 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 597 int offs, void *sbuf, int grouped) 598 { 599 int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; 600 int empty_chkd = 0, start = offs; 601 struct ubifs_scan_leb *sleb; 602 void *buf = sbuf + offs; 603 604 dbg_rcvry("%d:%d", lnum, offs); 605 606 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 607 if (IS_ERR(sleb)) 608 return sleb; 609 610 if (sleb->ecc) 611 need_clean = 1; 612 613 while (len >= 8) { 614 int ret; 615 616 dbg_scan("look at LEB %d:%d (%d bytes left)", 617 lnum, offs, len); 618 619 cond_resched(); 620 621 /* 622 * Scan quietly until there is an error from which we cannot 623 * recover 624 */ 625 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 626 627 if (ret == SCANNED_A_NODE) { 628 /* A valid node, and not a padding node */ 629 struct ubifs_ch *ch = buf; 630 int node_len; 631 632 err = ubifs_add_snod(c, sleb, buf, offs); 633 if (err) 634 goto error; 635 node_len = ALIGN(le32_to_cpu(ch->len), 8); 636 offs += node_len; 637 buf += node_len; 638 len -= node_len; 639 continue; 640 } 641 642 if (ret > 0) { 643 /* Padding bytes or a valid padding node */ 644 offs += ret; 645 buf += ret; 646 len -= ret; 647 continue; 648 } 649 650 if (ret == SCANNED_EMPTY_SPACE) { 651 if (!is_empty(buf, len)) { 652 if (!is_last_write(c, buf, offs)) 653 break; 654 clean_buf(c, &buf, lnum, &offs, &len); 655 need_clean = 1; 656 } 657 empty_chkd = 1; 658 break; 659 } 660 661 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) 662 if (is_last_write(c, buf, offs)) { 663 clean_buf(c, &buf, lnum, &offs, &len); 664 need_clean = 1; 665 empty_chkd = 1; 666 break; 667 } 668 669 if (ret == SCANNED_A_CORRUPT_NODE) 670 if (no_more_nodes(c, buf, len, lnum, offs)) { 671 clean_buf(c, &buf, lnum, &offs, &len); 672 need_clean = 1; 673 empty_chkd = 1; 674 break; 675 } 676 677 if (quiet) { 678 /* Redo the last scan but noisily */ 679 quiet = 0; 680 continue; 681 } 682 683 switch (ret) { 684 case SCANNED_GARBAGE: 685 dbg_err("garbage"); 686 goto corrupted; 687 case SCANNED_A_CORRUPT_NODE: 688 case SCANNED_A_BAD_PAD_NODE: 689 dbg_err("bad node"); 690 goto corrupted; 691 default: 692 dbg_err("unknown"); 693 goto corrupted; 694 } 695 } 696 697 if (!empty_chkd && !is_empty(buf, len)) { 698 if (is_last_write(c, buf, offs)) { 699 clean_buf(c, &buf, lnum, &offs, &len); 700 need_clean = 1; 701 } else { 702 ubifs_err("corrupt empty space at LEB %d:%d", 703 lnum, offs); 704 goto corrupted; 705 } 706 } 707 708 /* Drop nodes from incomplete group */ 709 if (grouped && drop_incomplete_group(sleb, &offs)) { 710 buf = sbuf + offs; 711 len = c->leb_size - offs; 712 clean_buf(c, &buf, lnum, &offs, &len); 713 need_clean = 1; 714 } 715 716 if (offs % c->min_io_size) { 717 clean_buf(c, &buf, lnum, &offs, &len); 718 need_clean = 1; 719 } 720 721 ubifs_end_scan(c, sleb, lnum, offs); 722 723 if (need_clean) { 724 err = fix_unclean_leb(c, sleb, start); 725 if (err) 726 goto error; 727 } 728 729 return sleb; 730 731 corrupted: 732 ubifs_scanned_corruption(c, lnum, offs, buf); 733 err = -EUCLEAN; 734 error: 735 ubifs_err("LEB %d scanning failed", lnum); 736 ubifs_scan_destroy(sleb); 737 return ERR_PTR(err); 738 } 739 740 /** 741 * get_cs_sqnum - get commit start sequence number. 742 * @c: UBIFS file-system description object 743 * @lnum: LEB number of commit start node 744 * @offs: offset of commit start node 745 * @cs_sqnum: commit start sequence number is returned here 746 * 747 * This function returns %0 on success and a negative error code on failure. 748 */ 749 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 750 unsigned long long *cs_sqnum) 751 { 752 struct ubifs_cs_node *cs_node = NULL; 753 int err, ret; 754 755 dbg_rcvry("at %d:%d", lnum, offs); 756 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 757 if (!cs_node) 758 return -ENOMEM; 759 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 760 goto out_err; 761 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); 762 if (err && err != -EBADMSG) 763 goto out_free; 764 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 765 if (ret != SCANNED_A_NODE) { 766 dbg_err("Not a valid node"); 767 goto out_err; 768 } 769 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 770 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); 771 goto out_err; 772 } 773 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 774 dbg_err("CS node cmt_no %llu != current cmt_no %llu", 775 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 776 c->cmt_no); 777 goto out_err; 778 } 779 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 780 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 781 kfree(cs_node); 782 return 0; 783 784 out_err: 785 err = -EINVAL; 786 out_free: 787 ubifs_err("failed to get CS sqnum"); 788 kfree(cs_node); 789 return err; 790 } 791 792 /** 793 * ubifs_recover_log_leb - scan and recover a log LEB. 794 * @c: UBIFS file-system description object 795 * @lnum: LEB number 796 * @offs: offset 797 * @sbuf: LEB-sized buffer to use 798 * 799 * This function does a scan of a LEB, but caters for errors that might have 800 * been caused by the unclean unmount from which we are attempting to recover. 801 * 802 * This function returns %0 on success and a negative error code on failure. 803 */ 804 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 805 int offs, void *sbuf) 806 { 807 struct ubifs_scan_leb *sleb; 808 int next_lnum; 809 810 dbg_rcvry("LEB %d", lnum); 811 next_lnum = lnum + 1; 812 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 813 next_lnum = UBIFS_LOG_LNUM; 814 if (next_lnum != c->ltail_lnum) { 815 /* 816 * We can only recover at the end of the log, so check that the 817 * next log LEB is empty or out of date. 818 */ 819 sleb = ubifs_scan(c, next_lnum, 0, sbuf); 820 if (IS_ERR(sleb)) 821 return sleb; 822 if (sleb->nodes_cnt) { 823 struct ubifs_scan_node *snod; 824 unsigned long long cs_sqnum = c->cs_sqnum; 825 826 snod = list_entry(sleb->nodes.next, 827 struct ubifs_scan_node, list); 828 if (cs_sqnum == 0) { 829 int err; 830 831 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 832 if (err) { 833 ubifs_scan_destroy(sleb); 834 return ERR_PTR(err); 835 } 836 } 837 if (snod->sqnum > cs_sqnum) { 838 ubifs_err("unrecoverable log corruption " 839 "in LEB %d", lnum); 840 ubifs_scan_destroy(sleb); 841 return ERR_PTR(-EUCLEAN); 842 } 843 } 844 ubifs_scan_destroy(sleb); 845 } 846 return ubifs_recover_leb(c, lnum, offs, sbuf, 0); 847 } 848 849 /** 850 * recover_head - recover a head. 851 * @c: UBIFS file-system description object 852 * @lnum: LEB number of head to recover 853 * @offs: offset of head to recover 854 * @sbuf: LEB-sized buffer to use 855 * 856 * This function ensures that there is no data on the flash at a head location. 857 * 858 * This function returns %0 on success and a negative error code on failure. 859 */ 860 static int recover_head(const struct ubifs_info *c, int lnum, int offs, 861 void *sbuf) 862 { 863 int len, err, need_clean = 0; 864 865 if (c->min_io_size > 1) 866 len = c->min_io_size; 867 else 868 len = 512; 869 if (offs + len > c->leb_size) 870 len = c->leb_size - offs; 871 872 if (!len) 873 return 0; 874 875 /* Read at the head location and check it is empty flash */ 876 err = ubi_read(c->ubi, lnum, sbuf, offs, len); 877 if (err) 878 need_clean = 1; 879 else { 880 uint8_t *p = sbuf; 881 882 while (len--) 883 if (*p++ != 0xff) { 884 need_clean = 1; 885 break; 886 } 887 } 888 889 if (need_clean) { 890 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 891 if (offs == 0) 892 return ubifs_leb_unmap(c, lnum); 893 err = ubi_read(c->ubi, lnum, sbuf, 0, offs); 894 if (err) 895 return err; 896 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); 897 } 898 899 return 0; 900 } 901 902 /** 903 * ubifs_recover_inl_heads - recover index and LPT heads. 904 * @c: UBIFS file-system description object 905 * @sbuf: LEB-sized buffer to use 906 * 907 * This function ensures that there is no data on the flash at the index and 908 * LPT head locations. 909 * 910 * This deals with the recovery of a half-completed journal commit. UBIFS is 911 * careful never to overwrite the last version of the index or the LPT. Because 912 * the index and LPT are wandering trees, data from a half-completed commit will 913 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 914 * assumed to be empty and will be unmapped anyway before use, or in the index 915 * and LPT heads. 916 * 917 * This function returns %0 on success and a negative error code on failure. 918 */ 919 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) 920 { 921 int err; 922 923 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); 924 925 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 926 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 927 if (err) 928 return err; 929 930 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 931 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 932 if (err) 933 return err; 934 935 return 0; 936 } 937 938 /** 939 * clean_an_unclean_leb - read and write a LEB to remove corruption. 940 * @c: UBIFS file-system description object 941 * @ucleb: unclean LEB information 942 * @sbuf: LEB-sized buffer to use 943 * 944 * This function reads a LEB up to a point pre-determined by the mount recovery, 945 * checks the nodes, and writes the result back to the flash, thereby cleaning 946 * off any following corruption, or non-fatal ECC errors. 947 * 948 * This function returns %0 on success and a negative error code on failure. 949 */ 950 static int clean_an_unclean_leb(const struct ubifs_info *c, 951 struct ubifs_unclean_leb *ucleb, void *sbuf) 952 { 953 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 954 void *buf = sbuf; 955 956 dbg_rcvry("LEB %d len %d", lnum, len); 957 958 if (len == 0) { 959 /* Nothing to read, just unmap it */ 960 err = ubifs_leb_unmap(c, lnum); 961 if (err) 962 return err; 963 return 0; 964 } 965 966 err = ubi_read(c->ubi, lnum, buf, offs, len); 967 if (err && err != -EBADMSG) 968 return err; 969 970 while (len >= 8) { 971 int ret; 972 973 cond_resched(); 974 975 /* Scan quietly until there is an error */ 976 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 977 978 if (ret == SCANNED_A_NODE) { 979 /* A valid node, and not a padding node */ 980 struct ubifs_ch *ch = buf; 981 int node_len; 982 983 node_len = ALIGN(le32_to_cpu(ch->len), 8); 984 offs += node_len; 985 buf += node_len; 986 len -= node_len; 987 continue; 988 } 989 990 if (ret > 0) { 991 /* Padding bytes or a valid padding node */ 992 offs += ret; 993 buf += ret; 994 len -= ret; 995 continue; 996 } 997 998 if (ret == SCANNED_EMPTY_SPACE) { 999 ubifs_err("unexpected empty space at %d:%d", 1000 lnum, offs); 1001 return -EUCLEAN; 1002 } 1003 1004 if (quiet) { 1005 /* Redo the last scan but noisily */ 1006 quiet = 0; 1007 continue; 1008 } 1009 1010 ubifs_scanned_corruption(c, lnum, offs, buf); 1011 return -EUCLEAN; 1012 } 1013 1014 /* Pad to min_io_size */ 1015 len = ALIGN(ucleb->endpt, c->min_io_size); 1016 if (len > ucleb->endpt) { 1017 int pad_len = len - ALIGN(ucleb->endpt, 8); 1018 1019 if (pad_len > 0) { 1020 buf = c->sbuf + len - pad_len; 1021 ubifs_pad(c, buf, pad_len); 1022 } 1023 } 1024 1025 /* Write back the LEB atomically */ 1026 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); 1027 if (err) 1028 return err; 1029 1030 dbg_rcvry("cleaned LEB %d", lnum); 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1037 * @c: UBIFS file-system description object 1038 * @sbuf: LEB-sized buffer to use 1039 * 1040 * This function cleans a LEB identified during recovery that needs to be 1041 * written but was not because UBIFS was mounted read-only. This happens when 1042 * remounting to read-write mode. 1043 * 1044 * This function returns %0 on success and a negative error code on failure. 1045 */ 1046 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) 1047 { 1048 dbg_rcvry("recovery"); 1049 while (!list_empty(&c->unclean_leb_list)) { 1050 struct ubifs_unclean_leb *ucleb; 1051 int err; 1052 1053 ucleb = list_entry(c->unclean_leb_list.next, 1054 struct ubifs_unclean_leb, list); 1055 err = clean_an_unclean_leb(c, ucleb, sbuf); 1056 if (err) 1057 return err; 1058 list_del(&ucleb->list); 1059 kfree(ucleb); 1060 } 1061 return 0; 1062 } 1063 1064 /** 1065 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1066 * @c: UBIFS file-system description object 1067 * 1068 * Out-of-place garbage collection requires always one empty LEB with which to 1069 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1070 * written to the master node on unmounting. In the case of an unclean unmount 1071 * the value of gc_lnum recorded in the master node is out of date and cannot 1072 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1073 * However, there may not be enough empty space, in which case it must be 1074 * possible to GC the dirtiest LEB into the GC head LEB. 1075 * 1076 * This function also runs the commit which causes the TNC updates from 1077 * size-recovery and orphans to be written to the flash. That is important to 1078 * ensure correct replay order for subsequent mounts. 1079 * 1080 * This function returns %0 on success and a negative error code on failure. 1081 */ 1082 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1083 { 1084 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1085 struct ubifs_lprops lp; 1086 int lnum, err; 1087 1088 c->gc_lnum = -1; 1089 if (wbuf->lnum == -1) { 1090 dbg_rcvry("no GC head LEB"); 1091 goto find_free; 1092 } 1093 /* 1094 * See whether the used space in the dirtiest LEB fits in the GC head 1095 * LEB. 1096 */ 1097 if (wbuf->offs == c->leb_size) { 1098 dbg_rcvry("no room in GC head LEB"); 1099 goto find_free; 1100 } 1101 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1102 if (err) { 1103 if (err == -ENOSPC) 1104 dbg_err("could not find a dirty LEB"); 1105 return err; 1106 } 1107 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 1108 lnum = lp.lnum; 1109 if (lp.free + lp.dirty == c->leb_size) { 1110 /* An empty LEB was returned */ 1111 if (lp.free != c->leb_size) { 1112 err = ubifs_change_one_lp(c, lnum, c->leb_size, 1113 0, 0, 0, 0); 1114 if (err) 1115 return err; 1116 } 1117 err = ubifs_leb_unmap(c, lnum); 1118 if (err) 1119 return err; 1120 c->gc_lnum = lnum; 1121 dbg_rcvry("allocated LEB %d for GC", lnum); 1122 /* Run the commit */ 1123 dbg_rcvry("committing"); 1124 return ubifs_run_commit(c); 1125 } 1126 /* 1127 * There was no empty LEB so the used space in the dirtiest LEB must fit 1128 * in the GC head LEB. 1129 */ 1130 if (lp.free + lp.dirty < wbuf->offs) { 1131 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", 1132 lnum, wbuf->lnum, wbuf->offs); 1133 err = ubifs_return_leb(c, lnum); 1134 if (err) 1135 return err; 1136 goto find_free; 1137 } 1138 /* 1139 * We run the commit before garbage collection otherwise subsequent 1140 * mounts will see the GC and orphan deletion in a different order. 1141 */ 1142 dbg_rcvry("committing"); 1143 err = ubifs_run_commit(c); 1144 if (err) 1145 return err; 1146 /* 1147 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC 1148 * - use locking to keep 'ubifs_assert()' happy. 1149 */ 1150 dbg_rcvry("GC'ing LEB %d", lnum); 1151 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1152 err = ubifs_garbage_collect_leb(c, &lp); 1153 if (err >= 0) { 1154 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1155 1156 if (err2) 1157 err = err2; 1158 } 1159 mutex_unlock(&wbuf->io_mutex); 1160 if (err < 0) { 1161 dbg_err("GC failed, error %d", err); 1162 if (err == -EAGAIN) 1163 err = -EINVAL; 1164 return err; 1165 } 1166 if (err != LEB_RETAINED) { 1167 dbg_err("GC returned %d", err); 1168 return -EINVAL; 1169 } 1170 err = ubifs_leb_unmap(c, c->gc_lnum); 1171 if (err) 1172 return err; 1173 dbg_rcvry("allocated LEB %d for GC", lnum); 1174 return 0; 1175 1176 find_free: 1177 /* 1178 * There is no GC head LEB or the free space in the GC head LEB is too 1179 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so 1180 * GC is not run. 1181 */ 1182 lnum = ubifs_find_free_leb_for_idx(c); 1183 if (lnum < 0) { 1184 dbg_err("could not find an empty LEB"); 1185 return lnum; 1186 } 1187 /* And reset the index flag */ 1188 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1189 LPROPS_INDEX, 0); 1190 if (err) 1191 return err; 1192 c->gc_lnum = lnum; 1193 dbg_rcvry("allocated LEB %d for GC", lnum); 1194 /* Run the commit */ 1195 dbg_rcvry("committing"); 1196 return ubifs_run_commit(c); 1197 } 1198 1199 /** 1200 * struct size_entry - inode size information for recovery. 1201 * @rb: link in the RB-tree of sizes 1202 * @inum: inode number 1203 * @i_size: size on inode 1204 * @d_size: maximum size based on data nodes 1205 * @exists: indicates whether the inode exists 1206 * @inode: inode if pinned in memory awaiting rw mode to fix it 1207 */ 1208 struct size_entry { 1209 struct rb_node rb; 1210 ino_t inum; 1211 loff_t i_size; 1212 loff_t d_size; 1213 int exists; 1214 struct inode *inode; 1215 }; 1216 1217 /** 1218 * add_ino - add an entry to the size tree. 1219 * @c: UBIFS file-system description object 1220 * @inum: inode number 1221 * @i_size: size on inode 1222 * @d_size: maximum size based on data nodes 1223 * @exists: indicates whether the inode exists 1224 */ 1225 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1226 loff_t d_size, int exists) 1227 { 1228 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1229 struct size_entry *e; 1230 1231 while (*p) { 1232 parent = *p; 1233 e = rb_entry(parent, struct size_entry, rb); 1234 if (inum < e->inum) 1235 p = &(*p)->rb_left; 1236 else 1237 p = &(*p)->rb_right; 1238 } 1239 1240 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1241 if (!e) 1242 return -ENOMEM; 1243 1244 e->inum = inum; 1245 e->i_size = i_size; 1246 e->d_size = d_size; 1247 e->exists = exists; 1248 1249 rb_link_node(&e->rb, parent, p); 1250 rb_insert_color(&e->rb, &c->size_tree); 1251 1252 return 0; 1253 } 1254 1255 /** 1256 * find_ino - find an entry on the size tree. 1257 * @c: UBIFS file-system description object 1258 * @inum: inode number 1259 */ 1260 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1261 { 1262 struct rb_node *p = c->size_tree.rb_node; 1263 struct size_entry *e; 1264 1265 while (p) { 1266 e = rb_entry(p, struct size_entry, rb); 1267 if (inum < e->inum) 1268 p = p->rb_left; 1269 else if (inum > e->inum) 1270 p = p->rb_right; 1271 else 1272 return e; 1273 } 1274 return NULL; 1275 } 1276 1277 /** 1278 * remove_ino - remove an entry from the size tree. 1279 * @c: UBIFS file-system description object 1280 * @inum: inode number 1281 */ 1282 static void remove_ino(struct ubifs_info *c, ino_t inum) 1283 { 1284 struct size_entry *e = find_ino(c, inum); 1285 1286 if (!e) 1287 return; 1288 rb_erase(&e->rb, &c->size_tree); 1289 kfree(e); 1290 } 1291 1292 /** 1293 * ubifs_destroy_size_tree - free resources related to the size tree. 1294 * @c: UBIFS file-system description object 1295 */ 1296 void ubifs_destroy_size_tree(struct ubifs_info *c) 1297 { 1298 struct rb_node *this = c->size_tree.rb_node; 1299 struct size_entry *e; 1300 1301 while (this) { 1302 if (this->rb_left) { 1303 this = this->rb_left; 1304 continue; 1305 } else if (this->rb_right) { 1306 this = this->rb_right; 1307 continue; 1308 } 1309 e = rb_entry(this, struct size_entry, rb); 1310 if (e->inode) 1311 iput(e->inode); 1312 this = rb_parent(this); 1313 if (this) { 1314 if (this->rb_left == &e->rb) 1315 this->rb_left = NULL; 1316 else 1317 this->rb_right = NULL; 1318 } 1319 kfree(e); 1320 } 1321 c->size_tree = RB_ROOT; 1322 } 1323 1324 /** 1325 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1326 * @c: UBIFS file-system description object 1327 * @key: node key 1328 * @deletion: node is for a deletion 1329 * @new_size: inode size 1330 * 1331 * This function has two purposes: 1332 * 1) to ensure there are no data nodes that fall outside the inode size 1333 * 2) to ensure there are no data nodes for inodes that do not exist 1334 * To accomplish those purposes, a rb-tree is constructed containing an entry 1335 * for each inode number in the journal that has not been deleted, and recording 1336 * the size from the inode node, the maximum size of any data node (also altered 1337 * by truncations) and a flag indicating a inode number for which no inode node 1338 * was present in the journal. 1339 * 1340 * Note that there is still the possibility that there are data nodes that have 1341 * been committed that are beyond the inode size, however the only way to find 1342 * them would be to scan the entire index. Alternatively, some provision could 1343 * be made to record the size of inodes at the start of commit, which would seem 1344 * very cumbersome for a scenario that is quite unlikely and the only negative 1345 * consequence of which is wasted space. 1346 * 1347 * This functions returns %0 on success and a negative error code on failure. 1348 */ 1349 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1350 int deletion, loff_t new_size) 1351 { 1352 ino_t inum = key_inum(c, key); 1353 struct size_entry *e; 1354 int err; 1355 1356 switch (key_type(c, key)) { 1357 case UBIFS_INO_KEY: 1358 if (deletion) 1359 remove_ino(c, inum); 1360 else { 1361 e = find_ino(c, inum); 1362 if (e) { 1363 e->i_size = new_size; 1364 e->exists = 1; 1365 } else { 1366 err = add_ino(c, inum, new_size, 0, 1); 1367 if (err) 1368 return err; 1369 } 1370 } 1371 break; 1372 case UBIFS_DATA_KEY: 1373 e = find_ino(c, inum); 1374 if (e) { 1375 if (new_size > e->d_size) 1376 e->d_size = new_size; 1377 } else { 1378 err = add_ino(c, inum, 0, new_size, 0); 1379 if (err) 1380 return err; 1381 } 1382 break; 1383 case UBIFS_TRUN_KEY: 1384 e = find_ino(c, inum); 1385 if (e) 1386 e->d_size = new_size; 1387 break; 1388 } 1389 return 0; 1390 } 1391 1392 /** 1393 * fix_size_in_place - fix inode size in place on flash. 1394 * @c: UBIFS file-system description object 1395 * @e: inode size information for recovery 1396 */ 1397 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1398 { 1399 struct ubifs_ino_node *ino = c->sbuf; 1400 unsigned char *p; 1401 union ubifs_key key; 1402 int err, lnum, offs, len; 1403 loff_t i_size; 1404 uint32_t crc; 1405 1406 /* Locate the inode node LEB number and offset */ 1407 ino_key_init(c, &key, e->inum); 1408 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1409 if (err) 1410 goto out; 1411 /* 1412 * If the size recorded on the inode node is greater than the size that 1413 * was calculated from nodes in the journal then don't change the inode. 1414 */ 1415 i_size = le64_to_cpu(ino->size); 1416 if (i_size >= e->d_size) 1417 return 0; 1418 /* Read the LEB */ 1419 err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); 1420 if (err) 1421 goto out; 1422 /* Change the size field and recalculate the CRC */ 1423 ino = c->sbuf + offs; 1424 ino->size = cpu_to_le64(e->d_size); 1425 len = le32_to_cpu(ino->ch.len); 1426 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1427 ino->ch.crc = cpu_to_le32(crc); 1428 /* Work out where data in the LEB ends and free space begins */ 1429 p = c->sbuf; 1430 len = c->leb_size - 1; 1431 while (p[len] == 0xff) 1432 len -= 1; 1433 len = ALIGN(len + 1, c->min_io_size); 1434 /* Atomically write the fixed LEB back again */ 1435 err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); 1436 if (err) 1437 goto out; 1438 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", e->inum, lnum, offs, 1439 i_size, e->d_size); 1440 return 0; 1441 1442 out: 1443 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", 1444 e->inum, e->i_size, e->d_size, err); 1445 return err; 1446 } 1447 1448 /** 1449 * ubifs_recover_size - recover inode size. 1450 * @c: UBIFS file-system description object 1451 * 1452 * This function attempts to fix inode size discrepancies identified by the 1453 * 'ubifs_recover_size_accum()' function. 1454 * 1455 * This functions returns %0 on success and a negative error code on failure. 1456 */ 1457 int ubifs_recover_size(struct ubifs_info *c) 1458 { 1459 struct rb_node *this = rb_first(&c->size_tree); 1460 1461 while (this) { 1462 struct size_entry *e; 1463 int err; 1464 1465 e = rb_entry(this, struct size_entry, rb); 1466 if (!e->exists) { 1467 union ubifs_key key; 1468 1469 ino_key_init(c, &key, e->inum); 1470 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1471 if (err && err != -ENOENT) 1472 return err; 1473 if (err == -ENOENT) { 1474 /* Remove data nodes that have no inode */ 1475 dbg_rcvry("removing ino %lu", e->inum); 1476 err = ubifs_tnc_remove_ino(c, e->inum); 1477 if (err) 1478 return err; 1479 } else { 1480 struct ubifs_ino_node *ino = c->sbuf; 1481 1482 e->exists = 1; 1483 e->i_size = le64_to_cpu(ino->size); 1484 } 1485 } 1486 if (e->exists && e->i_size < e->d_size) { 1487 if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { 1488 /* Fix the inode size and pin it in memory */ 1489 struct inode *inode; 1490 1491 inode = ubifs_iget(c->vfs_sb, e->inum); 1492 if (IS_ERR(inode)) 1493 return PTR_ERR(inode); 1494 if (inode->i_size < e->d_size) { 1495 dbg_rcvry("ino %lu size %lld -> %lld", 1496 e->inum, e->d_size, 1497 inode->i_size); 1498 inode->i_size = e->d_size; 1499 ubifs_inode(inode)->ui_size = e->d_size; 1500 e->inode = inode; 1501 this = rb_next(this); 1502 continue; 1503 } 1504 iput(inode); 1505 } else { 1506 /* Fix the size in place */ 1507 err = fix_size_in_place(c, e); 1508 if (err) 1509 return err; 1510 if (e->inode) 1511 iput(e->inode); 1512 } 1513 } 1514 this = rb_next(this); 1515 rb_erase(&e->rb, &c->size_tree); 1516 kfree(e); 1517 } 1518 return 0; 1519 } 1520