1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Author: Adrian Hunter 8 */ 9 10 #include "ubifs.h" 11 12 /* 13 * An orphan is an inode number whose inode node has been committed to the index 14 * with a link count of zero. That happens when an open file is deleted 15 * (unlinked) and then a commit is run. In the normal course of events the inode 16 * would be deleted when the file is closed. However in the case of an unclean 17 * unmount, orphans need to be accounted for. After an unclean unmount, the 18 * orphans' inodes must be deleted which means either scanning the entire index 19 * looking for them, or keeping a list on flash somewhere. This unit implements 20 * the latter approach. 21 * 22 * The orphan area is a fixed number of LEBs situated between the LPT area and 23 * the main area. The number of orphan area LEBs is specified when the file 24 * system is created. The minimum number is 1. The size of the orphan area 25 * should be so that it can hold the maximum number of orphans that are expected 26 * to ever exist at one time. 27 * 28 * The number of orphans that can fit in a LEB is: 29 * 30 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64) 31 * 32 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. 33 * 34 * Orphans are accumulated in a rb-tree. When an inode's link count drops to 35 * zero, the inode number is added to the rb-tree. It is removed from the tree 36 * when the inode is deleted. Any new orphans that are in the orphan tree when 37 * the commit is run, are written to the orphan area in 1 or more orphan nodes. 38 * If the orphan area is full, it is consolidated to make space. There is 39 * always enough space because validation prevents the user from creating more 40 * than the maximum number of orphans allowed. 41 */ 42 43 static int dbg_check_orphans(struct ubifs_info *c); 44 45 static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum, 46 struct ubifs_orphan *parent_orphan) 47 { 48 struct ubifs_orphan *orphan, *o; 49 struct rb_node **p, *parent = NULL; 50 51 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS); 52 if (!orphan) 53 return ERR_PTR(-ENOMEM); 54 orphan->inum = inum; 55 orphan->new = 1; 56 INIT_LIST_HEAD(&orphan->child_list); 57 58 spin_lock(&c->orphan_lock); 59 if (c->tot_orphans >= c->max_orphans) { 60 spin_unlock(&c->orphan_lock); 61 kfree(orphan); 62 return ERR_PTR(-ENFILE); 63 } 64 p = &c->orph_tree.rb_node; 65 while (*p) { 66 parent = *p; 67 o = rb_entry(parent, struct ubifs_orphan, rb); 68 if (inum < o->inum) 69 p = &(*p)->rb_left; 70 else if (inum > o->inum) 71 p = &(*p)->rb_right; 72 else { 73 ubifs_err(c, "orphaned twice"); 74 spin_unlock(&c->orphan_lock); 75 kfree(orphan); 76 return ERR_PTR(-EINVAL); 77 } 78 } 79 c->tot_orphans += 1; 80 c->new_orphans += 1; 81 rb_link_node(&orphan->rb, parent, p); 82 rb_insert_color(&orphan->rb, &c->orph_tree); 83 list_add_tail(&orphan->list, &c->orph_list); 84 list_add_tail(&orphan->new_list, &c->orph_new); 85 86 if (parent_orphan) { 87 list_add_tail(&orphan->child_list, 88 &parent_orphan->child_list); 89 } 90 91 spin_unlock(&c->orphan_lock); 92 dbg_gen("ino %lu", (unsigned long)inum); 93 return orphan; 94 } 95 96 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum) 97 { 98 struct ubifs_orphan *o; 99 struct rb_node *p; 100 101 p = c->orph_tree.rb_node; 102 while (p) { 103 o = rb_entry(p, struct ubifs_orphan, rb); 104 if (inum < o->inum) 105 p = p->rb_left; 106 else if (inum > o->inum) 107 p = p->rb_right; 108 else { 109 return o; 110 } 111 } 112 return NULL; 113 } 114 115 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o) 116 { 117 rb_erase(&o->rb, &c->orph_tree); 118 list_del(&o->list); 119 c->tot_orphans -= 1; 120 121 if (o->new) { 122 list_del(&o->new_list); 123 c->new_orphans -= 1; 124 } 125 126 kfree(o); 127 } 128 129 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph) 130 { 131 if (orph->del) { 132 dbg_gen("deleted twice ino %lu", orph->inum); 133 return; 134 } 135 136 if (orph->cmt) { 137 orph->del = 1; 138 orph->dnext = c->orph_dnext; 139 c->orph_dnext = orph; 140 dbg_gen("delete later ino %lu", orph->inum); 141 return; 142 } 143 144 __orphan_drop(c, orph); 145 } 146 147 /** 148 * ubifs_add_orphan - add an orphan. 149 * @c: UBIFS file-system description object 150 * @inum: orphan inode number 151 * 152 * Add an orphan. This function is called when an inodes link count drops to 153 * zero. 154 */ 155 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum) 156 { 157 int err = 0; 158 ino_t xattr_inum; 159 union ubifs_key key; 160 struct ubifs_dent_node *xent; 161 struct fscrypt_name nm = {0}; 162 struct ubifs_orphan *xattr_orphan; 163 struct ubifs_orphan *orphan; 164 165 orphan = orphan_add(c, inum, NULL); 166 if (IS_ERR(orphan)) 167 return PTR_ERR(orphan); 168 169 lowest_xent_key(c, &key, inum); 170 while (1) { 171 xent = ubifs_tnc_next_ent(c, &key, &nm); 172 if (IS_ERR(xent)) { 173 err = PTR_ERR(xent); 174 if (err == -ENOENT) 175 break; 176 return err; 177 } 178 179 fname_name(&nm) = xent->name; 180 fname_len(&nm) = le16_to_cpu(xent->nlen); 181 xattr_inum = le64_to_cpu(xent->inum); 182 183 xattr_orphan = orphan_add(c, xattr_inum, orphan); 184 if (IS_ERR(xattr_orphan)) 185 return PTR_ERR(xattr_orphan); 186 187 key_read(c, &xent->key, &key); 188 } 189 190 return 0; 191 } 192 193 /** 194 * ubifs_delete_orphan - delete an orphan. 195 * @c: UBIFS file-system description object 196 * @inum: orphan inode number 197 * 198 * Delete an orphan. This function is called when an inode is deleted. 199 */ 200 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum) 201 { 202 struct ubifs_orphan *orph, *child_orph, *tmp_o; 203 204 spin_lock(&c->orphan_lock); 205 206 orph = lookup_orphan(c, inum); 207 if (!orph) { 208 spin_unlock(&c->orphan_lock); 209 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum); 210 dump_stack(); 211 212 return; 213 } 214 215 list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) { 216 list_del(&child_orph->child_list); 217 orphan_delete(c, child_orph); 218 } 219 220 orphan_delete(c, orph); 221 222 spin_unlock(&c->orphan_lock); 223 } 224 225 /** 226 * ubifs_orphan_start_commit - start commit of orphans. 227 * @c: UBIFS file-system description object 228 * 229 * Start commit of orphans. 230 */ 231 int ubifs_orphan_start_commit(struct ubifs_info *c) 232 { 233 struct ubifs_orphan *orphan, **last; 234 235 spin_lock(&c->orphan_lock); 236 last = &c->orph_cnext; 237 list_for_each_entry(orphan, &c->orph_new, new_list) { 238 ubifs_assert(c, orphan->new); 239 ubifs_assert(c, !orphan->cmt); 240 orphan->new = 0; 241 orphan->cmt = 1; 242 *last = orphan; 243 last = &orphan->cnext; 244 } 245 *last = NULL; 246 c->cmt_orphans = c->new_orphans; 247 c->new_orphans = 0; 248 dbg_cmt("%d orphans to commit", c->cmt_orphans); 249 INIT_LIST_HEAD(&c->orph_new); 250 if (c->tot_orphans == 0) 251 c->no_orphs = 1; 252 else 253 c->no_orphs = 0; 254 spin_unlock(&c->orphan_lock); 255 return 0; 256 } 257 258 /** 259 * avail_orphs - calculate available space. 260 * @c: UBIFS file-system description object 261 * 262 * This function returns the number of orphans that can be written in the 263 * available space. 264 */ 265 static int avail_orphs(struct ubifs_info *c) 266 { 267 int avail_lebs, avail, gap; 268 269 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1; 270 avail = avail_lebs * 271 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 272 gap = c->leb_size - c->ohead_offs; 273 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64)) 274 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 275 return avail; 276 } 277 278 /** 279 * tot_avail_orphs - calculate total space. 280 * @c: UBIFS file-system description object 281 * 282 * This function returns the number of orphans that can be written in half 283 * the total space. That leaves half the space for adding new orphans. 284 */ 285 static int tot_avail_orphs(struct ubifs_info *c) 286 { 287 int avail_lebs, avail; 288 289 avail_lebs = c->orph_lebs; 290 avail = avail_lebs * 291 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 292 return avail / 2; 293 } 294 295 /** 296 * do_write_orph_node - write a node to the orphan head. 297 * @c: UBIFS file-system description object 298 * @len: length of node 299 * @atomic: write atomically 300 * 301 * This function writes a node to the orphan head from the orphan buffer. If 302 * %atomic is not zero, then the write is done atomically. On success, %0 is 303 * returned, otherwise a negative error code is returned. 304 */ 305 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic) 306 { 307 int err = 0; 308 309 if (atomic) { 310 ubifs_assert(c, c->ohead_offs == 0); 311 ubifs_prepare_node(c, c->orph_buf, len, 1); 312 len = ALIGN(len, c->min_io_size); 313 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len); 314 } else { 315 if (c->ohead_offs == 0) { 316 /* Ensure LEB has been unmapped */ 317 err = ubifs_leb_unmap(c, c->ohead_lnum); 318 if (err) 319 return err; 320 } 321 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum, 322 c->ohead_offs); 323 } 324 return err; 325 } 326 327 /** 328 * write_orph_node - write an orphan node. 329 * @c: UBIFS file-system description object 330 * @atomic: write atomically 331 * 332 * This function builds an orphan node from the cnext list and writes it to the 333 * orphan head. On success, %0 is returned, otherwise a negative error code 334 * is returned. 335 */ 336 static int write_orph_node(struct ubifs_info *c, int atomic) 337 { 338 struct ubifs_orphan *orphan, *cnext; 339 struct ubifs_orph_node *orph; 340 int gap, err, len, cnt, i; 341 342 ubifs_assert(c, c->cmt_orphans > 0); 343 gap = c->leb_size - c->ohead_offs; 344 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) { 345 c->ohead_lnum += 1; 346 c->ohead_offs = 0; 347 gap = c->leb_size; 348 if (c->ohead_lnum > c->orph_last) { 349 /* 350 * We limit the number of orphans so that this should 351 * never happen. 352 */ 353 ubifs_err(c, "out of space in orphan area"); 354 return -EINVAL; 355 } 356 } 357 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 358 if (cnt > c->cmt_orphans) 359 cnt = c->cmt_orphans; 360 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64); 361 ubifs_assert(c, c->orph_buf); 362 orph = c->orph_buf; 363 orph->ch.node_type = UBIFS_ORPH_NODE; 364 spin_lock(&c->orphan_lock); 365 cnext = c->orph_cnext; 366 for (i = 0; i < cnt; i++) { 367 orphan = cnext; 368 ubifs_assert(c, orphan->cmt); 369 orph->inos[i] = cpu_to_le64(orphan->inum); 370 orphan->cmt = 0; 371 cnext = orphan->cnext; 372 orphan->cnext = NULL; 373 } 374 c->orph_cnext = cnext; 375 c->cmt_orphans -= cnt; 376 spin_unlock(&c->orphan_lock); 377 if (c->cmt_orphans) 378 orph->cmt_no = cpu_to_le64(c->cmt_no); 379 else 380 /* Mark the last node of the commit */ 381 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63)); 382 ubifs_assert(c, c->ohead_offs + len <= c->leb_size); 383 ubifs_assert(c, c->ohead_lnum >= c->orph_first); 384 ubifs_assert(c, c->ohead_lnum <= c->orph_last); 385 err = do_write_orph_node(c, len, atomic); 386 c->ohead_offs += ALIGN(len, c->min_io_size); 387 c->ohead_offs = ALIGN(c->ohead_offs, 8); 388 return err; 389 } 390 391 /** 392 * write_orph_nodes - write orphan nodes until there are no more to commit. 393 * @c: UBIFS file-system description object 394 * @atomic: write atomically 395 * 396 * This function writes orphan nodes for all the orphans to commit. On success, 397 * %0 is returned, otherwise a negative error code is returned. 398 */ 399 static int write_orph_nodes(struct ubifs_info *c, int atomic) 400 { 401 int err; 402 403 while (c->cmt_orphans > 0) { 404 err = write_orph_node(c, atomic); 405 if (err) 406 return err; 407 } 408 if (atomic) { 409 int lnum; 410 411 /* Unmap any unused LEBs after consolidation */ 412 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) { 413 err = ubifs_leb_unmap(c, lnum); 414 if (err) 415 return err; 416 } 417 } 418 return 0; 419 } 420 421 /** 422 * consolidate - consolidate the orphan area. 423 * @c: UBIFS file-system description object 424 * 425 * This function enables consolidation by putting all the orphans into the list 426 * to commit. The list is in the order that the orphans were added, and the 427 * LEBs are written atomically in order, so at no time can orphans be lost by 428 * an unclean unmount. 429 * 430 * This function returns %0 on success and a negative error code on failure. 431 */ 432 static int consolidate(struct ubifs_info *c) 433 { 434 int tot_avail = tot_avail_orphs(c), err = 0; 435 436 spin_lock(&c->orphan_lock); 437 dbg_cmt("there is space for %d orphans and there are %d", 438 tot_avail, c->tot_orphans); 439 if (c->tot_orphans - c->new_orphans <= tot_avail) { 440 struct ubifs_orphan *orphan, **last; 441 int cnt = 0; 442 443 /* Change the cnext list to include all non-new orphans */ 444 last = &c->orph_cnext; 445 list_for_each_entry(orphan, &c->orph_list, list) { 446 if (orphan->new) 447 continue; 448 orphan->cmt = 1; 449 *last = orphan; 450 last = &orphan->cnext; 451 cnt += 1; 452 } 453 *last = NULL; 454 ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans); 455 c->cmt_orphans = cnt; 456 c->ohead_lnum = c->orph_first; 457 c->ohead_offs = 0; 458 } else { 459 /* 460 * We limit the number of orphans so that this should 461 * never happen. 462 */ 463 ubifs_err(c, "out of space in orphan area"); 464 err = -EINVAL; 465 } 466 spin_unlock(&c->orphan_lock); 467 return err; 468 } 469 470 /** 471 * commit_orphans - commit orphans. 472 * @c: UBIFS file-system description object 473 * 474 * This function commits orphans to flash. On success, %0 is returned, 475 * otherwise a negative error code is returned. 476 */ 477 static int commit_orphans(struct ubifs_info *c) 478 { 479 int avail, atomic = 0, err; 480 481 ubifs_assert(c, c->cmt_orphans > 0); 482 avail = avail_orphs(c); 483 if (avail < c->cmt_orphans) { 484 /* Not enough space to write new orphans, so consolidate */ 485 err = consolidate(c); 486 if (err) 487 return err; 488 atomic = 1; 489 } 490 err = write_orph_nodes(c, atomic); 491 return err; 492 } 493 494 /** 495 * erase_deleted - erase the orphans marked for deletion. 496 * @c: UBIFS file-system description object 497 * 498 * During commit, the orphans being committed cannot be deleted, so they are 499 * marked for deletion and deleted by this function. Also, the recovery 500 * adds killed orphans to the deletion list, and therefore they are deleted 501 * here too. 502 */ 503 static void erase_deleted(struct ubifs_info *c) 504 { 505 struct ubifs_orphan *orphan, *dnext; 506 507 spin_lock(&c->orphan_lock); 508 dnext = c->orph_dnext; 509 while (dnext) { 510 orphan = dnext; 511 dnext = orphan->dnext; 512 ubifs_assert(c, !orphan->new); 513 ubifs_assert(c, orphan->del); 514 rb_erase(&orphan->rb, &c->orph_tree); 515 list_del(&orphan->list); 516 c->tot_orphans -= 1; 517 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum); 518 kfree(orphan); 519 } 520 c->orph_dnext = NULL; 521 spin_unlock(&c->orphan_lock); 522 } 523 524 /** 525 * ubifs_orphan_end_commit - end commit of orphans. 526 * @c: UBIFS file-system description object 527 * 528 * End commit of orphans. 529 */ 530 int ubifs_orphan_end_commit(struct ubifs_info *c) 531 { 532 int err; 533 534 if (c->cmt_orphans != 0) { 535 err = commit_orphans(c); 536 if (err) 537 return err; 538 } 539 erase_deleted(c); 540 err = dbg_check_orphans(c); 541 return err; 542 } 543 544 /** 545 * ubifs_clear_orphans - erase all LEBs used for orphans. 546 * @c: UBIFS file-system description object 547 * 548 * If recovery is not required, then the orphans from the previous session 549 * are not needed. This function locates the LEBs used to record 550 * orphans, and un-maps them. 551 */ 552 int ubifs_clear_orphans(struct ubifs_info *c) 553 { 554 int lnum, err; 555 556 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 557 err = ubifs_leb_unmap(c, lnum); 558 if (err) 559 return err; 560 } 561 c->ohead_lnum = c->orph_first; 562 c->ohead_offs = 0; 563 return 0; 564 } 565 566 /** 567 * insert_dead_orphan - insert an orphan. 568 * @c: UBIFS file-system description object 569 * @inum: orphan inode number 570 * 571 * This function is a helper to the 'do_kill_orphans()' function. The orphan 572 * must be kept until the next commit, so it is added to the rb-tree and the 573 * deletion list. 574 */ 575 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) 576 { 577 struct ubifs_orphan *orphan, *o; 578 struct rb_node **p, *parent = NULL; 579 580 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL); 581 if (!orphan) 582 return -ENOMEM; 583 orphan->inum = inum; 584 585 p = &c->orph_tree.rb_node; 586 while (*p) { 587 parent = *p; 588 o = rb_entry(parent, struct ubifs_orphan, rb); 589 if (inum < o->inum) 590 p = &(*p)->rb_left; 591 else if (inum > o->inum) 592 p = &(*p)->rb_right; 593 else { 594 /* Already added - no problem */ 595 kfree(orphan); 596 return 0; 597 } 598 } 599 c->tot_orphans += 1; 600 rb_link_node(&orphan->rb, parent, p); 601 rb_insert_color(&orphan->rb, &c->orph_tree); 602 list_add_tail(&orphan->list, &c->orph_list); 603 orphan->del = 1; 604 orphan->dnext = c->orph_dnext; 605 c->orph_dnext = orphan; 606 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, 607 c->new_orphans, c->tot_orphans); 608 return 0; 609 } 610 611 /** 612 * do_kill_orphans - remove orphan inodes from the index. 613 * @c: UBIFS file-system description object 614 * @sleb: scanned LEB 615 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here 616 * @outofdate: whether the LEB is out of date is returned here 617 * @last_flagged: whether the end orphan node is encountered 618 * 619 * This function is a helper to the 'kill_orphans()' function. It goes through 620 * every orphan node in a LEB and for every inode number recorded, removes 621 * all keys for that inode from the TNC. 622 */ 623 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 624 unsigned long long *last_cmt_no, int *outofdate, 625 int *last_flagged) 626 { 627 struct ubifs_scan_node *snod; 628 struct ubifs_orph_node *orph; 629 struct ubifs_ino_node *ino = NULL; 630 unsigned long long cmt_no; 631 ino_t inum; 632 int i, n, err, first = 1; 633 634 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 635 if (!ino) 636 return -ENOMEM; 637 638 list_for_each_entry(snod, &sleb->nodes, list) { 639 if (snod->type != UBIFS_ORPH_NODE) { 640 ubifs_err(c, "invalid node type %d in orphan area at %d:%d", 641 snod->type, sleb->lnum, snod->offs); 642 ubifs_dump_node(c, snod->node); 643 err = -EINVAL; 644 goto out_free; 645 } 646 647 orph = snod->node; 648 649 /* Check commit number */ 650 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX; 651 /* 652 * The commit number on the master node may be less, because 653 * of a failed commit. If there are several failed commits in a 654 * row, the commit number written on orphan nodes will continue 655 * to increase (because the commit number is adjusted here) even 656 * though the commit number on the master node stays the same 657 * because the master node has not been re-written. 658 */ 659 if (cmt_no > c->cmt_no) 660 c->cmt_no = cmt_no; 661 if (cmt_no < *last_cmt_no && *last_flagged) { 662 /* 663 * The last orphan node had a higher commit number and 664 * was flagged as the last written for that commit 665 * number. That makes this orphan node, out of date. 666 */ 667 if (!first) { 668 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d", 669 cmt_no, sleb->lnum, snod->offs); 670 ubifs_dump_node(c, snod->node); 671 err = -EINVAL; 672 goto out_free; 673 } 674 dbg_rcvry("out of date LEB %d", sleb->lnum); 675 *outofdate = 1; 676 err = 0; 677 goto out_free; 678 } 679 680 if (first) 681 first = 0; 682 683 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 684 for (i = 0; i < n; i++) { 685 union ubifs_key key1, key2; 686 687 inum = le64_to_cpu(orph->inos[i]); 688 689 ino_key_init(c, &key1, inum); 690 err = ubifs_tnc_lookup(c, &key1, ino); 691 if (err) 692 goto out_free; 693 694 /* 695 * Check whether an inode can really get deleted. 696 * linkat() with O_TMPFILE allows rebirth of an inode. 697 */ 698 if (ino->nlink == 0) { 699 dbg_rcvry("deleting orphaned inode %lu", 700 (unsigned long)inum); 701 702 lowest_ino_key(c, &key1, inum); 703 highest_ino_key(c, &key2, inum); 704 705 err = ubifs_tnc_remove_range(c, &key1, &key2); 706 if (err) 707 goto out_ro; 708 } 709 710 err = insert_dead_orphan(c, inum); 711 if (err) 712 goto out_free; 713 } 714 715 *last_cmt_no = cmt_no; 716 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) { 717 dbg_rcvry("last orph node for commit %llu at %d:%d", 718 cmt_no, sleb->lnum, snod->offs); 719 *last_flagged = 1; 720 } else 721 *last_flagged = 0; 722 } 723 724 err = 0; 725 out_free: 726 kfree(ino); 727 return err; 728 729 out_ro: 730 ubifs_ro_mode(c, err); 731 kfree(ino); 732 return err; 733 } 734 735 /** 736 * kill_orphans - remove all orphan inodes from the index. 737 * @c: UBIFS file-system description object 738 * 739 * If recovery is required, then orphan inodes recorded during the previous 740 * session (which ended with an unclean unmount) must be deleted from the index. 741 * This is done by updating the TNC, but since the index is not updated until 742 * the next commit, the LEBs where the orphan information is recorded are not 743 * erased until the next commit. 744 */ 745 static int kill_orphans(struct ubifs_info *c) 746 { 747 unsigned long long last_cmt_no = 0; 748 int lnum, err = 0, outofdate = 0, last_flagged = 0; 749 750 c->ohead_lnum = c->orph_first; 751 c->ohead_offs = 0; 752 /* Check no-orphans flag and skip this if no orphans */ 753 if (c->no_orphs) { 754 dbg_rcvry("no orphans"); 755 return 0; 756 } 757 /* 758 * Orph nodes always start at c->orph_first and are written to each 759 * successive LEB in turn. Generally unused LEBs will have been unmapped 760 * but may contain out of date orphan nodes if the unmap didn't go 761 * through. In addition, the last orphan node written for each commit is 762 * marked (top bit of orph->cmt_no is set to 1). It is possible that 763 * there are orphan nodes from the next commit (i.e. the commit did not 764 * complete successfully). In that case, no orphans will have been lost 765 * due to the way that orphans are written, and any orphans added will 766 * be valid orphans anyway and so can be deleted. 767 */ 768 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 769 struct ubifs_scan_leb *sleb; 770 771 dbg_rcvry("LEB %d", lnum); 772 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); 773 if (IS_ERR(sleb)) { 774 if (PTR_ERR(sleb) == -EUCLEAN) 775 sleb = ubifs_recover_leb(c, lnum, 0, 776 c->sbuf, -1); 777 if (IS_ERR(sleb)) { 778 err = PTR_ERR(sleb); 779 break; 780 } 781 } 782 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate, 783 &last_flagged); 784 if (err || outofdate) { 785 ubifs_scan_destroy(sleb); 786 break; 787 } 788 if (sleb->endpt) { 789 c->ohead_lnum = lnum; 790 c->ohead_offs = sleb->endpt; 791 } 792 ubifs_scan_destroy(sleb); 793 } 794 return err; 795 } 796 797 /** 798 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them. 799 * @c: UBIFS file-system description object 800 * @unclean: indicates recovery from unclean unmount 801 * @read_only: indicates read only mount 802 * 803 * This function is called when mounting to erase orphans from the previous 804 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as 805 * orphans are deleted. 806 */ 807 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) 808 { 809 int err = 0; 810 811 c->max_orphans = tot_avail_orphs(c); 812 813 if (!read_only) { 814 c->orph_buf = vmalloc(c->leb_size); 815 if (!c->orph_buf) 816 return -ENOMEM; 817 } 818 819 if (unclean) 820 err = kill_orphans(c); 821 else if (!read_only) 822 err = ubifs_clear_orphans(c); 823 824 return err; 825 } 826 827 /* 828 * Everything below is related to debugging. 829 */ 830 831 struct check_orphan { 832 struct rb_node rb; 833 ino_t inum; 834 }; 835 836 struct check_info { 837 unsigned long last_ino; 838 unsigned long tot_inos; 839 unsigned long missing; 840 unsigned long long leaf_cnt; 841 struct ubifs_ino_node *node; 842 struct rb_root root; 843 }; 844 845 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum) 846 { 847 bool found = false; 848 849 spin_lock(&c->orphan_lock); 850 found = !!lookup_orphan(c, inum); 851 spin_unlock(&c->orphan_lock); 852 853 return found; 854 } 855 856 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum) 857 { 858 struct check_orphan *orphan, *o; 859 struct rb_node **p, *parent = NULL; 860 861 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS); 862 if (!orphan) 863 return -ENOMEM; 864 orphan->inum = inum; 865 866 p = &root->rb_node; 867 while (*p) { 868 parent = *p; 869 o = rb_entry(parent, struct check_orphan, rb); 870 if (inum < o->inum) 871 p = &(*p)->rb_left; 872 else if (inum > o->inum) 873 p = &(*p)->rb_right; 874 else { 875 kfree(orphan); 876 return 0; 877 } 878 } 879 rb_link_node(&orphan->rb, parent, p); 880 rb_insert_color(&orphan->rb, root); 881 return 0; 882 } 883 884 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum) 885 { 886 struct check_orphan *o; 887 struct rb_node *p; 888 889 p = root->rb_node; 890 while (p) { 891 o = rb_entry(p, struct check_orphan, rb); 892 if (inum < o->inum) 893 p = p->rb_left; 894 else if (inum > o->inum) 895 p = p->rb_right; 896 else 897 return 1; 898 } 899 return 0; 900 } 901 902 static void dbg_free_check_tree(struct rb_root *root) 903 { 904 struct check_orphan *o, *n; 905 906 rbtree_postorder_for_each_entry_safe(o, n, root, rb) 907 kfree(o); 908 } 909 910 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr, 911 void *priv) 912 { 913 struct check_info *ci = priv; 914 ino_t inum; 915 int err; 916 917 inum = key_inum(c, &zbr->key); 918 if (inum != ci->last_ino) { 919 /* Lowest node type is the inode node, so it comes first */ 920 if (key_type(c, &zbr->key) != UBIFS_INO_KEY) 921 ubifs_err(c, "found orphan node ino %lu, type %d", 922 (unsigned long)inum, key_type(c, &zbr->key)); 923 ci->last_ino = inum; 924 ci->tot_inos += 1; 925 err = ubifs_tnc_read_node(c, zbr, ci->node); 926 if (err) { 927 ubifs_err(c, "node read failed, error %d", err); 928 return err; 929 } 930 if (ci->node->nlink == 0) 931 /* Must be recorded as an orphan */ 932 if (!dbg_find_check_orphan(&ci->root, inum) && 933 !dbg_find_orphan(c, inum)) { 934 ubifs_err(c, "missing orphan, ino %lu", 935 (unsigned long)inum); 936 ci->missing += 1; 937 } 938 } 939 ci->leaf_cnt += 1; 940 return 0; 941 } 942 943 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) 944 { 945 struct ubifs_scan_node *snod; 946 struct ubifs_orph_node *orph; 947 ino_t inum; 948 int i, n, err; 949 950 list_for_each_entry(snod, &sleb->nodes, list) { 951 cond_resched(); 952 if (snod->type != UBIFS_ORPH_NODE) 953 continue; 954 orph = snod->node; 955 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 956 for (i = 0; i < n; i++) { 957 inum = le64_to_cpu(orph->inos[i]); 958 err = dbg_ins_check_orphan(&ci->root, inum); 959 if (err) 960 return err; 961 } 962 } 963 return 0; 964 } 965 966 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) 967 { 968 int lnum, err = 0; 969 void *buf; 970 971 /* Check no-orphans flag and skip this if no orphans */ 972 if (c->no_orphs) 973 return 0; 974 975 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 976 if (!buf) { 977 ubifs_err(c, "cannot allocate memory to check orphans"); 978 return 0; 979 } 980 981 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 982 struct ubifs_scan_leb *sleb; 983 984 sleb = ubifs_scan(c, lnum, 0, buf, 0); 985 if (IS_ERR(sleb)) { 986 err = PTR_ERR(sleb); 987 break; 988 } 989 990 err = dbg_read_orphans(ci, sleb); 991 ubifs_scan_destroy(sleb); 992 if (err) 993 break; 994 } 995 996 vfree(buf); 997 return err; 998 } 999 1000 static int dbg_check_orphans(struct ubifs_info *c) 1001 { 1002 struct check_info ci; 1003 int err; 1004 1005 if (!dbg_is_chk_orph(c)) 1006 return 0; 1007 1008 ci.last_ino = 0; 1009 ci.tot_inos = 0; 1010 ci.missing = 0; 1011 ci.leaf_cnt = 0; 1012 ci.root = RB_ROOT; 1013 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 1014 if (!ci.node) { 1015 ubifs_err(c, "out of memory"); 1016 return -ENOMEM; 1017 } 1018 1019 err = dbg_scan_orphans(c, &ci); 1020 if (err) 1021 goto out; 1022 1023 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci); 1024 if (err) { 1025 ubifs_err(c, "cannot scan TNC, error %d", err); 1026 goto out; 1027 } 1028 1029 if (ci.missing) { 1030 ubifs_err(c, "%lu missing orphan(s)", ci.missing); 1031 err = -EINVAL; 1032 goto out; 1033 } 1034 1035 dbg_cmt("last inode number is %lu", ci.last_ino); 1036 dbg_cmt("total number of inodes is %lu", ci.tot_inos); 1037 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt); 1038 1039 out: 1040 dbg_free_check_tree(&ci.root); 1041 kfree(ci.node); 1042 return err; 1043 } 1044