1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements commit-related functionality of the LEB properties 25 * subsystem. 26 */ 27 28 #include <linux/crc16.h> 29 #include <linux/slab.h> 30 #include <linux/random.h> 31 #include "ubifs.h" 32 33 #ifdef CONFIG_UBIFS_FS_DEBUG 34 static int dbg_populate_lsave(struct ubifs_info *c); 35 #else 36 #define dbg_populate_lsave(c) 0 37 #endif 38 39 /** 40 * first_dirty_cnode - find first dirty cnode. 41 * @c: UBIFS file-system description object 42 * @nnode: nnode at which to start 43 * 44 * This function returns the first dirty cnode or %NULL if there is not one. 45 */ 46 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode) 47 { 48 ubifs_assert(nnode); 49 while (1) { 50 int i, cont = 0; 51 52 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 53 struct ubifs_cnode *cnode; 54 55 cnode = nnode->nbranch[i].cnode; 56 if (cnode && 57 test_bit(DIRTY_CNODE, &cnode->flags)) { 58 if (cnode->level == 0) 59 return cnode; 60 nnode = (struct ubifs_nnode *)cnode; 61 cont = 1; 62 break; 63 } 64 } 65 if (!cont) 66 return (struct ubifs_cnode *)nnode; 67 } 68 } 69 70 /** 71 * next_dirty_cnode - find next dirty cnode. 72 * @cnode: cnode from which to begin searching 73 * 74 * This function returns the next dirty cnode or %NULL if there is not one. 75 */ 76 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode) 77 { 78 struct ubifs_nnode *nnode; 79 int i; 80 81 ubifs_assert(cnode); 82 nnode = cnode->parent; 83 if (!nnode) 84 return NULL; 85 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { 86 cnode = nnode->nbranch[i].cnode; 87 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { 88 if (cnode->level == 0) 89 return cnode; /* cnode is a pnode */ 90 /* cnode is a nnode */ 91 return first_dirty_cnode((struct ubifs_nnode *)cnode); 92 } 93 } 94 return (struct ubifs_cnode *)nnode; 95 } 96 97 /** 98 * get_cnodes_to_commit - create list of dirty cnodes to commit. 99 * @c: UBIFS file-system description object 100 * 101 * This function returns the number of cnodes to commit. 102 */ 103 static int get_cnodes_to_commit(struct ubifs_info *c) 104 { 105 struct ubifs_cnode *cnode, *cnext; 106 int cnt = 0; 107 108 if (!c->nroot) 109 return 0; 110 111 if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) 112 return 0; 113 114 c->lpt_cnext = first_dirty_cnode(c->nroot); 115 cnode = c->lpt_cnext; 116 if (!cnode) 117 return 0; 118 cnt += 1; 119 while (1) { 120 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags)); 121 __set_bit(COW_CNODE, &cnode->flags); 122 cnext = next_dirty_cnode(cnode); 123 if (!cnext) { 124 cnode->cnext = c->lpt_cnext; 125 break; 126 } 127 cnode->cnext = cnext; 128 cnode = cnext; 129 cnt += 1; 130 } 131 dbg_cmt("committing %d cnodes", cnt); 132 dbg_lp("committing %d cnodes", cnt); 133 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); 134 return cnt; 135 } 136 137 /** 138 * upd_ltab - update LPT LEB properties. 139 * @c: UBIFS file-system description object 140 * @lnum: LEB number 141 * @free: amount of free space 142 * @dirty: amount of dirty space to add 143 */ 144 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) 145 { 146 dbg_lp("LEB %d free %d dirty %d to %d +%d", 147 lnum, c->ltab[lnum - c->lpt_first].free, 148 c->ltab[lnum - c->lpt_first].dirty, free, dirty); 149 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); 150 c->ltab[lnum - c->lpt_first].free = free; 151 c->ltab[lnum - c->lpt_first].dirty += dirty; 152 } 153 154 /** 155 * alloc_lpt_leb - allocate an LPT LEB that is empty. 156 * @c: UBIFS file-system description object 157 * @lnum: LEB number is passed and returned here 158 * 159 * This function finds the next empty LEB in the ltab starting from @lnum. If a 160 * an empty LEB is found it is returned in @lnum and the function returns %0. 161 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed 162 * never to run out of space. 163 */ 164 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) 165 { 166 int i, n; 167 168 n = *lnum - c->lpt_first + 1; 169 for (i = n; i < c->lpt_lebs; i++) { 170 if (c->ltab[i].tgc || c->ltab[i].cmt) 171 continue; 172 if (c->ltab[i].free == c->leb_size) { 173 c->ltab[i].cmt = 1; 174 *lnum = i + c->lpt_first; 175 return 0; 176 } 177 } 178 179 for (i = 0; i < n; i++) { 180 if (c->ltab[i].tgc || c->ltab[i].cmt) 181 continue; 182 if (c->ltab[i].free == c->leb_size) { 183 c->ltab[i].cmt = 1; 184 *lnum = i + c->lpt_first; 185 return 0; 186 } 187 } 188 return -ENOSPC; 189 } 190 191 /** 192 * layout_cnodes - layout cnodes for commit. 193 * @c: UBIFS file-system description object 194 * 195 * This function returns %0 on success and a negative error code on failure. 196 */ 197 static int layout_cnodes(struct ubifs_info *c) 198 { 199 int lnum, offs, len, alen, done_lsave, done_ltab, err; 200 struct ubifs_cnode *cnode; 201 202 err = dbg_chk_lpt_sz(c, 0, 0); 203 if (err) 204 return err; 205 cnode = c->lpt_cnext; 206 if (!cnode) 207 return 0; 208 lnum = c->nhead_lnum; 209 offs = c->nhead_offs; 210 /* Try to place lsave and ltab nicely */ 211 done_lsave = !c->big_lpt; 212 done_ltab = 0; 213 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { 214 done_lsave = 1; 215 c->lsave_lnum = lnum; 216 c->lsave_offs = offs; 217 offs += c->lsave_sz; 218 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 219 } 220 221 if (offs + c->ltab_sz <= c->leb_size) { 222 done_ltab = 1; 223 c->ltab_lnum = lnum; 224 c->ltab_offs = offs; 225 offs += c->ltab_sz; 226 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 227 } 228 229 do { 230 if (cnode->level) { 231 len = c->nnode_sz; 232 c->dirty_nn_cnt -= 1; 233 } else { 234 len = c->pnode_sz; 235 c->dirty_pn_cnt -= 1; 236 } 237 while (offs + len > c->leb_size) { 238 alen = ALIGN(offs, c->min_io_size); 239 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 240 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 241 err = alloc_lpt_leb(c, &lnum); 242 if (err) 243 goto no_space; 244 offs = 0; 245 ubifs_assert(lnum >= c->lpt_first && 246 lnum <= c->lpt_last); 247 /* Try to place lsave and ltab nicely */ 248 if (!done_lsave) { 249 done_lsave = 1; 250 c->lsave_lnum = lnum; 251 c->lsave_offs = offs; 252 offs += c->lsave_sz; 253 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 254 continue; 255 } 256 if (!done_ltab) { 257 done_ltab = 1; 258 c->ltab_lnum = lnum; 259 c->ltab_offs = offs; 260 offs += c->ltab_sz; 261 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 262 continue; 263 } 264 break; 265 } 266 if (cnode->parent) { 267 cnode->parent->nbranch[cnode->iip].lnum = lnum; 268 cnode->parent->nbranch[cnode->iip].offs = offs; 269 } else { 270 c->lpt_lnum = lnum; 271 c->lpt_offs = offs; 272 } 273 offs += len; 274 dbg_chk_lpt_sz(c, 1, len); 275 cnode = cnode->cnext; 276 } while (cnode && cnode != c->lpt_cnext); 277 278 /* Make sure to place LPT's save table */ 279 if (!done_lsave) { 280 if (offs + c->lsave_sz > c->leb_size) { 281 alen = ALIGN(offs, c->min_io_size); 282 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 283 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 284 err = alloc_lpt_leb(c, &lnum); 285 if (err) 286 goto no_space; 287 offs = 0; 288 ubifs_assert(lnum >= c->lpt_first && 289 lnum <= c->lpt_last); 290 } 291 done_lsave = 1; 292 c->lsave_lnum = lnum; 293 c->lsave_offs = offs; 294 offs += c->lsave_sz; 295 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 296 } 297 298 /* Make sure to place LPT's own lprops table */ 299 if (!done_ltab) { 300 if (offs + c->ltab_sz > c->leb_size) { 301 alen = ALIGN(offs, c->min_io_size); 302 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 303 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 304 err = alloc_lpt_leb(c, &lnum); 305 if (err) 306 goto no_space; 307 offs = 0; 308 ubifs_assert(lnum >= c->lpt_first && 309 lnum <= c->lpt_last); 310 } 311 done_ltab = 1; 312 c->ltab_lnum = lnum; 313 c->ltab_offs = offs; 314 offs += c->ltab_sz; 315 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 316 } 317 318 alen = ALIGN(offs, c->min_io_size); 319 upd_ltab(c, lnum, c->leb_size - alen, alen - offs); 320 dbg_chk_lpt_sz(c, 4, alen - offs); 321 err = dbg_chk_lpt_sz(c, 3, alen); 322 if (err) 323 return err; 324 return 0; 325 326 no_space: 327 ubifs_err("LPT out of space"); 328 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, " 329 "done_lsave %d", lnum, offs, len, done_ltab, done_lsave); 330 dbg_dump_lpt_info(c); 331 dbg_dump_lpt_lebs(c); 332 dump_stack(); 333 return err; 334 } 335 336 /** 337 * realloc_lpt_leb - allocate an LPT LEB that is empty. 338 * @c: UBIFS file-system description object 339 * @lnum: LEB number is passed and returned here 340 * 341 * This function duplicates exactly the results of the function alloc_lpt_leb. 342 * It is used during end commit to reallocate the same LEB numbers that were 343 * allocated by alloc_lpt_leb during start commit. 344 * 345 * This function finds the next LEB that was allocated by the alloc_lpt_leb 346 * function starting from @lnum. If a LEB is found it is returned in @lnum and 347 * the function returns %0. Otherwise the function returns -ENOSPC. 348 * Note however, that LPT is designed never to run out of space. 349 */ 350 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) 351 { 352 int i, n; 353 354 n = *lnum - c->lpt_first + 1; 355 for (i = n; i < c->lpt_lebs; i++) 356 if (c->ltab[i].cmt) { 357 c->ltab[i].cmt = 0; 358 *lnum = i + c->lpt_first; 359 return 0; 360 } 361 362 for (i = 0; i < n; i++) 363 if (c->ltab[i].cmt) { 364 c->ltab[i].cmt = 0; 365 *lnum = i + c->lpt_first; 366 return 0; 367 } 368 return -ENOSPC; 369 } 370 371 /** 372 * write_cnodes - write cnodes for commit. 373 * @c: UBIFS file-system description object 374 * 375 * This function returns %0 on success and a negative error code on failure. 376 */ 377 static int write_cnodes(struct ubifs_info *c) 378 { 379 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; 380 struct ubifs_cnode *cnode; 381 void *buf = c->lpt_buf; 382 383 cnode = c->lpt_cnext; 384 if (!cnode) 385 return 0; 386 lnum = c->nhead_lnum; 387 offs = c->nhead_offs; 388 from = offs; 389 /* Ensure empty LEB is unmapped */ 390 if (offs == 0) { 391 err = ubifs_leb_unmap(c, lnum); 392 if (err) 393 return err; 394 } 395 /* Try to place lsave and ltab nicely */ 396 done_lsave = !c->big_lpt; 397 done_ltab = 0; 398 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { 399 done_lsave = 1; 400 ubifs_pack_lsave(c, buf + offs, c->lsave); 401 offs += c->lsave_sz; 402 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 403 } 404 405 if (offs + c->ltab_sz <= c->leb_size) { 406 done_ltab = 1; 407 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); 408 offs += c->ltab_sz; 409 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 410 } 411 412 /* Loop for each cnode */ 413 do { 414 if (cnode->level) 415 len = c->nnode_sz; 416 else 417 len = c->pnode_sz; 418 while (offs + len > c->leb_size) { 419 wlen = offs - from; 420 if (wlen) { 421 alen = ALIGN(wlen, c->min_io_size); 422 memset(buf + offs, 0xff, alen - wlen); 423 err = ubifs_leb_write(c, lnum, buf + from, from, 424 alen, UBI_SHORTTERM); 425 if (err) 426 return err; 427 } 428 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 429 err = realloc_lpt_leb(c, &lnum); 430 if (err) 431 goto no_space; 432 offs = from = 0; 433 ubifs_assert(lnum >= c->lpt_first && 434 lnum <= c->lpt_last); 435 err = ubifs_leb_unmap(c, lnum); 436 if (err) 437 return err; 438 /* Try to place lsave and ltab nicely */ 439 if (!done_lsave) { 440 done_lsave = 1; 441 ubifs_pack_lsave(c, buf + offs, c->lsave); 442 offs += c->lsave_sz; 443 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 444 continue; 445 } 446 if (!done_ltab) { 447 done_ltab = 1; 448 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); 449 offs += c->ltab_sz; 450 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 451 continue; 452 } 453 break; 454 } 455 if (cnode->level) 456 ubifs_pack_nnode(c, buf + offs, 457 (struct ubifs_nnode *)cnode); 458 else 459 ubifs_pack_pnode(c, buf + offs, 460 (struct ubifs_pnode *)cnode); 461 /* 462 * The reason for the barriers is the same as in case of TNC. 463 * See comment in 'write_index()'. 'dirty_cow_nnode()' and 464 * 'dirty_cow_pnode()' are the functions for which this is 465 * important. 466 */ 467 clear_bit(DIRTY_CNODE, &cnode->flags); 468 smp_mb__before_clear_bit(); 469 clear_bit(COW_CNODE, &cnode->flags); 470 smp_mb__after_clear_bit(); 471 offs += len; 472 dbg_chk_lpt_sz(c, 1, len); 473 cnode = cnode->cnext; 474 } while (cnode && cnode != c->lpt_cnext); 475 476 /* Make sure to place LPT's save table */ 477 if (!done_lsave) { 478 if (offs + c->lsave_sz > c->leb_size) { 479 wlen = offs - from; 480 alen = ALIGN(wlen, c->min_io_size); 481 memset(buf + offs, 0xff, alen - wlen); 482 err = ubifs_leb_write(c, lnum, buf + from, from, alen, 483 UBI_SHORTTERM); 484 if (err) 485 return err; 486 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 487 err = realloc_lpt_leb(c, &lnum); 488 if (err) 489 goto no_space; 490 offs = from = 0; 491 ubifs_assert(lnum >= c->lpt_first && 492 lnum <= c->lpt_last); 493 err = ubifs_leb_unmap(c, lnum); 494 if (err) 495 return err; 496 } 497 done_lsave = 1; 498 ubifs_pack_lsave(c, buf + offs, c->lsave); 499 offs += c->lsave_sz; 500 dbg_chk_lpt_sz(c, 1, c->lsave_sz); 501 } 502 503 /* Make sure to place LPT's own lprops table */ 504 if (!done_ltab) { 505 if (offs + c->ltab_sz > c->leb_size) { 506 wlen = offs - from; 507 alen = ALIGN(wlen, c->min_io_size); 508 memset(buf + offs, 0xff, alen - wlen); 509 err = ubifs_leb_write(c, lnum, buf + from, from, alen, 510 UBI_SHORTTERM); 511 if (err) 512 return err; 513 dbg_chk_lpt_sz(c, 2, c->leb_size - offs); 514 err = realloc_lpt_leb(c, &lnum); 515 if (err) 516 goto no_space; 517 offs = from = 0; 518 ubifs_assert(lnum >= c->lpt_first && 519 lnum <= c->lpt_last); 520 err = ubifs_leb_unmap(c, lnum); 521 if (err) 522 return err; 523 } 524 done_ltab = 1; 525 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); 526 offs += c->ltab_sz; 527 dbg_chk_lpt_sz(c, 1, c->ltab_sz); 528 } 529 530 /* Write remaining data in buffer */ 531 wlen = offs - from; 532 alen = ALIGN(wlen, c->min_io_size); 533 memset(buf + offs, 0xff, alen - wlen); 534 err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM); 535 if (err) 536 return err; 537 538 dbg_chk_lpt_sz(c, 4, alen - wlen); 539 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size)); 540 if (err) 541 return err; 542 543 c->nhead_lnum = lnum; 544 c->nhead_offs = ALIGN(offs, c->min_io_size); 545 546 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 547 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 548 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 549 if (c->big_lpt) 550 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 551 552 return 0; 553 554 no_space: 555 ubifs_err("LPT out of space mismatch"); 556 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab " 557 "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave); 558 dbg_dump_lpt_info(c); 559 dbg_dump_lpt_lebs(c); 560 dump_stack(); 561 return err; 562 } 563 564 /** 565 * next_pnode_to_dirty - find next pnode to dirty. 566 * @c: UBIFS file-system description object 567 * @pnode: pnode 568 * 569 * This function returns the next pnode to dirty or %NULL if there are no more 570 * pnodes. Note that pnodes that have never been written (lnum == 0) are 571 * skipped. 572 */ 573 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c, 574 struct ubifs_pnode *pnode) 575 { 576 struct ubifs_nnode *nnode; 577 int iip; 578 579 /* Try to go right */ 580 nnode = pnode->parent; 581 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { 582 if (nnode->nbranch[iip].lnum) 583 return ubifs_get_pnode(c, nnode, iip); 584 } 585 586 /* Go up while can't go right */ 587 do { 588 iip = nnode->iip + 1; 589 nnode = nnode->parent; 590 if (!nnode) 591 return NULL; 592 for (; iip < UBIFS_LPT_FANOUT; iip++) { 593 if (nnode->nbranch[iip].lnum) 594 break; 595 } 596 } while (iip >= UBIFS_LPT_FANOUT); 597 598 /* Go right */ 599 nnode = ubifs_get_nnode(c, nnode, iip); 600 if (IS_ERR(nnode)) 601 return (void *)nnode; 602 603 /* Go down to level 1 */ 604 while (nnode->level > 1) { 605 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) { 606 if (nnode->nbranch[iip].lnum) 607 break; 608 } 609 if (iip >= UBIFS_LPT_FANOUT) { 610 /* 611 * Should not happen, but we need to keep going 612 * if it does. 613 */ 614 iip = 0; 615 } 616 nnode = ubifs_get_nnode(c, nnode, iip); 617 if (IS_ERR(nnode)) 618 return (void *)nnode; 619 } 620 621 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) 622 if (nnode->nbranch[iip].lnum) 623 break; 624 if (iip >= UBIFS_LPT_FANOUT) 625 /* Should not happen, but we need to keep going if it does */ 626 iip = 0; 627 return ubifs_get_pnode(c, nnode, iip); 628 } 629 630 /** 631 * pnode_lookup - lookup a pnode in the LPT. 632 * @c: UBIFS file-system description object 633 * @i: pnode number (0 to main_lebs - 1) 634 * 635 * This function returns a pointer to the pnode on success or a negative 636 * error code on failure. 637 */ 638 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) 639 { 640 int err, h, iip, shft; 641 struct ubifs_nnode *nnode; 642 643 if (!c->nroot) { 644 err = ubifs_read_nnode(c, NULL, 0); 645 if (err) 646 return ERR_PTR(err); 647 } 648 i <<= UBIFS_LPT_FANOUT_SHIFT; 649 nnode = c->nroot; 650 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 651 for (h = 1; h < c->lpt_hght; h++) { 652 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 653 shft -= UBIFS_LPT_FANOUT_SHIFT; 654 nnode = ubifs_get_nnode(c, nnode, iip); 655 if (IS_ERR(nnode)) 656 return ERR_CAST(nnode); 657 } 658 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 659 return ubifs_get_pnode(c, nnode, iip); 660 } 661 662 /** 663 * add_pnode_dirt - add dirty space to LPT LEB properties. 664 * @c: UBIFS file-system description object 665 * @pnode: pnode for which to add dirt 666 */ 667 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) 668 { 669 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, 670 c->pnode_sz); 671 } 672 673 /** 674 * do_make_pnode_dirty - mark a pnode dirty. 675 * @c: UBIFS file-system description object 676 * @pnode: pnode to mark dirty 677 */ 678 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) 679 { 680 /* Assumes cnext list is empty i.e. not called during commit */ 681 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { 682 struct ubifs_nnode *nnode; 683 684 c->dirty_pn_cnt += 1; 685 add_pnode_dirt(c, pnode); 686 /* Mark parent and ancestors dirty too */ 687 nnode = pnode->parent; 688 while (nnode) { 689 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 690 c->dirty_nn_cnt += 1; 691 ubifs_add_nnode_dirt(c, nnode); 692 nnode = nnode->parent; 693 } else 694 break; 695 } 696 } 697 } 698 699 /** 700 * make_tree_dirty - mark the entire LEB properties tree dirty. 701 * @c: UBIFS file-system description object 702 * 703 * This function is used by the "small" LPT model to cause the entire LEB 704 * properties tree to be written. The "small" LPT model does not use LPT 705 * garbage collection because it is more efficient to write the entire tree 706 * (because it is small). 707 * 708 * This function returns %0 on success and a negative error code on failure. 709 */ 710 static int make_tree_dirty(struct ubifs_info *c) 711 { 712 struct ubifs_pnode *pnode; 713 714 pnode = pnode_lookup(c, 0); 715 if (IS_ERR(pnode)) 716 return PTR_ERR(pnode); 717 718 while (pnode) { 719 do_make_pnode_dirty(c, pnode); 720 pnode = next_pnode_to_dirty(c, pnode); 721 if (IS_ERR(pnode)) 722 return PTR_ERR(pnode); 723 } 724 return 0; 725 } 726 727 /** 728 * need_write_all - determine if the LPT area is running out of free space. 729 * @c: UBIFS file-system description object 730 * 731 * This function returns %1 if the LPT area is running out of free space and %0 732 * if it is not. 733 */ 734 static int need_write_all(struct ubifs_info *c) 735 { 736 long long free = 0; 737 int i; 738 739 for (i = 0; i < c->lpt_lebs; i++) { 740 if (i + c->lpt_first == c->nhead_lnum) 741 free += c->leb_size - c->nhead_offs; 742 else if (c->ltab[i].free == c->leb_size) 743 free += c->leb_size; 744 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) 745 free += c->leb_size; 746 } 747 /* Less than twice the size left */ 748 if (free <= c->lpt_sz * 2) 749 return 1; 750 return 0; 751 } 752 753 /** 754 * lpt_tgc_start - start trivial garbage collection of LPT LEBs. 755 * @c: UBIFS file-system description object 756 * 757 * LPT trivial garbage collection is where a LPT LEB contains only dirty and 758 * free space and so may be reused as soon as the next commit is completed. 759 * This function is called during start commit to mark LPT LEBs for trivial GC. 760 */ 761 static void lpt_tgc_start(struct ubifs_info *c) 762 { 763 int i; 764 765 for (i = 0; i < c->lpt_lebs; i++) { 766 if (i + c->lpt_first == c->nhead_lnum) 767 continue; 768 if (c->ltab[i].dirty > 0 && 769 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { 770 c->ltab[i].tgc = 1; 771 c->ltab[i].free = c->leb_size; 772 c->ltab[i].dirty = 0; 773 dbg_lp("LEB %d", i + c->lpt_first); 774 } 775 } 776 } 777 778 /** 779 * lpt_tgc_end - end trivial garbage collection of LPT LEBs. 780 * @c: UBIFS file-system description object 781 * 782 * LPT trivial garbage collection is where a LPT LEB contains only dirty and 783 * free space and so may be reused as soon as the next commit is completed. 784 * This function is called after the commit is completed (master node has been 785 * written) and un-maps LPT LEBs that were marked for trivial GC. 786 */ 787 static int lpt_tgc_end(struct ubifs_info *c) 788 { 789 int i, err; 790 791 for (i = 0; i < c->lpt_lebs; i++) 792 if (c->ltab[i].tgc) { 793 err = ubifs_leb_unmap(c, i + c->lpt_first); 794 if (err) 795 return err; 796 c->ltab[i].tgc = 0; 797 dbg_lp("LEB %d", i + c->lpt_first); 798 } 799 return 0; 800 } 801 802 /** 803 * populate_lsave - fill the lsave array with important LEB numbers. 804 * @c: the UBIFS file-system description object 805 * 806 * This function is only called for the "big" model. It records a small number 807 * of LEB numbers of important LEBs. Important LEBs are ones that are (from 808 * most important to least important): empty, freeable, freeable index, dirty 809 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring 810 * their pnodes into memory. That will stop us from having to scan the LPT 811 * straight away. For the "small" model we assume that scanning the LPT is no 812 * big deal. 813 */ 814 static void populate_lsave(struct ubifs_info *c) 815 { 816 struct ubifs_lprops *lprops; 817 struct ubifs_lpt_heap *heap; 818 int i, cnt = 0; 819 820 ubifs_assert(c->big_lpt); 821 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { 822 c->lpt_drty_flgs |= LSAVE_DIRTY; 823 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); 824 } 825 826 if (dbg_populate_lsave(c)) 827 return; 828 829 list_for_each_entry(lprops, &c->empty_list, list) { 830 c->lsave[cnt++] = lprops->lnum; 831 if (cnt >= c->lsave_cnt) 832 return; 833 } 834 list_for_each_entry(lprops, &c->freeable_list, list) { 835 c->lsave[cnt++] = lprops->lnum; 836 if (cnt >= c->lsave_cnt) 837 return; 838 } 839 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 840 c->lsave[cnt++] = lprops->lnum; 841 if (cnt >= c->lsave_cnt) 842 return; 843 } 844 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 845 for (i = 0; i < heap->cnt; i++) { 846 c->lsave[cnt++] = heap->arr[i]->lnum; 847 if (cnt >= c->lsave_cnt) 848 return; 849 } 850 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 851 for (i = 0; i < heap->cnt; i++) { 852 c->lsave[cnt++] = heap->arr[i]->lnum; 853 if (cnt >= c->lsave_cnt) 854 return; 855 } 856 heap = &c->lpt_heap[LPROPS_FREE - 1]; 857 for (i = 0; i < heap->cnt; i++) { 858 c->lsave[cnt++] = heap->arr[i]->lnum; 859 if (cnt >= c->lsave_cnt) 860 return; 861 } 862 /* Fill it up completely */ 863 while (cnt < c->lsave_cnt) 864 c->lsave[cnt++] = c->main_first; 865 } 866 867 /** 868 * nnode_lookup - lookup a nnode in the LPT. 869 * @c: UBIFS file-system description object 870 * @i: nnode number 871 * 872 * This function returns a pointer to the nnode on success or a negative 873 * error code on failure. 874 */ 875 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) 876 { 877 int err, iip; 878 struct ubifs_nnode *nnode; 879 880 if (!c->nroot) { 881 err = ubifs_read_nnode(c, NULL, 0); 882 if (err) 883 return ERR_PTR(err); 884 } 885 nnode = c->nroot; 886 while (1) { 887 iip = i & (UBIFS_LPT_FANOUT - 1); 888 i >>= UBIFS_LPT_FANOUT_SHIFT; 889 if (!i) 890 break; 891 nnode = ubifs_get_nnode(c, nnode, iip); 892 if (IS_ERR(nnode)) 893 return nnode; 894 } 895 return nnode; 896 } 897 898 /** 899 * make_nnode_dirty - find a nnode and, if found, make it dirty. 900 * @c: UBIFS file-system description object 901 * @node_num: nnode number of nnode to make dirty 902 * @lnum: LEB number where nnode was written 903 * @offs: offset where nnode was written 904 * 905 * This function is used by LPT garbage collection. LPT garbage collection is 906 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 907 * simply involves marking all the nodes in the LEB being garbage-collected as 908 * dirty. The dirty nodes are written next commit, after which the LEB is free 909 * to be reused. 910 * 911 * This function returns %0 on success and a negative error code on failure. 912 */ 913 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, 914 int offs) 915 { 916 struct ubifs_nnode *nnode; 917 918 nnode = nnode_lookup(c, node_num); 919 if (IS_ERR(nnode)) 920 return PTR_ERR(nnode); 921 if (nnode->parent) { 922 struct ubifs_nbranch *branch; 923 924 branch = &nnode->parent->nbranch[nnode->iip]; 925 if (branch->lnum != lnum || branch->offs != offs) 926 return 0; /* nnode is obsolete */ 927 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) 928 return 0; /* nnode is obsolete */ 929 /* Assumes cnext list is empty i.e. not called during commit */ 930 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 931 c->dirty_nn_cnt += 1; 932 ubifs_add_nnode_dirt(c, nnode); 933 /* Mark parent and ancestors dirty too */ 934 nnode = nnode->parent; 935 while (nnode) { 936 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 937 c->dirty_nn_cnt += 1; 938 ubifs_add_nnode_dirt(c, nnode); 939 nnode = nnode->parent; 940 } else 941 break; 942 } 943 } 944 return 0; 945 } 946 947 /** 948 * make_pnode_dirty - find a pnode and, if found, make it dirty. 949 * @c: UBIFS file-system description object 950 * @node_num: pnode number of pnode to make dirty 951 * @lnum: LEB number where pnode was written 952 * @offs: offset where pnode was written 953 * 954 * This function is used by LPT garbage collection. LPT garbage collection is 955 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 956 * simply involves marking all the nodes in the LEB being garbage-collected as 957 * dirty. The dirty nodes are written next commit, after which the LEB is free 958 * to be reused. 959 * 960 * This function returns %0 on success and a negative error code on failure. 961 */ 962 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, 963 int offs) 964 { 965 struct ubifs_pnode *pnode; 966 struct ubifs_nbranch *branch; 967 968 pnode = pnode_lookup(c, node_num); 969 if (IS_ERR(pnode)) 970 return PTR_ERR(pnode); 971 branch = &pnode->parent->nbranch[pnode->iip]; 972 if (branch->lnum != lnum || branch->offs != offs) 973 return 0; 974 do_make_pnode_dirty(c, pnode); 975 return 0; 976 } 977 978 /** 979 * make_ltab_dirty - make ltab node dirty. 980 * @c: UBIFS file-system description object 981 * @lnum: LEB number where ltab was written 982 * @offs: offset where ltab was written 983 * 984 * This function is used by LPT garbage collection. LPT garbage collection is 985 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 986 * simply involves marking all the nodes in the LEB being garbage-collected as 987 * dirty. The dirty nodes are written next commit, after which the LEB is free 988 * to be reused. 989 * 990 * This function returns %0 on success and a negative error code on failure. 991 */ 992 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) 993 { 994 if (lnum != c->ltab_lnum || offs != c->ltab_offs) 995 return 0; /* This ltab node is obsolete */ 996 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { 997 c->lpt_drty_flgs |= LTAB_DIRTY; 998 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); 999 } 1000 return 0; 1001 } 1002 1003 /** 1004 * make_lsave_dirty - make lsave node dirty. 1005 * @c: UBIFS file-system description object 1006 * @lnum: LEB number where lsave was written 1007 * @offs: offset where lsave was written 1008 * 1009 * This function is used by LPT garbage collection. LPT garbage collection is 1010 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 1011 * simply involves marking all the nodes in the LEB being garbage-collected as 1012 * dirty. The dirty nodes are written next commit, after which the LEB is free 1013 * to be reused. 1014 * 1015 * This function returns %0 on success and a negative error code on failure. 1016 */ 1017 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) 1018 { 1019 if (lnum != c->lsave_lnum || offs != c->lsave_offs) 1020 return 0; /* This lsave node is obsolete */ 1021 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { 1022 c->lpt_drty_flgs |= LSAVE_DIRTY; 1023 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); 1024 } 1025 return 0; 1026 } 1027 1028 /** 1029 * make_node_dirty - make node dirty. 1030 * @c: UBIFS file-system description object 1031 * @node_type: LPT node type 1032 * @node_num: node number 1033 * @lnum: LEB number where node was written 1034 * @offs: offset where node was written 1035 * 1036 * This function is used by LPT garbage collection. LPT garbage collection is 1037 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection 1038 * simply involves marking all the nodes in the LEB being garbage-collected as 1039 * dirty. The dirty nodes are written next commit, after which the LEB is free 1040 * to be reused. 1041 * 1042 * This function returns %0 on success and a negative error code on failure. 1043 */ 1044 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, 1045 int lnum, int offs) 1046 { 1047 switch (node_type) { 1048 case UBIFS_LPT_NNODE: 1049 return make_nnode_dirty(c, node_num, lnum, offs); 1050 case UBIFS_LPT_PNODE: 1051 return make_pnode_dirty(c, node_num, lnum, offs); 1052 case UBIFS_LPT_LTAB: 1053 return make_ltab_dirty(c, lnum, offs); 1054 case UBIFS_LPT_LSAVE: 1055 return make_lsave_dirty(c, lnum, offs); 1056 } 1057 return -EINVAL; 1058 } 1059 1060 /** 1061 * get_lpt_node_len - return the length of a node based on its type. 1062 * @c: UBIFS file-system description object 1063 * @node_type: LPT node type 1064 */ 1065 static int get_lpt_node_len(const struct ubifs_info *c, int node_type) 1066 { 1067 switch (node_type) { 1068 case UBIFS_LPT_NNODE: 1069 return c->nnode_sz; 1070 case UBIFS_LPT_PNODE: 1071 return c->pnode_sz; 1072 case UBIFS_LPT_LTAB: 1073 return c->ltab_sz; 1074 case UBIFS_LPT_LSAVE: 1075 return c->lsave_sz; 1076 } 1077 return 0; 1078 } 1079 1080 /** 1081 * get_pad_len - return the length of padding in a buffer. 1082 * @c: UBIFS file-system description object 1083 * @buf: buffer 1084 * @len: length of buffer 1085 */ 1086 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len) 1087 { 1088 int offs, pad_len; 1089 1090 if (c->min_io_size == 1) 1091 return 0; 1092 offs = c->leb_size - len; 1093 pad_len = ALIGN(offs, c->min_io_size) - offs; 1094 return pad_len; 1095 } 1096 1097 /** 1098 * get_lpt_node_type - return type (and node number) of a node in a buffer. 1099 * @c: UBIFS file-system description object 1100 * @buf: buffer 1101 * @node_num: node number is returned here 1102 */ 1103 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf, 1104 int *node_num) 1105 { 1106 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1107 int pos = 0, node_type; 1108 1109 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); 1110 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); 1111 return node_type; 1112 } 1113 1114 /** 1115 * is_a_node - determine if a buffer contains a node. 1116 * @c: UBIFS file-system description object 1117 * @buf: buffer 1118 * @len: length of buffer 1119 * 1120 * This function returns %1 if the buffer contains a node or %0 if it does not. 1121 */ 1122 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len) 1123 { 1124 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1125 int pos = 0, node_type, node_len; 1126 uint16_t crc, calc_crc; 1127 1128 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8) 1129 return 0; 1130 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); 1131 if (node_type == UBIFS_LPT_NOT_A_NODE) 1132 return 0; 1133 node_len = get_lpt_node_len(c, node_type); 1134 if (!node_len || node_len > len) 1135 return 0; 1136 pos = 0; 1137 addr = buf; 1138 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); 1139 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 1140 node_len - UBIFS_LPT_CRC_BYTES); 1141 if (crc != calc_crc) 1142 return 0; 1143 return 1; 1144 } 1145 1146 /** 1147 * lpt_gc_lnum - garbage collect a LPT LEB. 1148 * @c: UBIFS file-system description object 1149 * @lnum: LEB number to garbage collect 1150 * 1151 * LPT garbage collection is used only for the "big" LPT model 1152 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes 1153 * in the LEB being garbage-collected as dirty. The dirty nodes are written 1154 * next commit, after which the LEB is free to be reused. 1155 * 1156 * This function returns %0 on success and a negative error code on failure. 1157 */ 1158 static int lpt_gc_lnum(struct ubifs_info *c, int lnum) 1159 { 1160 int err, len = c->leb_size, node_type, node_num, node_len, offs; 1161 void *buf = c->lpt_buf; 1162 1163 dbg_lp("LEB %d", lnum); 1164 1165 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); 1166 if (err) 1167 return err; 1168 1169 while (1) { 1170 if (!is_a_node(c, buf, len)) { 1171 int pad_len; 1172 1173 pad_len = get_pad_len(c, buf, len); 1174 if (pad_len) { 1175 buf += pad_len; 1176 len -= pad_len; 1177 continue; 1178 } 1179 return 0; 1180 } 1181 node_type = get_lpt_node_type(c, buf, &node_num); 1182 node_len = get_lpt_node_len(c, node_type); 1183 offs = c->leb_size - len; 1184 ubifs_assert(node_len != 0); 1185 mutex_lock(&c->lp_mutex); 1186 err = make_node_dirty(c, node_type, node_num, lnum, offs); 1187 mutex_unlock(&c->lp_mutex); 1188 if (err) 1189 return err; 1190 buf += node_len; 1191 len -= node_len; 1192 } 1193 return 0; 1194 } 1195 1196 /** 1197 * lpt_gc - LPT garbage collection. 1198 * @c: UBIFS file-system description object 1199 * 1200 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. 1201 * Returns %0 on success and a negative error code on failure. 1202 */ 1203 static int lpt_gc(struct ubifs_info *c) 1204 { 1205 int i, lnum = -1, dirty = 0; 1206 1207 mutex_lock(&c->lp_mutex); 1208 for (i = 0; i < c->lpt_lebs; i++) { 1209 ubifs_assert(!c->ltab[i].tgc); 1210 if (i + c->lpt_first == c->nhead_lnum || 1211 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) 1212 continue; 1213 if (c->ltab[i].dirty > dirty) { 1214 dirty = c->ltab[i].dirty; 1215 lnum = i + c->lpt_first; 1216 } 1217 } 1218 mutex_unlock(&c->lp_mutex); 1219 if (lnum == -1) 1220 return -ENOSPC; 1221 return lpt_gc_lnum(c, lnum); 1222 } 1223 1224 /** 1225 * ubifs_lpt_start_commit - UBIFS commit starts. 1226 * @c: the UBIFS file-system description object 1227 * 1228 * This function has to be called when UBIFS starts the commit operation. 1229 * This function "freezes" all currently dirty LEB properties and does not 1230 * change them anymore. Further changes are saved and tracked separately 1231 * because they are not part of this commit. This function returns zero in case 1232 * of success and a negative error code in case of failure. 1233 */ 1234 int ubifs_lpt_start_commit(struct ubifs_info *c) 1235 { 1236 int err, cnt; 1237 1238 dbg_lp(""); 1239 1240 mutex_lock(&c->lp_mutex); 1241 err = dbg_chk_lpt_free_spc(c); 1242 if (err) 1243 goto out; 1244 err = dbg_check_ltab(c); 1245 if (err) 1246 goto out; 1247 1248 if (c->check_lpt_free) { 1249 /* 1250 * We ensure there is enough free space in 1251 * ubifs_lpt_post_commit() by marking nodes dirty. That 1252 * information is lost when we unmount, so we also need 1253 * to check free space once after mounting also. 1254 */ 1255 c->check_lpt_free = 0; 1256 while (need_write_all(c)) { 1257 mutex_unlock(&c->lp_mutex); 1258 err = lpt_gc(c); 1259 if (err) 1260 return err; 1261 mutex_lock(&c->lp_mutex); 1262 } 1263 } 1264 1265 lpt_tgc_start(c); 1266 1267 if (!c->dirty_pn_cnt) { 1268 dbg_cmt("no cnodes to commit"); 1269 err = 0; 1270 goto out; 1271 } 1272 1273 if (!c->big_lpt && need_write_all(c)) { 1274 /* If needed, write everything */ 1275 err = make_tree_dirty(c); 1276 if (err) 1277 goto out; 1278 lpt_tgc_start(c); 1279 } 1280 1281 if (c->big_lpt) 1282 populate_lsave(c); 1283 1284 cnt = get_cnodes_to_commit(c); 1285 ubifs_assert(cnt != 0); 1286 1287 err = layout_cnodes(c); 1288 if (err) 1289 goto out; 1290 1291 /* Copy the LPT's own lprops for end commit to write */ 1292 memcpy(c->ltab_cmt, c->ltab, 1293 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 1294 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); 1295 1296 out: 1297 mutex_unlock(&c->lp_mutex); 1298 return err; 1299 } 1300 1301 /** 1302 * free_obsolete_cnodes - free obsolete cnodes for commit end. 1303 * @c: UBIFS file-system description object 1304 */ 1305 static void free_obsolete_cnodes(struct ubifs_info *c) 1306 { 1307 struct ubifs_cnode *cnode, *cnext; 1308 1309 cnext = c->lpt_cnext; 1310 if (!cnext) 1311 return; 1312 do { 1313 cnode = cnext; 1314 cnext = cnode->cnext; 1315 if (test_bit(OBSOLETE_CNODE, &cnode->flags)) 1316 kfree(cnode); 1317 else 1318 cnode->cnext = NULL; 1319 } while (cnext != c->lpt_cnext); 1320 c->lpt_cnext = NULL; 1321 } 1322 1323 /** 1324 * ubifs_lpt_end_commit - finish the commit operation. 1325 * @c: the UBIFS file-system description object 1326 * 1327 * This function has to be called when the commit operation finishes. It 1328 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to 1329 * the media. Returns zero in case of success and a negative error code in case 1330 * of failure. 1331 */ 1332 int ubifs_lpt_end_commit(struct ubifs_info *c) 1333 { 1334 int err; 1335 1336 dbg_lp(""); 1337 1338 if (!c->lpt_cnext) 1339 return 0; 1340 1341 err = write_cnodes(c); 1342 if (err) 1343 return err; 1344 1345 mutex_lock(&c->lp_mutex); 1346 free_obsolete_cnodes(c); 1347 mutex_unlock(&c->lp_mutex); 1348 1349 return 0; 1350 } 1351 1352 /** 1353 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. 1354 * @c: UBIFS file-system description object 1355 * 1356 * LPT trivial GC is completed after a commit. Also LPT GC is done after a 1357 * commit for the "big" LPT model. 1358 */ 1359 int ubifs_lpt_post_commit(struct ubifs_info *c) 1360 { 1361 int err; 1362 1363 mutex_lock(&c->lp_mutex); 1364 err = lpt_tgc_end(c); 1365 if (err) 1366 goto out; 1367 if (c->big_lpt) 1368 while (need_write_all(c)) { 1369 mutex_unlock(&c->lp_mutex); 1370 err = lpt_gc(c); 1371 if (err) 1372 return err; 1373 mutex_lock(&c->lp_mutex); 1374 } 1375 out: 1376 mutex_unlock(&c->lp_mutex); 1377 return err; 1378 } 1379 1380 /** 1381 * first_nnode - find the first nnode in memory. 1382 * @c: UBIFS file-system description object 1383 * @hght: height of tree where nnode found is returned here 1384 * 1385 * This function returns a pointer to the nnode found or %NULL if no nnode is 1386 * found. This function is a helper to 'ubifs_lpt_free()'. 1387 */ 1388 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght) 1389 { 1390 struct ubifs_nnode *nnode; 1391 int h, i, found; 1392 1393 nnode = c->nroot; 1394 *hght = 0; 1395 if (!nnode) 1396 return NULL; 1397 for (h = 1; h < c->lpt_hght; h++) { 1398 found = 0; 1399 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1400 if (nnode->nbranch[i].nnode) { 1401 found = 1; 1402 nnode = nnode->nbranch[i].nnode; 1403 *hght = h; 1404 break; 1405 } 1406 } 1407 if (!found) 1408 break; 1409 } 1410 return nnode; 1411 } 1412 1413 /** 1414 * next_nnode - find the next nnode in memory. 1415 * @c: UBIFS file-system description object 1416 * @nnode: nnode from which to start. 1417 * @hght: height of tree where nnode is, is passed and returned here 1418 * 1419 * This function returns a pointer to the nnode found or %NULL if no nnode is 1420 * found. This function is a helper to 'ubifs_lpt_free()'. 1421 */ 1422 static struct ubifs_nnode *next_nnode(struct ubifs_info *c, 1423 struct ubifs_nnode *nnode, int *hght) 1424 { 1425 struct ubifs_nnode *parent; 1426 int iip, h, i, found; 1427 1428 parent = nnode->parent; 1429 if (!parent) 1430 return NULL; 1431 if (nnode->iip == UBIFS_LPT_FANOUT - 1) { 1432 *hght -= 1; 1433 return parent; 1434 } 1435 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { 1436 nnode = parent->nbranch[iip].nnode; 1437 if (nnode) 1438 break; 1439 } 1440 if (!nnode) { 1441 *hght -= 1; 1442 return parent; 1443 } 1444 for (h = *hght + 1; h < c->lpt_hght; h++) { 1445 found = 0; 1446 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1447 if (nnode->nbranch[i].nnode) { 1448 found = 1; 1449 nnode = nnode->nbranch[i].nnode; 1450 *hght = h; 1451 break; 1452 } 1453 } 1454 if (!found) 1455 break; 1456 } 1457 return nnode; 1458 } 1459 1460 /** 1461 * ubifs_lpt_free - free resources owned by the LPT. 1462 * @c: UBIFS file-system description object 1463 * @wr_only: free only resources used for writing 1464 */ 1465 void ubifs_lpt_free(struct ubifs_info *c, int wr_only) 1466 { 1467 struct ubifs_nnode *nnode; 1468 int i, hght; 1469 1470 /* Free write-only things first */ 1471 1472 free_obsolete_cnodes(c); /* Leftover from a failed commit */ 1473 1474 vfree(c->ltab_cmt); 1475 c->ltab_cmt = NULL; 1476 vfree(c->lpt_buf); 1477 c->lpt_buf = NULL; 1478 kfree(c->lsave); 1479 c->lsave = NULL; 1480 1481 if (wr_only) 1482 return; 1483 1484 /* Now free the rest */ 1485 1486 nnode = first_nnode(c, &hght); 1487 while (nnode) { 1488 for (i = 0; i < UBIFS_LPT_FANOUT; i++) 1489 kfree(nnode->nbranch[i].nnode); 1490 nnode = next_nnode(c, nnode, &hght); 1491 } 1492 for (i = 0; i < LPROPS_HEAP_CNT; i++) 1493 kfree(c->lpt_heap[i].arr); 1494 kfree(c->dirty_idx.arr); 1495 kfree(c->nroot); 1496 vfree(c->ltab); 1497 kfree(c->lpt_nod_buf); 1498 } 1499 1500 #ifdef CONFIG_UBIFS_FS_DEBUG 1501 1502 /** 1503 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes. 1504 * @buf: buffer 1505 * @len: buffer length 1506 */ 1507 static int dbg_is_all_ff(uint8_t *buf, int len) 1508 { 1509 int i; 1510 1511 for (i = 0; i < len; i++) 1512 if (buf[i] != 0xff) 1513 return 0; 1514 return 1; 1515 } 1516 1517 /** 1518 * dbg_is_nnode_dirty - determine if a nnode is dirty. 1519 * @c: the UBIFS file-system description object 1520 * @lnum: LEB number where nnode was written 1521 * @offs: offset where nnode was written 1522 */ 1523 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) 1524 { 1525 struct ubifs_nnode *nnode; 1526 int hght; 1527 1528 /* Entire tree is in memory so first_nnode / next_nnode are OK */ 1529 nnode = first_nnode(c, &hght); 1530 for (; nnode; nnode = next_nnode(c, nnode, &hght)) { 1531 struct ubifs_nbranch *branch; 1532 1533 cond_resched(); 1534 if (nnode->parent) { 1535 branch = &nnode->parent->nbranch[nnode->iip]; 1536 if (branch->lnum != lnum || branch->offs != offs) 1537 continue; 1538 if (test_bit(DIRTY_CNODE, &nnode->flags)) 1539 return 1; 1540 return 0; 1541 } else { 1542 if (c->lpt_lnum != lnum || c->lpt_offs != offs) 1543 continue; 1544 if (test_bit(DIRTY_CNODE, &nnode->flags)) 1545 return 1; 1546 return 0; 1547 } 1548 } 1549 return 1; 1550 } 1551 1552 /** 1553 * dbg_is_pnode_dirty - determine if a pnode is dirty. 1554 * @c: the UBIFS file-system description object 1555 * @lnum: LEB number where pnode was written 1556 * @offs: offset where pnode was written 1557 */ 1558 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) 1559 { 1560 int i, cnt; 1561 1562 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 1563 for (i = 0; i < cnt; i++) { 1564 struct ubifs_pnode *pnode; 1565 struct ubifs_nbranch *branch; 1566 1567 cond_resched(); 1568 pnode = pnode_lookup(c, i); 1569 if (IS_ERR(pnode)) 1570 return PTR_ERR(pnode); 1571 branch = &pnode->parent->nbranch[pnode->iip]; 1572 if (branch->lnum != lnum || branch->offs != offs) 1573 continue; 1574 if (test_bit(DIRTY_CNODE, &pnode->flags)) 1575 return 1; 1576 return 0; 1577 } 1578 return 1; 1579 } 1580 1581 /** 1582 * dbg_is_ltab_dirty - determine if a ltab node is dirty. 1583 * @c: the UBIFS file-system description object 1584 * @lnum: LEB number where ltab node was written 1585 * @offs: offset where ltab node was written 1586 */ 1587 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) 1588 { 1589 if (lnum != c->ltab_lnum || offs != c->ltab_offs) 1590 return 1; 1591 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; 1592 } 1593 1594 /** 1595 * dbg_is_lsave_dirty - determine if a lsave node is dirty. 1596 * @c: the UBIFS file-system description object 1597 * @lnum: LEB number where lsave node was written 1598 * @offs: offset where lsave node was written 1599 */ 1600 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) 1601 { 1602 if (lnum != c->lsave_lnum || offs != c->lsave_offs) 1603 return 1; 1604 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; 1605 } 1606 1607 /** 1608 * dbg_is_node_dirty - determine if a node is dirty. 1609 * @c: the UBIFS file-system description object 1610 * @node_type: node type 1611 * @lnum: LEB number where node was written 1612 * @offs: offset where node was written 1613 */ 1614 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, 1615 int offs) 1616 { 1617 switch (node_type) { 1618 case UBIFS_LPT_NNODE: 1619 return dbg_is_nnode_dirty(c, lnum, offs); 1620 case UBIFS_LPT_PNODE: 1621 return dbg_is_pnode_dirty(c, lnum, offs); 1622 case UBIFS_LPT_LTAB: 1623 return dbg_is_ltab_dirty(c, lnum, offs); 1624 case UBIFS_LPT_LSAVE: 1625 return dbg_is_lsave_dirty(c, lnum, offs); 1626 } 1627 return 1; 1628 } 1629 1630 /** 1631 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. 1632 * @c: the UBIFS file-system description object 1633 * @lnum: LEB number where node was written 1634 * @offs: offset where node was written 1635 * 1636 * This function returns %0 on success and a negative error code on failure. 1637 */ 1638 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) 1639 { 1640 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; 1641 int ret; 1642 void *buf, *p; 1643 1644 if (!dbg_is_chk_lprops(c)) 1645 return 0; 1646 1647 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1648 if (!buf) { 1649 ubifs_err("cannot allocate memory for ltab checking"); 1650 return 0; 1651 } 1652 1653 dbg_lp("LEB %d", lnum); 1654 1655 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); 1656 if (err) 1657 goto out; 1658 1659 while (1) { 1660 if (!is_a_node(c, p, len)) { 1661 int i, pad_len; 1662 1663 pad_len = get_pad_len(c, p, len); 1664 if (pad_len) { 1665 p += pad_len; 1666 len -= pad_len; 1667 dirty += pad_len; 1668 continue; 1669 } 1670 if (!dbg_is_all_ff(p, len)) { 1671 dbg_msg("invalid empty space in LEB %d at %d", 1672 lnum, c->leb_size - len); 1673 err = -EINVAL; 1674 } 1675 i = lnum - c->lpt_first; 1676 if (len != c->ltab[i].free) { 1677 dbg_msg("invalid free space in LEB %d " 1678 "(free %d, expected %d)", 1679 lnum, len, c->ltab[i].free); 1680 err = -EINVAL; 1681 } 1682 if (dirty != c->ltab[i].dirty) { 1683 dbg_msg("invalid dirty space in LEB %d " 1684 "(dirty %d, expected %d)", 1685 lnum, dirty, c->ltab[i].dirty); 1686 err = -EINVAL; 1687 } 1688 goto out; 1689 } 1690 node_type = get_lpt_node_type(c, p, &node_num); 1691 node_len = get_lpt_node_len(c, node_type); 1692 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); 1693 if (ret == 1) 1694 dirty += node_len; 1695 p += node_len; 1696 len -= node_len; 1697 } 1698 1699 err = 0; 1700 out: 1701 vfree(buf); 1702 return err; 1703 } 1704 1705 /** 1706 * dbg_check_ltab - check the free and dirty space in the ltab. 1707 * @c: the UBIFS file-system description object 1708 * 1709 * This function returns %0 on success and a negative error code on failure. 1710 */ 1711 int dbg_check_ltab(struct ubifs_info *c) 1712 { 1713 int lnum, err, i, cnt; 1714 1715 if (!dbg_is_chk_lprops(c)) 1716 return 0; 1717 1718 /* Bring the entire tree into memory */ 1719 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 1720 for (i = 0; i < cnt; i++) { 1721 struct ubifs_pnode *pnode; 1722 1723 pnode = pnode_lookup(c, i); 1724 if (IS_ERR(pnode)) 1725 return PTR_ERR(pnode); 1726 cond_resched(); 1727 } 1728 1729 /* Check nodes */ 1730 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); 1731 if (err) 1732 return err; 1733 1734 /* Check each LEB */ 1735 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { 1736 err = dbg_check_ltab_lnum(c, lnum); 1737 if (err) { 1738 dbg_err("failed at LEB %d", lnum); 1739 return err; 1740 } 1741 } 1742 1743 dbg_lp("succeeded"); 1744 return 0; 1745 } 1746 1747 /** 1748 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT. 1749 * @c: the UBIFS file-system description object 1750 * 1751 * This function returns %0 on success and a negative error code on failure. 1752 */ 1753 int dbg_chk_lpt_free_spc(struct ubifs_info *c) 1754 { 1755 long long free = 0; 1756 int i; 1757 1758 if (!dbg_is_chk_lprops(c)) 1759 return 0; 1760 1761 for (i = 0; i < c->lpt_lebs; i++) { 1762 if (c->ltab[i].tgc || c->ltab[i].cmt) 1763 continue; 1764 if (i + c->lpt_first == c->nhead_lnum) 1765 free += c->leb_size - c->nhead_offs; 1766 else if (c->ltab[i].free == c->leb_size) 1767 free += c->leb_size; 1768 } 1769 if (free < c->lpt_sz) { 1770 dbg_err("LPT space error: free %lld lpt_sz %lld", 1771 free, c->lpt_sz); 1772 dbg_dump_lpt_info(c); 1773 dbg_dump_lpt_lebs(c); 1774 dump_stack(); 1775 return -EINVAL; 1776 } 1777 return 0; 1778 } 1779 1780 /** 1781 * dbg_chk_lpt_sz - check LPT does not write more than LPT size. 1782 * @c: the UBIFS file-system description object 1783 * @action: what to do 1784 * @len: length written 1785 * 1786 * This function returns %0 on success and a negative error code on failure. 1787 * The @action argument may be one of: 1788 * o %0 - LPT debugging checking starts, initialize debugging variables; 1789 * o %1 - wrote an LPT node, increase LPT size by @len bytes; 1790 * o %2 - switched to a different LEB and wasted @len bytes; 1791 * o %3 - check that we've written the right number of bytes. 1792 * o %4 - wasted @len bytes; 1793 */ 1794 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) 1795 { 1796 struct ubifs_debug_info *d = c->dbg; 1797 long long chk_lpt_sz, lpt_sz; 1798 int err = 0; 1799 1800 if (!dbg_is_chk_lprops(c)) 1801 return 0; 1802 1803 switch (action) { 1804 case 0: 1805 d->chk_lpt_sz = 0; 1806 d->chk_lpt_sz2 = 0; 1807 d->chk_lpt_lebs = 0; 1808 d->chk_lpt_wastage = 0; 1809 if (c->dirty_pn_cnt > c->pnode_cnt) { 1810 dbg_err("dirty pnodes %d exceed max %d", 1811 c->dirty_pn_cnt, c->pnode_cnt); 1812 err = -EINVAL; 1813 } 1814 if (c->dirty_nn_cnt > c->nnode_cnt) { 1815 dbg_err("dirty nnodes %d exceed max %d", 1816 c->dirty_nn_cnt, c->nnode_cnt); 1817 err = -EINVAL; 1818 } 1819 return err; 1820 case 1: 1821 d->chk_lpt_sz += len; 1822 return 0; 1823 case 2: 1824 d->chk_lpt_sz += len; 1825 d->chk_lpt_wastage += len; 1826 d->chk_lpt_lebs += 1; 1827 return 0; 1828 case 3: 1829 chk_lpt_sz = c->leb_size; 1830 chk_lpt_sz *= d->chk_lpt_lebs; 1831 chk_lpt_sz += len - c->nhead_offs; 1832 if (d->chk_lpt_sz != chk_lpt_sz) { 1833 dbg_err("LPT wrote %lld but space used was %lld", 1834 d->chk_lpt_sz, chk_lpt_sz); 1835 err = -EINVAL; 1836 } 1837 if (d->chk_lpt_sz > c->lpt_sz) { 1838 dbg_err("LPT wrote %lld but lpt_sz is %lld", 1839 d->chk_lpt_sz, c->lpt_sz); 1840 err = -EINVAL; 1841 } 1842 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) { 1843 dbg_err("LPT layout size %lld but wrote %lld", 1844 d->chk_lpt_sz, d->chk_lpt_sz2); 1845 err = -EINVAL; 1846 } 1847 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) { 1848 dbg_err("LPT new nhead offs: expected %d was %d", 1849 d->new_nhead_offs, len); 1850 err = -EINVAL; 1851 } 1852 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; 1853 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; 1854 lpt_sz += c->ltab_sz; 1855 if (c->big_lpt) 1856 lpt_sz += c->lsave_sz; 1857 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) { 1858 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld", 1859 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz); 1860 err = -EINVAL; 1861 } 1862 if (err) { 1863 dbg_dump_lpt_info(c); 1864 dbg_dump_lpt_lebs(c); 1865 dump_stack(); 1866 } 1867 d->chk_lpt_sz2 = d->chk_lpt_sz; 1868 d->chk_lpt_sz = 0; 1869 d->chk_lpt_wastage = 0; 1870 d->chk_lpt_lebs = 0; 1871 d->new_nhead_offs = len; 1872 return err; 1873 case 4: 1874 d->chk_lpt_sz += len; 1875 d->chk_lpt_wastage += len; 1876 return 0; 1877 default: 1878 return -EINVAL; 1879 } 1880 } 1881 1882 /** 1883 * dbg_dump_lpt_leb - dump an LPT LEB. 1884 * @c: UBIFS file-system description object 1885 * @lnum: LEB number to dump 1886 * 1887 * This function dumps an LEB from LPT area. Nodes in this area are very 1888 * different to nodes in the main area (e.g., they do not have common headers, 1889 * they do not have 8-byte alignments, etc), so we have a separate function to 1890 * dump LPT area LEBs. Note, LPT has to be locked by the caller. 1891 */ 1892 static void dump_lpt_leb(const struct ubifs_info *c, int lnum) 1893 { 1894 int err, len = c->leb_size, node_type, node_num, node_len, offs; 1895 void *buf, *p; 1896 1897 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 1898 current->pid, lnum); 1899 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1900 if (!buf) { 1901 ubifs_err("cannot allocate memory to dump LPT"); 1902 return; 1903 } 1904 1905 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); 1906 if (err) 1907 goto out; 1908 1909 while (1) { 1910 offs = c->leb_size - len; 1911 if (!is_a_node(c, p, len)) { 1912 int pad_len; 1913 1914 pad_len = get_pad_len(c, p, len); 1915 if (pad_len) { 1916 printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n", 1917 lnum, offs, pad_len); 1918 p += pad_len; 1919 len -= pad_len; 1920 continue; 1921 } 1922 if (len) 1923 printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n", 1924 lnum, offs, len); 1925 break; 1926 } 1927 1928 node_type = get_lpt_node_type(c, p, &node_num); 1929 switch (node_type) { 1930 case UBIFS_LPT_PNODE: 1931 { 1932 node_len = c->pnode_sz; 1933 if (c->big_lpt) 1934 printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n", 1935 lnum, offs, node_num); 1936 else 1937 printk(KERN_DEBUG "LEB %d:%d, pnode\n", 1938 lnum, offs); 1939 break; 1940 } 1941 case UBIFS_LPT_NNODE: 1942 { 1943 int i; 1944 struct ubifs_nnode nnode; 1945 1946 node_len = c->nnode_sz; 1947 if (c->big_lpt) 1948 printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ", 1949 lnum, offs, node_num); 1950 else 1951 printk(KERN_DEBUG "LEB %d:%d, nnode, ", 1952 lnum, offs); 1953 err = ubifs_unpack_nnode(c, p, &nnode); 1954 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1955 printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum, 1956 nnode.nbranch[i].offs); 1957 if (i != UBIFS_LPT_FANOUT - 1) 1958 printk(KERN_CONT ", "); 1959 } 1960 printk(KERN_CONT "\n"); 1961 break; 1962 } 1963 case UBIFS_LPT_LTAB: 1964 node_len = c->ltab_sz; 1965 printk(KERN_DEBUG "LEB %d:%d, ltab\n", 1966 lnum, offs); 1967 break; 1968 case UBIFS_LPT_LSAVE: 1969 node_len = c->lsave_sz; 1970 printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs); 1971 break; 1972 default: 1973 ubifs_err("LPT node type %d not recognized", node_type); 1974 goto out; 1975 } 1976 1977 p += node_len; 1978 len -= node_len; 1979 } 1980 1981 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 1982 current->pid, lnum); 1983 out: 1984 vfree(buf); 1985 return; 1986 } 1987 1988 /** 1989 * dbg_dump_lpt_lebs - dump LPT lebs. 1990 * @c: UBIFS file-system description object 1991 * 1992 * This function dumps all LPT LEBs. The caller has to make sure the LPT is 1993 * locked. 1994 */ 1995 void dbg_dump_lpt_lebs(const struct ubifs_info *c) 1996 { 1997 int i; 1998 1999 printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n", 2000 current->pid); 2001 for (i = 0; i < c->lpt_lebs; i++) 2002 dump_lpt_leb(c, i + c->lpt_first); 2003 printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n", 2004 current->pid); 2005 } 2006 2007 /** 2008 * dbg_populate_lsave - debugging version of 'populate_lsave()' 2009 * @c: UBIFS file-system description object 2010 * 2011 * This is a debugging version for 'populate_lsave()' which populates lsave 2012 * with random LEBs instead of useful LEBs, which is good for test coverage. 2013 * Returns zero if lsave has not been populated (this debugging feature is 2014 * disabled) an non-zero if lsave has been populated. 2015 */ 2016 static int dbg_populate_lsave(struct ubifs_info *c) 2017 { 2018 struct ubifs_lprops *lprops; 2019 struct ubifs_lpt_heap *heap; 2020 int i; 2021 2022 if (!dbg_is_chk_gen(c)) 2023 return 0; 2024 if (random32() & 3) 2025 return 0; 2026 2027 for (i = 0; i < c->lsave_cnt; i++) 2028 c->lsave[i] = c->main_first; 2029 2030 list_for_each_entry(lprops, &c->empty_list, list) 2031 c->lsave[random32() % c->lsave_cnt] = lprops->lnum; 2032 list_for_each_entry(lprops, &c->freeable_list, list) 2033 c->lsave[random32() % c->lsave_cnt] = lprops->lnum; 2034 list_for_each_entry(lprops, &c->frdi_idx_list, list) 2035 c->lsave[random32() % c->lsave_cnt] = lprops->lnum; 2036 2037 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 2038 for (i = 0; i < heap->cnt; i++) 2039 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum; 2040 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 2041 for (i = 0; i < heap->cnt; i++) 2042 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum; 2043 heap = &c->lpt_heap[LPROPS_FREE - 1]; 2044 for (i = 0; i < heap->cnt; i++) 2045 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum; 2046 2047 return 1; 2048 } 2049 2050 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2051