xref: /openbmc/linux/fs/ubifs/orphan.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Author: Adrian Hunter
8  */
9 
10 #include "ubifs.h"
11 
12 /*
13  * An orphan is an inode number whose inode node has been committed to the index
14  * with a link count of zero. That happens when an open file is deleted
15  * (unlinked) and then a commit is run. In the normal course of events the inode
16  * would be deleted when the file is closed. However in the case of an unclean
17  * unmount, orphans need to be accounted for. After an unclean unmount, the
18  * orphans' inodes must be deleted which means either scanning the entire index
19  * looking for them, or keeping a list on flash somewhere. This unit implements
20  * the latter approach.
21  *
22  * The orphan area is a fixed number of LEBs situated between the LPT area and
23  * the main area. The number of orphan area LEBs is specified when the file
24  * system is created. The minimum number is 1. The size of the orphan area
25  * should be so that it can hold the maximum number of orphans that are expected
26  * to ever exist at one time.
27  *
28  * The number of orphans that can fit in a LEB is:
29  *
30  *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
31  *
32  * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
33  *
34  * Orphans are accumulated in a rb-tree. When an inode's link count drops to
35  * zero, the inode number is added to the rb-tree. It is removed from the tree
36  * when the inode is deleted.  Any new orphans that are in the orphan tree when
37  * the commit is run, are written to the orphan area in 1 or more orphan nodes.
38  * If the orphan area is full, it is consolidated to make space.  There is
39  * always enough space because validation prevents the user from creating more
40  * than the maximum number of orphans allowed.
41  */
42 
43 static int dbg_check_orphans(struct ubifs_info *c);
44 
45 static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum,
46 				       struct ubifs_orphan *parent_orphan)
47 {
48 	struct ubifs_orphan *orphan, *o;
49 	struct rb_node **p, *parent = NULL;
50 
51 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
52 	if (!orphan)
53 		return ERR_PTR(-ENOMEM);
54 	orphan->inum = inum;
55 	orphan->new = 1;
56 	INIT_LIST_HEAD(&orphan->child_list);
57 
58 	spin_lock(&c->orphan_lock);
59 	if (c->tot_orphans >= c->max_orphans) {
60 		spin_unlock(&c->orphan_lock);
61 		kfree(orphan);
62 		return ERR_PTR(-ENFILE);
63 	}
64 	p = &c->orph_tree.rb_node;
65 	while (*p) {
66 		parent = *p;
67 		o = rb_entry(parent, struct ubifs_orphan, rb);
68 		if (inum < o->inum)
69 			p = &(*p)->rb_left;
70 		else if (inum > o->inum)
71 			p = &(*p)->rb_right;
72 		else {
73 			ubifs_err(c, "orphaned twice");
74 			spin_unlock(&c->orphan_lock);
75 			kfree(orphan);
76 			return ERR_PTR(-EINVAL);
77 		}
78 	}
79 	c->tot_orphans += 1;
80 	c->new_orphans += 1;
81 	rb_link_node(&orphan->rb, parent, p);
82 	rb_insert_color(&orphan->rb, &c->orph_tree);
83 	list_add_tail(&orphan->list, &c->orph_list);
84 	list_add_tail(&orphan->new_list, &c->orph_new);
85 
86 	if (parent_orphan) {
87 		list_add_tail(&orphan->child_list,
88 			      &parent_orphan->child_list);
89 	}
90 
91 	spin_unlock(&c->orphan_lock);
92 	dbg_gen("ino %lu", (unsigned long)inum);
93 	return orphan;
94 }
95 
96 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
97 {
98 	struct ubifs_orphan *o;
99 	struct rb_node *p;
100 
101 	p = c->orph_tree.rb_node;
102 	while (p) {
103 		o = rb_entry(p, struct ubifs_orphan, rb);
104 		if (inum < o->inum)
105 			p = p->rb_left;
106 		else if (inum > o->inum)
107 			p = p->rb_right;
108 		else {
109 			return o;
110 		}
111 	}
112 	return NULL;
113 }
114 
115 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
116 {
117 	rb_erase(&o->rb, &c->orph_tree);
118 	list_del(&o->list);
119 	c->tot_orphans -= 1;
120 
121 	if (o->new) {
122 		list_del(&o->new_list);
123 		c->new_orphans -= 1;
124 	}
125 
126 	kfree(o);
127 }
128 
129 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
130 {
131 	if (orph->del) {
132 		spin_unlock(&c->orphan_lock);
133 		dbg_gen("deleted twice ino %lu", orph->inum);
134 		return;
135 	}
136 
137 	if (orph->cmt) {
138 		orph->del = 1;
139 		orph->dnext = c->orph_dnext;
140 		c->orph_dnext = orph;
141 		spin_unlock(&c->orphan_lock);
142 		dbg_gen("delete later ino %lu", orph->inum);
143 		return;
144 	}
145 
146 	__orphan_drop(c, orph);
147 }
148 
149 /**
150  * ubifs_add_orphan - add an orphan.
151  * @c: UBIFS file-system description object
152  * @inum: orphan inode number
153  *
154  * Add an orphan. This function is called when an inodes link count drops to
155  * zero.
156  */
157 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
158 {
159 	int err = 0;
160 	ino_t xattr_inum;
161 	union ubifs_key key;
162 	struct ubifs_dent_node *xent;
163 	struct fscrypt_name nm = {0};
164 	struct ubifs_orphan *xattr_orphan;
165 	struct ubifs_orphan *orphan;
166 
167 	orphan = orphan_add(c, inum, NULL);
168 	if (IS_ERR(orphan))
169 		return PTR_ERR(orphan);
170 
171 	lowest_xent_key(c, &key, inum);
172 	while (1) {
173 		xent = ubifs_tnc_next_ent(c, &key, &nm);
174 		if (IS_ERR(xent)) {
175 			err = PTR_ERR(xent);
176 			if (err == -ENOENT)
177 				break;
178 			return err;
179 		}
180 
181 		fname_name(&nm) = xent->name;
182 		fname_len(&nm) = le16_to_cpu(xent->nlen);
183 		xattr_inum = le64_to_cpu(xent->inum);
184 
185 		xattr_orphan = orphan_add(c, xattr_inum, orphan);
186 		if (IS_ERR(xattr_orphan))
187 			return PTR_ERR(xattr_orphan);
188 
189 		key_read(c, &xent->key, &key);
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  * ubifs_delete_orphan - delete an orphan.
197  * @c: UBIFS file-system description object
198  * @inum: orphan inode number
199  *
200  * Delete an orphan. This function is called when an inode is deleted.
201  */
202 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
203 {
204 	struct ubifs_orphan *orph, *child_orph, *tmp_o;
205 
206 	spin_lock(&c->orphan_lock);
207 
208 	orph = lookup_orphan(c, inum);
209 	if (!orph) {
210 		spin_unlock(&c->orphan_lock);
211 		ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
212 		dump_stack();
213 
214 		return;
215 	}
216 
217 	list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) {
218 		list_del(&child_orph->child_list);
219 		orphan_delete(c, child_orph);
220 	}
221 
222 	orphan_delete(c, orph);
223 
224 	spin_unlock(&c->orphan_lock);
225 }
226 
227 /**
228  * ubifs_orphan_start_commit - start commit of orphans.
229  * @c: UBIFS file-system description object
230  *
231  * Start commit of orphans.
232  */
233 int ubifs_orphan_start_commit(struct ubifs_info *c)
234 {
235 	struct ubifs_orphan *orphan, **last;
236 
237 	spin_lock(&c->orphan_lock);
238 	last = &c->orph_cnext;
239 	list_for_each_entry(orphan, &c->orph_new, new_list) {
240 		ubifs_assert(c, orphan->new);
241 		ubifs_assert(c, !orphan->cmt);
242 		orphan->new = 0;
243 		orphan->cmt = 1;
244 		*last = orphan;
245 		last = &orphan->cnext;
246 	}
247 	*last = NULL;
248 	c->cmt_orphans = c->new_orphans;
249 	c->new_orphans = 0;
250 	dbg_cmt("%d orphans to commit", c->cmt_orphans);
251 	INIT_LIST_HEAD(&c->orph_new);
252 	if (c->tot_orphans == 0)
253 		c->no_orphs = 1;
254 	else
255 		c->no_orphs = 0;
256 	spin_unlock(&c->orphan_lock);
257 	return 0;
258 }
259 
260 /**
261  * avail_orphs - calculate available space.
262  * @c: UBIFS file-system description object
263  *
264  * This function returns the number of orphans that can be written in the
265  * available space.
266  */
267 static int avail_orphs(struct ubifs_info *c)
268 {
269 	int avail_lebs, avail, gap;
270 
271 	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
272 	avail = avail_lebs *
273 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
274 	gap = c->leb_size - c->ohead_offs;
275 	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
276 		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
277 	return avail;
278 }
279 
280 /**
281  * tot_avail_orphs - calculate total space.
282  * @c: UBIFS file-system description object
283  *
284  * This function returns the number of orphans that can be written in half
285  * the total space. That leaves half the space for adding new orphans.
286  */
287 static int tot_avail_orphs(struct ubifs_info *c)
288 {
289 	int avail_lebs, avail;
290 
291 	avail_lebs = c->orph_lebs;
292 	avail = avail_lebs *
293 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
294 	return avail / 2;
295 }
296 
297 /**
298  * do_write_orph_node - write a node to the orphan head.
299  * @c: UBIFS file-system description object
300  * @len: length of node
301  * @atomic: write atomically
302  *
303  * This function writes a node to the orphan head from the orphan buffer. If
304  * %atomic is not zero, then the write is done atomically. On success, %0 is
305  * returned, otherwise a negative error code is returned.
306  */
307 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
308 {
309 	int err = 0;
310 
311 	if (atomic) {
312 		ubifs_assert(c, c->ohead_offs == 0);
313 		ubifs_prepare_node(c, c->orph_buf, len, 1);
314 		len = ALIGN(len, c->min_io_size);
315 		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
316 	} else {
317 		if (c->ohead_offs == 0) {
318 			/* Ensure LEB has been unmapped */
319 			err = ubifs_leb_unmap(c, c->ohead_lnum);
320 			if (err)
321 				return err;
322 		}
323 		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
324 				       c->ohead_offs);
325 	}
326 	return err;
327 }
328 
329 /**
330  * write_orph_node - write an orphan node.
331  * @c: UBIFS file-system description object
332  * @atomic: write atomically
333  *
334  * This function builds an orphan node from the cnext list and writes it to the
335  * orphan head. On success, %0 is returned, otherwise a negative error code
336  * is returned.
337  */
338 static int write_orph_node(struct ubifs_info *c, int atomic)
339 {
340 	struct ubifs_orphan *orphan, *cnext;
341 	struct ubifs_orph_node *orph;
342 	int gap, err, len, cnt, i;
343 
344 	ubifs_assert(c, c->cmt_orphans > 0);
345 	gap = c->leb_size - c->ohead_offs;
346 	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
347 		c->ohead_lnum += 1;
348 		c->ohead_offs = 0;
349 		gap = c->leb_size;
350 		if (c->ohead_lnum > c->orph_last) {
351 			/*
352 			 * We limit the number of orphans so that this should
353 			 * never happen.
354 			 */
355 			ubifs_err(c, "out of space in orphan area");
356 			return -EINVAL;
357 		}
358 	}
359 	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
360 	if (cnt > c->cmt_orphans)
361 		cnt = c->cmt_orphans;
362 	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
363 	ubifs_assert(c, c->orph_buf);
364 	orph = c->orph_buf;
365 	orph->ch.node_type = UBIFS_ORPH_NODE;
366 	spin_lock(&c->orphan_lock);
367 	cnext = c->orph_cnext;
368 	for (i = 0; i < cnt; i++) {
369 		orphan = cnext;
370 		ubifs_assert(c, orphan->cmt);
371 		orph->inos[i] = cpu_to_le64(orphan->inum);
372 		orphan->cmt = 0;
373 		cnext = orphan->cnext;
374 		orphan->cnext = NULL;
375 	}
376 	c->orph_cnext = cnext;
377 	c->cmt_orphans -= cnt;
378 	spin_unlock(&c->orphan_lock);
379 	if (c->cmt_orphans)
380 		orph->cmt_no = cpu_to_le64(c->cmt_no);
381 	else
382 		/* Mark the last node of the commit */
383 		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
384 	ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
385 	ubifs_assert(c, c->ohead_lnum >= c->orph_first);
386 	ubifs_assert(c, c->ohead_lnum <= c->orph_last);
387 	err = do_write_orph_node(c, len, atomic);
388 	c->ohead_offs += ALIGN(len, c->min_io_size);
389 	c->ohead_offs = ALIGN(c->ohead_offs, 8);
390 	return err;
391 }
392 
393 /**
394  * write_orph_nodes - write orphan nodes until there are no more to commit.
395  * @c: UBIFS file-system description object
396  * @atomic: write atomically
397  *
398  * This function writes orphan nodes for all the orphans to commit. On success,
399  * %0 is returned, otherwise a negative error code is returned.
400  */
401 static int write_orph_nodes(struct ubifs_info *c, int atomic)
402 {
403 	int err;
404 
405 	while (c->cmt_orphans > 0) {
406 		err = write_orph_node(c, atomic);
407 		if (err)
408 			return err;
409 	}
410 	if (atomic) {
411 		int lnum;
412 
413 		/* Unmap any unused LEBs after consolidation */
414 		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
415 			err = ubifs_leb_unmap(c, lnum);
416 			if (err)
417 				return err;
418 		}
419 	}
420 	return 0;
421 }
422 
423 /**
424  * consolidate - consolidate the orphan area.
425  * @c: UBIFS file-system description object
426  *
427  * This function enables consolidation by putting all the orphans into the list
428  * to commit. The list is in the order that the orphans were added, and the
429  * LEBs are written atomically in order, so at no time can orphans be lost by
430  * an unclean unmount.
431  *
432  * This function returns %0 on success and a negative error code on failure.
433  */
434 static int consolidate(struct ubifs_info *c)
435 {
436 	int tot_avail = tot_avail_orphs(c), err = 0;
437 
438 	spin_lock(&c->orphan_lock);
439 	dbg_cmt("there is space for %d orphans and there are %d",
440 		tot_avail, c->tot_orphans);
441 	if (c->tot_orphans - c->new_orphans <= tot_avail) {
442 		struct ubifs_orphan *orphan, **last;
443 		int cnt = 0;
444 
445 		/* Change the cnext list to include all non-new orphans */
446 		last = &c->orph_cnext;
447 		list_for_each_entry(orphan, &c->orph_list, list) {
448 			if (orphan->new)
449 				continue;
450 			orphan->cmt = 1;
451 			*last = orphan;
452 			last = &orphan->cnext;
453 			cnt += 1;
454 		}
455 		*last = NULL;
456 		ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
457 		c->cmt_orphans = cnt;
458 		c->ohead_lnum = c->orph_first;
459 		c->ohead_offs = 0;
460 	} else {
461 		/*
462 		 * We limit the number of orphans so that this should
463 		 * never happen.
464 		 */
465 		ubifs_err(c, "out of space in orphan area");
466 		err = -EINVAL;
467 	}
468 	spin_unlock(&c->orphan_lock);
469 	return err;
470 }
471 
472 /**
473  * commit_orphans - commit orphans.
474  * @c: UBIFS file-system description object
475  *
476  * This function commits orphans to flash. On success, %0 is returned,
477  * otherwise a negative error code is returned.
478  */
479 static int commit_orphans(struct ubifs_info *c)
480 {
481 	int avail, atomic = 0, err;
482 
483 	ubifs_assert(c, c->cmt_orphans > 0);
484 	avail = avail_orphs(c);
485 	if (avail < c->cmt_orphans) {
486 		/* Not enough space to write new orphans, so consolidate */
487 		err = consolidate(c);
488 		if (err)
489 			return err;
490 		atomic = 1;
491 	}
492 	err = write_orph_nodes(c, atomic);
493 	return err;
494 }
495 
496 /**
497  * erase_deleted - erase the orphans marked for deletion.
498  * @c: UBIFS file-system description object
499  *
500  * During commit, the orphans being committed cannot be deleted, so they are
501  * marked for deletion and deleted by this function. Also, the recovery
502  * adds killed orphans to the deletion list, and therefore they are deleted
503  * here too.
504  */
505 static void erase_deleted(struct ubifs_info *c)
506 {
507 	struct ubifs_orphan *orphan, *dnext;
508 
509 	spin_lock(&c->orphan_lock);
510 	dnext = c->orph_dnext;
511 	while (dnext) {
512 		orphan = dnext;
513 		dnext = orphan->dnext;
514 		ubifs_assert(c, !orphan->new);
515 		ubifs_assert(c, orphan->del);
516 		rb_erase(&orphan->rb, &c->orph_tree);
517 		list_del(&orphan->list);
518 		c->tot_orphans -= 1;
519 		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
520 		kfree(orphan);
521 	}
522 	c->orph_dnext = NULL;
523 	spin_unlock(&c->orphan_lock);
524 }
525 
526 /**
527  * ubifs_orphan_end_commit - end commit of orphans.
528  * @c: UBIFS file-system description object
529  *
530  * End commit of orphans.
531  */
532 int ubifs_orphan_end_commit(struct ubifs_info *c)
533 {
534 	int err;
535 
536 	if (c->cmt_orphans != 0) {
537 		err = commit_orphans(c);
538 		if (err)
539 			return err;
540 	}
541 	erase_deleted(c);
542 	err = dbg_check_orphans(c);
543 	return err;
544 }
545 
546 /**
547  * ubifs_clear_orphans - erase all LEBs used for orphans.
548  * @c: UBIFS file-system description object
549  *
550  * If recovery is not required, then the orphans from the previous session
551  * are not needed. This function locates the LEBs used to record
552  * orphans, and un-maps them.
553  */
554 int ubifs_clear_orphans(struct ubifs_info *c)
555 {
556 	int lnum, err;
557 
558 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
559 		err = ubifs_leb_unmap(c, lnum);
560 		if (err)
561 			return err;
562 	}
563 	c->ohead_lnum = c->orph_first;
564 	c->ohead_offs = 0;
565 	return 0;
566 }
567 
568 /**
569  * insert_dead_orphan - insert an orphan.
570  * @c: UBIFS file-system description object
571  * @inum: orphan inode number
572  *
573  * This function is a helper to the 'do_kill_orphans()' function. The orphan
574  * must be kept until the next commit, so it is added to the rb-tree and the
575  * deletion list.
576  */
577 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
578 {
579 	struct ubifs_orphan *orphan, *o;
580 	struct rb_node **p, *parent = NULL;
581 
582 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
583 	if (!orphan)
584 		return -ENOMEM;
585 	orphan->inum = inum;
586 
587 	p = &c->orph_tree.rb_node;
588 	while (*p) {
589 		parent = *p;
590 		o = rb_entry(parent, struct ubifs_orphan, rb);
591 		if (inum < o->inum)
592 			p = &(*p)->rb_left;
593 		else if (inum > o->inum)
594 			p = &(*p)->rb_right;
595 		else {
596 			/* Already added - no problem */
597 			kfree(orphan);
598 			return 0;
599 		}
600 	}
601 	c->tot_orphans += 1;
602 	rb_link_node(&orphan->rb, parent, p);
603 	rb_insert_color(&orphan->rb, &c->orph_tree);
604 	list_add_tail(&orphan->list, &c->orph_list);
605 	orphan->del = 1;
606 	orphan->dnext = c->orph_dnext;
607 	c->orph_dnext = orphan;
608 	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
609 		c->new_orphans, c->tot_orphans);
610 	return 0;
611 }
612 
613 /**
614  * do_kill_orphans - remove orphan inodes from the index.
615  * @c: UBIFS file-system description object
616  * @sleb: scanned LEB
617  * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
618  * @outofdate: whether the LEB is out of date is returned here
619  * @last_flagged: whether the end orphan node is encountered
620  *
621  * This function is a helper to the 'kill_orphans()' function. It goes through
622  * every orphan node in a LEB and for every inode number recorded, removes
623  * all keys for that inode from the TNC.
624  */
625 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
626 			   unsigned long long *last_cmt_no, int *outofdate,
627 			   int *last_flagged)
628 {
629 	struct ubifs_scan_node *snod;
630 	struct ubifs_orph_node *orph;
631 	struct ubifs_ino_node *ino = NULL;
632 	unsigned long long cmt_no;
633 	ino_t inum;
634 	int i, n, err, first = 1;
635 
636 	list_for_each_entry(snod, &sleb->nodes, list) {
637 		if (snod->type != UBIFS_ORPH_NODE) {
638 			ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
639 				  snod->type, sleb->lnum, snod->offs);
640 			ubifs_dump_node(c, snod->node);
641 			return -EINVAL;
642 		}
643 
644 		orph = snod->node;
645 
646 		/* Check commit number */
647 		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
648 		/*
649 		 * The commit number on the master node may be less, because
650 		 * of a failed commit. If there are several failed commits in a
651 		 * row, the commit number written on orphan nodes will continue
652 		 * to increase (because the commit number is adjusted here) even
653 		 * though the commit number on the master node stays the same
654 		 * because the master node has not been re-written.
655 		 */
656 		if (cmt_no > c->cmt_no)
657 			c->cmt_no = cmt_no;
658 		if (cmt_no < *last_cmt_no && *last_flagged) {
659 			/*
660 			 * The last orphan node had a higher commit number and
661 			 * was flagged as the last written for that commit
662 			 * number. That makes this orphan node, out of date.
663 			 */
664 			if (!first) {
665 				ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
666 					  cmt_no, sleb->lnum, snod->offs);
667 				ubifs_dump_node(c, snod->node);
668 				return -EINVAL;
669 			}
670 			dbg_rcvry("out of date LEB %d", sleb->lnum);
671 			*outofdate = 1;
672 			return 0;
673 		}
674 
675 		if (first)
676 			first = 0;
677 
678 		ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
679 		if (!ino)
680 			return -ENOMEM;
681 
682 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
683 		for (i = 0; i < n; i++) {
684 			union ubifs_key key1, key2;
685 
686 			inum = le64_to_cpu(orph->inos[i]);
687 
688 			ino_key_init(c, &key1, inum);
689 			err = ubifs_tnc_lookup(c, &key1, ino);
690 			if (err)
691 				goto out_free;
692 
693 			/*
694 			 * Check whether an inode can really get deleted.
695 			 * linkat() with O_TMPFILE allows rebirth of an inode.
696 			 */
697 			if (ino->nlink == 0) {
698 				dbg_rcvry("deleting orphaned inode %lu",
699 					  (unsigned long)inum);
700 
701 				lowest_ino_key(c, &key1, inum);
702 				highest_ino_key(c, &key2, inum);
703 
704 				err = ubifs_tnc_remove_range(c, &key1, &key2);
705 				if (err)
706 					goto out_ro;
707 			}
708 
709 			err = insert_dead_orphan(c, inum);
710 			if (err)
711 				goto out_free;
712 		}
713 
714 		*last_cmt_no = cmt_no;
715 		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
716 			dbg_rcvry("last orph node for commit %llu at %d:%d",
717 				  cmt_no, sleb->lnum, snod->offs);
718 			*last_flagged = 1;
719 		} else
720 			*last_flagged = 0;
721 	}
722 
723 	err = 0;
724 out_free:
725 	kfree(ino);
726 	return err;
727 
728 out_ro:
729 	ubifs_ro_mode(c, err);
730 	kfree(ino);
731 	return err;
732 }
733 
734 /**
735  * kill_orphans - remove all orphan inodes from the index.
736  * @c: UBIFS file-system description object
737  *
738  * If recovery is required, then orphan inodes recorded during the previous
739  * session (which ended with an unclean unmount) must be deleted from the index.
740  * This is done by updating the TNC, but since the index is not updated until
741  * the next commit, the LEBs where the orphan information is recorded are not
742  * erased until the next commit.
743  */
744 static int kill_orphans(struct ubifs_info *c)
745 {
746 	unsigned long long last_cmt_no = 0;
747 	int lnum, err = 0, outofdate = 0, last_flagged = 0;
748 
749 	c->ohead_lnum = c->orph_first;
750 	c->ohead_offs = 0;
751 	/* Check no-orphans flag and skip this if no orphans */
752 	if (c->no_orphs) {
753 		dbg_rcvry("no orphans");
754 		return 0;
755 	}
756 	/*
757 	 * Orph nodes always start at c->orph_first and are written to each
758 	 * successive LEB in turn. Generally unused LEBs will have been unmapped
759 	 * but may contain out of date orphan nodes if the unmap didn't go
760 	 * through. In addition, the last orphan node written for each commit is
761 	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
762 	 * there are orphan nodes from the next commit (i.e. the commit did not
763 	 * complete successfully). In that case, no orphans will have been lost
764 	 * due to the way that orphans are written, and any orphans added will
765 	 * be valid orphans anyway and so can be deleted.
766 	 */
767 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
768 		struct ubifs_scan_leb *sleb;
769 
770 		dbg_rcvry("LEB %d", lnum);
771 		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
772 		if (IS_ERR(sleb)) {
773 			if (PTR_ERR(sleb) == -EUCLEAN)
774 				sleb = ubifs_recover_leb(c, lnum, 0,
775 							 c->sbuf, -1);
776 			if (IS_ERR(sleb)) {
777 				err = PTR_ERR(sleb);
778 				break;
779 			}
780 		}
781 		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
782 				      &last_flagged);
783 		if (err || outofdate) {
784 			ubifs_scan_destroy(sleb);
785 			break;
786 		}
787 		if (sleb->endpt) {
788 			c->ohead_lnum = lnum;
789 			c->ohead_offs = sleb->endpt;
790 		}
791 		ubifs_scan_destroy(sleb);
792 	}
793 	return err;
794 }
795 
796 /**
797  * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
798  * @c: UBIFS file-system description object
799  * @unclean: indicates recovery from unclean unmount
800  * @read_only: indicates read only mount
801  *
802  * This function is called when mounting to erase orphans from the previous
803  * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
804  * orphans are deleted.
805  */
806 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
807 {
808 	int err = 0;
809 
810 	c->max_orphans = tot_avail_orphs(c);
811 
812 	if (!read_only) {
813 		c->orph_buf = vmalloc(c->leb_size);
814 		if (!c->orph_buf)
815 			return -ENOMEM;
816 	}
817 
818 	if (unclean)
819 		err = kill_orphans(c);
820 	else if (!read_only)
821 		err = ubifs_clear_orphans(c);
822 
823 	return err;
824 }
825 
826 /*
827  * Everything below is related to debugging.
828  */
829 
830 struct check_orphan {
831 	struct rb_node rb;
832 	ino_t inum;
833 };
834 
835 struct check_info {
836 	unsigned long last_ino;
837 	unsigned long tot_inos;
838 	unsigned long missing;
839 	unsigned long long leaf_cnt;
840 	struct ubifs_ino_node *node;
841 	struct rb_root root;
842 };
843 
844 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
845 {
846 	bool found = false;
847 
848 	spin_lock(&c->orphan_lock);
849 	found = !!lookup_orphan(c, inum);
850 	spin_unlock(&c->orphan_lock);
851 
852 	return found;
853 }
854 
855 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
856 {
857 	struct check_orphan *orphan, *o;
858 	struct rb_node **p, *parent = NULL;
859 
860 	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
861 	if (!orphan)
862 		return -ENOMEM;
863 	orphan->inum = inum;
864 
865 	p = &root->rb_node;
866 	while (*p) {
867 		parent = *p;
868 		o = rb_entry(parent, struct check_orphan, rb);
869 		if (inum < o->inum)
870 			p = &(*p)->rb_left;
871 		else if (inum > o->inum)
872 			p = &(*p)->rb_right;
873 		else {
874 			kfree(orphan);
875 			return 0;
876 		}
877 	}
878 	rb_link_node(&orphan->rb, parent, p);
879 	rb_insert_color(&orphan->rb, root);
880 	return 0;
881 }
882 
883 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
884 {
885 	struct check_orphan *o;
886 	struct rb_node *p;
887 
888 	p = root->rb_node;
889 	while (p) {
890 		o = rb_entry(p, struct check_orphan, rb);
891 		if (inum < o->inum)
892 			p = p->rb_left;
893 		else if (inum > o->inum)
894 			p = p->rb_right;
895 		else
896 			return 1;
897 	}
898 	return 0;
899 }
900 
901 static void dbg_free_check_tree(struct rb_root *root)
902 {
903 	struct check_orphan *o, *n;
904 
905 	rbtree_postorder_for_each_entry_safe(o, n, root, rb)
906 		kfree(o);
907 }
908 
909 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
910 			    void *priv)
911 {
912 	struct check_info *ci = priv;
913 	ino_t inum;
914 	int err;
915 
916 	inum = key_inum(c, &zbr->key);
917 	if (inum != ci->last_ino) {
918 		/* Lowest node type is the inode node, so it comes first */
919 		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
920 			ubifs_err(c, "found orphan node ino %lu, type %d",
921 				  (unsigned long)inum, key_type(c, &zbr->key));
922 		ci->last_ino = inum;
923 		ci->tot_inos += 1;
924 		err = ubifs_tnc_read_node(c, zbr, ci->node);
925 		if (err) {
926 			ubifs_err(c, "node read failed, error %d", err);
927 			return err;
928 		}
929 		if (ci->node->nlink == 0)
930 			/* Must be recorded as an orphan */
931 			if (!dbg_find_check_orphan(&ci->root, inum) &&
932 			    !dbg_find_orphan(c, inum)) {
933 				ubifs_err(c, "missing orphan, ino %lu",
934 					  (unsigned long)inum);
935 				ci->missing += 1;
936 			}
937 	}
938 	ci->leaf_cnt += 1;
939 	return 0;
940 }
941 
942 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
943 {
944 	struct ubifs_scan_node *snod;
945 	struct ubifs_orph_node *orph;
946 	ino_t inum;
947 	int i, n, err;
948 
949 	list_for_each_entry(snod, &sleb->nodes, list) {
950 		cond_resched();
951 		if (snod->type != UBIFS_ORPH_NODE)
952 			continue;
953 		orph = snod->node;
954 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
955 		for (i = 0; i < n; i++) {
956 			inum = le64_to_cpu(orph->inos[i]);
957 			err = dbg_ins_check_orphan(&ci->root, inum);
958 			if (err)
959 				return err;
960 		}
961 	}
962 	return 0;
963 }
964 
965 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
966 {
967 	int lnum, err = 0;
968 	void *buf;
969 
970 	/* Check no-orphans flag and skip this if no orphans */
971 	if (c->no_orphs)
972 		return 0;
973 
974 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
975 	if (!buf) {
976 		ubifs_err(c, "cannot allocate memory to check orphans");
977 		return 0;
978 	}
979 
980 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
981 		struct ubifs_scan_leb *sleb;
982 
983 		sleb = ubifs_scan(c, lnum, 0, buf, 0);
984 		if (IS_ERR(sleb)) {
985 			err = PTR_ERR(sleb);
986 			break;
987 		}
988 
989 		err = dbg_read_orphans(ci, sleb);
990 		ubifs_scan_destroy(sleb);
991 		if (err)
992 			break;
993 	}
994 
995 	vfree(buf);
996 	return err;
997 }
998 
999 static int dbg_check_orphans(struct ubifs_info *c)
1000 {
1001 	struct check_info ci;
1002 	int err;
1003 
1004 	if (!dbg_is_chk_orph(c))
1005 		return 0;
1006 
1007 	ci.last_ino = 0;
1008 	ci.tot_inos = 0;
1009 	ci.missing  = 0;
1010 	ci.leaf_cnt = 0;
1011 	ci.root = RB_ROOT;
1012 	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
1013 	if (!ci.node) {
1014 		ubifs_err(c, "out of memory");
1015 		return -ENOMEM;
1016 	}
1017 
1018 	err = dbg_scan_orphans(c, &ci);
1019 	if (err)
1020 		goto out;
1021 
1022 	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
1023 	if (err) {
1024 		ubifs_err(c, "cannot scan TNC, error %d", err);
1025 		goto out;
1026 	}
1027 
1028 	if (ci.missing) {
1029 		ubifs_err(c, "%lu missing orphan(s)", ci.missing);
1030 		err = -EINVAL;
1031 		goto out;
1032 	}
1033 
1034 	dbg_cmt("last inode number is %lu", ci.last_ino);
1035 	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
1036 	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
1037 
1038 out:
1039 	dbg_free_check_tree(&ci.root);
1040 	kfree(ci.node);
1041 	return err;
1042 }
1043