xref: /openbmc/linux/fs/ubifs/recovery.c (revision 4dc7ccf7)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions needed to recover from unclean un-mounts.
25  * When UBIFS is mounted, it checks a flag on the master node to determine if
26  * an un-mount was completed successfully. If not, the process of mounting
27  * incorparates additional checking and fixing of on-flash data structures.
28  * UBIFS always cleans away all remnants of an unclean un-mount, so that
29  * errors do not accumulate. However UBIFS defers recovery if it is mounted
30  * read-only, and the flash is not modified in that case.
31  */
32 
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36 
37 /**
38  * is_empty - determine whether a buffer is empty (contains all 0xff).
39  * @buf: buffer to clean
40  * @len: length of buffer
41  *
42  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
43  * %0 is returned.
44  */
45 static int is_empty(void *buf, int len)
46 {
47 	uint8_t *p = buf;
48 	int i;
49 
50 	for (i = 0; i < len; i++)
51 		if (*p++ != 0xff)
52 			return 0;
53 	return 1;
54 }
55 
56 /**
57  * first_non_ff - find offset of the first non-0xff byte.
58  * @buf: buffer to search in
59  * @len: length of buffer
60  *
61  * This function returns offset of the first non-0xff byte in @buf or %-1 if
62  * the buffer contains only 0xff bytes.
63  */
64 static int first_non_ff(void *buf, int len)
65 {
66 	uint8_t *p = buf;
67 	int i;
68 
69 	for (i = 0; i < len; i++)
70 		if (*p++ != 0xff)
71 			return i;
72 	return -1;
73 }
74 
75 /**
76  * get_master_node - get the last valid master node allowing for corruption.
77  * @c: UBIFS file-system description object
78  * @lnum: LEB number
79  * @pbuf: buffer containing the LEB read, is returned here
80  * @mst: master node, if found, is returned here
81  * @cor: corruption, if found, is returned here
82  *
83  * This function allocates a buffer, reads the LEB into it, and finds and
84  * returns the last valid master node allowing for one area of corruption.
85  * The corrupt area, if there is one, must be consistent with the assumption
86  * that it is the result of an unclean unmount while the master node was being
87  * written. Under those circumstances, it is valid to use the previously written
88  * master node.
89  *
90  * This function returns %0 on success and a negative error code on failure.
91  */
92 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
93 			   struct ubifs_mst_node **mst, void **cor)
94 {
95 	const int sz = c->mst_node_alsz;
96 	int err, offs, len;
97 	void *sbuf, *buf;
98 
99 	sbuf = vmalloc(c->leb_size);
100 	if (!sbuf)
101 		return -ENOMEM;
102 
103 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
104 	if (err && err != -EBADMSG)
105 		goto out_free;
106 
107 	/* Find the first position that is definitely not a node */
108 	offs = 0;
109 	buf = sbuf;
110 	len = c->leb_size;
111 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
112 		struct ubifs_ch *ch = buf;
113 
114 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
115 			break;
116 		offs += sz;
117 		buf  += sz;
118 		len  -= sz;
119 	}
120 	/* See if there was a valid master node before that */
121 	if (offs) {
122 		int ret;
123 
124 		offs -= sz;
125 		buf  -= sz;
126 		len  += sz;
127 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
128 		if (ret != SCANNED_A_NODE && offs) {
129 			/* Could have been corruption so check one place back */
130 			offs -= sz;
131 			buf  -= sz;
132 			len  += sz;
133 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
134 			if (ret != SCANNED_A_NODE)
135 				/*
136 				 * We accept only one area of corruption because
137 				 * we are assuming that it was caused while
138 				 * trying to write a master node.
139 				 */
140 				goto out_err;
141 		}
142 		if (ret == SCANNED_A_NODE) {
143 			struct ubifs_ch *ch = buf;
144 
145 			if (ch->node_type != UBIFS_MST_NODE)
146 				goto out_err;
147 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
148 			*mst = buf;
149 			offs += sz;
150 			buf  += sz;
151 			len  -= sz;
152 		}
153 	}
154 	/* Check for corruption */
155 	if (offs < c->leb_size) {
156 		if (!is_empty(buf, min_t(int, len, sz))) {
157 			*cor = buf;
158 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
159 		}
160 		offs += sz;
161 		buf  += sz;
162 		len  -= sz;
163 	}
164 	/* Check remaining empty space */
165 	if (offs < c->leb_size)
166 		if (!is_empty(buf, len))
167 			goto out_err;
168 	*pbuf = sbuf;
169 	return 0;
170 
171 out_err:
172 	err = -EINVAL;
173 out_free:
174 	vfree(sbuf);
175 	*mst = NULL;
176 	*cor = NULL;
177 	return err;
178 }
179 
180 /**
181  * write_rcvrd_mst_node - write recovered master node.
182  * @c: UBIFS file-system description object
183  * @mst: master node
184  *
185  * This function returns %0 on success and a negative error code on failure.
186  */
187 static int write_rcvrd_mst_node(struct ubifs_info *c,
188 				struct ubifs_mst_node *mst)
189 {
190 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
191 	__le32 save_flags;
192 
193 	dbg_rcvry("recovery");
194 
195 	save_flags = mst->flags;
196 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
197 
198 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
199 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
200 	if (err)
201 		goto out;
202 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
203 	if (err)
204 		goto out;
205 out:
206 	mst->flags = save_flags;
207 	return err;
208 }
209 
210 /**
211  * ubifs_recover_master_node - recover the master node.
212  * @c: UBIFS file-system description object
213  *
214  * This function recovers the master node from corruption that may occur due to
215  * an unclean unmount.
216  *
217  * This function returns %0 on success and a negative error code on failure.
218  */
219 int ubifs_recover_master_node(struct ubifs_info *c)
220 {
221 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
222 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
223 	const int sz = c->mst_node_alsz;
224 	int err, offs1, offs2;
225 
226 	dbg_rcvry("recovery");
227 
228 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
229 	if (err)
230 		goto out_free;
231 
232 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
233 	if (err)
234 		goto out_free;
235 
236 	if (mst1) {
237 		offs1 = (void *)mst1 - buf1;
238 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
239 		    (offs1 == 0 && !cor1)) {
240 			/*
241 			 * mst1 was written by recovery at offset 0 with no
242 			 * corruption.
243 			 */
244 			dbg_rcvry("recovery recovery");
245 			mst = mst1;
246 		} else if (mst2) {
247 			offs2 = (void *)mst2 - buf2;
248 			if (offs1 == offs2) {
249 				/* Same offset, so must be the same */
250 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
251 					   (void *)mst2 + UBIFS_CH_SZ,
252 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
253 					goto out_err;
254 				mst = mst1;
255 			} else if (offs2 + sz == offs1) {
256 				/* 1st LEB was written, 2nd was not */
257 				if (cor1)
258 					goto out_err;
259 				mst = mst1;
260 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
261 				/* 1st LEB was unmapped and written, 2nd not */
262 				if (cor1)
263 					goto out_err;
264 				mst = mst1;
265 			} else
266 				goto out_err;
267 		} else {
268 			/*
269 			 * 2nd LEB was unmapped and about to be written, so
270 			 * there must be only one master node in the first LEB
271 			 * and no corruption.
272 			 */
273 			if (offs1 != 0 || cor1)
274 				goto out_err;
275 			mst = mst1;
276 		}
277 	} else {
278 		if (!mst2)
279 			goto out_err;
280 		/*
281 		 * 1st LEB was unmapped and about to be written, so there must
282 		 * be no room left in 2nd LEB.
283 		 */
284 		offs2 = (void *)mst2 - buf2;
285 		if (offs2 + sz + sz <= c->leb_size)
286 			goto out_err;
287 		mst = mst2;
288 	}
289 
290 	ubifs_msg("recovered master node from LEB %d",
291 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
292 
293 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
294 
295 	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
296 		/* Read-only mode. Keep a copy for switching to rw mode */
297 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
298 		if (!c->rcvrd_mst_node) {
299 			err = -ENOMEM;
300 			goto out_free;
301 		}
302 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
303 	} else {
304 		/* Write the recovered master node */
305 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
306 		err = write_rcvrd_mst_node(c, c->mst_node);
307 		if (err)
308 			goto out_free;
309 	}
310 
311 	vfree(buf2);
312 	vfree(buf1);
313 
314 	return 0;
315 
316 out_err:
317 	err = -EINVAL;
318 out_free:
319 	ubifs_err("failed to recover master node");
320 	if (mst1) {
321 		dbg_err("dumping first master node");
322 		dbg_dump_node(c, mst1);
323 	}
324 	if (mst2) {
325 		dbg_err("dumping second master node");
326 		dbg_dump_node(c, mst2);
327 	}
328 	vfree(buf2);
329 	vfree(buf1);
330 	return err;
331 }
332 
333 /**
334  * ubifs_write_rcvrd_mst_node - write the recovered master node.
335  * @c: UBIFS file-system description object
336  *
337  * This function writes the master node that was recovered during mounting in
338  * read-only mode and must now be written because we are remounting rw.
339  *
340  * This function returns %0 on success and a negative error code on failure.
341  */
342 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
343 {
344 	int err;
345 
346 	if (!c->rcvrd_mst_node)
347 		return 0;
348 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
349 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
350 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
351 	if (err)
352 		return err;
353 	kfree(c->rcvrd_mst_node);
354 	c->rcvrd_mst_node = NULL;
355 	return 0;
356 }
357 
358 /**
359  * is_last_write - determine if an offset was in the last write to a LEB.
360  * @c: UBIFS file-system description object
361  * @buf: buffer to check
362  * @offs: offset to check
363  *
364  * This function returns %1 if @offs was in the last write to the LEB whose data
365  * is in @buf, otherwise %0 is returned.  The determination is made by checking
366  * for subsequent empty space starting from the next @c->min_io_size boundary.
367  */
368 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
369 {
370 	int empty_offs, check_len;
371 	uint8_t *p;
372 
373 	/*
374 	 * Round up to the next @c->min_io_size boundary i.e. @offs is in the
375 	 * last wbuf written. After that should be empty space.
376 	 */
377 	empty_offs = ALIGN(offs + 1, c->min_io_size);
378 	check_len = c->leb_size - empty_offs;
379 	p = buf + empty_offs - offs;
380 	return is_empty(p, check_len);
381 }
382 
383 /**
384  * clean_buf - clean the data from an LEB sitting in a buffer.
385  * @c: UBIFS file-system description object
386  * @buf: buffer to clean
387  * @lnum: LEB number to clean
388  * @offs: offset from which to clean
389  * @len: length of buffer
390  *
391  * This function pads up to the next min_io_size boundary (if there is one) and
392  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
393  * @c->min_io_size boundary.
394  */
395 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
396 		      int *offs, int *len)
397 {
398 	int empty_offs, pad_len;
399 
400 	lnum = lnum;
401 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
402 
403 	ubifs_assert(!(*offs & 7));
404 	empty_offs = ALIGN(*offs, c->min_io_size);
405 	pad_len = empty_offs - *offs;
406 	ubifs_pad(c, *buf, pad_len);
407 	*offs += pad_len;
408 	*buf += pad_len;
409 	*len -= pad_len;
410 	memset(*buf, 0xff, c->leb_size - empty_offs);
411 }
412 
413 /**
414  * no_more_nodes - determine if there are no more nodes in a buffer.
415  * @c: UBIFS file-system description object
416  * @buf: buffer to check
417  * @len: length of buffer
418  * @lnum: LEB number of the LEB from which @buf was read
419  * @offs: offset from which @buf was read
420  *
421  * This function ensures that the corrupted node at @offs is the last thing
422  * written to a LEB. This function returns %1 if more data is not found and
423  * %0 if more data is found.
424  */
425 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
426 			int lnum, int offs)
427 {
428 	struct ubifs_ch *ch = buf;
429 	int skip, dlen = le32_to_cpu(ch->len);
430 
431 	/* Check for empty space after the corrupt node's common header */
432 	skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
433 	if (is_empty(buf + skip, len - skip))
434 		return 1;
435 	/*
436 	 * The area after the common header size is not empty, so the common
437 	 * header must be intact. Check it.
438 	 */
439 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
440 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
441 		return 0;
442 	}
443 	/* Now we know the corrupt node's length we can skip over it */
444 	skip = ALIGN(offs + dlen, c->min_io_size) - offs;
445 	/* After which there should be empty space */
446 	if (is_empty(buf + skip, len - skip))
447 		return 1;
448 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
449 	return 0;
450 }
451 
452 /**
453  * fix_unclean_leb - fix an unclean LEB.
454  * @c: UBIFS file-system description object
455  * @sleb: scanned LEB information
456  * @start: offset where scan started
457  */
458 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
459 			   int start)
460 {
461 	int lnum = sleb->lnum, endpt = start;
462 
463 	/* Get the end offset of the last node we are keeping */
464 	if (!list_empty(&sleb->nodes)) {
465 		struct ubifs_scan_node *snod;
466 
467 		snod = list_entry(sleb->nodes.prev,
468 				  struct ubifs_scan_node, list);
469 		endpt = snod->offs + snod->len;
470 	}
471 
472 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
473 		/* Add to recovery list */
474 		struct ubifs_unclean_leb *ucleb;
475 
476 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
477 			  lnum, start, sleb->endpt);
478 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
479 		if (!ucleb)
480 			return -ENOMEM;
481 		ucleb->lnum = lnum;
482 		ucleb->endpt = endpt;
483 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
484 	} else {
485 		/* Write the fixed LEB back to flash */
486 		int err;
487 
488 		dbg_rcvry("fixing LEB %d start %d endpt %d",
489 			  lnum, start, sleb->endpt);
490 		if (endpt == 0) {
491 			err = ubifs_leb_unmap(c, lnum);
492 			if (err)
493 				return err;
494 		} else {
495 			int len = ALIGN(endpt, c->min_io_size);
496 
497 			if (start) {
498 				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
499 					       start);
500 				if (err)
501 					return err;
502 			}
503 			/* Pad to min_io_size */
504 			if (len > endpt) {
505 				int pad_len = len - ALIGN(endpt, 8);
506 
507 				if (pad_len > 0) {
508 					void *buf = sleb->buf + len - pad_len;
509 
510 					ubifs_pad(c, buf, pad_len);
511 				}
512 			}
513 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
514 					     UBI_UNKNOWN);
515 			if (err)
516 				return err;
517 		}
518 	}
519 	return 0;
520 }
521 
522 /**
523  * drop_incomplete_group - drop nodes from an incomplete group.
524  * @sleb: scanned LEB information
525  * @offs: offset of dropped nodes is returned here
526  *
527  * This function returns %1 if nodes are dropped and %0 otherwise.
528  */
529 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
530 {
531 	int dropped = 0;
532 
533 	while (!list_empty(&sleb->nodes)) {
534 		struct ubifs_scan_node *snod;
535 		struct ubifs_ch *ch;
536 
537 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
538 				  list);
539 		ch = snod->node;
540 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
541 			return dropped;
542 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
543 		*offs = snod->offs;
544 		list_del(&snod->list);
545 		kfree(snod);
546 		sleb->nodes_cnt -= 1;
547 		dropped = 1;
548 	}
549 	return dropped;
550 }
551 
552 /**
553  * ubifs_recover_leb - scan and recover a LEB.
554  * @c: UBIFS file-system description object
555  * @lnum: LEB number
556  * @offs: offset
557  * @sbuf: LEB-sized buffer to use
558  * @grouped: nodes may be grouped for recovery
559  *
560  * This function does a scan of a LEB, but caters for errors that might have
561  * been caused by the unclean unmount from which we are attempting to recover.
562  * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
563  * found, and a negative error code in case of failure.
564  */
565 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
566 					 int offs, void *sbuf, int grouped)
567 {
568 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
569 	int empty_chkd = 0, start = offs;
570 	struct ubifs_scan_leb *sleb;
571 	void *buf = sbuf + offs;
572 
573 	dbg_rcvry("%d:%d", lnum, offs);
574 
575 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
576 	if (IS_ERR(sleb))
577 		return sleb;
578 
579 	if (sleb->ecc)
580 		need_clean = 1;
581 
582 	while (len >= 8) {
583 		int ret;
584 
585 		dbg_scan("look at LEB %d:%d (%d bytes left)",
586 			 lnum, offs, len);
587 
588 		cond_resched();
589 
590 		/*
591 		 * Scan quietly until there is an error from which we cannot
592 		 * recover
593 		 */
594 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
595 
596 		if (ret == SCANNED_A_NODE) {
597 			/* A valid node, and not a padding node */
598 			struct ubifs_ch *ch = buf;
599 			int node_len;
600 
601 			err = ubifs_add_snod(c, sleb, buf, offs);
602 			if (err)
603 				goto error;
604 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
605 			offs += node_len;
606 			buf += node_len;
607 			len -= node_len;
608 			continue;
609 		}
610 
611 		if (ret > 0) {
612 			/* Padding bytes or a valid padding node */
613 			offs += ret;
614 			buf += ret;
615 			len -= ret;
616 			continue;
617 		}
618 
619 		if (ret == SCANNED_EMPTY_SPACE) {
620 			if (!is_empty(buf, len)) {
621 				if (!is_last_write(c, buf, offs))
622 					break;
623 				clean_buf(c, &buf, lnum, &offs, &len);
624 				need_clean = 1;
625 			}
626 			empty_chkd = 1;
627 			break;
628 		}
629 
630 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
631 			if (is_last_write(c, buf, offs)) {
632 				clean_buf(c, &buf, lnum, &offs, &len);
633 				need_clean = 1;
634 				empty_chkd = 1;
635 				break;
636 			}
637 
638 		if (ret == SCANNED_A_CORRUPT_NODE)
639 			if (no_more_nodes(c, buf, len, lnum, offs)) {
640 				clean_buf(c, &buf, lnum, &offs, &len);
641 				need_clean = 1;
642 				empty_chkd = 1;
643 				break;
644 			}
645 
646 		if (quiet) {
647 			/* Redo the last scan but noisily */
648 			quiet = 0;
649 			continue;
650 		}
651 
652 		switch (ret) {
653 		case SCANNED_GARBAGE:
654 			dbg_err("garbage");
655 			goto corrupted;
656 		case SCANNED_A_CORRUPT_NODE:
657 		case SCANNED_A_BAD_PAD_NODE:
658 			dbg_err("bad node");
659 			goto corrupted;
660 		default:
661 			dbg_err("unknown");
662 			err = -EINVAL;
663 			goto error;
664 		}
665 	}
666 
667 	if (!empty_chkd && !is_empty(buf, len)) {
668 		if (is_last_write(c, buf, offs)) {
669 			clean_buf(c, &buf, lnum, &offs, &len);
670 			need_clean = 1;
671 		} else {
672 			int corruption = first_non_ff(buf, len);
673 
674 			ubifs_err("corrupt empty space LEB %d:%d, corruption "
675 				  "starts at %d", lnum, offs, corruption);
676 			/* Make sure we dump interesting non-0xFF data */
677 			offs = corruption;
678 			buf += corruption;
679 			goto corrupted;
680 		}
681 	}
682 
683 	/* Drop nodes from incomplete group */
684 	if (grouped && drop_incomplete_group(sleb, &offs)) {
685 		buf = sbuf + offs;
686 		len = c->leb_size - offs;
687 		clean_buf(c, &buf, lnum, &offs, &len);
688 		need_clean = 1;
689 	}
690 
691 	if (offs % c->min_io_size) {
692 		clean_buf(c, &buf, lnum, &offs, &len);
693 		need_clean = 1;
694 	}
695 
696 	ubifs_end_scan(c, sleb, lnum, offs);
697 
698 	if (need_clean) {
699 		err = fix_unclean_leb(c, sleb, start);
700 		if (err)
701 			goto error;
702 	}
703 
704 	return sleb;
705 
706 corrupted:
707 	ubifs_scanned_corruption(c, lnum, offs, buf);
708 	err = -EUCLEAN;
709 error:
710 	ubifs_err("LEB %d scanning failed", lnum);
711 	ubifs_scan_destroy(sleb);
712 	return ERR_PTR(err);
713 }
714 
715 /**
716  * get_cs_sqnum - get commit start sequence number.
717  * @c: UBIFS file-system description object
718  * @lnum: LEB number of commit start node
719  * @offs: offset of commit start node
720  * @cs_sqnum: commit start sequence number is returned here
721  *
722  * This function returns %0 on success and a negative error code on failure.
723  */
724 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
725 			unsigned long long *cs_sqnum)
726 {
727 	struct ubifs_cs_node *cs_node = NULL;
728 	int err, ret;
729 
730 	dbg_rcvry("at %d:%d", lnum, offs);
731 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
732 	if (!cs_node)
733 		return -ENOMEM;
734 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
735 		goto out_err;
736 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
737 	if (err && err != -EBADMSG)
738 		goto out_free;
739 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
740 	if (ret != SCANNED_A_NODE) {
741 		dbg_err("Not a valid node");
742 		goto out_err;
743 	}
744 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
745 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
746 		goto out_err;
747 	}
748 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
749 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
750 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
751 			c->cmt_no);
752 		goto out_err;
753 	}
754 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
755 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
756 	kfree(cs_node);
757 	return 0;
758 
759 out_err:
760 	err = -EINVAL;
761 out_free:
762 	ubifs_err("failed to get CS sqnum");
763 	kfree(cs_node);
764 	return err;
765 }
766 
767 /**
768  * ubifs_recover_log_leb - scan and recover a log LEB.
769  * @c: UBIFS file-system description object
770  * @lnum: LEB number
771  * @offs: offset
772  * @sbuf: LEB-sized buffer to use
773  *
774  * This function does a scan of a LEB, but caters for errors that might have
775  * been caused by the unclean unmount from which we are attempting to recover.
776  *
777  * This function returns %0 on success and a negative error code on failure.
778  */
779 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
780 					     int offs, void *sbuf)
781 {
782 	struct ubifs_scan_leb *sleb;
783 	int next_lnum;
784 
785 	dbg_rcvry("LEB %d", lnum);
786 	next_lnum = lnum + 1;
787 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
788 		next_lnum = UBIFS_LOG_LNUM;
789 	if (next_lnum != c->ltail_lnum) {
790 		/*
791 		 * We can only recover at the end of the log, so check that the
792 		 * next log LEB is empty or out of date.
793 		 */
794 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
795 		if (IS_ERR(sleb))
796 			return sleb;
797 		if (sleb->nodes_cnt) {
798 			struct ubifs_scan_node *snod;
799 			unsigned long long cs_sqnum = c->cs_sqnum;
800 
801 			snod = list_entry(sleb->nodes.next,
802 					  struct ubifs_scan_node, list);
803 			if (cs_sqnum == 0) {
804 				int err;
805 
806 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
807 				if (err) {
808 					ubifs_scan_destroy(sleb);
809 					return ERR_PTR(err);
810 				}
811 			}
812 			if (snod->sqnum > cs_sqnum) {
813 				ubifs_err("unrecoverable log corruption "
814 					  "in LEB %d", lnum);
815 				ubifs_scan_destroy(sleb);
816 				return ERR_PTR(-EUCLEAN);
817 			}
818 		}
819 		ubifs_scan_destroy(sleb);
820 	}
821 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
822 }
823 
824 /**
825  * recover_head - recover a head.
826  * @c: UBIFS file-system description object
827  * @lnum: LEB number of head to recover
828  * @offs: offset of head to recover
829  * @sbuf: LEB-sized buffer to use
830  *
831  * This function ensures that there is no data on the flash at a head location.
832  *
833  * This function returns %0 on success and a negative error code on failure.
834  */
835 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
836 			void *sbuf)
837 {
838 	int len, err;
839 
840 	if (c->min_io_size > 1)
841 		len = c->min_io_size;
842 	else
843 		len = 512;
844 	if (offs + len > c->leb_size)
845 		len = c->leb_size - offs;
846 
847 	if (!len)
848 		return 0;
849 
850 	/* Read at the head location and check it is empty flash */
851 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
852 	if (err || !is_empty(sbuf, len)) {
853 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
854 		if (offs == 0)
855 			return ubifs_leb_unmap(c, lnum);
856 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
857 		if (err)
858 			return err;
859 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
860 	}
861 
862 	return 0;
863 }
864 
865 /**
866  * ubifs_recover_inl_heads - recover index and LPT heads.
867  * @c: UBIFS file-system description object
868  * @sbuf: LEB-sized buffer to use
869  *
870  * This function ensures that there is no data on the flash at the index and
871  * LPT head locations.
872  *
873  * This deals with the recovery of a half-completed journal commit. UBIFS is
874  * careful never to overwrite the last version of the index or the LPT. Because
875  * the index and LPT are wandering trees, data from a half-completed commit will
876  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
877  * assumed to be empty and will be unmapped anyway before use, or in the index
878  * and LPT heads.
879  *
880  * This function returns %0 on success and a negative error code on failure.
881  */
882 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
883 {
884 	int err;
885 
886 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
887 
888 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
889 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
890 	if (err)
891 		return err;
892 
893 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
894 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
895 	if (err)
896 		return err;
897 
898 	return 0;
899 }
900 
901 /**
902  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
903  * @c: UBIFS file-system description object
904  * @ucleb: unclean LEB information
905  * @sbuf: LEB-sized buffer to use
906  *
907  * This function reads a LEB up to a point pre-determined by the mount recovery,
908  * checks the nodes, and writes the result back to the flash, thereby cleaning
909  * off any following corruption, or non-fatal ECC errors.
910  *
911  * This function returns %0 on success and a negative error code on failure.
912  */
913 static int clean_an_unclean_leb(const struct ubifs_info *c,
914 				struct ubifs_unclean_leb *ucleb, void *sbuf)
915 {
916 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
917 	void *buf = sbuf;
918 
919 	dbg_rcvry("LEB %d len %d", lnum, len);
920 
921 	if (len == 0) {
922 		/* Nothing to read, just unmap it */
923 		err = ubifs_leb_unmap(c, lnum);
924 		if (err)
925 			return err;
926 		return 0;
927 	}
928 
929 	err = ubi_read(c->ubi, lnum, buf, offs, len);
930 	if (err && err != -EBADMSG)
931 		return err;
932 
933 	while (len >= 8) {
934 		int ret;
935 
936 		cond_resched();
937 
938 		/* Scan quietly until there is an error */
939 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
940 
941 		if (ret == SCANNED_A_NODE) {
942 			/* A valid node, and not a padding node */
943 			struct ubifs_ch *ch = buf;
944 			int node_len;
945 
946 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
947 			offs += node_len;
948 			buf += node_len;
949 			len -= node_len;
950 			continue;
951 		}
952 
953 		if (ret > 0) {
954 			/* Padding bytes or a valid padding node */
955 			offs += ret;
956 			buf += ret;
957 			len -= ret;
958 			continue;
959 		}
960 
961 		if (ret == SCANNED_EMPTY_SPACE) {
962 			ubifs_err("unexpected empty space at %d:%d",
963 				  lnum, offs);
964 			return -EUCLEAN;
965 		}
966 
967 		if (quiet) {
968 			/* Redo the last scan but noisily */
969 			quiet = 0;
970 			continue;
971 		}
972 
973 		ubifs_scanned_corruption(c, lnum, offs, buf);
974 		return -EUCLEAN;
975 	}
976 
977 	/* Pad to min_io_size */
978 	len = ALIGN(ucleb->endpt, c->min_io_size);
979 	if (len > ucleb->endpt) {
980 		int pad_len = len - ALIGN(ucleb->endpt, 8);
981 
982 		if (pad_len > 0) {
983 			buf = c->sbuf + len - pad_len;
984 			ubifs_pad(c, buf, pad_len);
985 		}
986 	}
987 
988 	/* Write back the LEB atomically */
989 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
990 	if (err)
991 		return err;
992 
993 	dbg_rcvry("cleaned LEB %d", lnum);
994 
995 	return 0;
996 }
997 
998 /**
999  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1000  * @c: UBIFS file-system description object
1001  * @sbuf: LEB-sized buffer to use
1002  *
1003  * This function cleans a LEB identified during recovery that needs to be
1004  * written but was not because UBIFS was mounted read-only. This happens when
1005  * remounting to read-write mode.
1006  *
1007  * This function returns %0 on success and a negative error code on failure.
1008  */
1009 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1010 {
1011 	dbg_rcvry("recovery");
1012 	while (!list_empty(&c->unclean_leb_list)) {
1013 		struct ubifs_unclean_leb *ucleb;
1014 		int err;
1015 
1016 		ucleb = list_entry(c->unclean_leb_list.next,
1017 				   struct ubifs_unclean_leb, list);
1018 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1019 		if (err)
1020 			return err;
1021 		list_del(&ucleb->list);
1022 		kfree(ucleb);
1023 	}
1024 	return 0;
1025 }
1026 
1027 /**
1028  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1029  * @c: UBIFS file-system description object
1030  *
1031  * Out-of-place garbage collection requires always one empty LEB with which to
1032  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1033  * written to the master node on unmounting. In the case of an unclean unmount
1034  * the value of gc_lnum recorded in the master node is out of date and cannot
1035  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1036  * However, there may not be enough empty space, in which case it must be
1037  * possible to GC the dirtiest LEB into the GC head LEB.
1038  *
1039  * This function also runs the commit which causes the TNC updates from
1040  * size-recovery and orphans to be written to the flash. That is important to
1041  * ensure correct replay order for subsequent mounts.
1042  *
1043  * This function returns %0 on success and a negative error code on failure.
1044  */
1045 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1046 {
1047 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1048 	struct ubifs_lprops lp;
1049 	int lnum, err;
1050 
1051 	c->gc_lnum = -1;
1052 	if (wbuf->lnum == -1) {
1053 		dbg_rcvry("no GC head LEB");
1054 		goto find_free;
1055 	}
1056 	/*
1057 	 * See whether the used space in the dirtiest LEB fits in the GC head
1058 	 * LEB.
1059 	 */
1060 	if (wbuf->offs == c->leb_size) {
1061 		dbg_rcvry("no room in GC head LEB");
1062 		goto find_free;
1063 	}
1064 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1065 	if (err) {
1066 		if (err == -ENOSPC)
1067 			dbg_err("could not find a dirty LEB");
1068 		return err;
1069 	}
1070 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1071 	lnum = lp.lnum;
1072 	if (lp.free + lp.dirty == c->leb_size) {
1073 		/* An empty LEB was returned */
1074 		if (lp.free != c->leb_size) {
1075 			err = ubifs_change_one_lp(c, lnum, c->leb_size,
1076 						  0, 0, 0, 0);
1077 			if (err)
1078 				return err;
1079 		}
1080 		err = ubifs_leb_unmap(c, lnum);
1081 		if (err)
1082 			return err;
1083 		c->gc_lnum = lnum;
1084 		dbg_rcvry("allocated LEB %d for GC", lnum);
1085 		/* Run the commit */
1086 		dbg_rcvry("committing");
1087 		return ubifs_run_commit(c);
1088 	}
1089 	/*
1090 	 * There was no empty LEB so the used space in the dirtiest LEB must fit
1091 	 * in the GC head LEB.
1092 	 */
1093 	if (lp.free + lp.dirty < wbuf->offs) {
1094 		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1095 			  lnum, wbuf->lnum, wbuf->offs);
1096 		err = ubifs_return_leb(c, lnum);
1097 		if (err)
1098 			return err;
1099 		goto find_free;
1100 	}
1101 	/*
1102 	 * We run the commit before garbage collection otherwise subsequent
1103 	 * mounts will see the GC and orphan deletion in a different order.
1104 	 */
1105 	dbg_rcvry("committing");
1106 	err = ubifs_run_commit(c);
1107 	if (err)
1108 		return err;
1109 	/*
1110 	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1111 	 * - use locking to keep 'ubifs_assert()' happy.
1112 	 */
1113 	dbg_rcvry("GC'ing LEB %d", lnum);
1114 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1115 	err = ubifs_garbage_collect_leb(c, &lp);
1116 	if (err >= 0) {
1117 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1118 
1119 		if (err2)
1120 			err = err2;
1121 	}
1122 	mutex_unlock(&wbuf->io_mutex);
1123 	if (err < 0) {
1124 		dbg_err("GC failed, error %d", err);
1125 		if (err == -EAGAIN)
1126 			err = -EINVAL;
1127 		return err;
1128 	}
1129 	if (err != LEB_RETAINED) {
1130 		dbg_err("GC returned %d", err);
1131 		return -EINVAL;
1132 	}
1133 	err = ubifs_leb_unmap(c, c->gc_lnum);
1134 	if (err)
1135 		return err;
1136 	dbg_rcvry("allocated LEB %d for GC", lnum);
1137 	return 0;
1138 
1139 find_free:
1140 	/*
1141 	 * There is no GC head LEB or the free space in the GC head LEB is too
1142 	 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1143 	 * GC is not run.
1144 	 */
1145 	lnum = ubifs_find_free_leb_for_idx(c);
1146 	if (lnum < 0) {
1147 		dbg_err("could not find an empty LEB");
1148 		return lnum;
1149 	}
1150 	/* And reset the index flag */
1151 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1152 				  LPROPS_INDEX, 0);
1153 	if (err)
1154 		return err;
1155 	c->gc_lnum = lnum;
1156 	dbg_rcvry("allocated LEB %d for GC", lnum);
1157 	/* Run the commit */
1158 	dbg_rcvry("committing");
1159 	return ubifs_run_commit(c);
1160 }
1161 
1162 /**
1163  * struct size_entry - inode size information for recovery.
1164  * @rb: link in the RB-tree of sizes
1165  * @inum: inode number
1166  * @i_size: size on inode
1167  * @d_size: maximum size based on data nodes
1168  * @exists: indicates whether the inode exists
1169  * @inode: inode if pinned in memory awaiting rw mode to fix it
1170  */
1171 struct size_entry {
1172 	struct rb_node rb;
1173 	ino_t inum;
1174 	loff_t i_size;
1175 	loff_t d_size;
1176 	int exists;
1177 	struct inode *inode;
1178 };
1179 
1180 /**
1181  * add_ino - add an entry to the size tree.
1182  * @c: UBIFS file-system description object
1183  * @inum: inode number
1184  * @i_size: size on inode
1185  * @d_size: maximum size based on data nodes
1186  * @exists: indicates whether the inode exists
1187  */
1188 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1189 		   loff_t d_size, int exists)
1190 {
1191 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1192 	struct size_entry *e;
1193 
1194 	while (*p) {
1195 		parent = *p;
1196 		e = rb_entry(parent, struct size_entry, rb);
1197 		if (inum < e->inum)
1198 			p = &(*p)->rb_left;
1199 		else
1200 			p = &(*p)->rb_right;
1201 	}
1202 
1203 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1204 	if (!e)
1205 		return -ENOMEM;
1206 
1207 	e->inum = inum;
1208 	e->i_size = i_size;
1209 	e->d_size = d_size;
1210 	e->exists = exists;
1211 
1212 	rb_link_node(&e->rb, parent, p);
1213 	rb_insert_color(&e->rb, &c->size_tree);
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  * find_ino - find an entry on the size tree.
1220  * @c: UBIFS file-system description object
1221  * @inum: inode number
1222  */
1223 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1224 {
1225 	struct rb_node *p = c->size_tree.rb_node;
1226 	struct size_entry *e;
1227 
1228 	while (p) {
1229 		e = rb_entry(p, struct size_entry, rb);
1230 		if (inum < e->inum)
1231 			p = p->rb_left;
1232 		else if (inum > e->inum)
1233 			p = p->rb_right;
1234 		else
1235 			return e;
1236 	}
1237 	return NULL;
1238 }
1239 
1240 /**
1241  * remove_ino - remove an entry from the size tree.
1242  * @c: UBIFS file-system description object
1243  * @inum: inode number
1244  */
1245 static void remove_ino(struct ubifs_info *c, ino_t inum)
1246 {
1247 	struct size_entry *e = find_ino(c, inum);
1248 
1249 	if (!e)
1250 		return;
1251 	rb_erase(&e->rb, &c->size_tree);
1252 	kfree(e);
1253 }
1254 
1255 /**
1256  * ubifs_destroy_size_tree - free resources related to the size tree.
1257  * @c: UBIFS file-system description object
1258  */
1259 void ubifs_destroy_size_tree(struct ubifs_info *c)
1260 {
1261 	struct rb_node *this = c->size_tree.rb_node;
1262 	struct size_entry *e;
1263 
1264 	while (this) {
1265 		if (this->rb_left) {
1266 			this = this->rb_left;
1267 			continue;
1268 		} else if (this->rb_right) {
1269 			this = this->rb_right;
1270 			continue;
1271 		}
1272 		e = rb_entry(this, struct size_entry, rb);
1273 		if (e->inode)
1274 			iput(e->inode);
1275 		this = rb_parent(this);
1276 		if (this) {
1277 			if (this->rb_left == &e->rb)
1278 				this->rb_left = NULL;
1279 			else
1280 				this->rb_right = NULL;
1281 		}
1282 		kfree(e);
1283 	}
1284 	c->size_tree = RB_ROOT;
1285 }
1286 
1287 /**
1288  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1289  * @c: UBIFS file-system description object
1290  * @key: node key
1291  * @deletion: node is for a deletion
1292  * @new_size: inode size
1293  *
1294  * This function has two purposes:
1295  *     1) to ensure there are no data nodes that fall outside the inode size
1296  *     2) to ensure there are no data nodes for inodes that do not exist
1297  * To accomplish those purposes, a rb-tree is constructed containing an entry
1298  * for each inode number in the journal that has not been deleted, and recording
1299  * the size from the inode node, the maximum size of any data node (also altered
1300  * by truncations) and a flag indicating a inode number for which no inode node
1301  * was present in the journal.
1302  *
1303  * Note that there is still the possibility that there are data nodes that have
1304  * been committed that are beyond the inode size, however the only way to find
1305  * them would be to scan the entire index. Alternatively, some provision could
1306  * be made to record the size of inodes at the start of commit, which would seem
1307  * very cumbersome for a scenario that is quite unlikely and the only negative
1308  * consequence of which is wasted space.
1309  *
1310  * This functions returns %0 on success and a negative error code on failure.
1311  */
1312 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1313 			     int deletion, loff_t new_size)
1314 {
1315 	ino_t inum = key_inum(c, key);
1316 	struct size_entry *e;
1317 	int err;
1318 
1319 	switch (key_type(c, key)) {
1320 	case UBIFS_INO_KEY:
1321 		if (deletion)
1322 			remove_ino(c, inum);
1323 		else {
1324 			e = find_ino(c, inum);
1325 			if (e) {
1326 				e->i_size = new_size;
1327 				e->exists = 1;
1328 			} else {
1329 				err = add_ino(c, inum, new_size, 0, 1);
1330 				if (err)
1331 					return err;
1332 			}
1333 		}
1334 		break;
1335 	case UBIFS_DATA_KEY:
1336 		e = find_ino(c, inum);
1337 		if (e) {
1338 			if (new_size > e->d_size)
1339 				e->d_size = new_size;
1340 		} else {
1341 			err = add_ino(c, inum, 0, new_size, 0);
1342 			if (err)
1343 				return err;
1344 		}
1345 		break;
1346 	case UBIFS_TRUN_KEY:
1347 		e = find_ino(c, inum);
1348 		if (e)
1349 			e->d_size = new_size;
1350 		break;
1351 	}
1352 	return 0;
1353 }
1354 
1355 /**
1356  * fix_size_in_place - fix inode size in place on flash.
1357  * @c: UBIFS file-system description object
1358  * @e: inode size information for recovery
1359  */
1360 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1361 {
1362 	struct ubifs_ino_node *ino = c->sbuf;
1363 	unsigned char *p;
1364 	union ubifs_key key;
1365 	int err, lnum, offs, len;
1366 	loff_t i_size;
1367 	uint32_t crc;
1368 
1369 	/* Locate the inode node LEB number and offset */
1370 	ino_key_init(c, &key, e->inum);
1371 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1372 	if (err)
1373 		goto out;
1374 	/*
1375 	 * If the size recorded on the inode node is greater than the size that
1376 	 * was calculated from nodes in the journal then don't change the inode.
1377 	 */
1378 	i_size = le64_to_cpu(ino->size);
1379 	if (i_size >= e->d_size)
1380 		return 0;
1381 	/* Read the LEB */
1382 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1383 	if (err)
1384 		goto out;
1385 	/* Change the size field and recalculate the CRC */
1386 	ino = c->sbuf + offs;
1387 	ino->size = cpu_to_le64(e->d_size);
1388 	len = le32_to_cpu(ino->ch.len);
1389 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1390 	ino->ch.crc = cpu_to_le32(crc);
1391 	/* Work out where data in the LEB ends and free space begins */
1392 	p = c->sbuf;
1393 	len = c->leb_size - 1;
1394 	while (p[len] == 0xff)
1395 		len -= 1;
1396 	len = ALIGN(len + 1, c->min_io_size);
1397 	/* Atomically write the fixed LEB back again */
1398 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1399 	if (err)
1400 		goto out;
1401 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1402 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1403 	return 0;
1404 
1405 out:
1406 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1407 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1408 	return err;
1409 }
1410 
1411 /**
1412  * ubifs_recover_size - recover inode size.
1413  * @c: UBIFS file-system description object
1414  *
1415  * This function attempts to fix inode size discrepancies identified by the
1416  * 'ubifs_recover_size_accum()' function.
1417  *
1418  * This functions returns %0 on success and a negative error code on failure.
1419  */
1420 int ubifs_recover_size(struct ubifs_info *c)
1421 {
1422 	struct rb_node *this = rb_first(&c->size_tree);
1423 
1424 	while (this) {
1425 		struct size_entry *e;
1426 		int err;
1427 
1428 		e = rb_entry(this, struct size_entry, rb);
1429 		if (!e->exists) {
1430 			union ubifs_key key;
1431 
1432 			ino_key_init(c, &key, e->inum);
1433 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1434 			if (err && err != -ENOENT)
1435 				return err;
1436 			if (err == -ENOENT) {
1437 				/* Remove data nodes that have no inode */
1438 				dbg_rcvry("removing ino %lu",
1439 					  (unsigned long)e->inum);
1440 				err = ubifs_tnc_remove_ino(c, e->inum);
1441 				if (err)
1442 					return err;
1443 			} else {
1444 				struct ubifs_ino_node *ino = c->sbuf;
1445 
1446 				e->exists = 1;
1447 				e->i_size = le64_to_cpu(ino->size);
1448 			}
1449 		}
1450 		if (e->exists && e->i_size < e->d_size) {
1451 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1452 				/* Fix the inode size and pin it in memory */
1453 				struct inode *inode;
1454 
1455 				inode = ubifs_iget(c->vfs_sb, e->inum);
1456 				if (IS_ERR(inode))
1457 					return PTR_ERR(inode);
1458 				if (inode->i_size < e->d_size) {
1459 					dbg_rcvry("ino %lu size %lld -> %lld",
1460 						  (unsigned long)e->inum,
1461 						  e->d_size, inode->i_size);
1462 					inode->i_size = e->d_size;
1463 					ubifs_inode(inode)->ui_size = e->d_size;
1464 					e->inode = inode;
1465 					this = rb_next(this);
1466 					continue;
1467 				}
1468 				iput(inode);
1469 			} else {
1470 				/* Fix the size in place */
1471 				err = fix_size_in_place(c, e);
1472 				if (err)
1473 					return err;
1474 				if (e->inode)
1475 					iput(e->inode);
1476 			}
1477 		}
1478 		this = rb_next(this);
1479 		rb_erase(&e->rb, &c->size_tree);
1480 		kfree(e);
1481 	}
1482 	return 0;
1483 }
1484