1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements commit-related functionality of the LEB properties 25 * subsystem. 26 */ 27 28 #include <linux/crc16.h> 29 #include <linux/slab.h> 30 #include <linux/random.h> 31 #include "ubifs.h" 32 33 static int dbg_populate_lsave(struct ubifs_info *c); 34 35 /** 36 * first_dirty_cnode - find first dirty cnode. 37 * @nnode: nnode at which to start 38 * 39 * This function returns the first dirty cnode or %NULL if there is not one. 40 */ 41 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode) 42 { 43 ubifs_assert(nnode); 44 while (1) { 45 int i, cont = 0; 46 47 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 48 struct ubifs_cnode *cnode; 49 50 cnode = nnode->nbranch[i].cnode; 51 if (cnode && 52 test_bit(DIRTY_CNODE, &cnode->flags)) { 53 if (cnode->level == 0) 54 return cnode; 55 nnode = (struct ubifs_nnode *)cnode; 56 cont = 1; 57 break; 58 } 59 } 60 if (!cont) 61 return (struct ubifs_cnode *)nnode; 62 } 63 } 64 65 /** 66 * next_dirty_cnode - find next dirty cnode. 67 * @cnode: cnode from which to begin searching 68 * 69 * This function returns the next dirty cnode or %NULL if there is not one. 70 */ 71 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode) 72 { 73 struct ubifs_nnode *nnode; 74 int i; 75 76 ubifs_assert(cnode); 77 nnode = cnode->parent; 78 if (!nnode) 79 return NULL; 80 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { 81 cnode = nnode->nbranch[i].cnode; 82 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { 83 if (cnode->level == 0) 84 return cnode; /* cnode is a pnode */ 85 /* cnode is a nnode */ 86 return first_dirty_cnode((struct ubifs_nnode *)cnode); 87 } 88 } 89 return (struct ubifs_cnode *)nnode; 90 } 91 92 /** 93 * get_cnodes_to_commit - create list of dirty cnodes to commit. 94 * @c: UBIFS file-system description object 95 * 96 * This function returns the number of cnodes to commit. 97 */ 98 static int get_cnodes_to_commit(struct ubifs_info *c) 99 { 100 struct ubifs_cnode *cnode, *cnext; 101 int cnt = 0; 102 103 if (!c->nroot) 104 return 0; 105 106 if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) 107 return 0; 108 109 c->lpt_cnext = first_dirty_cnode(c->nroot); 110 cnode = c->lpt_cnext; 111 if (!cnode) 112 return 0; 113 cnt += 1; 114 while (1) { 115 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags)); 116 __set_bit(COW_CNODE, &cnode->flags); 117 cnext = next_dirty_cnode(cnode); 118 if (!cnext) { 119 cnode->cnext = c->lpt_cnext; 120 break; 121 } 122 cnode->cnext = cnext; 123 cnode = cnext; 124 cnt += 1; 125 } 126 dbg_cmt("committing %d cnodes", cnt); 127 dbg_lp("committing %d cnodes", cnt); 128 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); 129 return cnt; 130 } 131 132 /** 133 * upd_ltab - update LPT LEB properties. 134 * @c: UBIFS file-system description object 135 * @lnum: LEB number 136 * @free: amount of free space 137 * @dirty: amount of dirty space to add 138 */ 139 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) 140 { 141 dbg_lp("LEB %d free %d dirty %d to %d +%d", 142 lnum, c->ltab[lnum - c->lpt_first].free, 143 c->ltab[lnum - c->lpt_first].dirty, free, dirty); 144 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); 145 c->ltab[lnum - c->lpt_first].free = free; 146 c->ltab[lnum - c->lpt_first].dirty += dirty; 147 } 148 149 /** 150 * alloc_lpt_leb - allocate an LPT LEB that is empty. 151 * @c: UBIFS file-system description object 152 * @lnum: LEB number is passed and returned here 153 * 154 * This function finds the next empty LEB in the ltab starting from @lnum. If a 155 * an empty LEB is found it is returned in @lnum and the function returns %0. 156 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed 157 * never to run out of space. 158 */ 159 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) 160 { 161 int i, n; 162 163 n = *lnum - c->lpt_first + 1; 164 for (i = n; i < c->lpt_lebs; i++) { 165 if (c->ltab[i].tgc || c->ltab[i].cmt) 166 continue; 167 if (c->ltab[i].free == c->leb_size) { 168 c->ltab[i].cmt = 1; 169 *lnum = i + c->lpt_first; 170 return 0; 171 } 172 } 173 174 for (i = 0; i < n; i++) { 175 if (c->ltab[i].tgc || c->ltab[i].cmt) 176 continue; 177 if (c->ltab[i].free == c->leb_size) { 178 c->ltab[i].cmt = 1; 179 *lnum = i + c->lpt_first; 180 return 0; 181 } 182 } 183 return -ENOSPC; 184 } 185 186 /** 187 * layout_cnodes - layout cnodes for commit. 188 * @c: UBIFS file-system description object 189 * 190 * This function returns %0 on success and a negative error code on failure. 191 */ 192 static int layout_cnodes(struct ubifs_info *c) 193 { 194 int lnum, offs, len, alen, done_lsave, done_ltab, err; 195 struct ubifs_cnode *cnode; 196 197 err = dbg_chk_lpt_sz(c, 0, 0); 198 if (err) 199 return err; 200 cnode = c->lpt_cnext; 201 if (!cnode) 202 return 0; 203 lnum = c->nhead_lnum; 204 offs = c->nhead_offs; 205 /* Try to place lsave and ltab nicely */ 206 done_lsave = !c->big_lpt; 207 done_ltab = 0; 208 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { 209 done_lsave = 1; 210 c->lsave_lnum = lnum; 211 c->lsave_offs = offs; 212 offs += c->lsave_sz; 213 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 214 } 215 216 if (offs + c->ltab_sz <= c->leb_size) { 217 done_ltab = 1; 218 c->ltab_lnum = lnum; 219 c->ltab_offs = offs; 220 offs += c->ltab_sz; 221 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 222 } 223 224 do { 225 if (cnode->level) { 226 len = c->nnode_sz; 227 c->dirty_nn_cnt -= 1; 228 } else { 229 len = c->pnode_sz; 230 c->dirty_pn_cnt -= 1; 231 } 232 while (offs + len > c->leb_size) { 233 alen = ALIGN(offs, c->min_io_size); 234 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 235 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 236 err = alloc_lpt_leb(c, &lnum); 237 if (err) 238 goto no_space; 239 offs = 0; 240 ubifs_assert(lnum >= c->lpt_first && 241 lnum <= c->lpt_last); 242 /* Try to place lsave and ltab nicely */ 243 if (!done_lsave) { 244 done_lsave = 1; 245 c->lsave_lnum = lnum; 246 c->lsave_offs = offs; 247 offs += c->lsave_sz; 248 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 249 continue; 250 } 251 if (!done_ltab) { 252 done_ltab = 1; 253 c->ltab_lnum = lnum; 254 c->ltab_offs = offs; 255 offs += c->ltab_sz; 256 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 257 continue; 258 } 259 break; 260 } 261 if (cnode->parent) { 262 cnode->parent->nbranch[cnode->iip].lnum = lnum; 263 cnode->parent->nbranch[cnode->iip].offs = offs; 264 } else { 265 c->lpt_lnum = lnum; 266 c->lpt_offs = offs; 267 } 268 offs += len; 269 dbg_chk_lpt_sz(c, 1, len); 270 cnode = cnode->cnext; 271 } while (cnode && cnode != c->lpt_cnext); 272 273 /* Make sure to place LPT's save table */ 274 if (!done_lsave) { 275 if (offs + c->lsave_sz > c->leb_size) { 276 alen = ALIGN(offs, c->min_io_size); 277 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 278 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 279 err = alloc_lpt_leb(c, &lnum); 280 if (err) 281 goto no_space; 282 offs = 0; 283 ubifs_assert(lnum >= c->lpt_first && 284 lnum <= c->lpt_last); 285 } 286 done_lsave = 1; 287 c->lsave_lnum = lnum; 288 c->lsave_offs = offs; 289 offs += c->lsave_sz; 290 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 291 } 292 293 /* Make sure to place LPT's own lprops table */ 294 if (!done_ltab) { 295 if (offs + c->ltab_sz > c->leb_size) { 296 alen = ALIGN(offs, c->min_io_size); 297 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 298 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 299 err = alloc_lpt_leb(c, &lnum); 300 if (err) 301 goto no_space; 302 offs = 0; 303 ubifs_assert(lnum >= c->lpt_first && 304 lnum <= c->lpt_last); 305 } 306 c->ltab_lnum = lnum; 307 c->ltab_offs = offs; 308 offs += c->ltab_sz; 309 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 310 } 311 312 alen = ALIGN(offs, c->min_io_size); 313 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 314 dbg_chk_lpt_sz(c, 4, alen - offs); 315 err = dbg_chk_lpt_sz(c, 3, alen); 316 if (err) 317 return err; 318 return 0; 319 320 no_space: 321 ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", 322 lnum, offs, len, done_ltab, done_lsave); 323 ubifs_dump_lpt_info(c); 324 ubifs_dump_lpt_lebs(c); 325 dump_stack(); 326 return err; 327 } 328 329 /** 330 * realloc_lpt_leb - allocate an LPT LEB that is empty. 331 * @c: UBIFS file-system description object 332 * @lnum: LEB number is passed and returned here 333 * 334 * This function duplicates exactly the results of the function alloc_lpt_leb. 335 * It is used during end commit to reallocate the same LEB numbers that were 336 * allocated by alloc_lpt_leb during start commit. 337 * 338 * This function finds the next LEB that was allocated by the alloc_lpt_leb 339 * function starting from @lnum. If a LEB is found it is returned in @lnum and 340 * the function returns %0. Otherwise the function returns -ENOSPC. 341 * Note however, that LPT is designed never to run out of space. 342 */ 343 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) 344 { 345 int i, n; 346 347 n = *lnum - c->lpt_first + 1; 348 for (i = n; i < c->lpt_lebs; i++) 349 if (c->ltab[i].cmt) { 350 c->ltab[i].cmt = 0; 351 *lnum = i + c->lpt_first; 352 return 0; 353 } 354 355 for (i = 0; i < n; i++) 356 if (c->ltab[i].cmt) { 357 c->ltab[i].cmt = 0; 358 *lnum = i + c->lpt_first; 359 return 0; 360 } 361 return -ENOSPC; 362 } 363 364 /** 365 * write_cnodes - write cnodes for commit. 366 * @c: UBIFS file-system description object 367 * 368 * This function returns %0 on success and a negative error code on failure. 369 */ 370 static int write_cnodes(struct ubifs_info *c) 371 { 372 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; 373 struct ubifs_cnode *cnode; 374 void *buf = c->lpt_buf; 375 376 cnode = c->lpt_cnext; 377 if (!cnode) 378 return 0; 379 lnum = c->nhead_lnum; 380 offs = c->nhead_offs; 381 from = offs; 382 /* Ensure empty LEB is unmapped */ 383 if (offs == 0) { 384 err = ubifs_leb_unmap(c, lnum); 385 if (err) 386 return err; 387 } 388 /* Try to place lsave and ltab nicely */ 389 done_lsave = !c->big_lpt; 390 done_ltab = 0; 391 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { 392 done_lsave = 1; 393 ubifs_pack_lsave(c, buf + offs, c->lsave); 394 offs += c->lsave_sz; 395 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 396 } 397 398 if (offs + c->ltab_sz <= c->leb_size) { 399 done_ltab = 1; 400 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); 401 offs += c->ltab_sz; 402 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 403 } 404 405 /* Loop for each cnode */ 406 do { 407 if (cnode->level) 408 len = c->nnode_sz; 409 else 410 len = c->pnode_sz; 411 while (offs + len > c->leb_size) { 412 wlen = offs - from; 413 if (wlen) { 414 alen = ALIGN(wlen, c->min_io_size); 415 memset(buf + offs, 0xff, alen - wlen); 416 err = ubifs_leb_write(c, lnum, buf + from, from, 417 alen); 418 if (err) 419 return err; 420 } 421 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 422 err = realloc_lpt_leb(c, &lnum); 423 if (err) 424 goto no_space; 425 offs = from = 0; 426 ubifs_assert(lnum >= c->lpt_first && 427 lnum <= c->lpt_last); 428 err = ubifs_leb_unmap(c, lnum); 429 if (err) 430 return err; 431 /* Try to place lsave and ltab nicely */ 432 if (!done_lsave) { 433 done_lsave = 1; 434 ubifs_pack_lsave(c, buf + offs, c->lsave); 435 offs += c->lsave_sz; 436 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 437 continue; 438 } 439 if (!done_ltab) { 440 done_ltab = 1; 441 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); 442 offs += c->ltab_sz; 443 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 444 continue; 445 } 446 break; 447 } 448 if (cnode->level) 449 ubifs_pack_nnode(c, buf + offs, 450 (struct ubifs_nnode *)cnode); 451 else 452 ubifs_pack_pnode(c, buf + offs, 453 (struct ubifs_pnode *)cnode); 454 /* 455 * The reason for the barriers is the same as in case of TNC. 456 * See comment in 'write_index()'. 'dirty_cow_nnode()' and 457 * 'dirty_cow_pnode()' are the functions for which this is 458 * important. 459 */ 460 clear_bit(DIRTY_CNODE, &cnode->flags); 461 smp_mb__before_atomic(); 462 clear_bit(COW_CNODE, &cnode->flags); 463 smp_mb__after_atomic(); 464 offs += len; 465 dbg_chk_lpt_sz(c, 1, len); 466 cnode = cnode->cnext; 467 } while (cnode && cnode != c->lpt_cnext); 468 469 /* Make sure to place LPT's save table */ 470 if (!done_lsave) { 471 if (offs + c->lsave_sz > c->leb_size) { 472 wlen = offs - from; 473 alen = ALIGN(wlen, c->min_io_size); 474 memset(buf + offs, 0xff, alen - wlen); 475 err = ubifs_leb_write(c, lnum, buf + from, from, alen); 476 if (err) 477 return err; 478 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 479 err = realloc_lpt_leb(c, &lnum); 480 if (err) 481 goto no_space; 482 offs = from = 0; 483 ubifs_assert(lnum >= c->lpt_first && 484 lnum <= c->lpt_last); 485 err = ubifs_leb_unmap(c, lnum); 486 if (err) 487 return err; 488 } 489 done_lsave = 1; 490 ubifs_pack_lsave(c, buf + offs, c->lsave); 491 offs += c->lsave_sz; 492 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 493 } 494 495 /* Make sure to place LPT's own lprops table */ 496 if (!done_ltab) { 497 if (offs + c->ltab_sz > c->leb_size) { 498 wlen = offs - from; 499 alen = ALIGN(wlen, c->min_io_size); 500 memset(buf + offs, 0xff, alen - wlen); 501 err = ubifs_leb_write(c, lnum, buf + from, from, alen); 502 if (err) 503 return err; 504 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 505 err = realloc_lpt_leb(c, &lnum); 506 if (err) 507 goto no_space; 508 offs = from = 0; 509 ubifs_assert(lnum >= c->lpt_first && 510 lnum <= c->lpt_last); 511 err = ubifs_leb_unmap(c, lnum); 512 if (err) 513 return err; 514 } 515 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); 516 offs += c->ltab_sz; 517 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 518 } 519 520 /* Write remaining data in buffer */ 521 wlen = offs - from; 522 alen = ALIGN(wlen, c->min_io_size); 523 memset(buf + offs, 0xff, alen - wlen); 524 err = ubifs_leb_write(c, lnum, buf + from, from, alen); 525 if (err) 526 return err; 527 528 dbg_chk_lpt_sz(c, 4, alen - wlen); 529 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size)); 530 if (err) 531 return err; 532 533 c->nhead_lnum = lnum; 534 c->nhead_offs = ALIGN(offs, c->min_io_size); 535 536 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 537 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 538 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 539 if (c->big_lpt) 540 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 541 542 return 0; 543 544 no_space: 545 ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", 546 lnum, offs, len, done_ltab, done_lsave); 547 ubifs_dump_lpt_info(c); 548 ubifs_dump_lpt_lebs(c); 549 dump_stack(); 550 return err; 551 } 552 553 /** 554 * next_pnode_to_dirty - find next pnode to dirty. 555 * @c: UBIFS file-system description object 556 * @pnode: pnode 557 * 558 * This function returns the next pnode to dirty or %NULL if there are no more 559 * pnodes. Note that pnodes that have never been written (lnum == 0) are 560 * skipped. 561 */ 562 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c, 563 struct ubifs_pnode *pnode) 564 { 565 struct ubifs_nnode *nnode; 566 int iip; 567 568 /* Try to go right */ 569 nnode = pnode->parent; 570 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { 571 if (nnode->nbranch[iip].lnum) 572 return ubifs_get_pnode(c, nnode, iip); 573 } 574 575 /* Go up while can't go right */ 576 do { 577 iip = nnode->iip + 1; 578 nnode = nnode->parent; 579 if (!nnode) 580 return NULL; 581 for (; iip < UBIFS_LPT_FANOUT; iip++) { 582 if (nnode->nbranch[iip].lnum) 583 break; 584 } 585 } while (iip >= UBIFS_LPT_FANOUT); 586 587 /* Go right */ 588 nnode = ubifs_get_nnode(c, nnode, iip); 589 if (IS_ERR(nnode)) 590 return (void *)nnode; 591 592 /* Go down to level 1 */ 593 while (nnode->level > 1) { 594 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) { 595 if (nnode->nbranch[iip].lnum) 596 break; 597 } 598 if (iip >= UBIFS_LPT_FANOUT) { 599 /* 600 * Should not happen, but we need to keep going 601 * if it does. 602 */ 603 iip = 0; 604 } 605 nnode = ubifs_get_nnode(c, nnode, iip); 606 if (IS_ERR(nnode)) 607 return (void *)nnode; 608 } 609 610 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) 611 if (nnode->nbranch[iip].lnum) 612 break; 613 if (iip >= UBIFS_LPT_FANOUT) 614 /* Should not happen, but we need to keep going if it does */ 615 iip = 0; 616 return ubifs_get_pnode(c, nnode, iip); 617 } 618 619 /** 620 * pnode_lookup - lookup a pnode in the LPT. 621 * @c: UBIFS file-system description object 622 * @i: pnode number (0 to main_lebs - 1) 623 * 624 * This function returns a pointer to the pnode on success or a negative 625 * error code on failure. 626 */ 627 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) 628 { 629 int err, h, iip, shft; 630 struct ubifs_nnode *nnode; 631 632 if (!c->nroot) { 633 err = ubifs_read_nnode(c, NULL, 0); 634 if (err) 635 return ERR_PTR(err); 636 } 637 i <<= UBIFS_LPT_FANOUT_SHIFT; 638 nnode = c->nroot; 639 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 640 for (h = 1; h < c->lpt_hght; h++) { 641 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 642 shft -= UBIFS_LPT_FANOUT_SHIFT; 643 nnode = ubifs_get_nnode(c, nnode, iip); 644 if (IS_ERR(nnode)) 645 return ERR_CAST(nnode); 646 } 647 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 648 return ubifs_get_pnode(c, nnode, iip); 649 } 650 651 /** 652 * add_pnode_dirt - add dirty space to LPT LEB properties. 653 * @c: UBIFS file-system description object 654 * @pnode: pnode for which to add dirt 655 */ 656 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) 657 { 658 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, 659 c->pnode_sz); 660 } 661 662 /** 663 * do_make_pnode_dirty - mark a pnode dirty. 664 * @c: UBIFS file-system description object 665 * @pnode: pnode to mark dirty 666 */ 667 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) 668 { 669 /* Assumes cnext list is empty i.e. not called during commit */ 670 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { 671 struct ubifs_nnode *nnode; 672 673 c->dirty_pn_cnt += 1; 674 add_pnode_dirt(c, pnode); 675 /* Mark parent and ancestors dirty too */ 676 nnode = pnode->parent; 677 while (nnode) { 678 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 679 c->dirty_nn_cnt += 1; 680 ubifs_add_nnode_dirt(c, nnode); 681 nnode = nnode->parent; 682 } else 683 break; 684 } 685 } 686 } 687 688 /** 689 * make_tree_dirty - mark the entire LEB properties tree dirty. 690 * @c: UBIFS file-system description object 691 * 692 * This function is used by the "small" LPT model to cause the entire LEB 693 * properties tree to be written. The "small" LPT model does not use LPT 694 * garbage collection because it is more efficient to write the entire tree 695 * (because it is small). 696 * 697 * This function returns %0 on success and a negative error code on failure. 698 */ 699 static int make_tree_dirty(struct ubifs_info *c) 700 { 701 struct ubifs_pnode *pnode; 702 703 pnode = pnode_lookup(c, 0); 704 if (IS_ERR(pnode)) 705 return PTR_ERR(pnode); 706 707 while (pnode) { 708 do_make_pnode_dirty(c, pnode); 709 pnode = next_pnode_to_dirty(c, pnode); 710 if (IS_ERR(pnode)) 711 return PTR_ERR(pnode); 712 } 713 return 0; 714 } 715 716 /** 717 * need_write_all - determine if the LPT area is running out of free space. 718 * @c: UBIFS file-system description object 719 * 720 * This function returns %1 if the LPT area is running out of free space and %0 721 * if it is not. 722 */ 723 static int need_write_all(struct ubifs_info *c) 724 { 725 long long free = 0; 726 int i; 727 728 for (i = 0; i < c->lpt_lebs; i++) { 729 if (i + c->lpt_first == c->nhead_lnum) 730 free += c->leb_size - c->nhead_offs; 731 else if (c->ltab[i].free == c->leb_size) 732 free += c->leb_size; 733 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) 734 free += c->leb_size; 735 } 736 /* Less than twice the size left */ 737 if (free <= c->lpt_sz * 2) 738 return 1; 739 return 0; 740 } 741 742 /** 743 * lpt_tgc_start - start trivial garbage collection of LPT LEBs. 744 * @c: UBIFS file-system description object 745 * 746 * LPT trivial garbage collection is where a LPT LEB contains only dirty and 747 * free space and so may be reused as soon as the next commit is completed. 748 * This function is called during start commit to mark LPT LEBs for trivial GC. 749 */ 750 static void lpt_tgc_start(struct ubifs_info *c) 751 { 752 int i; 753 754 for (i = 0; i < c->lpt_lebs; i++) { 755 if (i + c->lpt_first == c->nhead_lnum) 756 continue; 757 if (c->ltab[i].dirty > 0 && 758 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { 759 c->ltab[i].tgc = 1; 760 c->ltab[i].free = c->leb_size; 761 c->ltab[i].dirty = 0; 762 dbg_lp("LEB %d", i + c->lpt_first); 763 } 764 } 765 } 766 767 /** 768 * lpt_tgc_end - end trivial garbage collection of LPT LEBs. 769 * @c: UBIFS file-system description object 770 * 771 * LPT trivial garbage collection is where a LPT LEB contains only dirty and 772 * free space and so may be reused as soon as the next commit is completed. 773 * This function is called after the commit is completed (master node has been 774 * written) and un-maps LPT LEBs that were marked for trivial GC. 775 */ 776 static int lpt_tgc_end(struct ubifs_info *c) 777 { 778 int i, err; 779 780 for (i = 0; i < c->lpt_lebs; i++) 781 if (c->ltab[i].tgc) { 782 err = ubifs_leb_unmap(c, i + c->lpt_first); 783 if (err) 784 return err; 785 c->ltab[i].tgc = 0; 786 dbg_lp("LEB %d", i + c->lpt_first); 787 } 788 return 0; 789 } 790 791 /** 792 * populate_lsave - fill the lsave array with important LEB numbers. 793 * @c: the UBIFS file-system description object 794 * 795 * This function is only called for the "big" model. It records a small number 796 * of LEB numbers of important LEBs. Important LEBs are ones that are (from 797 * most important to least important): empty, freeable, freeable index, dirty 798 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring 799 * their pnodes into memory. That will stop us from having to scan the LPT 800 * straight away. For the "small" model we assume that scanning the LPT is no 801 * big deal. 802 */ 803 static void populate_lsave(struct ubifs_info *c) 804 { 805 struct ubifs_lprops *lprops; 806 struct ubifs_lpt_heap *heap; 807 int i, cnt = 0; 808 809 ubifs_assert(c->big_lpt); 810 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { 811 c->lpt_drty_flgs |= LSAVE_DIRTY; 812 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); 813 } 814 815 if (dbg_populate_lsave(c)) 816 return; 817 818 list_for_each_entry(lprops, &c->empty_list, list) { 819 c->lsave[cnt++] = lprops->lnum; 820 if (cnt >= c->lsave_cnt) 821 return; 822 } 823 list_for_each_entry(lprops, &c->freeable_list, list) { 824 c->lsave[cnt++] = lprops->lnum; 825 if (cnt >= c->lsave_cnt) 826 return; 827 } 828 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 829 c->lsave[cnt++] = lprops->lnum; 830 if (cnt >= c->lsave_cnt) 831 return; 832 } 833 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 834 for (i = 0; i < heap->cnt; i++) { 835 c->lsave[cnt++] = heap->arr[i]->lnum; 836 if (cnt >= c->lsave_cnt) 837 return; 838 } 839 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 840 for (i = 0; i < heap->cnt; i++) { 841 c->lsave[cnt++] = heap->arr[i]->lnum; 842 if (cnt >= c->lsave_cnt) 843 return; 844 } 845 heap = &c->lpt_heap[LPROPS_FREE - 1]; 846 for (i = 0; i < heap->cnt; i++) { 847 c->lsave[cnt++] = heap->arr[i]->lnum; 848 if (cnt >= c->lsave_cnt) 849 return; 850 } 851 /* Fill it up completely */ 852 while (cnt < c->lsave_cnt) 853 c->lsave[cnt++] = c->main_first; 854 } 855 856 /** 857 * nnode_lookup - lookup a nnode in the LPT. 858 * @c: UBIFS file-system description object 859 * @i: nnode number 860 * 861 * This function returns a pointer to the nnode on success or a negative 862 * error code on failure. 863 */ 864 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) 865 { 866 int err, iip; 867 struct ubifs_nnode *nnode; 868 869 if (!c->nroot) { 870 err = ubifs_read_nnode(c, NULL, 0); 871 if (err) 872 return ERR_PTR(err); 873 } 874 nnode = c->nroot; 875 while (1) { 876 iip = i & (UBIFS_LPT_FANOUT - 1); 877 i >>= UBIFS_LPT_FANOUT_SHIFT; 878 if (!i) 879 break; 880 nnode = ubifs_get_nnode(c, nnode, iip); 881 if (IS_ERR(nnode)) 882 return nnode; 883 } 884 return nnode; 885 } 886 887 /** 888 * make_nnode_dirty - find a nnode and, if found, make it dirty. 889 * @c: UBIFS file-system description object 890 * @node_num: nnode number of nnode to make dirty 891 * @lnum: LEB number where nnode was written 892 * @offs: offset where nnode was written 893 * 894 * This function is used by LPT garbage collection. LPT garbage collection is 895 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 896 * simply involves marking all the nodes in the LEB being garbage-collected as 897 * dirty. The dirty nodes are written next commit, after which the LEB is free 898 * to be reused. 899 * 900 * This function returns %0 on success and a negative error code on failure. 901 */ 902 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, 903 int offs) 904 { 905 struct ubifs_nnode *nnode; 906 907 nnode = nnode_lookup(c, node_num); 908 if (IS_ERR(nnode)) 909 return PTR_ERR(nnode); 910 if (nnode->parent) { 911 struct ubifs_nbranch *branch; 912 913 branch = &nnode->parent->nbranch[nnode->iip]; 914 if (branch->lnum != lnum || branch->offs != offs) 915 return 0; /* nnode is obsolete */ 916 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) 917 return 0; /* nnode is obsolete */ 918 /* Assumes cnext list is empty i.e. not called during commit */ 919 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 920 c->dirty_nn_cnt += 1; 921 ubifs_add_nnode_dirt(c, nnode); 922 /* Mark parent and ancestors dirty too */ 923 nnode = nnode->parent; 924 while (nnode) { 925 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 926 c->dirty_nn_cnt += 1; 927 ubifs_add_nnode_dirt(c, nnode); 928 nnode = nnode->parent; 929 } else 930 break; 931 } 932 } 933 return 0; 934 } 935 936 /** 937 * make_pnode_dirty - find a pnode and, if found, make it dirty. 938 * @c: UBIFS file-system description object 939 * @node_num: pnode number of pnode to make dirty 940 * @lnum: LEB number where pnode was written 941 * @offs: offset where pnode was written 942 * 943 * This function is used by LPT garbage collection. LPT garbage collection is 944 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 945 * simply involves marking all the nodes in the LEB being garbage-collected as 946 * dirty. The dirty nodes are written next commit, after which the LEB is free 947 * to be reused. 948 * 949 * This function returns %0 on success and a negative error code on failure. 950 */ 951 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, 952 int offs) 953 { 954 struct ubifs_pnode *pnode; 955 struct ubifs_nbranch *branch; 956 957 pnode = pnode_lookup(c, node_num); 958 if (IS_ERR(pnode)) 959 return PTR_ERR(pnode); 960 branch = &pnode->parent->nbranch[pnode->iip]; 961 if (branch->lnum != lnum || branch->offs != offs) 962 return 0; 963 do_make_pnode_dirty(c, pnode); 964 return 0; 965 } 966 967 /** 968 * make_ltab_dirty - make ltab node dirty. 969 * @c: UBIFS file-system description object 970 * @lnum: LEB number where ltab was written 971 * @offs: offset where ltab was written 972 * 973 * This function is used by LPT garbage collection. LPT garbage collection is 974 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 975 * simply involves marking all the nodes in the LEB being garbage-collected as 976 * dirty. The dirty nodes are written next commit, after which the LEB is free 977 * to be reused. 978 * 979 * This function returns %0 on success and a negative error code on failure. 980 */ 981 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) 982 { 983 if (lnum != c->ltab_lnum || offs != c->ltab_offs) 984 return 0; /* This ltab node is obsolete */ 985 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { 986 c->lpt_drty_flgs |= LTAB_DIRTY; 987 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); 988 } 989 return 0; 990 } 991 992 /** 993 * make_lsave_dirty - make lsave node dirty. 994 * @c: UBIFS file-system description object 995 * @lnum: LEB number where lsave was written 996 * @offs: offset where lsave was written 997 * 998 * This function is used by LPT garbage collection. LPT garbage collection is 999 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 1000 * simply involves marking all the nodes in the LEB being garbage-collected as 1001 * dirty. The dirty nodes are written next commit, after which the LEB is free 1002 * to be reused. 1003 * 1004 * This function returns %0 on success and a negative error code on failure. 1005 */ 1006 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) 1007 { 1008 if (lnum != c->lsave_lnum || offs != c->lsave_offs) 1009 return 0; /* This lsave node is obsolete */ 1010 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { 1011 c->lpt_drty_flgs |= LSAVE_DIRTY; 1012 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); 1013 } 1014 return 0; 1015 } 1016 1017 /** 1018 * make_node_dirty - make node dirty. 1019 * @c: UBIFS file-system description object 1020 * @node_type: LPT node type 1021 * @node_num: node number 1022 * @lnum: LEB number where node was written 1023 * @offs: offset where node was written 1024 * 1025 * This function is used by LPT garbage collection. LPT garbage collection is 1026 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 1027 * simply involves marking all the nodes in the LEB being garbage-collected as 1028 * dirty. The dirty nodes are written next commit, after which the LEB is free 1029 * to be reused. 1030 * 1031 * This function returns %0 on success and a negative error code on failure. 1032 */ 1033 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, 1034 int lnum, int offs) 1035 { 1036 switch (node_type) { 1037 case UBIFS_LPT_NNODE: 1038 return make_nnode_dirty(c, node_num, lnum, offs); 1039 case UBIFS_LPT_PNODE: 1040 return make_pnode_dirty(c, node_num, lnum, offs); 1041 case UBIFS_LPT_LTAB: 1042 return make_ltab_dirty(c, lnum, offs); 1043 case UBIFS_LPT_LSAVE: 1044 return make_lsave_dirty(c, lnum, offs); 1045 } 1046 return -EINVAL; 1047 } 1048 1049 /** 1050 * get_lpt_node_len - return the length of a node based on its type. 1051 * @c: UBIFS file-system description object 1052 * @node_type: LPT node type 1053 */ 1054 static int get_lpt_node_len(const struct ubifs_info *c, int node_type) 1055 { 1056 switch (node_type) { 1057 case UBIFS_LPT_NNODE: 1058 return c->nnode_sz; 1059 case UBIFS_LPT_PNODE: 1060 return c->pnode_sz; 1061 case UBIFS_LPT_LTAB: 1062 return c->ltab_sz; 1063 case UBIFS_LPT_LSAVE: 1064 return c->lsave_sz; 1065 } 1066 return 0; 1067 } 1068 1069 /** 1070 * get_pad_len - return the length of padding in a buffer. 1071 * @c: UBIFS file-system description object 1072 * @buf: buffer 1073 * @len: length of buffer 1074 */ 1075 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len) 1076 { 1077 int offs, pad_len; 1078 1079 if (c->min_io_size == 1) 1080 return 0; 1081 offs = c->leb_size - len; 1082 pad_len = ALIGN(offs, c->min_io_size) - offs; 1083 return pad_len; 1084 } 1085 1086 /** 1087 * get_lpt_node_type - return type (and node number) of a node in a buffer. 1088 * @c: UBIFS file-system description object 1089 * @buf: buffer 1090 * @node_num: node number is returned here 1091 */ 1092 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf, 1093 int *node_num) 1094 { 1095 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1096 int pos = 0, node_type; 1097 1098 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); 1099 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); 1100 return node_type; 1101 } 1102 1103 /** 1104 * is_a_node - determine if a buffer contains a node. 1105 * @c: UBIFS file-system description object 1106 * @buf: buffer 1107 * @len: length of buffer 1108 * 1109 * This function returns %1 if the buffer contains a node or %0 if it does not. 1110 */ 1111 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len) 1112 { 1113 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1114 int pos = 0, node_type, node_len; 1115 uint16_t crc, calc_crc; 1116 1117 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8) 1118 return 0; 1119 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); 1120 if (node_type == UBIFS_LPT_NOT_A_NODE) 1121 return 0; 1122 node_len = get_lpt_node_len(c, node_type); 1123 if (!node_len || node_len > len) 1124 return 0; 1125 pos = 0; 1126 addr = buf; 1127 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); 1128 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 1129 node_len - UBIFS_LPT_CRC_BYTES); 1130 if (crc != calc_crc) 1131 return 0; 1132 return 1; 1133 } 1134 1135 /** 1136 * lpt_gc_lnum - garbage collect a LPT LEB. 1137 * @c: UBIFS file-system description object 1138 * @lnum: LEB number to garbage collect 1139 * 1140 * LPT garbage collection is used only for the "big" LPT model 1141 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes 1142 * in the LEB being garbage-collected as dirty. The dirty nodes are written 1143 * next commit, after which the LEB is free to be reused. 1144 * 1145 * This function returns %0 on success and a negative error code on failure. 1146 */ 1147 static int lpt_gc_lnum(struct ubifs_info *c, int lnum) 1148 { 1149 int err, len = c->leb_size, node_type, node_num, node_len, offs; 1150 void *buf = c->lpt_buf; 1151 1152 dbg_lp("LEB %d", lnum); 1153 1154 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); 1155 if (err) 1156 return err; 1157 1158 while (1) { 1159 if (!is_a_node(c, buf, len)) { 1160 int pad_len; 1161 1162 pad_len = get_pad_len(c, buf, len); 1163 if (pad_len) { 1164 buf += pad_len; 1165 len -= pad_len; 1166 continue; 1167 } 1168 return 0; 1169 } 1170 node_type = get_lpt_node_type(c, buf, &node_num); 1171 node_len = get_lpt_node_len(c, node_type); 1172 offs = c->leb_size - len; 1173 ubifs_assert(node_len != 0); 1174 mutex_lock(&c->lp_mutex); 1175 err = make_node_dirty(c, node_type, node_num, lnum, offs); 1176 mutex_unlock(&c->lp_mutex); 1177 if (err) 1178 return err; 1179 buf += node_len; 1180 len -= node_len; 1181 } 1182 return 0; 1183 } 1184 1185 /** 1186 * lpt_gc - LPT garbage collection. 1187 * @c: UBIFS file-system description object 1188 * 1189 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. 1190 * Returns %0 on success and a negative error code on failure. 1191 */ 1192 static int lpt_gc(struct ubifs_info *c) 1193 { 1194 int i, lnum = -1, dirty = 0; 1195 1196 mutex_lock(&c->lp_mutex); 1197 for (i = 0; i < c->lpt_lebs; i++) { 1198 ubifs_assert(!c->ltab[i].tgc); 1199 if (i + c->lpt_first == c->nhead_lnum || 1200 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) 1201 continue; 1202 if (c->ltab[i].dirty > dirty) { 1203 dirty = c->ltab[i].dirty; 1204 lnum = i + c->lpt_first; 1205 } 1206 } 1207 mutex_unlock(&c->lp_mutex); 1208 if (lnum == -1) 1209 return -ENOSPC; 1210 return lpt_gc_lnum(c, lnum); 1211 } 1212 1213 /** 1214 * ubifs_lpt_start_commit - UBIFS commit starts. 1215 * @c: the UBIFS file-system description object 1216 * 1217 * This function has to be called when UBIFS starts the commit operation. 1218 * This function "freezes" all currently dirty LEB properties and does not 1219 * change them anymore. Further changes are saved and tracked separately 1220 * because they are not part of this commit. This function returns zero in case 1221 * of success and a negative error code in case of failure. 1222 */ 1223 int ubifs_lpt_start_commit(struct ubifs_info *c) 1224 { 1225 int err, cnt; 1226 1227 dbg_lp(""); 1228 1229 mutex_lock(&c->lp_mutex); 1230 err = dbg_chk_lpt_free_spc(c); 1231 if (err) 1232 goto out; 1233 err = dbg_check_ltab(c); 1234 if (err) 1235 goto out; 1236 1237 if (c->check_lpt_free) { 1238 /* 1239 * We ensure there is enough free space in 1240 * ubifs_lpt_post_commit() by marking nodes dirty. That 1241 * information is lost when we unmount, so we also need 1242 * to check free space once after mounting also. 1243 */ 1244 c->check_lpt_free = 0; 1245 while (need_write_all(c)) { 1246 mutex_unlock(&c->lp_mutex); 1247 err = lpt_gc(c); 1248 if (err) 1249 return err; 1250 mutex_lock(&c->lp_mutex); 1251 } 1252 } 1253 1254 lpt_tgc_start(c); 1255 1256 if (!c->dirty_pn_cnt) { 1257 dbg_cmt("no cnodes to commit"); 1258 err = 0; 1259 goto out; 1260 } 1261 1262 if (!c->big_lpt && need_write_all(c)) { 1263 /* If needed, write everything */ 1264 err = make_tree_dirty(c); 1265 if (err) 1266 goto out; 1267 lpt_tgc_start(c); 1268 } 1269 1270 if (c->big_lpt) 1271 populate_lsave(c); 1272 1273 cnt = get_cnodes_to_commit(c); 1274 ubifs_assert(cnt != 0); 1275 1276 err = layout_cnodes(c); 1277 if (err) 1278 goto out; 1279 1280 /* Copy the LPT's own lprops for end commit to write */ 1281 memcpy(c->ltab_cmt, c->ltab, 1282 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 1283 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); 1284 1285 out: 1286 mutex_unlock(&c->lp_mutex); 1287 return err; 1288 } 1289 1290 /** 1291 * free_obsolete_cnodes - free obsolete cnodes for commit end. 1292 * @c: UBIFS file-system description object 1293 */ 1294 static void free_obsolete_cnodes(struct ubifs_info *c) 1295 { 1296 struct ubifs_cnode *cnode, *cnext; 1297 1298 cnext = c->lpt_cnext; 1299 if (!cnext) 1300 return; 1301 do { 1302 cnode = cnext; 1303 cnext = cnode->cnext; 1304 if (test_bit(OBSOLETE_CNODE, &cnode->flags)) 1305 kfree(cnode); 1306 else 1307 cnode->cnext = NULL; 1308 } while (cnext != c->lpt_cnext); 1309 c->lpt_cnext = NULL; 1310 } 1311 1312 /** 1313 * ubifs_lpt_end_commit - finish the commit operation. 1314 * @c: the UBIFS file-system description object 1315 * 1316 * This function has to be called when the commit operation finishes. It 1317 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to 1318 * the media. Returns zero in case of success and a negative error code in case 1319 * of failure. 1320 */ 1321 int ubifs_lpt_end_commit(struct ubifs_info *c) 1322 { 1323 int err; 1324 1325 dbg_lp(""); 1326 1327 if (!c->lpt_cnext) 1328 return 0; 1329 1330 err = write_cnodes(c); 1331 if (err) 1332 return err; 1333 1334 mutex_lock(&c->lp_mutex); 1335 free_obsolete_cnodes(c); 1336 mutex_unlock(&c->lp_mutex); 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. 1343 * @c: UBIFS file-system description object 1344 * 1345 * LPT trivial GC is completed after a commit. Also LPT GC is done after a 1346 * commit for the "big" LPT model. 1347 */ 1348 int ubifs_lpt_post_commit(struct ubifs_info *c) 1349 { 1350 int err; 1351 1352 mutex_lock(&c->lp_mutex); 1353 err = lpt_tgc_end(c); 1354 if (err) 1355 goto out; 1356 if (c->big_lpt) 1357 while (need_write_all(c)) { 1358 mutex_unlock(&c->lp_mutex); 1359 err = lpt_gc(c); 1360 if (err) 1361 return err; 1362 mutex_lock(&c->lp_mutex); 1363 } 1364 out: 1365 mutex_unlock(&c->lp_mutex); 1366 return err; 1367 } 1368 1369 /** 1370 * first_nnode - find the first nnode in memory. 1371 * @c: UBIFS file-system description object 1372 * @hght: height of tree where nnode found is returned here 1373 * 1374 * This function returns a pointer to the nnode found or %NULL if no nnode is 1375 * found. This function is a helper to 'ubifs_lpt_free()'. 1376 */ 1377 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght) 1378 { 1379 struct ubifs_nnode *nnode; 1380 int h, i, found; 1381 1382 nnode = c->nroot; 1383 *hght = 0; 1384 if (!nnode) 1385 return NULL; 1386 for (h = 1; h < c->lpt_hght; h++) { 1387 found = 0; 1388 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1389 if (nnode->nbranch[i].nnode) { 1390 found = 1; 1391 nnode = nnode->nbranch[i].nnode; 1392 *hght = h; 1393 break; 1394 } 1395 } 1396 if (!found) 1397 break; 1398 } 1399 return nnode; 1400 } 1401 1402 /** 1403 * next_nnode - find the next nnode in memory. 1404 * @c: UBIFS file-system description object 1405 * @nnode: nnode from which to start. 1406 * @hght: height of tree where nnode is, is passed and returned here 1407 * 1408 * This function returns a pointer to the nnode found or %NULL if no nnode is 1409 * found. This function is a helper to 'ubifs_lpt_free()'. 1410 */ 1411 static struct ubifs_nnode *next_nnode(struct ubifs_info *c, 1412 struct ubifs_nnode *nnode, int *hght) 1413 { 1414 struct ubifs_nnode *parent; 1415 int iip, h, i, found; 1416 1417 parent = nnode->parent; 1418 if (!parent) 1419 return NULL; 1420 if (nnode->iip == UBIFS_LPT_FANOUT - 1) { 1421 *hght -= 1; 1422 return parent; 1423 } 1424 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { 1425 nnode = parent->nbranch[iip].nnode; 1426 if (nnode) 1427 break; 1428 } 1429 if (!nnode) { 1430 *hght -= 1; 1431 return parent; 1432 } 1433 for (h = *hght + 1; h < c->lpt_hght; h++) { 1434 found = 0; 1435 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1436 if (nnode->nbranch[i].nnode) { 1437 found = 1; 1438 nnode = nnode->nbranch[i].nnode; 1439 *hght = h; 1440 break; 1441 } 1442 } 1443 if (!found) 1444 break; 1445 } 1446 return nnode; 1447 } 1448 1449 /** 1450 * ubifs_lpt_free - free resources owned by the LPT. 1451 * @c: UBIFS file-system description object 1452 * @wr_only: free only resources used for writing 1453 */ 1454 void ubifs_lpt_free(struct ubifs_info *c, int wr_only) 1455 { 1456 struct ubifs_nnode *nnode; 1457 int i, hght; 1458 1459 /* Free write-only things first */ 1460 1461 free_obsolete_cnodes(c); /* Leftover from a failed commit */ 1462 1463 vfree(c->ltab_cmt); 1464 c->ltab_cmt = NULL; 1465 vfree(c->lpt_buf); 1466 c->lpt_buf = NULL; 1467 kfree(c->lsave); 1468 c->lsave = NULL; 1469 1470 if (wr_only) 1471 return; 1472 1473 /* Now free the rest */ 1474 1475 nnode = first_nnode(c, &hght); 1476 while (nnode) { 1477 for (i = 0; i < UBIFS_LPT_FANOUT; i++) 1478 kfree(nnode->nbranch[i].nnode); 1479 nnode = next_nnode(c, nnode, &hght); 1480 } 1481 for (i = 0; i < LPROPS_HEAP_CNT; i++) 1482 kfree(c->lpt_heap[i].arr); 1483 kfree(c->dirty_idx.arr); 1484 kfree(c->nroot); 1485 vfree(c->ltab); 1486 kfree(c->lpt_nod_buf); 1487 } 1488 1489 /* 1490 * Everything below is related to debugging. 1491 */ 1492 1493 /** 1494 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes. 1495 * @buf: buffer 1496 * @len: buffer length 1497 */ 1498 static int dbg_is_all_ff(uint8_t *buf, int len) 1499 { 1500 int i; 1501 1502 for (i = 0; i < len; i++) 1503 if (buf[i] != 0xff) 1504 return 0; 1505 return 1; 1506 } 1507 1508 /** 1509 * dbg_is_nnode_dirty - determine if a nnode is dirty. 1510 * @c: the UBIFS file-system description object 1511 * @lnum: LEB number where nnode was written 1512 * @offs: offset where nnode was written 1513 */ 1514 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) 1515 { 1516 struct ubifs_nnode *nnode; 1517 int hght; 1518 1519 /* Entire tree is in memory so first_nnode / next_nnode are OK */ 1520 nnode = first_nnode(c, &hght); 1521 for (; nnode; nnode = next_nnode(c, nnode, &hght)) { 1522 struct ubifs_nbranch *branch; 1523 1524 cond_resched(); 1525 if (nnode->parent) { 1526 branch = &nnode->parent->nbranch[nnode->iip]; 1527 if (branch->lnum != lnum || branch->offs != offs) 1528 continue; 1529 if (test_bit(DIRTY_CNODE, &nnode->flags)) 1530 return 1; 1531 return 0; 1532 } else { 1533 if (c->lpt_lnum != lnum || c->lpt_offs != offs) 1534 continue; 1535 if (test_bit(DIRTY_CNODE, &nnode->flags)) 1536 return 1; 1537 return 0; 1538 } 1539 } 1540 return 1; 1541 } 1542 1543 /** 1544 * dbg_is_pnode_dirty - determine if a pnode is dirty. 1545 * @c: the UBIFS file-system description object 1546 * @lnum: LEB number where pnode was written 1547 * @offs: offset where pnode was written 1548 */ 1549 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) 1550 { 1551 int i, cnt; 1552 1553 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 1554 for (i = 0; i < cnt; i++) { 1555 struct ubifs_pnode *pnode; 1556 struct ubifs_nbranch *branch; 1557 1558 cond_resched(); 1559 pnode = pnode_lookup(c, i); 1560 if (IS_ERR(pnode)) 1561 return PTR_ERR(pnode); 1562 branch = &pnode->parent->nbranch[pnode->iip]; 1563 if (branch->lnum != lnum || branch->offs != offs) 1564 continue; 1565 if (test_bit(DIRTY_CNODE, &pnode->flags)) 1566 return 1; 1567 return 0; 1568 } 1569 return 1; 1570 } 1571 1572 /** 1573 * dbg_is_ltab_dirty - determine if a ltab node is dirty. 1574 * @c: the UBIFS file-system description object 1575 * @lnum: LEB number where ltab node was written 1576 * @offs: offset where ltab node was written 1577 */ 1578 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) 1579 { 1580 if (lnum != c->ltab_lnum || offs != c->ltab_offs) 1581 return 1; 1582 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; 1583 } 1584 1585 /** 1586 * dbg_is_lsave_dirty - determine if a lsave node is dirty. 1587 * @c: the UBIFS file-system description object 1588 * @lnum: LEB number where lsave node was written 1589 * @offs: offset where lsave node was written 1590 */ 1591 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) 1592 { 1593 if (lnum != c->lsave_lnum || offs != c->lsave_offs) 1594 return 1; 1595 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; 1596 } 1597 1598 /** 1599 * dbg_is_node_dirty - determine if a node is dirty. 1600 * @c: the UBIFS file-system description object 1601 * @node_type: node type 1602 * @lnum: LEB number where node was written 1603 * @offs: offset where node was written 1604 */ 1605 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, 1606 int offs) 1607 { 1608 switch (node_type) { 1609 case UBIFS_LPT_NNODE: 1610 return dbg_is_nnode_dirty(c, lnum, offs); 1611 case UBIFS_LPT_PNODE: 1612 return dbg_is_pnode_dirty(c, lnum, offs); 1613 case UBIFS_LPT_LTAB: 1614 return dbg_is_ltab_dirty(c, lnum, offs); 1615 case UBIFS_LPT_LSAVE: 1616 return dbg_is_lsave_dirty(c, lnum, offs); 1617 } 1618 return 1; 1619 } 1620 1621 /** 1622 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. 1623 * @c: the UBIFS file-system description object 1624 * @lnum: LEB number where node was written 1625 * 1626 * This function returns %0 on success and a negative error code on failure. 1627 */ 1628 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) 1629 { 1630 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; 1631 int ret; 1632 void *buf, *p; 1633 1634 if (!dbg_is_chk_lprops(c)) 1635 return 0; 1636 1637 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1638 if (!buf) { 1639 ubifs_err(c, "cannot allocate memory for ltab checking"); 1640 return 0; 1641 } 1642 1643 dbg_lp("LEB %d", lnum); 1644 1645 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); 1646 if (err) 1647 goto out; 1648 1649 while (1) { 1650 if (!is_a_node(c, p, len)) { 1651 int i, pad_len; 1652 1653 pad_len = get_pad_len(c, p, len); 1654 if (pad_len) { 1655 p += pad_len; 1656 len -= pad_len; 1657 dirty += pad_len; 1658 continue; 1659 } 1660 if (!dbg_is_all_ff(p, len)) { 1661 ubifs_err(c, "invalid empty space in LEB %d at %d", 1662 lnum, c->leb_size - len); 1663 err = -EINVAL; 1664 } 1665 i = lnum - c->lpt_first; 1666 if (len != c->ltab[i].free) { 1667 ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)", 1668 lnum, len, c->ltab[i].free); 1669 err = -EINVAL; 1670 } 1671 if (dirty != c->ltab[i].dirty) { 1672 ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)", 1673 lnum, dirty, c->ltab[i].dirty); 1674 err = -EINVAL; 1675 } 1676 goto out; 1677 } 1678 node_type = get_lpt_node_type(c, p, &node_num); 1679 node_len = get_lpt_node_len(c, node_type); 1680 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); 1681 if (ret == 1) 1682 dirty += node_len; 1683 p += node_len; 1684 len -= node_len; 1685 } 1686 1687 err = 0; 1688 out: 1689 vfree(buf); 1690 return err; 1691 } 1692 1693 /** 1694 * dbg_check_ltab - check the free and dirty space in the ltab. 1695 * @c: the UBIFS file-system description object 1696 * 1697 * This function returns %0 on success and a negative error code on failure. 1698 */ 1699 int dbg_check_ltab(struct ubifs_info *c) 1700 { 1701 int lnum, err, i, cnt; 1702 1703 if (!dbg_is_chk_lprops(c)) 1704 return 0; 1705 1706 /* Bring the entire tree into memory */ 1707 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 1708 for (i = 0; i < cnt; i++) { 1709 struct ubifs_pnode *pnode; 1710 1711 pnode = pnode_lookup(c, i); 1712 if (IS_ERR(pnode)) 1713 return PTR_ERR(pnode); 1714 cond_resched(); 1715 } 1716 1717 /* Check nodes */ 1718 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); 1719 if (err) 1720 return err; 1721 1722 /* Check each LEB */ 1723 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { 1724 err = dbg_check_ltab_lnum(c, lnum); 1725 if (err) { 1726 ubifs_err(c, "failed at LEB %d", lnum); 1727 return err; 1728 } 1729 } 1730 1731 dbg_lp("succeeded"); 1732 return 0; 1733 } 1734 1735 /** 1736 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT. 1737 * @c: the UBIFS file-system description object 1738 * 1739 * This function returns %0 on success and a negative error code on failure. 1740 */ 1741 int dbg_chk_lpt_free_spc(struct ubifs_info *c) 1742 { 1743 long long free = 0; 1744 int i; 1745 1746 if (!dbg_is_chk_lprops(c)) 1747 return 0; 1748 1749 for (i = 0; i < c->lpt_lebs; i++) { 1750 if (c->ltab[i].tgc || c->ltab[i].cmt) 1751 continue; 1752 if (i + c->lpt_first == c->nhead_lnum) 1753 free += c->leb_size - c->nhead_offs; 1754 else if (c->ltab[i].free == c->leb_size) 1755 free += c->leb_size; 1756 } 1757 if (free < c->lpt_sz) { 1758 ubifs_err(c, "LPT space error: free %lld lpt_sz %lld", 1759 free, c->lpt_sz); 1760 ubifs_dump_lpt_info(c); 1761 ubifs_dump_lpt_lebs(c); 1762 dump_stack(); 1763 return -EINVAL; 1764 } 1765 return 0; 1766 } 1767 1768 /** 1769 * dbg_chk_lpt_sz - check LPT does not write more than LPT size. 1770 * @c: the UBIFS file-system description object 1771 * @action: what to do 1772 * @len: length written 1773 * 1774 * This function returns %0 on success and a negative error code on failure. 1775 * The @action argument may be one of: 1776 * o %0 - LPT debugging checking starts, initialize debugging variables; 1777 * o %1 - wrote an LPT node, increase LPT size by @len bytes; 1778 * o %2 - switched to a different LEB and wasted @len bytes; 1779 * o %3 - check that we've written the right number of bytes. 1780 * o %4 - wasted @len bytes; 1781 */ 1782 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) 1783 { 1784 struct ubifs_debug_info *d = c->dbg; 1785 long long chk_lpt_sz, lpt_sz; 1786 int err = 0; 1787 1788 if (!dbg_is_chk_lprops(c)) 1789 return 0; 1790 1791 switch (action) { 1792 case 0: 1793 d->chk_lpt_sz = 0; 1794 d->chk_lpt_sz2 = 0; 1795 d->chk_lpt_lebs = 0; 1796 d->chk_lpt_wastage = 0; 1797 if (c->dirty_pn_cnt > c->pnode_cnt) { 1798 ubifs_err(c, "dirty pnodes %d exceed max %d", 1799 c->dirty_pn_cnt, c->pnode_cnt); 1800 err = -EINVAL; 1801 } 1802 if (c->dirty_nn_cnt > c->nnode_cnt) { 1803 ubifs_err(c, "dirty nnodes %d exceed max %d", 1804 c->dirty_nn_cnt, c->nnode_cnt); 1805 err = -EINVAL; 1806 } 1807 return err; 1808 case 1: 1809 d->chk_lpt_sz += len; 1810 return 0; 1811 case 2: 1812 d->chk_lpt_sz += len; 1813 d->chk_lpt_wastage += len; 1814 d->chk_lpt_lebs += 1; 1815 return 0; 1816 case 3: 1817 chk_lpt_sz = c->leb_size; 1818 chk_lpt_sz *= d->chk_lpt_lebs; 1819 chk_lpt_sz += len - c->nhead_offs; 1820 if (d->chk_lpt_sz != chk_lpt_sz) { 1821 ubifs_err(c, "LPT wrote %lld but space used was %lld", 1822 d->chk_lpt_sz, chk_lpt_sz); 1823 err = -EINVAL; 1824 } 1825 if (d->chk_lpt_sz > c->lpt_sz) { 1826 ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld", 1827 d->chk_lpt_sz, c->lpt_sz); 1828 err = -EINVAL; 1829 } 1830 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) { 1831 ubifs_err(c, "LPT layout size %lld but wrote %lld", 1832 d->chk_lpt_sz, d->chk_lpt_sz2); 1833 err = -EINVAL; 1834 } 1835 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) { 1836 ubifs_err(c, "LPT new nhead offs: expected %d was %d", 1837 d->new_nhead_offs, len); 1838 err = -EINVAL; 1839 } 1840 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; 1841 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; 1842 lpt_sz += c->ltab_sz; 1843 if (c->big_lpt) 1844 lpt_sz += c->lsave_sz; 1845 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) { 1846 ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld", 1847 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz); 1848 err = -EINVAL; 1849 } 1850 if (err) { 1851 ubifs_dump_lpt_info(c); 1852 ubifs_dump_lpt_lebs(c); 1853 dump_stack(); 1854 } 1855 d->chk_lpt_sz2 = d->chk_lpt_sz; 1856 d->chk_lpt_sz = 0; 1857 d->chk_lpt_wastage = 0; 1858 d->chk_lpt_lebs = 0; 1859 d->new_nhead_offs = len; 1860 return err; 1861 case 4: 1862 d->chk_lpt_sz += len; 1863 d->chk_lpt_wastage += len; 1864 return 0; 1865 default: 1866 return -EINVAL; 1867 } 1868 } 1869 1870 /** 1871 * dump_lpt_leb - dump an LPT LEB. 1872 * @c: UBIFS file-system description object 1873 * @lnum: LEB number to dump 1874 * 1875 * This function dumps an LEB from LPT area. Nodes in this area are very 1876 * different to nodes in the main area (e.g., they do not have common headers, 1877 * they do not have 8-byte alignments, etc), so we have a separate function to 1878 * dump LPT area LEBs. Note, LPT has to be locked by the caller. 1879 */ 1880 static void dump_lpt_leb(const struct ubifs_info *c, int lnum) 1881 { 1882 int err, len = c->leb_size, node_type, node_num, node_len, offs; 1883 void *buf, *p; 1884 1885 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 1886 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1887 if (!buf) { 1888 ubifs_err(c, "cannot allocate memory to dump LPT"); 1889 return; 1890 } 1891 1892 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); 1893 if (err) 1894 goto out; 1895 1896 while (1) { 1897 offs = c->leb_size - len; 1898 if (!is_a_node(c, p, len)) { 1899 int pad_len; 1900 1901 pad_len = get_pad_len(c, p, len); 1902 if (pad_len) { 1903 pr_err("LEB %d:%d, pad %d bytes\n", 1904 lnum, offs, pad_len); 1905 p += pad_len; 1906 len -= pad_len; 1907 continue; 1908 } 1909 if (len) 1910 pr_err("LEB %d:%d, free %d bytes\n", 1911 lnum, offs, len); 1912 break; 1913 } 1914 1915 node_type = get_lpt_node_type(c, p, &node_num); 1916 switch (node_type) { 1917 case UBIFS_LPT_PNODE: 1918 { 1919 node_len = c->pnode_sz; 1920 if (c->big_lpt) 1921 pr_err("LEB %d:%d, pnode num %d\n", 1922 lnum, offs, node_num); 1923 else 1924 pr_err("LEB %d:%d, pnode\n", lnum, offs); 1925 break; 1926 } 1927 case UBIFS_LPT_NNODE: 1928 { 1929 int i; 1930 struct ubifs_nnode nnode; 1931 1932 node_len = c->nnode_sz; 1933 if (c->big_lpt) 1934 pr_err("LEB %d:%d, nnode num %d, ", 1935 lnum, offs, node_num); 1936 else 1937 pr_err("LEB %d:%d, nnode, ", 1938 lnum, offs); 1939 err = ubifs_unpack_nnode(c, p, &nnode); 1940 if (err) { 1941 pr_err("failed to unpack_node, error %d\n", 1942 err); 1943 break; 1944 } 1945 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1946 pr_cont("%d:%d", nnode.nbranch[i].lnum, 1947 nnode.nbranch[i].offs); 1948 if (i != UBIFS_LPT_FANOUT - 1) 1949 pr_cont(", "); 1950 } 1951 pr_cont("\n"); 1952 break; 1953 } 1954 case UBIFS_LPT_LTAB: 1955 node_len = c->ltab_sz; 1956 pr_err("LEB %d:%d, ltab\n", lnum, offs); 1957 break; 1958 case UBIFS_LPT_LSAVE: 1959 node_len = c->lsave_sz; 1960 pr_err("LEB %d:%d, lsave len\n", lnum, offs); 1961 break; 1962 default: 1963 ubifs_err(c, "LPT node type %d not recognized", node_type); 1964 goto out; 1965 } 1966 1967 p += node_len; 1968 len -= node_len; 1969 } 1970 1971 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 1972 out: 1973 vfree(buf); 1974 return; 1975 } 1976 1977 /** 1978 * ubifs_dump_lpt_lebs - dump LPT lebs. 1979 * @c: UBIFS file-system description object 1980 * 1981 * This function dumps all LPT LEBs. The caller has to make sure the LPT is 1982 * locked. 1983 */ 1984 void ubifs_dump_lpt_lebs(const struct ubifs_info *c) 1985 { 1986 int i; 1987 1988 pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid); 1989 for (i = 0; i < c->lpt_lebs; i++) 1990 dump_lpt_leb(c, i + c->lpt_first); 1991 pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid); 1992 } 1993 1994 /** 1995 * dbg_populate_lsave - debugging version of 'populate_lsave()' 1996 * @c: UBIFS file-system description object 1997 * 1998 * This is a debugging version for 'populate_lsave()' which populates lsave 1999 * with random LEBs instead of useful LEBs, which is good for test coverage. 2000 * Returns zero if lsave has not been populated (this debugging feature is 2001 * disabled) an non-zero if lsave has been populated. 2002 */ 2003 static int dbg_populate_lsave(struct ubifs_info *c) 2004 { 2005 struct ubifs_lprops *lprops; 2006 struct ubifs_lpt_heap *heap; 2007 int i; 2008 2009 if (!dbg_is_chk_gen(c)) 2010 return 0; 2011 if (prandom_u32() & 3) 2012 return 0; 2013 2014 for (i = 0; i < c->lsave_cnt; i++) 2015 c->lsave[i] = c->main_first; 2016 2017 list_for_each_entry(lprops, &c->empty_list, list) 2018 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; 2019 list_for_each_entry(lprops, &c->freeable_list, list) 2020 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; 2021 list_for_each_entry(lprops, &c->frdi_idx_list, list) 2022 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; 2023 2024 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 2025 for (i = 0; i < heap->cnt; i++) 2026 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; 2027 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 2028 for (i = 0; i < heap->cnt; i++) 2029 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; 2030 heap = &c->lpt_heap[LPROPS_FREE - 1]; 2031 for (i = 0; i < heap->cnt; i++) 2032 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; 2033 2034 return 1; 2035 } 2036