xref: /openbmc/linux/fs/ubifs/master.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /* This file implements reading and writing the master node */
24 
25 #include "ubifs.h"
26 
27 /**
28  * scan_for_master - search the valid master node.
29  * @c: UBIFS file-system description object
30  *
31  * This function scans the master node LEBs and search for the latest master
32  * node. Returns zero in case of success, %-EUCLEAN if there master area is
33  * corrupted and requires recovery, and a negative error code in case of
34  * failure.
35  */
36 static int scan_for_master(struct ubifs_info *c)
37 {
38 	struct ubifs_scan_leb *sleb;
39 	struct ubifs_scan_node *snod;
40 	int lnum, offs = 0, nodes_cnt;
41 
42 	lnum = UBIFS_MST_LNUM;
43 
44 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
45 	if (IS_ERR(sleb))
46 		return PTR_ERR(sleb);
47 	nodes_cnt = sleb->nodes_cnt;
48 	if (nodes_cnt > 0) {
49 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
50 				  list);
51 		if (snod->type != UBIFS_MST_NODE)
52 			goto out_dump;
53 		memcpy(c->mst_node, snod->node, snod->len);
54 		offs = snod->offs;
55 	}
56 	ubifs_scan_destroy(sleb);
57 
58 	lnum += 1;
59 
60 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
61 	if (IS_ERR(sleb))
62 		return PTR_ERR(sleb);
63 	if (sleb->nodes_cnt != nodes_cnt)
64 		goto out;
65 	if (!sleb->nodes_cnt)
66 		goto out;
67 	snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list);
68 	if (snod->type != UBIFS_MST_NODE)
69 		goto out_dump;
70 	if (snod->offs != offs)
71 		goto out;
72 	if (memcmp((void *)c->mst_node + UBIFS_CH_SZ,
73 		   (void *)snod->node + UBIFS_CH_SZ,
74 		   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
75 		goto out;
76 	c->mst_offs = offs;
77 	ubifs_scan_destroy(sleb);
78 	return 0;
79 
80 out:
81 	ubifs_scan_destroy(sleb);
82 	return -EUCLEAN;
83 
84 out_dump:
85 	ubifs_err(c, "unexpected node type %d master LEB %d:%d",
86 		  snod->type, lnum, snod->offs);
87 	ubifs_scan_destroy(sleb);
88 	return -EINVAL;
89 }
90 
91 /**
92  * validate_master - validate master node.
93  * @c: UBIFS file-system description object
94  *
95  * This function validates data which was read from master node. Returns zero
96  * if the data is all right and %-EINVAL if not.
97  */
98 static int validate_master(const struct ubifs_info *c)
99 {
100 	long long main_sz;
101 	int err;
102 
103 	if (c->max_sqnum >= SQNUM_WATERMARK) {
104 		err = 1;
105 		goto out;
106 	}
107 
108 	if (c->cmt_no >= c->max_sqnum) {
109 		err = 2;
110 		goto out;
111 	}
112 
113 	if (c->highest_inum >= INUM_WATERMARK) {
114 		err = 3;
115 		goto out;
116 	}
117 
118 	if (c->lhead_lnum < UBIFS_LOG_LNUM ||
119 	    c->lhead_lnum >= UBIFS_LOG_LNUM + c->log_lebs ||
120 	    c->lhead_offs < 0 || c->lhead_offs >= c->leb_size ||
121 	    c->lhead_offs & (c->min_io_size - 1)) {
122 		err = 4;
123 		goto out;
124 	}
125 
126 	if (c->zroot.lnum >= c->leb_cnt || c->zroot.lnum < c->main_first ||
127 	    c->zroot.offs >= c->leb_size || c->zroot.offs & 7) {
128 		err = 5;
129 		goto out;
130 	}
131 
132 	if (c->zroot.len < c->ranges[UBIFS_IDX_NODE].min_len ||
133 	    c->zroot.len > c->ranges[UBIFS_IDX_NODE].max_len) {
134 		err = 6;
135 		goto out;
136 	}
137 
138 	if (c->gc_lnum >= c->leb_cnt || c->gc_lnum < c->main_first) {
139 		err = 7;
140 		goto out;
141 	}
142 
143 	if (c->ihead_lnum >= c->leb_cnt || c->ihead_lnum < c->main_first ||
144 	    c->ihead_offs % c->min_io_size || c->ihead_offs < 0 ||
145 	    c->ihead_offs > c->leb_size || c->ihead_offs & 7) {
146 		err = 8;
147 		goto out;
148 	}
149 
150 	main_sz = (long long)c->main_lebs * c->leb_size;
151 	if (c->bi.old_idx_sz & 7 || c->bi.old_idx_sz >= main_sz) {
152 		err = 9;
153 		goto out;
154 	}
155 
156 	if (c->lpt_lnum < c->lpt_first || c->lpt_lnum > c->lpt_last ||
157 	    c->lpt_offs < 0 || c->lpt_offs + c->nnode_sz > c->leb_size) {
158 		err = 10;
159 		goto out;
160 	}
161 
162 	if (c->nhead_lnum < c->lpt_first || c->nhead_lnum > c->lpt_last ||
163 	    c->nhead_offs < 0 || c->nhead_offs % c->min_io_size ||
164 	    c->nhead_offs > c->leb_size) {
165 		err = 11;
166 		goto out;
167 	}
168 
169 	if (c->ltab_lnum < c->lpt_first || c->ltab_lnum > c->lpt_last ||
170 	    c->ltab_offs < 0 ||
171 	    c->ltab_offs + c->ltab_sz > c->leb_size) {
172 		err = 12;
173 		goto out;
174 	}
175 
176 	if (c->big_lpt && (c->lsave_lnum < c->lpt_first ||
177 	    c->lsave_lnum > c->lpt_last || c->lsave_offs < 0 ||
178 	    c->lsave_offs + c->lsave_sz > c->leb_size)) {
179 		err = 13;
180 		goto out;
181 	}
182 
183 	if (c->lscan_lnum < c->main_first || c->lscan_lnum >= c->leb_cnt) {
184 		err = 14;
185 		goto out;
186 	}
187 
188 	if (c->lst.empty_lebs < 0 || c->lst.empty_lebs > c->main_lebs - 2) {
189 		err = 15;
190 		goto out;
191 	}
192 
193 	if (c->lst.idx_lebs < 0 || c->lst.idx_lebs > c->main_lebs - 1) {
194 		err = 16;
195 		goto out;
196 	}
197 
198 	if (c->lst.total_free < 0 || c->lst.total_free > main_sz ||
199 	    c->lst.total_free & 7) {
200 		err = 17;
201 		goto out;
202 	}
203 
204 	if (c->lst.total_dirty < 0 || (c->lst.total_dirty & 7)) {
205 		err = 18;
206 		goto out;
207 	}
208 
209 	if (c->lst.total_used < 0 || (c->lst.total_used & 7)) {
210 		err = 19;
211 		goto out;
212 	}
213 
214 	if (c->lst.total_free + c->lst.total_dirty +
215 	    c->lst.total_used > main_sz) {
216 		err = 20;
217 		goto out;
218 	}
219 
220 	if (c->lst.total_dead + c->lst.total_dark +
221 	    c->lst.total_used + c->bi.old_idx_sz > main_sz) {
222 		err = 21;
223 		goto out;
224 	}
225 
226 	if (c->lst.total_dead < 0 ||
227 	    c->lst.total_dead > c->lst.total_free + c->lst.total_dirty ||
228 	    c->lst.total_dead & 7) {
229 		err = 22;
230 		goto out;
231 	}
232 
233 	if (c->lst.total_dark < 0 ||
234 	    c->lst.total_dark > c->lst.total_free + c->lst.total_dirty ||
235 	    c->lst.total_dark & 7) {
236 		err = 23;
237 		goto out;
238 	}
239 
240 	return 0;
241 
242 out:
243 	ubifs_err(c, "bad master node at offset %d error %d", c->mst_offs, err);
244 	ubifs_dump_node(c, c->mst_node);
245 	return -EINVAL;
246 }
247 
248 /**
249  * ubifs_read_master - read master node.
250  * @c: UBIFS file-system description object
251  *
252  * This function finds and reads the master node during file-system mount. If
253  * the flash is empty, it creates default master node as well. Returns zero in
254  * case of success and a negative error code in case of failure.
255  */
256 int ubifs_read_master(struct ubifs_info *c)
257 {
258 	int err, old_leb_cnt;
259 
260 	c->mst_node = kzalloc(c->mst_node_alsz, GFP_KERNEL);
261 	if (!c->mst_node)
262 		return -ENOMEM;
263 
264 	err = scan_for_master(c);
265 	if (err) {
266 		if (err == -EUCLEAN)
267 			err = ubifs_recover_master_node(c);
268 		if (err)
269 			/*
270 			 * Note, we do not free 'c->mst_node' here because the
271 			 * unmount routine will take care of this.
272 			 */
273 			return err;
274 	}
275 
276 	/* Make sure that the recovery flag is clear */
277 	c->mst_node->flags &= cpu_to_le32(~UBIFS_MST_RCVRY);
278 
279 	c->max_sqnum       = le64_to_cpu(c->mst_node->ch.sqnum);
280 	c->highest_inum    = le64_to_cpu(c->mst_node->highest_inum);
281 	c->cmt_no          = le64_to_cpu(c->mst_node->cmt_no);
282 	c->zroot.lnum      = le32_to_cpu(c->mst_node->root_lnum);
283 	c->zroot.offs      = le32_to_cpu(c->mst_node->root_offs);
284 	c->zroot.len       = le32_to_cpu(c->mst_node->root_len);
285 	c->lhead_lnum      = le32_to_cpu(c->mst_node->log_lnum);
286 	c->gc_lnum         = le32_to_cpu(c->mst_node->gc_lnum);
287 	c->ihead_lnum      = le32_to_cpu(c->mst_node->ihead_lnum);
288 	c->ihead_offs      = le32_to_cpu(c->mst_node->ihead_offs);
289 	c->bi.old_idx_sz   = le64_to_cpu(c->mst_node->index_size);
290 	c->lpt_lnum        = le32_to_cpu(c->mst_node->lpt_lnum);
291 	c->lpt_offs        = le32_to_cpu(c->mst_node->lpt_offs);
292 	c->nhead_lnum      = le32_to_cpu(c->mst_node->nhead_lnum);
293 	c->nhead_offs      = le32_to_cpu(c->mst_node->nhead_offs);
294 	c->ltab_lnum       = le32_to_cpu(c->mst_node->ltab_lnum);
295 	c->ltab_offs       = le32_to_cpu(c->mst_node->ltab_offs);
296 	c->lsave_lnum      = le32_to_cpu(c->mst_node->lsave_lnum);
297 	c->lsave_offs      = le32_to_cpu(c->mst_node->lsave_offs);
298 	c->lscan_lnum      = le32_to_cpu(c->mst_node->lscan_lnum);
299 	c->lst.empty_lebs  = le32_to_cpu(c->mst_node->empty_lebs);
300 	c->lst.idx_lebs    = le32_to_cpu(c->mst_node->idx_lebs);
301 	old_leb_cnt        = le32_to_cpu(c->mst_node->leb_cnt);
302 	c->lst.total_free  = le64_to_cpu(c->mst_node->total_free);
303 	c->lst.total_dirty = le64_to_cpu(c->mst_node->total_dirty);
304 	c->lst.total_used  = le64_to_cpu(c->mst_node->total_used);
305 	c->lst.total_dead  = le64_to_cpu(c->mst_node->total_dead);
306 	c->lst.total_dark  = le64_to_cpu(c->mst_node->total_dark);
307 
308 	c->calc_idx_sz = c->bi.old_idx_sz;
309 
310 	if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS))
311 		c->no_orphs = 1;
312 
313 	if (old_leb_cnt != c->leb_cnt) {
314 		/* The file system has been resized */
315 		int growth = c->leb_cnt - old_leb_cnt;
316 
317 		if (c->leb_cnt < old_leb_cnt ||
318 		    c->leb_cnt < UBIFS_MIN_LEB_CNT) {
319 			ubifs_err(c, "bad leb_cnt on master node");
320 			ubifs_dump_node(c, c->mst_node);
321 			return -EINVAL;
322 		}
323 
324 		dbg_mnt("Auto resizing (master) from %d LEBs to %d LEBs",
325 			old_leb_cnt, c->leb_cnt);
326 		c->lst.empty_lebs += growth;
327 		c->lst.total_free += growth * (long long)c->leb_size;
328 		c->lst.total_dark += growth * (long long)c->dark_wm;
329 
330 		/*
331 		 * Reflect changes back onto the master node. N.B. the master
332 		 * node gets written immediately whenever mounting (or
333 		 * remounting) in read-write mode, so we do not need to write it
334 		 * here.
335 		 */
336 		c->mst_node->leb_cnt = cpu_to_le32(c->leb_cnt);
337 		c->mst_node->empty_lebs = cpu_to_le32(c->lst.empty_lebs);
338 		c->mst_node->total_free = cpu_to_le64(c->lst.total_free);
339 		c->mst_node->total_dark = cpu_to_le64(c->lst.total_dark);
340 	}
341 
342 	err = validate_master(c);
343 	if (err)
344 		return err;
345 
346 	err = dbg_old_index_check_init(c, &c->zroot);
347 
348 	return err;
349 }
350 
351 /**
352  * ubifs_write_master - write master node.
353  * @c: UBIFS file-system description object
354  *
355  * This function writes the master node. Returns zero in case of success and a
356  * negative error code in case of failure. The master node is written twice to
357  * enable recovery.
358  */
359 int ubifs_write_master(struct ubifs_info *c)
360 {
361 	int err, lnum, offs, len;
362 
363 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
364 	if (c->ro_error)
365 		return -EROFS;
366 
367 	lnum = UBIFS_MST_LNUM;
368 	offs = c->mst_offs + c->mst_node_alsz;
369 	len = UBIFS_MST_NODE_SZ;
370 
371 	if (offs + UBIFS_MST_NODE_SZ > c->leb_size) {
372 		err = ubifs_leb_unmap(c, lnum);
373 		if (err)
374 			return err;
375 		offs = 0;
376 	}
377 
378 	c->mst_offs = offs;
379 	c->mst_node->highest_inum = cpu_to_le64(c->highest_inum);
380 
381 	err = ubifs_write_node(c, c->mst_node, len, lnum, offs);
382 	if (err)
383 		return err;
384 
385 	lnum += 1;
386 
387 	if (offs == 0) {
388 		err = ubifs_leb_unmap(c, lnum);
389 		if (err)
390 			return err;
391 	}
392 	err = ubifs_write_node(c, c->mst_node, len, lnum, offs);
393 
394 	return err;
395 }
396