1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions needed to recover from unclean un-mounts. 25 * When UBIFS is mounted, it checks a flag on the master node to determine if 26 * an un-mount was completed successfully. If not, the process of mounting 27 * incorporates additional checking and fixing of on-flash data structures. 28 * UBIFS always cleans away all remnants of an unclean un-mount, so that 29 * errors do not accumulate. However UBIFS defers recovery if it is mounted 30 * read-only, and the flash is not modified in that case. 31 */ 32 33 #include <linux/crc32.h> 34 #include <linux/slab.h> 35 #include "ubifs.h" 36 37 /** 38 * is_empty - determine whether a buffer is empty (contains all 0xff). 39 * @buf: buffer to clean 40 * @len: length of buffer 41 * 42 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 43 * %0 is returned. 44 */ 45 static int is_empty(void *buf, int len) 46 { 47 uint8_t *p = buf; 48 int i; 49 50 for (i = 0; i < len; i++) 51 if (*p++ != 0xff) 52 return 0; 53 return 1; 54 } 55 56 /** 57 * first_non_ff - find offset of the first non-0xff byte. 58 * @buf: buffer to search in 59 * @len: length of buffer 60 * 61 * This function returns offset of the first non-0xff byte in @buf or %-1 if 62 * the buffer contains only 0xff bytes. 63 */ 64 static int first_non_ff(void *buf, int len) 65 { 66 uint8_t *p = buf; 67 int i; 68 69 for (i = 0; i < len; i++) 70 if (*p++ != 0xff) 71 return i; 72 return -1; 73 } 74 75 /** 76 * get_master_node - get the last valid master node allowing for corruption. 77 * @c: UBIFS file-system description object 78 * @lnum: LEB number 79 * @pbuf: buffer containing the LEB read, is returned here 80 * @mst: master node, if found, is returned here 81 * @cor: corruption, if found, is returned here 82 * 83 * This function allocates a buffer, reads the LEB into it, and finds and 84 * returns the last valid master node allowing for one area of corruption. 85 * The corrupt area, if there is one, must be consistent with the assumption 86 * that it is the result of an unclean unmount while the master node was being 87 * written. Under those circumstances, it is valid to use the previously written 88 * master node. 89 * 90 * This function returns %0 on success and a negative error code on failure. 91 */ 92 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 93 struct ubifs_mst_node **mst, void **cor) 94 { 95 const int sz = c->mst_node_alsz; 96 int err, offs, len; 97 void *sbuf, *buf; 98 99 sbuf = vmalloc(c->leb_size); 100 if (!sbuf) 101 return -ENOMEM; 102 103 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); 104 if (err && err != -EBADMSG) 105 goto out_free; 106 107 /* Find the first position that is definitely not a node */ 108 offs = 0; 109 buf = sbuf; 110 len = c->leb_size; 111 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 112 struct ubifs_ch *ch = buf; 113 114 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 115 break; 116 offs += sz; 117 buf += sz; 118 len -= sz; 119 } 120 /* See if there was a valid master node before that */ 121 if (offs) { 122 int ret; 123 124 offs -= sz; 125 buf -= sz; 126 len += sz; 127 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 128 if (ret != SCANNED_A_NODE && offs) { 129 /* Could have been corruption so check one place back */ 130 offs -= sz; 131 buf -= sz; 132 len += sz; 133 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 134 if (ret != SCANNED_A_NODE) 135 /* 136 * We accept only one area of corruption because 137 * we are assuming that it was caused while 138 * trying to write a master node. 139 */ 140 goto out_err; 141 } 142 if (ret == SCANNED_A_NODE) { 143 struct ubifs_ch *ch = buf; 144 145 if (ch->node_type != UBIFS_MST_NODE) 146 goto out_err; 147 dbg_rcvry("found a master node at %d:%d", lnum, offs); 148 *mst = buf; 149 offs += sz; 150 buf += sz; 151 len -= sz; 152 } 153 } 154 /* Check for corruption */ 155 if (offs < c->leb_size) { 156 if (!is_empty(buf, min_t(int, len, sz))) { 157 *cor = buf; 158 dbg_rcvry("found corruption at %d:%d", lnum, offs); 159 } 160 offs += sz; 161 buf += sz; 162 len -= sz; 163 } 164 /* Check remaining empty space */ 165 if (offs < c->leb_size) 166 if (!is_empty(buf, len)) 167 goto out_err; 168 *pbuf = sbuf; 169 return 0; 170 171 out_err: 172 err = -EINVAL; 173 out_free: 174 vfree(sbuf); 175 *mst = NULL; 176 *cor = NULL; 177 return err; 178 } 179 180 /** 181 * write_rcvrd_mst_node - write recovered master node. 182 * @c: UBIFS file-system description object 183 * @mst: master node 184 * 185 * This function returns %0 on success and a negative error code on failure. 186 */ 187 static int write_rcvrd_mst_node(struct ubifs_info *c, 188 struct ubifs_mst_node *mst) 189 { 190 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 191 __le32 save_flags; 192 193 dbg_rcvry("recovery"); 194 195 save_flags = mst->flags; 196 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 197 198 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 199 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); 200 if (err) 201 goto out; 202 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); 203 if (err) 204 goto out; 205 out: 206 mst->flags = save_flags; 207 return err; 208 } 209 210 /** 211 * ubifs_recover_master_node - recover the master node. 212 * @c: UBIFS file-system description object 213 * 214 * This function recovers the master node from corruption that may occur due to 215 * an unclean unmount. 216 * 217 * This function returns %0 on success and a negative error code on failure. 218 */ 219 int ubifs_recover_master_node(struct ubifs_info *c) 220 { 221 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 222 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 223 const int sz = c->mst_node_alsz; 224 int err, offs1, offs2; 225 226 dbg_rcvry("recovery"); 227 228 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 229 if (err) 230 goto out_free; 231 232 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 233 if (err) 234 goto out_free; 235 236 if (mst1) { 237 offs1 = (void *)mst1 - buf1; 238 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 239 (offs1 == 0 && !cor1)) { 240 /* 241 * mst1 was written by recovery at offset 0 with no 242 * corruption. 243 */ 244 dbg_rcvry("recovery recovery"); 245 mst = mst1; 246 } else if (mst2) { 247 offs2 = (void *)mst2 - buf2; 248 if (offs1 == offs2) { 249 /* Same offset, so must be the same */ 250 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 251 (void *)mst2 + UBIFS_CH_SZ, 252 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 253 goto out_err; 254 mst = mst1; 255 } else if (offs2 + sz == offs1) { 256 /* 1st LEB was written, 2nd was not */ 257 if (cor1) 258 goto out_err; 259 mst = mst1; 260 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { 261 /* 1st LEB was unmapped and written, 2nd not */ 262 if (cor1) 263 goto out_err; 264 mst = mst1; 265 } else 266 goto out_err; 267 } else { 268 /* 269 * 2nd LEB was unmapped and about to be written, so 270 * there must be only one master node in the first LEB 271 * and no corruption. 272 */ 273 if (offs1 != 0 || cor1) 274 goto out_err; 275 mst = mst1; 276 } 277 } else { 278 if (!mst2) 279 goto out_err; 280 /* 281 * 1st LEB was unmapped and about to be written, so there must 282 * be no room left in 2nd LEB. 283 */ 284 offs2 = (void *)mst2 - buf2; 285 if (offs2 + sz + sz <= c->leb_size) 286 goto out_err; 287 mst = mst2; 288 } 289 290 ubifs_msg("recovered master node from LEB %d", 291 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 292 293 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 294 295 if (c->ro_mount) { 296 /* Read-only mode. Keep a copy for switching to rw mode */ 297 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 298 if (!c->rcvrd_mst_node) { 299 err = -ENOMEM; 300 goto out_free; 301 } 302 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 303 } else { 304 /* Write the recovered master node */ 305 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 306 err = write_rcvrd_mst_node(c, c->mst_node); 307 if (err) 308 goto out_free; 309 } 310 311 vfree(buf2); 312 vfree(buf1); 313 314 return 0; 315 316 out_err: 317 err = -EINVAL; 318 out_free: 319 ubifs_err("failed to recover master node"); 320 if (mst1) { 321 dbg_err("dumping first master node"); 322 dbg_dump_node(c, mst1); 323 } 324 if (mst2) { 325 dbg_err("dumping second master node"); 326 dbg_dump_node(c, mst2); 327 } 328 vfree(buf2); 329 vfree(buf1); 330 return err; 331 } 332 333 /** 334 * ubifs_write_rcvrd_mst_node - write the recovered master node. 335 * @c: UBIFS file-system description object 336 * 337 * This function writes the master node that was recovered during mounting in 338 * read-only mode and must now be written because we are remounting rw. 339 * 340 * This function returns %0 on success and a negative error code on failure. 341 */ 342 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 343 { 344 int err; 345 346 if (!c->rcvrd_mst_node) 347 return 0; 348 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 349 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 350 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 351 if (err) 352 return err; 353 kfree(c->rcvrd_mst_node); 354 c->rcvrd_mst_node = NULL; 355 return 0; 356 } 357 358 /** 359 * is_last_write - determine if an offset was in the last write to a LEB. 360 * @c: UBIFS file-system description object 361 * @buf: buffer to check 362 * @offs: offset to check 363 * 364 * This function returns %1 if @offs was in the last write to the LEB whose data 365 * is in @buf, otherwise %0 is returned. The determination is made by checking 366 * for subsequent empty space starting from the next @c->min_io_size boundary. 367 */ 368 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 369 { 370 int empty_offs, check_len; 371 uint8_t *p; 372 373 /* 374 * Round up to the next @c->min_io_size boundary i.e. @offs is in the 375 * last wbuf written. After that should be empty space. 376 */ 377 empty_offs = ALIGN(offs + 1, c->min_io_size); 378 check_len = c->leb_size - empty_offs; 379 p = buf + empty_offs - offs; 380 return is_empty(p, check_len); 381 } 382 383 /** 384 * clean_buf - clean the data from an LEB sitting in a buffer. 385 * @c: UBIFS file-system description object 386 * @buf: buffer to clean 387 * @lnum: LEB number to clean 388 * @offs: offset from which to clean 389 * @len: length of buffer 390 * 391 * This function pads up to the next min_io_size boundary (if there is one) and 392 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 393 * @c->min_io_size boundary. 394 */ 395 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 396 int *offs, int *len) 397 { 398 int empty_offs, pad_len; 399 400 lnum = lnum; 401 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 402 403 ubifs_assert(!(*offs & 7)); 404 empty_offs = ALIGN(*offs, c->min_io_size); 405 pad_len = empty_offs - *offs; 406 ubifs_pad(c, *buf, pad_len); 407 *offs += pad_len; 408 *buf += pad_len; 409 *len -= pad_len; 410 memset(*buf, 0xff, c->leb_size - empty_offs); 411 } 412 413 /** 414 * no_more_nodes - determine if there are no more nodes in a buffer. 415 * @c: UBIFS file-system description object 416 * @buf: buffer to check 417 * @len: length of buffer 418 * @lnum: LEB number of the LEB from which @buf was read 419 * @offs: offset from which @buf was read 420 * 421 * This function ensures that the corrupted node at @offs is the last thing 422 * written to a LEB. This function returns %1 if more data is not found and 423 * %0 if more data is found. 424 */ 425 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 426 int lnum, int offs) 427 { 428 struct ubifs_ch *ch = buf; 429 int skip, dlen = le32_to_cpu(ch->len); 430 431 /* Check for empty space after the corrupt node's common header */ 432 skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs; 433 if (is_empty(buf + skip, len - skip)) 434 return 1; 435 /* 436 * The area after the common header size is not empty, so the common 437 * header must be intact. Check it. 438 */ 439 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { 440 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); 441 return 0; 442 } 443 /* Now we know the corrupt node's length we can skip over it */ 444 skip = ALIGN(offs + dlen, c->min_io_size) - offs; 445 /* After which there should be empty space */ 446 if (is_empty(buf + skip, len - skip)) 447 return 1; 448 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); 449 return 0; 450 } 451 452 /** 453 * fix_unclean_leb - fix an unclean LEB. 454 * @c: UBIFS file-system description object 455 * @sleb: scanned LEB information 456 * @start: offset where scan started 457 */ 458 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 459 int start) 460 { 461 int lnum = sleb->lnum, endpt = start; 462 463 /* Get the end offset of the last node we are keeping */ 464 if (!list_empty(&sleb->nodes)) { 465 struct ubifs_scan_node *snod; 466 467 snod = list_entry(sleb->nodes.prev, 468 struct ubifs_scan_node, list); 469 endpt = snod->offs + snod->len; 470 } 471 472 if (c->ro_mount && !c->remounting_rw) { 473 /* Add to recovery list */ 474 struct ubifs_unclean_leb *ucleb; 475 476 dbg_rcvry("need to fix LEB %d start %d endpt %d", 477 lnum, start, sleb->endpt); 478 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 479 if (!ucleb) 480 return -ENOMEM; 481 ucleb->lnum = lnum; 482 ucleb->endpt = endpt; 483 list_add_tail(&ucleb->list, &c->unclean_leb_list); 484 } else { 485 /* Write the fixed LEB back to flash */ 486 int err; 487 488 dbg_rcvry("fixing LEB %d start %d endpt %d", 489 lnum, start, sleb->endpt); 490 if (endpt == 0) { 491 err = ubifs_leb_unmap(c, lnum); 492 if (err) 493 return err; 494 } else { 495 int len = ALIGN(endpt, c->min_io_size); 496 497 if (start) { 498 err = ubi_read(c->ubi, lnum, sleb->buf, 0, 499 start); 500 if (err) 501 return err; 502 } 503 /* Pad to min_io_size */ 504 if (len > endpt) { 505 int pad_len = len - ALIGN(endpt, 8); 506 507 if (pad_len > 0) { 508 void *buf = sleb->buf + len - pad_len; 509 510 ubifs_pad(c, buf, pad_len); 511 } 512 } 513 err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, 514 UBI_UNKNOWN); 515 if (err) 516 return err; 517 } 518 } 519 return 0; 520 } 521 522 /** 523 * drop_incomplete_group - drop nodes from an incomplete group. 524 * @sleb: scanned LEB information 525 * @offs: offset of dropped nodes is returned here 526 * 527 * This function returns %1 if nodes are dropped and %0 otherwise. 528 */ 529 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) 530 { 531 int dropped = 0; 532 533 while (!list_empty(&sleb->nodes)) { 534 struct ubifs_scan_node *snod; 535 struct ubifs_ch *ch; 536 537 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 538 list); 539 ch = snod->node; 540 if (ch->group_type != UBIFS_IN_NODE_GROUP) 541 return dropped; 542 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); 543 *offs = snod->offs; 544 list_del(&snod->list); 545 kfree(snod); 546 sleb->nodes_cnt -= 1; 547 dropped = 1; 548 } 549 return dropped; 550 } 551 552 /** 553 * ubifs_recover_leb - scan and recover a LEB. 554 * @c: UBIFS file-system description object 555 * @lnum: LEB number 556 * @offs: offset 557 * @sbuf: LEB-sized buffer to use 558 * @grouped: nodes may be grouped for recovery 559 * 560 * This function does a scan of a LEB, but caters for errors that might have 561 * been caused by the unclean unmount from which we are attempting to recover. 562 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is 563 * found, and a negative error code in case of failure. 564 */ 565 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 566 int offs, void *sbuf, int grouped) 567 { 568 int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; 569 int empty_chkd = 0, start = offs; 570 struct ubifs_scan_leb *sleb; 571 void *buf = sbuf + offs; 572 573 dbg_rcvry("%d:%d", lnum, offs); 574 575 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 576 if (IS_ERR(sleb)) 577 return sleb; 578 579 if (sleb->ecc) 580 need_clean = 1; 581 582 while (len >= 8) { 583 int ret; 584 585 dbg_scan("look at LEB %d:%d (%d bytes left)", 586 lnum, offs, len); 587 588 cond_resched(); 589 590 /* 591 * Scan quietly until there is an error from which we cannot 592 * recover 593 */ 594 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 595 596 if (ret == SCANNED_A_NODE) { 597 /* A valid node, and not a padding node */ 598 struct ubifs_ch *ch = buf; 599 int node_len; 600 601 err = ubifs_add_snod(c, sleb, buf, offs); 602 if (err) 603 goto error; 604 node_len = ALIGN(le32_to_cpu(ch->len), 8); 605 offs += node_len; 606 buf += node_len; 607 len -= node_len; 608 continue; 609 } 610 611 if (ret > 0) { 612 /* Padding bytes or a valid padding node */ 613 offs += ret; 614 buf += ret; 615 len -= ret; 616 continue; 617 } 618 619 if (ret == SCANNED_EMPTY_SPACE) { 620 if (!is_empty(buf, len)) { 621 if (!is_last_write(c, buf, offs)) 622 break; 623 clean_buf(c, &buf, lnum, &offs, &len); 624 need_clean = 1; 625 } 626 empty_chkd = 1; 627 break; 628 } 629 630 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) 631 if (is_last_write(c, buf, offs)) { 632 clean_buf(c, &buf, lnum, &offs, &len); 633 need_clean = 1; 634 empty_chkd = 1; 635 break; 636 } 637 638 if (ret == SCANNED_A_CORRUPT_NODE) 639 if (no_more_nodes(c, buf, len, lnum, offs)) { 640 clean_buf(c, &buf, lnum, &offs, &len); 641 need_clean = 1; 642 empty_chkd = 1; 643 break; 644 } 645 646 if (quiet) { 647 /* Redo the last scan but noisily */ 648 quiet = 0; 649 continue; 650 } 651 652 switch (ret) { 653 case SCANNED_GARBAGE: 654 dbg_err("garbage"); 655 goto corrupted; 656 case SCANNED_A_CORRUPT_NODE: 657 case SCANNED_A_BAD_PAD_NODE: 658 dbg_err("bad node"); 659 goto corrupted; 660 default: 661 dbg_err("unknown"); 662 err = -EINVAL; 663 goto error; 664 } 665 } 666 667 if (!empty_chkd && !is_empty(buf, len)) { 668 if (is_last_write(c, buf, offs)) { 669 clean_buf(c, &buf, lnum, &offs, &len); 670 need_clean = 1; 671 } else { 672 int corruption = first_non_ff(buf, len); 673 674 ubifs_err("corrupt empty space LEB %d:%d, corruption " 675 "starts at %d", lnum, offs, corruption); 676 /* Make sure we dump interesting non-0xFF data */ 677 offs = corruption; 678 buf += corruption; 679 goto corrupted; 680 } 681 } 682 683 /* Drop nodes from incomplete group */ 684 if (grouped && drop_incomplete_group(sleb, &offs)) { 685 buf = sbuf + offs; 686 len = c->leb_size - offs; 687 clean_buf(c, &buf, lnum, &offs, &len); 688 need_clean = 1; 689 } 690 691 if (offs % c->min_io_size) { 692 clean_buf(c, &buf, lnum, &offs, &len); 693 need_clean = 1; 694 } 695 696 ubifs_end_scan(c, sleb, lnum, offs); 697 698 if (need_clean) { 699 err = fix_unclean_leb(c, sleb, start); 700 if (err) 701 goto error; 702 } 703 704 return sleb; 705 706 corrupted: 707 ubifs_scanned_corruption(c, lnum, offs, buf); 708 err = -EUCLEAN; 709 error: 710 ubifs_err("LEB %d scanning failed", lnum); 711 ubifs_scan_destroy(sleb); 712 return ERR_PTR(err); 713 } 714 715 /** 716 * get_cs_sqnum - get commit start sequence number. 717 * @c: UBIFS file-system description object 718 * @lnum: LEB number of commit start node 719 * @offs: offset of commit start node 720 * @cs_sqnum: commit start sequence number is returned here 721 * 722 * This function returns %0 on success and a negative error code on failure. 723 */ 724 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 725 unsigned long long *cs_sqnum) 726 { 727 struct ubifs_cs_node *cs_node = NULL; 728 int err, ret; 729 730 dbg_rcvry("at %d:%d", lnum, offs); 731 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 732 if (!cs_node) 733 return -ENOMEM; 734 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 735 goto out_err; 736 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); 737 if (err && err != -EBADMSG) 738 goto out_free; 739 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 740 if (ret != SCANNED_A_NODE) { 741 dbg_err("Not a valid node"); 742 goto out_err; 743 } 744 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 745 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); 746 goto out_err; 747 } 748 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 749 dbg_err("CS node cmt_no %llu != current cmt_no %llu", 750 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 751 c->cmt_no); 752 goto out_err; 753 } 754 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 755 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 756 kfree(cs_node); 757 return 0; 758 759 out_err: 760 err = -EINVAL; 761 out_free: 762 ubifs_err("failed to get CS sqnum"); 763 kfree(cs_node); 764 return err; 765 } 766 767 /** 768 * ubifs_recover_log_leb - scan and recover a log LEB. 769 * @c: UBIFS file-system description object 770 * @lnum: LEB number 771 * @offs: offset 772 * @sbuf: LEB-sized buffer to use 773 * 774 * This function does a scan of a LEB, but caters for errors that might have 775 * been caused by unclean reboots from which we are attempting to recover 776 * (assume that only the last log LEB can be corrupted by an unclean reboot). 777 * 778 * This function returns %0 on success and a negative error code on failure. 779 */ 780 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 781 int offs, void *sbuf) 782 { 783 struct ubifs_scan_leb *sleb; 784 int next_lnum; 785 786 dbg_rcvry("LEB %d", lnum); 787 next_lnum = lnum + 1; 788 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 789 next_lnum = UBIFS_LOG_LNUM; 790 if (next_lnum != c->ltail_lnum) { 791 /* 792 * We can only recover at the end of the log, so check that the 793 * next log LEB is empty or out of date. 794 */ 795 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); 796 if (IS_ERR(sleb)) 797 return sleb; 798 if (sleb->nodes_cnt) { 799 struct ubifs_scan_node *snod; 800 unsigned long long cs_sqnum = c->cs_sqnum; 801 802 snod = list_entry(sleb->nodes.next, 803 struct ubifs_scan_node, list); 804 if (cs_sqnum == 0) { 805 int err; 806 807 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 808 if (err) { 809 ubifs_scan_destroy(sleb); 810 return ERR_PTR(err); 811 } 812 } 813 if (snod->sqnum > cs_sqnum) { 814 ubifs_err("unrecoverable log corruption " 815 "in LEB %d", lnum); 816 ubifs_scan_destroy(sleb); 817 return ERR_PTR(-EUCLEAN); 818 } 819 } 820 ubifs_scan_destroy(sleb); 821 } 822 return ubifs_recover_leb(c, lnum, offs, sbuf, 0); 823 } 824 825 /** 826 * recover_head - recover a head. 827 * @c: UBIFS file-system description object 828 * @lnum: LEB number of head to recover 829 * @offs: offset of head to recover 830 * @sbuf: LEB-sized buffer to use 831 * 832 * This function ensures that there is no data on the flash at a head location. 833 * 834 * This function returns %0 on success and a negative error code on failure. 835 */ 836 static int recover_head(const struct ubifs_info *c, int lnum, int offs, 837 void *sbuf) 838 { 839 int len, err; 840 841 if (c->min_io_size > 1) 842 len = c->min_io_size; 843 else 844 len = 512; 845 if (offs + len > c->leb_size) 846 len = c->leb_size - offs; 847 848 if (!len) 849 return 0; 850 851 /* Read at the head location and check it is empty flash */ 852 err = ubi_read(c->ubi, lnum, sbuf, offs, len); 853 if (err || !is_empty(sbuf, len)) { 854 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 855 if (offs == 0) 856 return ubifs_leb_unmap(c, lnum); 857 err = ubi_read(c->ubi, lnum, sbuf, 0, offs); 858 if (err) 859 return err; 860 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); 861 } 862 863 return 0; 864 } 865 866 /** 867 * ubifs_recover_inl_heads - recover index and LPT heads. 868 * @c: UBIFS file-system description object 869 * @sbuf: LEB-sized buffer to use 870 * 871 * This function ensures that there is no data on the flash at the index and 872 * LPT head locations. 873 * 874 * This deals with the recovery of a half-completed journal commit. UBIFS is 875 * careful never to overwrite the last version of the index or the LPT. Because 876 * the index and LPT are wandering trees, data from a half-completed commit will 877 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 878 * assumed to be empty and will be unmapped anyway before use, or in the index 879 * and LPT heads. 880 * 881 * This function returns %0 on success and a negative error code on failure. 882 */ 883 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) 884 { 885 int err; 886 887 ubifs_assert(!c->ro_mount || c->remounting_rw); 888 889 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 890 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 891 if (err) 892 return err; 893 894 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 895 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 896 if (err) 897 return err; 898 899 return 0; 900 } 901 902 /** 903 * clean_an_unclean_leb - read and write a LEB to remove corruption. 904 * @c: UBIFS file-system description object 905 * @ucleb: unclean LEB information 906 * @sbuf: LEB-sized buffer to use 907 * 908 * This function reads a LEB up to a point pre-determined by the mount recovery, 909 * checks the nodes, and writes the result back to the flash, thereby cleaning 910 * off any following corruption, or non-fatal ECC errors. 911 * 912 * This function returns %0 on success and a negative error code on failure. 913 */ 914 static int clean_an_unclean_leb(const struct ubifs_info *c, 915 struct ubifs_unclean_leb *ucleb, void *sbuf) 916 { 917 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 918 void *buf = sbuf; 919 920 dbg_rcvry("LEB %d len %d", lnum, len); 921 922 if (len == 0) { 923 /* Nothing to read, just unmap it */ 924 err = ubifs_leb_unmap(c, lnum); 925 if (err) 926 return err; 927 return 0; 928 } 929 930 err = ubi_read(c->ubi, lnum, buf, offs, len); 931 if (err && err != -EBADMSG) 932 return err; 933 934 while (len >= 8) { 935 int ret; 936 937 cond_resched(); 938 939 /* Scan quietly until there is an error */ 940 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 941 942 if (ret == SCANNED_A_NODE) { 943 /* A valid node, and not a padding node */ 944 struct ubifs_ch *ch = buf; 945 int node_len; 946 947 node_len = ALIGN(le32_to_cpu(ch->len), 8); 948 offs += node_len; 949 buf += node_len; 950 len -= node_len; 951 continue; 952 } 953 954 if (ret > 0) { 955 /* Padding bytes or a valid padding node */ 956 offs += ret; 957 buf += ret; 958 len -= ret; 959 continue; 960 } 961 962 if (ret == SCANNED_EMPTY_SPACE) { 963 ubifs_err("unexpected empty space at %d:%d", 964 lnum, offs); 965 return -EUCLEAN; 966 } 967 968 if (quiet) { 969 /* Redo the last scan but noisily */ 970 quiet = 0; 971 continue; 972 } 973 974 ubifs_scanned_corruption(c, lnum, offs, buf); 975 return -EUCLEAN; 976 } 977 978 /* Pad to min_io_size */ 979 len = ALIGN(ucleb->endpt, c->min_io_size); 980 if (len > ucleb->endpt) { 981 int pad_len = len - ALIGN(ucleb->endpt, 8); 982 983 if (pad_len > 0) { 984 buf = c->sbuf + len - pad_len; 985 ubifs_pad(c, buf, pad_len); 986 } 987 } 988 989 /* Write back the LEB atomically */ 990 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); 991 if (err) 992 return err; 993 994 dbg_rcvry("cleaned LEB %d", lnum); 995 996 return 0; 997 } 998 999 /** 1000 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1001 * @c: UBIFS file-system description object 1002 * @sbuf: LEB-sized buffer to use 1003 * 1004 * This function cleans a LEB identified during recovery that needs to be 1005 * written but was not because UBIFS was mounted read-only. This happens when 1006 * remounting to read-write mode. 1007 * 1008 * This function returns %0 on success and a negative error code on failure. 1009 */ 1010 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) 1011 { 1012 dbg_rcvry("recovery"); 1013 while (!list_empty(&c->unclean_leb_list)) { 1014 struct ubifs_unclean_leb *ucleb; 1015 int err; 1016 1017 ucleb = list_entry(c->unclean_leb_list.next, 1018 struct ubifs_unclean_leb, list); 1019 err = clean_an_unclean_leb(c, ucleb, sbuf); 1020 if (err) 1021 return err; 1022 list_del(&ucleb->list); 1023 kfree(ucleb); 1024 } 1025 return 0; 1026 } 1027 1028 /** 1029 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1030 * @c: UBIFS file-system description object 1031 * 1032 * Out-of-place garbage collection requires always one empty LEB with which to 1033 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1034 * written to the master node on unmounting. In the case of an unclean unmount 1035 * the value of gc_lnum recorded in the master node is out of date and cannot 1036 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1037 * However, there may not be enough empty space, in which case it must be 1038 * possible to GC the dirtiest LEB into the GC head LEB. 1039 * 1040 * This function also runs the commit which causes the TNC updates from 1041 * size-recovery and orphans to be written to the flash. That is important to 1042 * ensure correct replay order for subsequent mounts. 1043 * 1044 * This function returns %0 on success and a negative error code on failure. 1045 */ 1046 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1047 { 1048 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1049 struct ubifs_lprops lp; 1050 int lnum, err; 1051 1052 c->gc_lnum = -1; 1053 if (wbuf->lnum == -1) { 1054 dbg_rcvry("no GC head LEB"); 1055 goto find_free; 1056 } 1057 /* 1058 * See whether the used space in the dirtiest LEB fits in the GC head 1059 * LEB. 1060 */ 1061 if (wbuf->offs == c->leb_size) { 1062 dbg_rcvry("no room in GC head LEB"); 1063 goto find_free; 1064 } 1065 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1066 if (err) { 1067 /* 1068 * There are no dirty or empty LEBs subject to here being 1069 * enough for the index. Try to use 1070 * 'ubifs_find_free_leb_for_idx()', which will return any empty 1071 * LEBs (ignoring index requirements). If the index then 1072 * doesn't have enough LEBs the recovery commit will fail - 1073 * which is the same result anyway i.e. recovery fails. So 1074 * there is no problem ignoring index requirements and just 1075 * grabbing a free LEB since we have already established there 1076 * is not a dirty LEB we could have used instead. 1077 */ 1078 if (err == -ENOSPC) { 1079 dbg_rcvry("could not find a dirty LEB"); 1080 goto find_free; 1081 } 1082 return err; 1083 } 1084 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 1085 lnum = lp.lnum; 1086 if (lp.free + lp.dirty == c->leb_size) { 1087 /* An empty LEB was returned */ 1088 if (lp.free != c->leb_size) { 1089 err = ubifs_change_one_lp(c, lnum, c->leb_size, 1090 0, 0, 0, 0); 1091 if (err) 1092 return err; 1093 } 1094 err = ubifs_leb_unmap(c, lnum); 1095 if (err) 1096 return err; 1097 c->gc_lnum = lnum; 1098 dbg_rcvry("allocated LEB %d for GC", lnum); 1099 /* Run the commit */ 1100 dbg_rcvry("committing"); 1101 return ubifs_run_commit(c); 1102 } 1103 /* 1104 * There was no empty LEB so the used space in the dirtiest LEB must fit 1105 * in the GC head LEB. 1106 */ 1107 if (lp.free + lp.dirty < wbuf->offs) { 1108 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", 1109 lnum, wbuf->lnum, wbuf->offs); 1110 err = ubifs_return_leb(c, lnum); 1111 if (err) 1112 return err; 1113 goto find_free; 1114 } 1115 /* 1116 * We run the commit before garbage collection otherwise subsequent 1117 * mounts will see the GC and orphan deletion in a different order. 1118 */ 1119 dbg_rcvry("committing"); 1120 err = ubifs_run_commit(c); 1121 if (err) 1122 return err; 1123 /* 1124 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC 1125 * - use locking to keep 'ubifs_assert()' happy. 1126 */ 1127 dbg_rcvry("GC'ing LEB %d", lnum); 1128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1129 err = ubifs_garbage_collect_leb(c, &lp); 1130 if (err >= 0) { 1131 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1132 1133 if (err2) 1134 err = err2; 1135 } 1136 mutex_unlock(&wbuf->io_mutex); 1137 if (err < 0) { 1138 dbg_err("GC failed, error %d", err); 1139 if (err == -EAGAIN) 1140 err = -EINVAL; 1141 return err; 1142 } 1143 if (err != LEB_RETAINED) { 1144 dbg_err("GC returned %d", err); 1145 return -EINVAL; 1146 } 1147 err = ubifs_leb_unmap(c, c->gc_lnum); 1148 if (err) 1149 return err; 1150 dbg_rcvry("allocated LEB %d for GC", lnum); 1151 return 0; 1152 1153 find_free: 1154 /* 1155 * There is no GC head LEB or the free space in the GC head LEB is too 1156 * small, or there are not dirty LEBs. Allocate gc_lnum by calling 1157 * 'ubifs_find_free_leb_for_idx()' so GC is not run. 1158 */ 1159 lnum = ubifs_find_free_leb_for_idx(c); 1160 if (lnum < 0) { 1161 dbg_err("could not find an empty LEB"); 1162 return lnum; 1163 } 1164 /* And reset the index flag */ 1165 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1166 LPROPS_INDEX, 0); 1167 if (err) 1168 return err; 1169 c->gc_lnum = lnum; 1170 dbg_rcvry("allocated LEB %d for GC", lnum); 1171 /* Run the commit */ 1172 dbg_rcvry("committing"); 1173 return ubifs_run_commit(c); 1174 } 1175 1176 /** 1177 * struct size_entry - inode size information for recovery. 1178 * @rb: link in the RB-tree of sizes 1179 * @inum: inode number 1180 * @i_size: size on inode 1181 * @d_size: maximum size based on data nodes 1182 * @exists: indicates whether the inode exists 1183 * @inode: inode if pinned in memory awaiting rw mode to fix it 1184 */ 1185 struct size_entry { 1186 struct rb_node rb; 1187 ino_t inum; 1188 loff_t i_size; 1189 loff_t d_size; 1190 int exists; 1191 struct inode *inode; 1192 }; 1193 1194 /** 1195 * add_ino - add an entry to the size tree. 1196 * @c: UBIFS file-system description object 1197 * @inum: inode number 1198 * @i_size: size on inode 1199 * @d_size: maximum size based on data nodes 1200 * @exists: indicates whether the inode exists 1201 */ 1202 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1203 loff_t d_size, int exists) 1204 { 1205 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1206 struct size_entry *e; 1207 1208 while (*p) { 1209 parent = *p; 1210 e = rb_entry(parent, struct size_entry, rb); 1211 if (inum < e->inum) 1212 p = &(*p)->rb_left; 1213 else 1214 p = &(*p)->rb_right; 1215 } 1216 1217 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1218 if (!e) 1219 return -ENOMEM; 1220 1221 e->inum = inum; 1222 e->i_size = i_size; 1223 e->d_size = d_size; 1224 e->exists = exists; 1225 1226 rb_link_node(&e->rb, parent, p); 1227 rb_insert_color(&e->rb, &c->size_tree); 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * find_ino - find an entry on the size tree. 1234 * @c: UBIFS file-system description object 1235 * @inum: inode number 1236 */ 1237 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1238 { 1239 struct rb_node *p = c->size_tree.rb_node; 1240 struct size_entry *e; 1241 1242 while (p) { 1243 e = rb_entry(p, struct size_entry, rb); 1244 if (inum < e->inum) 1245 p = p->rb_left; 1246 else if (inum > e->inum) 1247 p = p->rb_right; 1248 else 1249 return e; 1250 } 1251 return NULL; 1252 } 1253 1254 /** 1255 * remove_ino - remove an entry from the size tree. 1256 * @c: UBIFS file-system description object 1257 * @inum: inode number 1258 */ 1259 static void remove_ino(struct ubifs_info *c, ino_t inum) 1260 { 1261 struct size_entry *e = find_ino(c, inum); 1262 1263 if (!e) 1264 return; 1265 rb_erase(&e->rb, &c->size_tree); 1266 kfree(e); 1267 } 1268 1269 /** 1270 * ubifs_destroy_size_tree - free resources related to the size tree. 1271 * @c: UBIFS file-system description object 1272 */ 1273 void ubifs_destroy_size_tree(struct ubifs_info *c) 1274 { 1275 struct rb_node *this = c->size_tree.rb_node; 1276 struct size_entry *e; 1277 1278 while (this) { 1279 if (this->rb_left) { 1280 this = this->rb_left; 1281 continue; 1282 } else if (this->rb_right) { 1283 this = this->rb_right; 1284 continue; 1285 } 1286 e = rb_entry(this, struct size_entry, rb); 1287 if (e->inode) 1288 iput(e->inode); 1289 this = rb_parent(this); 1290 if (this) { 1291 if (this->rb_left == &e->rb) 1292 this->rb_left = NULL; 1293 else 1294 this->rb_right = NULL; 1295 } 1296 kfree(e); 1297 } 1298 c->size_tree = RB_ROOT; 1299 } 1300 1301 /** 1302 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1303 * @c: UBIFS file-system description object 1304 * @key: node key 1305 * @deletion: node is for a deletion 1306 * @new_size: inode size 1307 * 1308 * This function has two purposes: 1309 * 1) to ensure there are no data nodes that fall outside the inode size 1310 * 2) to ensure there are no data nodes for inodes that do not exist 1311 * To accomplish those purposes, a rb-tree is constructed containing an entry 1312 * for each inode number in the journal that has not been deleted, and recording 1313 * the size from the inode node, the maximum size of any data node (also altered 1314 * by truncations) and a flag indicating a inode number for which no inode node 1315 * was present in the journal. 1316 * 1317 * Note that there is still the possibility that there are data nodes that have 1318 * been committed that are beyond the inode size, however the only way to find 1319 * them would be to scan the entire index. Alternatively, some provision could 1320 * be made to record the size of inodes at the start of commit, which would seem 1321 * very cumbersome for a scenario that is quite unlikely and the only negative 1322 * consequence of which is wasted space. 1323 * 1324 * This functions returns %0 on success and a negative error code on failure. 1325 */ 1326 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1327 int deletion, loff_t new_size) 1328 { 1329 ino_t inum = key_inum(c, key); 1330 struct size_entry *e; 1331 int err; 1332 1333 switch (key_type(c, key)) { 1334 case UBIFS_INO_KEY: 1335 if (deletion) 1336 remove_ino(c, inum); 1337 else { 1338 e = find_ino(c, inum); 1339 if (e) { 1340 e->i_size = new_size; 1341 e->exists = 1; 1342 } else { 1343 err = add_ino(c, inum, new_size, 0, 1); 1344 if (err) 1345 return err; 1346 } 1347 } 1348 break; 1349 case UBIFS_DATA_KEY: 1350 e = find_ino(c, inum); 1351 if (e) { 1352 if (new_size > e->d_size) 1353 e->d_size = new_size; 1354 } else { 1355 err = add_ino(c, inum, 0, new_size, 0); 1356 if (err) 1357 return err; 1358 } 1359 break; 1360 case UBIFS_TRUN_KEY: 1361 e = find_ino(c, inum); 1362 if (e) 1363 e->d_size = new_size; 1364 break; 1365 } 1366 return 0; 1367 } 1368 1369 /** 1370 * fix_size_in_place - fix inode size in place on flash. 1371 * @c: UBIFS file-system description object 1372 * @e: inode size information for recovery 1373 */ 1374 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1375 { 1376 struct ubifs_ino_node *ino = c->sbuf; 1377 unsigned char *p; 1378 union ubifs_key key; 1379 int err, lnum, offs, len; 1380 loff_t i_size; 1381 uint32_t crc; 1382 1383 /* Locate the inode node LEB number and offset */ 1384 ino_key_init(c, &key, e->inum); 1385 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1386 if (err) 1387 goto out; 1388 /* 1389 * If the size recorded on the inode node is greater than the size that 1390 * was calculated from nodes in the journal then don't change the inode. 1391 */ 1392 i_size = le64_to_cpu(ino->size); 1393 if (i_size >= e->d_size) 1394 return 0; 1395 /* Read the LEB */ 1396 err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); 1397 if (err) 1398 goto out; 1399 /* Change the size field and recalculate the CRC */ 1400 ino = c->sbuf + offs; 1401 ino->size = cpu_to_le64(e->d_size); 1402 len = le32_to_cpu(ino->ch.len); 1403 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1404 ino->ch.crc = cpu_to_le32(crc); 1405 /* Work out where data in the LEB ends and free space begins */ 1406 p = c->sbuf; 1407 len = c->leb_size - 1; 1408 while (p[len] == 0xff) 1409 len -= 1; 1410 len = ALIGN(len + 1, c->min_io_size); 1411 /* Atomically write the fixed LEB back again */ 1412 err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); 1413 if (err) 1414 goto out; 1415 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", 1416 (unsigned long)e->inum, lnum, offs, i_size, e->d_size); 1417 return 0; 1418 1419 out: 1420 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", 1421 (unsigned long)e->inum, e->i_size, e->d_size, err); 1422 return err; 1423 } 1424 1425 /** 1426 * ubifs_recover_size - recover inode size. 1427 * @c: UBIFS file-system description object 1428 * 1429 * This function attempts to fix inode size discrepancies identified by the 1430 * 'ubifs_recover_size_accum()' function. 1431 * 1432 * This functions returns %0 on success and a negative error code on failure. 1433 */ 1434 int ubifs_recover_size(struct ubifs_info *c) 1435 { 1436 struct rb_node *this = rb_first(&c->size_tree); 1437 1438 while (this) { 1439 struct size_entry *e; 1440 int err; 1441 1442 e = rb_entry(this, struct size_entry, rb); 1443 if (!e->exists) { 1444 union ubifs_key key; 1445 1446 ino_key_init(c, &key, e->inum); 1447 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1448 if (err && err != -ENOENT) 1449 return err; 1450 if (err == -ENOENT) { 1451 /* Remove data nodes that have no inode */ 1452 dbg_rcvry("removing ino %lu", 1453 (unsigned long)e->inum); 1454 err = ubifs_tnc_remove_ino(c, e->inum); 1455 if (err) 1456 return err; 1457 } else { 1458 struct ubifs_ino_node *ino = c->sbuf; 1459 1460 e->exists = 1; 1461 e->i_size = le64_to_cpu(ino->size); 1462 } 1463 } 1464 if (e->exists && e->i_size < e->d_size) { 1465 if (!e->inode && c->ro_mount) { 1466 /* Fix the inode size and pin it in memory */ 1467 struct inode *inode; 1468 1469 inode = ubifs_iget(c->vfs_sb, e->inum); 1470 if (IS_ERR(inode)) 1471 return PTR_ERR(inode); 1472 if (inode->i_size < e->d_size) { 1473 dbg_rcvry("ino %lu size %lld -> %lld", 1474 (unsigned long)e->inum, 1475 e->d_size, inode->i_size); 1476 inode->i_size = e->d_size; 1477 ubifs_inode(inode)->ui_size = e->d_size; 1478 e->inode = inode; 1479 this = rb_next(this); 1480 continue; 1481 } 1482 iput(inode); 1483 } else { 1484 /* Fix the size in place */ 1485 err = fix_size_in_place(c, e); 1486 if (err) 1487 return err; 1488 if (e->inode) 1489 iput(e->inode); 1490 } 1491 } 1492 this = rb_next(this); 1493 rb_erase(&e->rb, &c->size_tree); 1494 kfree(e); 1495 } 1496 return 0; 1497 } 1498