xref: /openbmc/linux/fs/ubifs/lpt_commit.c (revision b04b4f78)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include "ubifs.h"
30 
31 /**
32  * first_dirty_cnode - find first dirty cnode.
33  * @c: UBIFS file-system description object
34  * @nnode: nnode at which to start
35  *
36  * This function returns the first dirty cnode or %NULL if there is not one.
37  */
38 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39 {
40 	ubifs_assert(nnode);
41 	while (1) {
42 		int i, cont = 0;
43 
44 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 			struct ubifs_cnode *cnode;
46 
47 			cnode = nnode->nbranch[i].cnode;
48 			if (cnode &&
49 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
50 				if (cnode->level == 0)
51 					return cnode;
52 				nnode = (struct ubifs_nnode *)cnode;
53 				cont = 1;
54 				break;
55 			}
56 		}
57 		if (!cont)
58 			return (struct ubifs_cnode *)nnode;
59 	}
60 }
61 
62 /**
63  * next_dirty_cnode - find next dirty cnode.
64  * @cnode: cnode from which to begin searching
65  *
66  * This function returns the next dirty cnode or %NULL if there is not one.
67  */
68 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69 {
70 	struct ubifs_nnode *nnode;
71 	int i;
72 
73 	ubifs_assert(cnode);
74 	nnode = cnode->parent;
75 	if (!nnode)
76 		return NULL;
77 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 		cnode = nnode->nbranch[i].cnode;
79 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 			if (cnode->level == 0)
81 				return cnode; /* cnode is a pnode */
82 			/* cnode is a nnode */
83 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 		}
85 	}
86 	return (struct ubifs_cnode *)nnode;
87 }
88 
89 /**
90  * get_cnodes_to_commit - create list of dirty cnodes to commit.
91  * @c: UBIFS file-system description object
92  *
93  * This function returns the number of cnodes to commit.
94  */
95 static int get_cnodes_to_commit(struct ubifs_info *c)
96 {
97 	struct ubifs_cnode *cnode, *cnext;
98 	int cnt = 0;
99 
100 	if (!c->nroot)
101 		return 0;
102 
103 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 		return 0;
105 
106 	c->lpt_cnext = first_dirty_cnode(c->nroot);
107 	cnode = c->lpt_cnext;
108 	if (!cnode)
109 		return 0;
110 	cnt += 1;
111 	while (1) {
112 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 		__set_bit(COW_ZNODE, &cnode->flags);
114 		cnext = next_dirty_cnode(cnode);
115 		if (!cnext) {
116 			cnode->cnext = c->lpt_cnext;
117 			break;
118 		}
119 		cnode->cnext = cnext;
120 		cnode = cnext;
121 		cnt += 1;
122 	}
123 	dbg_cmt("committing %d cnodes", cnt);
124 	dbg_lp("committing %d cnodes", cnt);
125 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 	return cnt;
127 }
128 
129 /**
130  * upd_ltab - update LPT LEB properties.
131  * @c: UBIFS file-system description object
132  * @lnum: LEB number
133  * @free: amount of free space
134  * @dirty: amount of dirty space to add
135  */
136 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137 {
138 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 	       lnum, c->ltab[lnum - c->lpt_first].free,
140 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 	c->ltab[lnum - c->lpt_first].free = free;
143 	c->ltab[lnum - c->lpt_first].dirty += dirty;
144 }
145 
146 /**
147  * alloc_lpt_leb - allocate an LPT LEB that is empty.
148  * @c: UBIFS file-system description object
149  * @lnum: LEB number is passed and returned here
150  *
151  * This function finds the next empty LEB in the ltab starting from @lnum. If a
152  * an empty LEB is found it is returned in @lnum and the function returns %0.
153  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
154  * never to run out of space.
155  */
156 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157 {
158 	int i, n;
159 
160 	n = *lnum - c->lpt_first + 1;
161 	for (i = n; i < c->lpt_lebs; i++) {
162 		if (c->ltab[i].tgc || c->ltab[i].cmt)
163 			continue;
164 		if (c->ltab[i].free == c->leb_size) {
165 			c->ltab[i].cmt = 1;
166 			*lnum = i + c->lpt_first;
167 			return 0;
168 		}
169 	}
170 
171 	for (i = 0; i < n; i++) {
172 		if (c->ltab[i].tgc || c->ltab[i].cmt)
173 			continue;
174 		if (c->ltab[i].free == c->leb_size) {
175 			c->ltab[i].cmt = 1;
176 			*lnum = i + c->lpt_first;
177 			return 0;
178 		}
179 	}
180 	return -ENOSPC;
181 }
182 
183 /**
184  * layout_cnodes - layout cnodes for commit.
185  * @c: UBIFS file-system description object
186  *
187  * This function returns %0 on success and a negative error code on failure.
188  */
189 static int layout_cnodes(struct ubifs_info *c)
190 {
191 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 	struct ubifs_cnode *cnode;
193 
194 	err = dbg_chk_lpt_sz(c, 0, 0);
195 	if (err)
196 		return err;
197 	cnode = c->lpt_cnext;
198 	if (!cnode)
199 		return 0;
200 	lnum = c->nhead_lnum;
201 	offs = c->nhead_offs;
202 	/* Try to place lsave and ltab nicely */
203 	done_lsave = !c->big_lpt;
204 	done_ltab = 0;
205 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 		done_lsave = 1;
207 		c->lsave_lnum = lnum;
208 		c->lsave_offs = offs;
209 		offs += c->lsave_sz;
210 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
211 	}
212 
213 	if (offs + c->ltab_sz <= c->leb_size) {
214 		done_ltab = 1;
215 		c->ltab_lnum = lnum;
216 		c->ltab_offs = offs;
217 		offs += c->ltab_sz;
218 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
219 	}
220 
221 	do {
222 		if (cnode->level) {
223 			len = c->nnode_sz;
224 			c->dirty_nn_cnt -= 1;
225 		} else {
226 			len = c->pnode_sz;
227 			c->dirty_pn_cnt -= 1;
228 		}
229 		while (offs + len > c->leb_size) {
230 			alen = ALIGN(offs, c->min_io_size);
231 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
232 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
233 			err = alloc_lpt_leb(c, &lnum);
234 			if (err)
235 				goto no_space;
236 			offs = 0;
237 			ubifs_assert(lnum >= c->lpt_first &&
238 				     lnum <= c->lpt_last);
239 			/* Try to place lsave and ltab nicely */
240 			if (!done_lsave) {
241 				done_lsave = 1;
242 				c->lsave_lnum = lnum;
243 				c->lsave_offs = offs;
244 				offs += c->lsave_sz;
245 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
246 				continue;
247 			}
248 			if (!done_ltab) {
249 				done_ltab = 1;
250 				c->ltab_lnum = lnum;
251 				c->ltab_offs = offs;
252 				offs += c->ltab_sz;
253 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
254 				continue;
255 			}
256 			break;
257 		}
258 		if (cnode->parent) {
259 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 			cnode->parent->nbranch[cnode->iip].offs = offs;
261 		} else {
262 			c->lpt_lnum = lnum;
263 			c->lpt_offs = offs;
264 		}
265 		offs += len;
266 		dbg_chk_lpt_sz(c, 1, len);
267 		cnode = cnode->cnext;
268 	} while (cnode && cnode != c->lpt_cnext);
269 
270 	/* Make sure to place LPT's save table */
271 	if (!done_lsave) {
272 		if (offs + c->lsave_sz > c->leb_size) {
273 			alen = ALIGN(offs, c->min_io_size);
274 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
275 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
276 			err = alloc_lpt_leb(c, &lnum);
277 			if (err)
278 				goto no_space;
279 			offs = 0;
280 			ubifs_assert(lnum >= c->lpt_first &&
281 				     lnum <= c->lpt_last);
282 		}
283 		done_lsave = 1;
284 		c->lsave_lnum = lnum;
285 		c->lsave_offs = offs;
286 		offs += c->lsave_sz;
287 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
288 	}
289 
290 	/* Make sure to place LPT's own lprops table */
291 	if (!done_ltab) {
292 		if (offs + c->ltab_sz > c->leb_size) {
293 			alen = ALIGN(offs, c->min_io_size);
294 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
295 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
296 			err = alloc_lpt_leb(c, &lnum);
297 			if (err)
298 				goto no_space;
299 			offs = 0;
300 			ubifs_assert(lnum >= c->lpt_first &&
301 				     lnum <= c->lpt_last);
302 		}
303 		done_ltab = 1;
304 		c->ltab_lnum = lnum;
305 		c->ltab_offs = offs;
306 		offs += c->ltab_sz;
307 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
308 	}
309 
310 	alen = ALIGN(offs, c->min_io_size);
311 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
312 	dbg_chk_lpt_sz(c, 4, alen - offs);
313 	err = dbg_chk_lpt_sz(c, 3, alen);
314 	if (err)
315 		return err;
316 	return 0;
317 
318 no_space:
319 	ubifs_err("LPT out of space");
320 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 	dbg_dump_lpt_info(c);
323 	dbg_dump_lpt_lebs(c);
324 	dump_stack();
325 	return err;
326 }
327 
328 /**
329  * realloc_lpt_leb - allocate an LPT LEB that is empty.
330  * @c: UBIFS file-system description object
331  * @lnum: LEB number is passed and returned here
332  *
333  * This function duplicates exactly the results of the function alloc_lpt_leb.
334  * It is used during end commit to reallocate the same LEB numbers that were
335  * allocated by alloc_lpt_leb during start commit.
336  *
337  * This function finds the next LEB that was allocated by the alloc_lpt_leb
338  * function starting from @lnum. If a LEB is found it is returned in @lnum and
339  * the function returns %0. Otherwise the function returns -ENOSPC.
340  * Note however, that LPT is designed never to run out of space.
341  */
342 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
343 {
344 	int i, n;
345 
346 	n = *lnum - c->lpt_first + 1;
347 	for (i = n; i < c->lpt_lebs; i++)
348 		if (c->ltab[i].cmt) {
349 			c->ltab[i].cmt = 0;
350 			*lnum = i + c->lpt_first;
351 			return 0;
352 		}
353 
354 	for (i = 0; i < n; i++)
355 		if (c->ltab[i].cmt) {
356 			c->ltab[i].cmt = 0;
357 			*lnum = i + c->lpt_first;
358 			return 0;
359 		}
360 	return -ENOSPC;
361 }
362 
363 /**
364  * write_cnodes - write cnodes for commit.
365  * @c: UBIFS file-system description object
366  *
367  * This function returns %0 on success and a negative error code on failure.
368  */
369 static int write_cnodes(struct ubifs_info *c)
370 {
371 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
372 	struct ubifs_cnode *cnode;
373 	void *buf = c->lpt_buf;
374 
375 	cnode = c->lpt_cnext;
376 	if (!cnode)
377 		return 0;
378 	lnum = c->nhead_lnum;
379 	offs = c->nhead_offs;
380 	from = offs;
381 	/* Ensure empty LEB is unmapped */
382 	if (offs == 0) {
383 		err = ubifs_leb_unmap(c, lnum);
384 		if (err)
385 			return err;
386 	}
387 	/* Try to place lsave and ltab nicely */
388 	done_lsave = !c->big_lpt;
389 	done_ltab = 0;
390 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
391 		done_lsave = 1;
392 		ubifs_pack_lsave(c, buf + offs, c->lsave);
393 		offs += c->lsave_sz;
394 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
395 	}
396 
397 	if (offs + c->ltab_sz <= c->leb_size) {
398 		done_ltab = 1;
399 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
400 		offs += c->ltab_sz;
401 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
402 	}
403 
404 	/* Loop for each cnode */
405 	do {
406 		if (cnode->level)
407 			len = c->nnode_sz;
408 		else
409 			len = c->pnode_sz;
410 		while (offs + len > c->leb_size) {
411 			wlen = offs - from;
412 			if (wlen) {
413 				alen = ALIGN(wlen, c->min_io_size);
414 				memset(buf + offs, 0xff, alen - wlen);
415 				err = ubifs_leb_write(c, lnum, buf + from, from,
416 						       alen, UBI_SHORTTERM);
417 				if (err)
418 					return err;
419 			}
420 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
421 			err = realloc_lpt_leb(c, &lnum);
422 			if (err)
423 				goto no_space;
424 			offs = from = 0;
425 			ubifs_assert(lnum >= c->lpt_first &&
426 				     lnum <= c->lpt_last);
427 			err = ubifs_leb_unmap(c, lnum);
428 			if (err)
429 				return err;
430 			/* Try to place lsave and ltab nicely */
431 			if (!done_lsave) {
432 				done_lsave = 1;
433 				ubifs_pack_lsave(c, buf + offs, c->lsave);
434 				offs += c->lsave_sz;
435 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
436 				continue;
437 			}
438 			if (!done_ltab) {
439 				done_ltab = 1;
440 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
441 				offs += c->ltab_sz;
442 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
443 				continue;
444 			}
445 			break;
446 		}
447 		if (cnode->level)
448 			ubifs_pack_nnode(c, buf + offs,
449 					 (struct ubifs_nnode *)cnode);
450 		else
451 			ubifs_pack_pnode(c, buf + offs,
452 					 (struct ubifs_pnode *)cnode);
453 		/*
454 		 * The reason for the barriers is the same as in case of TNC.
455 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
456 		 * 'dirty_cow_pnode()' are the functions for which this is
457 		 * important.
458 		 */
459 		clear_bit(DIRTY_CNODE, &cnode->flags);
460 		smp_mb__before_clear_bit();
461 		clear_bit(COW_ZNODE, &cnode->flags);
462 		smp_mb__after_clear_bit();
463 		offs += len;
464 		dbg_chk_lpt_sz(c, 1, len);
465 		cnode = cnode->cnext;
466 	} while (cnode && cnode != c->lpt_cnext);
467 
468 	/* Make sure to place LPT's save table */
469 	if (!done_lsave) {
470 		if (offs + c->lsave_sz > c->leb_size) {
471 			wlen = offs - from;
472 			alen = ALIGN(wlen, c->min_io_size);
473 			memset(buf + offs, 0xff, alen - wlen);
474 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
475 					      UBI_SHORTTERM);
476 			if (err)
477 				return err;
478 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
479 			err = realloc_lpt_leb(c, &lnum);
480 			if (err)
481 				goto no_space;
482 			offs = from = 0;
483 			ubifs_assert(lnum >= c->lpt_first &&
484 				     lnum <= c->lpt_last);
485 			err = ubifs_leb_unmap(c, lnum);
486 			if (err)
487 				return err;
488 		}
489 		done_lsave = 1;
490 		ubifs_pack_lsave(c, buf + offs, c->lsave);
491 		offs += c->lsave_sz;
492 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
493 	}
494 
495 	/* Make sure to place LPT's own lprops table */
496 	if (!done_ltab) {
497 		if (offs + c->ltab_sz > c->leb_size) {
498 			wlen = offs - from;
499 			alen = ALIGN(wlen, c->min_io_size);
500 			memset(buf + offs, 0xff, alen - wlen);
501 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
502 					      UBI_SHORTTERM);
503 			if (err)
504 				return err;
505 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
506 			err = realloc_lpt_leb(c, &lnum);
507 			if (err)
508 				goto no_space;
509 			offs = from = 0;
510 			ubifs_assert(lnum >= c->lpt_first &&
511 				     lnum <= c->lpt_last);
512 			err = ubifs_leb_unmap(c, lnum);
513 			if (err)
514 				return err;
515 		}
516 		done_ltab = 1;
517 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 		offs += c->ltab_sz;
519 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 	}
521 
522 	/* Write remaining data in buffer */
523 	wlen = offs - from;
524 	alen = ALIGN(wlen, c->min_io_size);
525 	memset(buf + offs, 0xff, alen - wlen);
526 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
527 	if (err)
528 		return err;
529 
530 	dbg_chk_lpt_sz(c, 4, alen - wlen);
531 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 	if (err)
533 		return err;
534 
535 	c->nhead_lnum = lnum;
536 	c->nhead_offs = ALIGN(offs, c->min_io_size);
537 
538 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 	if (c->big_lpt)
542 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543 
544 	return 0;
545 
546 no_space:
547 	ubifs_err("LPT out of space mismatch");
548 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
549 		"%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
550 	dbg_dump_lpt_info(c);
551 	dbg_dump_lpt_lebs(c);
552 	dump_stack();
553 	return err;
554 }
555 
556 /**
557  * next_pnode_to_dirty - find next pnode to dirty.
558  * @c: UBIFS file-system description object
559  * @pnode: pnode
560  *
561  * This function returns the next pnode to dirty or %NULL if there are no more
562  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
563  * skipped.
564  */
565 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
566 					       struct ubifs_pnode *pnode)
567 {
568 	struct ubifs_nnode *nnode;
569 	int iip;
570 
571 	/* Try to go right */
572 	nnode = pnode->parent;
573 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
574 		if (nnode->nbranch[iip].lnum)
575 			return ubifs_get_pnode(c, nnode, iip);
576 	}
577 
578 	/* Go up while can't go right */
579 	do {
580 		iip = nnode->iip + 1;
581 		nnode = nnode->parent;
582 		if (!nnode)
583 			return NULL;
584 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
585 			if (nnode->nbranch[iip].lnum)
586 				break;
587 		}
588        } while (iip >= UBIFS_LPT_FANOUT);
589 
590 	/* Go right */
591 	nnode = ubifs_get_nnode(c, nnode, iip);
592 	if (IS_ERR(nnode))
593 		return (void *)nnode;
594 
595 	/* Go down to level 1 */
596 	while (nnode->level > 1) {
597 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
598 			if (nnode->nbranch[iip].lnum)
599 				break;
600 		}
601 		if (iip >= UBIFS_LPT_FANOUT) {
602 			/*
603 			 * Should not happen, but we need to keep going
604 			 * if it does.
605 			 */
606 			iip = 0;
607 		}
608 		nnode = ubifs_get_nnode(c, nnode, iip);
609 		if (IS_ERR(nnode))
610 			return (void *)nnode;
611 	}
612 
613 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
614 		if (nnode->nbranch[iip].lnum)
615 			break;
616 	if (iip >= UBIFS_LPT_FANOUT)
617 		/* Should not happen, but we need to keep going if it does */
618 		iip = 0;
619 	return ubifs_get_pnode(c, nnode, iip);
620 }
621 
622 /**
623  * pnode_lookup - lookup a pnode in the LPT.
624  * @c: UBIFS file-system description object
625  * @i: pnode number (0 to main_lebs - 1)
626  *
627  * This function returns a pointer to the pnode on success or a negative
628  * error code on failure.
629  */
630 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
631 {
632 	int err, h, iip, shft;
633 	struct ubifs_nnode *nnode;
634 
635 	if (!c->nroot) {
636 		err = ubifs_read_nnode(c, NULL, 0);
637 		if (err)
638 			return ERR_PTR(err);
639 	}
640 	i <<= UBIFS_LPT_FANOUT_SHIFT;
641 	nnode = c->nroot;
642 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
643 	for (h = 1; h < c->lpt_hght; h++) {
644 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
645 		shft -= UBIFS_LPT_FANOUT_SHIFT;
646 		nnode = ubifs_get_nnode(c, nnode, iip);
647 		if (IS_ERR(nnode))
648 			return ERR_PTR(PTR_ERR(nnode));
649 	}
650 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
651 	return ubifs_get_pnode(c, nnode, iip);
652 }
653 
654 /**
655  * add_pnode_dirt - add dirty space to LPT LEB properties.
656  * @c: UBIFS file-system description object
657  * @pnode: pnode for which to add dirt
658  */
659 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
660 {
661 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
662 			   c->pnode_sz);
663 }
664 
665 /**
666  * do_make_pnode_dirty - mark a pnode dirty.
667  * @c: UBIFS file-system description object
668  * @pnode: pnode to mark dirty
669  */
670 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
671 {
672 	/* Assumes cnext list is empty i.e. not called during commit */
673 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
674 		struct ubifs_nnode *nnode;
675 
676 		c->dirty_pn_cnt += 1;
677 		add_pnode_dirt(c, pnode);
678 		/* Mark parent and ancestors dirty too */
679 		nnode = pnode->parent;
680 		while (nnode) {
681 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
682 				c->dirty_nn_cnt += 1;
683 				ubifs_add_nnode_dirt(c, nnode);
684 				nnode = nnode->parent;
685 			} else
686 				break;
687 		}
688 	}
689 }
690 
691 /**
692  * make_tree_dirty - mark the entire LEB properties tree dirty.
693  * @c: UBIFS file-system description object
694  *
695  * This function is used by the "small" LPT model to cause the entire LEB
696  * properties tree to be written.  The "small" LPT model does not use LPT
697  * garbage collection because it is more efficient to write the entire tree
698  * (because it is small).
699  *
700  * This function returns %0 on success and a negative error code on failure.
701  */
702 static int make_tree_dirty(struct ubifs_info *c)
703 {
704 	struct ubifs_pnode *pnode;
705 
706 	pnode = pnode_lookup(c, 0);
707 	while (pnode) {
708 		do_make_pnode_dirty(c, pnode);
709 		pnode = next_pnode_to_dirty(c, pnode);
710 		if (IS_ERR(pnode))
711 			return PTR_ERR(pnode);
712 	}
713 	return 0;
714 }
715 
716 /**
717  * need_write_all - determine if the LPT area is running out of free space.
718  * @c: UBIFS file-system description object
719  *
720  * This function returns %1 if the LPT area is running out of free space and %0
721  * if it is not.
722  */
723 static int need_write_all(struct ubifs_info *c)
724 {
725 	long long free = 0;
726 	int i;
727 
728 	for (i = 0; i < c->lpt_lebs; i++) {
729 		if (i + c->lpt_first == c->nhead_lnum)
730 			free += c->leb_size - c->nhead_offs;
731 		else if (c->ltab[i].free == c->leb_size)
732 			free += c->leb_size;
733 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
734 			free += c->leb_size;
735 	}
736 	/* Less than twice the size left */
737 	if (free <= c->lpt_sz * 2)
738 		return 1;
739 	return 0;
740 }
741 
742 /**
743  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
744  * @c: UBIFS file-system description object
745  *
746  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
747  * free space and so may be reused as soon as the next commit is completed.
748  * This function is called during start commit to mark LPT LEBs for trivial GC.
749  */
750 static void lpt_tgc_start(struct ubifs_info *c)
751 {
752 	int i;
753 
754 	for (i = 0; i < c->lpt_lebs; i++) {
755 		if (i + c->lpt_first == c->nhead_lnum)
756 			continue;
757 		if (c->ltab[i].dirty > 0 &&
758 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
759 			c->ltab[i].tgc = 1;
760 			c->ltab[i].free = c->leb_size;
761 			c->ltab[i].dirty = 0;
762 			dbg_lp("LEB %d", i + c->lpt_first);
763 		}
764 	}
765 }
766 
767 /**
768  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
769  * @c: UBIFS file-system description object
770  *
771  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
772  * free space and so may be reused as soon as the next commit is completed.
773  * This function is called after the commit is completed (master node has been
774  * written) and un-maps LPT LEBs that were marked for trivial GC.
775  */
776 static int lpt_tgc_end(struct ubifs_info *c)
777 {
778 	int i, err;
779 
780 	for (i = 0; i < c->lpt_lebs; i++)
781 		if (c->ltab[i].tgc) {
782 			err = ubifs_leb_unmap(c, i + c->lpt_first);
783 			if (err)
784 				return err;
785 			c->ltab[i].tgc = 0;
786 			dbg_lp("LEB %d", i + c->lpt_first);
787 		}
788 	return 0;
789 }
790 
791 /**
792  * populate_lsave - fill the lsave array with important LEB numbers.
793  * @c: the UBIFS file-system description object
794  *
795  * This function is only called for the "big" model. It records a small number
796  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
797  * most important to least important): empty, freeable, freeable index, dirty
798  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
799  * their pnodes into memory.  That will stop us from having to scan the LPT
800  * straight away. For the "small" model we assume that scanning the LPT is no
801  * big deal.
802  */
803 static void populate_lsave(struct ubifs_info *c)
804 {
805 	struct ubifs_lprops *lprops;
806 	struct ubifs_lpt_heap *heap;
807 	int i, cnt = 0;
808 
809 	ubifs_assert(c->big_lpt);
810 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
811 		c->lpt_drty_flgs |= LSAVE_DIRTY;
812 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
813 	}
814 	list_for_each_entry(lprops, &c->empty_list, list) {
815 		c->lsave[cnt++] = lprops->lnum;
816 		if (cnt >= c->lsave_cnt)
817 			return;
818 	}
819 	list_for_each_entry(lprops, &c->freeable_list, list) {
820 		c->lsave[cnt++] = lprops->lnum;
821 		if (cnt >= c->lsave_cnt)
822 			return;
823 	}
824 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
825 		c->lsave[cnt++] = lprops->lnum;
826 		if (cnt >= c->lsave_cnt)
827 			return;
828 	}
829 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
830 	for (i = 0; i < heap->cnt; i++) {
831 		c->lsave[cnt++] = heap->arr[i]->lnum;
832 		if (cnt >= c->lsave_cnt)
833 			return;
834 	}
835 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
836 	for (i = 0; i < heap->cnt; i++) {
837 		c->lsave[cnt++] = heap->arr[i]->lnum;
838 		if (cnt >= c->lsave_cnt)
839 			return;
840 	}
841 	heap = &c->lpt_heap[LPROPS_FREE - 1];
842 	for (i = 0; i < heap->cnt; i++) {
843 		c->lsave[cnt++] = heap->arr[i]->lnum;
844 		if (cnt >= c->lsave_cnt)
845 			return;
846 	}
847 	/* Fill it up completely */
848 	while (cnt < c->lsave_cnt)
849 		c->lsave[cnt++] = c->main_first;
850 }
851 
852 /**
853  * nnode_lookup - lookup a nnode in the LPT.
854  * @c: UBIFS file-system description object
855  * @i: nnode number
856  *
857  * This function returns a pointer to the nnode on success or a negative
858  * error code on failure.
859  */
860 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
861 {
862 	int err, iip;
863 	struct ubifs_nnode *nnode;
864 
865 	if (!c->nroot) {
866 		err = ubifs_read_nnode(c, NULL, 0);
867 		if (err)
868 			return ERR_PTR(err);
869 	}
870 	nnode = c->nroot;
871 	while (1) {
872 		iip = i & (UBIFS_LPT_FANOUT - 1);
873 		i >>= UBIFS_LPT_FANOUT_SHIFT;
874 		if (!i)
875 			break;
876 		nnode = ubifs_get_nnode(c, nnode, iip);
877 		if (IS_ERR(nnode))
878 			return nnode;
879 	}
880 	return nnode;
881 }
882 
883 /**
884  * make_nnode_dirty - find a nnode and, if found, make it dirty.
885  * @c: UBIFS file-system description object
886  * @node_num: nnode number of nnode to make dirty
887  * @lnum: LEB number where nnode was written
888  * @offs: offset where nnode was written
889  *
890  * This function is used by LPT garbage collection.  LPT garbage collection is
891  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
892  * simply involves marking all the nodes in the LEB being garbage-collected as
893  * dirty.  The dirty nodes are written next commit, after which the LEB is free
894  * to be reused.
895  *
896  * This function returns %0 on success and a negative error code on failure.
897  */
898 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
899 			    int offs)
900 {
901 	struct ubifs_nnode *nnode;
902 
903 	nnode = nnode_lookup(c, node_num);
904 	if (IS_ERR(nnode))
905 		return PTR_ERR(nnode);
906 	if (nnode->parent) {
907 		struct ubifs_nbranch *branch;
908 
909 		branch = &nnode->parent->nbranch[nnode->iip];
910 		if (branch->lnum != lnum || branch->offs != offs)
911 			return 0; /* nnode is obsolete */
912 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
913 			return 0; /* nnode is obsolete */
914 	/* Assumes cnext list is empty i.e. not called during commit */
915 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
916 		c->dirty_nn_cnt += 1;
917 		ubifs_add_nnode_dirt(c, nnode);
918 		/* Mark parent and ancestors dirty too */
919 		nnode = nnode->parent;
920 		while (nnode) {
921 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
922 				c->dirty_nn_cnt += 1;
923 				ubifs_add_nnode_dirt(c, nnode);
924 				nnode = nnode->parent;
925 			} else
926 				break;
927 		}
928 	}
929 	return 0;
930 }
931 
932 /**
933  * make_pnode_dirty - find a pnode and, if found, make it dirty.
934  * @c: UBIFS file-system description object
935  * @node_num: pnode number of pnode to make dirty
936  * @lnum: LEB number where pnode was written
937  * @offs: offset where pnode was written
938  *
939  * This function is used by LPT garbage collection.  LPT garbage collection is
940  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
941  * simply involves marking all the nodes in the LEB being garbage-collected as
942  * dirty.  The dirty nodes are written next commit, after which the LEB is free
943  * to be reused.
944  *
945  * This function returns %0 on success and a negative error code on failure.
946  */
947 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
948 			    int offs)
949 {
950 	struct ubifs_pnode *pnode;
951 	struct ubifs_nbranch *branch;
952 
953 	pnode = pnode_lookup(c, node_num);
954 	if (IS_ERR(pnode))
955 		return PTR_ERR(pnode);
956 	branch = &pnode->parent->nbranch[pnode->iip];
957 	if (branch->lnum != lnum || branch->offs != offs)
958 		return 0;
959 	do_make_pnode_dirty(c, pnode);
960 	return 0;
961 }
962 
963 /**
964  * make_ltab_dirty - make ltab node dirty.
965  * @c: UBIFS file-system description object
966  * @lnum: LEB number where ltab was written
967  * @offs: offset where ltab was written
968  *
969  * This function is used by LPT garbage collection.  LPT garbage collection is
970  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
971  * simply involves marking all the nodes in the LEB being garbage-collected as
972  * dirty.  The dirty nodes are written next commit, after which the LEB is free
973  * to be reused.
974  *
975  * This function returns %0 on success and a negative error code on failure.
976  */
977 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
978 {
979 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
980 		return 0; /* This ltab node is obsolete */
981 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
982 		c->lpt_drty_flgs |= LTAB_DIRTY;
983 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
984 	}
985 	return 0;
986 }
987 
988 /**
989  * make_lsave_dirty - make lsave node dirty.
990  * @c: UBIFS file-system description object
991  * @lnum: LEB number where lsave was written
992  * @offs: offset where lsave was written
993  *
994  * This function is used by LPT garbage collection.  LPT garbage collection is
995  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
996  * simply involves marking all the nodes in the LEB being garbage-collected as
997  * dirty.  The dirty nodes are written next commit, after which the LEB is free
998  * to be reused.
999  *
1000  * This function returns %0 on success and a negative error code on failure.
1001  */
1002 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1003 {
1004 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1005 		return 0; /* This lsave node is obsolete */
1006 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1007 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1008 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1009 	}
1010 	return 0;
1011 }
1012 
1013 /**
1014  * make_node_dirty - make node dirty.
1015  * @c: UBIFS file-system description object
1016  * @node_type: LPT node type
1017  * @node_num: node number
1018  * @lnum: LEB number where node was written
1019  * @offs: offset where node was written
1020  *
1021  * This function is used by LPT garbage collection.  LPT garbage collection is
1022  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1023  * simply involves marking all the nodes in the LEB being garbage-collected as
1024  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1025  * to be reused.
1026  *
1027  * This function returns %0 on success and a negative error code on failure.
1028  */
1029 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1030 			   int lnum, int offs)
1031 {
1032 	switch (node_type) {
1033 	case UBIFS_LPT_NNODE:
1034 		return make_nnode_dirty(c, node_num, lnum, offs);
1035 	case UBIFS_LPT_PNODE:
1036 		return make_pnode_dirty(c, node_num, lnum, offs);
1037 	case UBIFS_LPT_LTAB:
1038 		return make_ltab_dirty(c, lnum, offs);
1039 	case UBIFS_LPT_LSAVE:
1040 		return make_lsave_dirty(c, lnum, offs);
1041 	}
1042 	return -EINVAL;
1043 }
1044 
1045 /**
1046  * get_lpt_node_len - return the length of a node based on its type.
1047  * @c: UBIFS file-system description object
1048  * @node_type: LPT node type
1049  */
1050 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1051 {
1052 	switch (node_type) {
1053 	case UBIFS_LPT_NNODE:
1054 		return c->nnode_sz;
1055 	case UBIFS_LPT_PNODE:
1056 		return c->pnode_sz;
1057 	case UBIFS_LPT_LTAB:
1058 		return c->ltab_sz;
1059 	case UBIFS_LPT_LSAVE:
1060 		return c->lsave_sz;
1061 	}
1062 	return 0;
1063 }
1064 
1065 /**
1066  * get_pad_len - return the length of padding in a buffer.
1067  * @c: UBIFS file-system description object
1068  * @buf: buffer
1069  * @len: length of buffer
1070  */
1071 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1072 {
1073 	int offs, pad_len;
1074 
1075 	if (c->min_io_size == 1)
1076 		return 0;
1077 	offs = c->leb_size - len;
1078 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1079 	return pad_len;
1080 }
1081 
1082 /**
1083  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1084  * @c: UBIFS file-system description object
1085  * @buf: buffer
1086  * @node_num: node number is returned here
1087  */
1088 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1089 			     int *node_num)
1090 {
1091 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1092 	int pos = 0, node_type;
1093 
1094 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1095 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1096 	return node_type;
1097 }
1098 
1099 /**
1100  * is_a_node - determine if a buffer contains a node.
1101  * @c: UBIFS file-system description object
1102  * @buf: buffer
1103  * @len: length of buffer
1104  *
1105  * This function returns %1 if the buffer contains a node or %0 if it does not.
1106  */
1107 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1108 {
1109 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1110 	int pos = 0, node_type, node_len;
1111 	uint16_t crc, calc_crc;
1112 
1113 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1114 		return 0;
1115 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1116 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1117 		return 0;
1118 	node_len = get_lpt_node_len(c, node_type);
1119 	if (!node_len || node_len > len)
1120 		return 0;
1121 	pos = 0;
1122 	addr = buf;
1123 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1124 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1125 			 node_len - UBIFS_LPT_CRC_BYTES);
1126 	if (crc != calc_crc)
1127 		return 0;
1128 	return 1;
1129 }
1130 
1131 /**
1132  * lpt_gc_lnum - garbage collect a LPT LEB.
1133  * @c: UBIFS file-system description object
1134  * @lnum: LEB number to garbage collect
1135  *
1136  * LPT garbage collection is used only for the "big" LPT model
1137  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1138  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1139  * next commit, after which the LEB is free to be reused.
1140  *
1141  * This function returns %0 on success and a negative error code on failure.
1142  */
1143 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1144 {
1145 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1146 	void *buf = c->lpt_buf;
1147 
1148 	dbg_lp("LEB %d", lnum);
1149 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1150 	if (err) {
1151 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1152 		return err;
1153 	}
1154 	while (1) {
1155 		if (!is_a_node(c, buf, len)) {
1156 			int pad_len;
1157 
1158 			pad_len = get_pad_len(c, buf, len);
1159 			if (pad_len) {
1160 				buf += pad_len;
1161 				len -= pad_len;
1162 				continue;
1163 			}
1164 			return 0;
1165 		}
1166 		node_type = get_lpt_node_type(c, buf, &node_num);
1167 		node_len = get_lpt_node_len(c, node_type);
1168 		offs = c->leb_size - len;
1169 		ubifs_assert(node_len != 0);
1170 		mutex_lock(&c->lp_mutex);
1171 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1172 		mutex_unlock(&c->lp_mutex);
1173 		if (err)
1174 			return err;
1175 		buf += node_len;
1176 		len -= node_len;
1177 	}
1178 	return 0;
1179 }
1180 
1181 /**
1182  * lpt_gc - LPT garbage collection.
1183  * @c: UBIFS file-system description object
1184  *
1185  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1186  * Returns %0 on success and a negative error code on failure.
1187  */
1188 static int lpt_gc(struct ubifs_info *c)
1189 {
1190 	int i, lnum = -1, dirty = 0;
1191 
1192 	mutex_lock(&c->lp_mutex);
1193 	for (i = 0; i < c->lpt_lebs; i++) {
1194 		ubifs_assert(!c->ltab[i].tgc);
1195 		if (i + c->lpt_first == c->nhead_lnum ||
1196 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1197 			continue;
1198 		if (c->ltab[i].dirty > dirty) {
1199 			dirty = c->ltab[i].dirty;
1200 			lnum = i + c->lpt_first;
1201 		}
1202 	}
1203 	mutex_unlock(&c->lp_mutex);
1204 	if (lnum == -1)
1205 		return -ENOSPC;
1206 	return lpt_gc_lnum(c, lnum);
1207 }
1208 
1209 /**
1210  * ubifs_lpt_start_commit - UBIFS commit starts.
1211  * @c: the UBIFS file-system description object
1212  *
1213  * This function has to be called when UBIFS starts the commit operation.
1214  * This function "freezes" all currently dirty LEB properties and does not
1215  * change them anymore. Further changes are saved and tracked separately
1216  * because they are not part of this commit. This function returns zero in case
1217  * of success and a negative error code in case of failure.
1218  */
1219 int ubifs_lpt_start_commit(struct ubifs_info *c)
1220 {
1221 	int err, cnt;
1222 
1223 	dbg_lp("");
1224 
1225 	mutex_lock(&c->lp_mutex);
1226 	err = dbg_chk_lpt_free_spc(c);
1227 	if (err)
1228 		goto out;
1229 	err = dbg_check_ltab(c);
1230 	if (err)
1231 		goto out;
1232 
1233 	if (c->check_lpt_free) {
1234 		/*
1235 		 * We ensure there is enough free space in
1236 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1237 		 * information is lost when we unmount, so we also need
1238 		 * to check free space once after mounting also.
1239 		 */
1240 		c->check_lpt_free = 0;
1241 		while (need_write_all(c)) {
1242 			mutex_unlock(&c->lp_mutex);
1243 			err = lpt_gc(c);
1244 			if (err)
1245 				return err;
1246 			mutex_lock(&c->lp_mutex);
1247 		}
1248 	}
1249 
1250 	lpt_tgc_start(c);
1251 
1252 	if (!c->dirty_pn_cnt) {
1253 		dbg_cmt("no cnodes to commit");
1254 		err = 0;
1255 		goto out;
1256 	}
1257 
1258 	if (!c->big_lpt && need_write_all(c)) {
1259 		/* If needed, write everything */
1260 		err = make_tree_dirty(c);
1261 		if (err)
1262 			goto out;
1263 		lpt_tgc_start(c);
1264 	}
1265 
1266 	if (c->big_lpt)
1267 		populate_lsave(c);
1268 
1269 	cnt = get_cnodes_to_commit(c);
1270 	ubifs_assert(cnt != 0);
1271 
1272 	err = layout_cnodes(c);
1273 	if (err)
1274 		goto out;
1275 
1276 	/* Copy the LPT's own lprops for end commit to write */
1277 	memcpy(c->ltab_cmt, c->ltab,
1278 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1279 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1280 
1281 out:
1282 	mutex_unlock(&c->lp_mutex);
1283 	return err;
1284 }
1285 
1286 /**
1287  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1288  * @c: UBIFS file-system description object
1289  */
1290 static void free_obsolete_cnodes(struct ubifs_info *c)
1291 {
1292 	struct ubifs_cnode *cnode, *cnext;
1293 
1294 	cnext = c->lpt_cnext;
1295 	if (!cnext)
1296 		return;
1297 	do {
1298 		cnode = cnext;
1299 		cnext = cnode->cnext;
1300 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1301 			kfree(cnode);
1302 		else
1303 			cnode->cnext = NULL;
1304 	} while (cnext != c->lpt_cnext);
1305 	c->lpt_cnext = NULL;
1306 }
1307 
1308 /**
1309  * ubifs_lpt_end_commit - finish the commit operation.
1310  * @c: the UBIFS file-system description object
1311  *
1312  * This function has to be called when the commit operation finishes. It
1313  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1314  * the media. Returns zero in case of success and a negative error code in case
1315  * of failure.
1316  */
1317 int ubifs_lpt_end_commit(struct ubifs_info *c)
1318 {
1319 	int err;
1320 
1321 	dbg_lp("");
1322 
1323 	if (!c->lpt_cnext)
1324 		return 0;
1325 
1326 	err = write_cnodes(c);
1327 	if (err)
1328 		return err;
1329 
1330 	mutex_lock(&c->lp_mutex);
1331 	free_obsolete_cnodes(c);
1332 	mutex_unlock(&c->lp_mutex);
1333 
1334 	return 0;
1335 }
1336 
1337 /**
1338  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1339  * @c: UBIFS file-system description object
1340  *
1341  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1342  * commit for the "big" LPT model.
1343  */
1344 int ubifs_lpt_post_commit(struct ubifs_info *c)
1345 {
1346 	int err;
1347 
1348 	mutex_lock(&c->lp_mutex);
1349 	err = lpt_tgc_end(c);
1350 	if (err)
1351 		goto out;
1352 	if (c->big_lpt)
1353 		while (need_write_all(c)) {
1354 			mutex_unlock(&c->lp_mutex);
1355 			err = lpt_gc(c);
1356 			if (err)
1357 				return err;
1358 			mutex_lock(&c->lp_mutex);
1359 		}
1360 out:
1361 	mutex_unlock(&c->lp_mutex);
1362 	return err;
1363 }
1364 
1365 /**
1366  * first_nnode - find the first nnode in memory.
1367  * @c: UBIFS file-system description object
1368  * @hght: height of tree where nnode found is returned here
1369  *
1370  * This function returns a pointer to the nnode found or %NULL if no nnode is
1371  * found. This function is a helper to 'ubifs_lpt_free()'.
1372  */
1373 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1374 {
1375 	struct ubifs_nnode *nnode;
1376 	int h, i, found;
1377 
1378 	nnode = c->nroot;
1379 	*hght = 0;
1380 	if (!nnode)
1381 		return NULL;
1382 	for (h = 1; h < c->lpt_hght; h++) {
1383 		found = 0;
1384 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1385 			if (nnode->nbranch[i].nnode) {
1386 				found = 1;
1387 				nnode = nnode->nbranch[i].nnode;
1388 				*hght = h;
1389 				break;
1390 			}
1391 		}
1392 		if (!found)
1393 			break;
1394 	}
1395 	return nnode;
1396 }
1397 
1398 /**
1399  * next_nnode - find the next nnode in memory.
1400  * @c: UBIFS file-system description object
1401  * @nnode: nnode from which to start.
1402  * @hght: height of tree where nnode is, is passed and returned here
1403  *
1404  * This function returns a pointer to the nnode found or %NULL if no nnode is
1405  * found. This function is a helper to 'ubifs_lpt_free()'.
1406  */
1407 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1408 				      struct ubifs_nnode *nnode, int *hght)
1409 {
1410 	struct ubifs_nnode *parent;
1411 	int iip, h, i, found;
1412 
1413 	parent = nnode->parent;
1414 	if (!parent)
1415 		return NULL;
1416 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1417 		*hght -= 1;
1418 		return parent;
1419 	}
1420 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1421 		nnode = parent->nbranch[iip].nnode;
1422 		if (nnode)
1423 			break;
1424 	}
1425 	if (!nnode) {
1426 		*hght -= 1;
1427 		return parent;
1428 	}
1429 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1430 		found = 0;
1431 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1432 			if (nnode->nbranch[i].nnode) {
1433 				found = 1;
1434 				nnode = nnode->nbranch[i].nnode;
1435 				*hght = h;
1436 				break;
1437 			}
1438 		}
1439 		if (!found)
1440 			break;
1441 	}
1442 	return nnode;
1443 }
1444 
1445 /**
1446  * ubifs_lpt_free - free resources owned by the LPT.
1447  * @c: UBIFS file-system description object
1448  * @wr_only: free only resources used for writing
1449  */
1450 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1451 {
1452 	struct ubifs_nnode *nnode;
1453 	int i, hght;
1454 
1455 	/* Free write-only things first */
1456 
1457 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1458 
1459 	vfree(c->ltab_cmt);
1460 	c->ltab_cmt = NULL;
1461 	vfree(c->lpt_buf);
1462 	c->lpt_buf = NULL;
1463 	kfree(c->lsave);
1464 	c->lsave = NULL;
1465 
1466 	if (wr_only)
1467 		return;
1468 
1469 	/* Now free the rest */
1470 
1471 	nnode = first_nnode(c, &hght);
1472 	while (nnode) {
1473 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1474 			kfree(nnode->nbranch[i].nnode);
1475 		nnode = next_nnode(c, nnode, &hght);
1476 	}
1477 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1478 		kfree(c->lpt_heap[i].arr);
1479 	kfree(c->dirty_idx.arr);
1480 	kfree(c->nroot);
1481 	vfree(c->ltab);
1482 	kfree(c->lpt_nod_buf);
1483 }
1484 
1485 #ifdef CONFIG_UBIFS_FS_DEBUG
1486 
1487 /**
1488  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1489  * @buf: buffer
1490  * @len: buffer length
1491  */
1492 static int dbg_is_all_ff(uint8_t *buf, int len)
1493 {
1494 	int i;
1495 
1496 	for (i = 0; i < len; i++)
1497 		if (buf[i] != 0xff)
1498 			return 0;
1499 	return 1;
1500 }
1501 
1502 /**
1503  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1504  * @c: the UBIFS file-system description object
1505  * @lnum: LEB number where nnode was written
1506  * @offs: offset where nnode was written
1507  */
1508 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1509 {
1510 	struct ubifs_nnode *nnode;
1511 	int hght;
1512 
1513 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1514 	nnode = first_nnode(c, &hght);
1515 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1516 		struct ubifs_nbranch *branch;
1517 
1518 		cond_resched();
1519 		if (nnode->parent) {
1520 			branch = &nnode->parent->nbranch[nnode->iip];
1521 			if (branch->lnum != lnum || branch->offs != offs)
1522 				continue;
1523 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1524 				return 1;
1525 			return 0;
1526 		} else {
1527 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1528 				continue;
1529 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1530 				return 1;
1531 			return 0;
1532 		}
1533 	}
1534 	return 1;
1535 }
1536 
1537 /**
1538  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1539  * @c: the UBIFS file-system description object
1540  * @lnum: LEB number where pnode was written
1541  * @offs: offset where pnode was written
1542  */
1543 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1544 {
1545 	int i, cnt;
1546 
1547 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1548 	for (i = 0; i < cnt; i++) {
1549 		struct ubifs_pnode *pnode;
1550 		struct ubifs_nbranch *branch;
1551 
1552 		cond_resched();
1553 		pnode = pnode_lookup(c, i);
1554 		if (IS_ERR(pnode))
1555 			return PTR_ERR(pnode);
1556 		branch = &pnode->parent->nbranch[pnode->iip];
1557 		if (branch->lnum != lnum || branch->offs != offs)
1558 			continue;
1559 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1560 			return 1;
1561 		return 0;
1562 	}
1563 	return 1;
1564 }
1565 
1566 /**
1567  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1568  * @c: the UBIFS file-system description object
1569  * @lnum: LEB number where ltab node was written
1570  * @offs: offset where ltab node was written
1571  */
1572 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1573 {
1574 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1575 		return 1;
1576 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1577 }
1578 
1579 /**
1580  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1581  * @c: the UBIFS file-system description object
1582  * @lnum: LEB number where lsave node was written
1583  * @offs: offset where lsave node was written
1584  */
1585 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1586 {
1587 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1588 		return 1;
1589 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1590 }
1591 
1592 /**
1593  * dbg_is_node_dirty - determine if a node is dirty.
1594  * @c: the UBIFS file-system description object
1595  * @node_type: node type
1596  * @lnum: LEB number where node was written
1597  * @offs: offset where node was written
1598  */
1599 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1600 			     int offs)
1601 {
1602 	switch (node_type) {
1603 	case UBIFS_LPT_NNODE:
1604 		return dbg_is_nnode_dirty(c, lnum, offs);
1605 	case UBIFS_LPT_PNODE:
1606 		return dbg_is_pnode_dirty(c, lnum, offs);
1607 	case UBIFS_LPT_LTAB:
1608 		return dbg_is_ltab_dirty(c, lnum, offs);
1609 	case UBIFS_LPT_LSAVE:
1610 		return dbg_is_lsave_dirty(c, lnum, offs);
1611 	}
1612 	return 1;
1613 }
1614 
1615 /**
1616  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1617  * @c: the UBIFS file-system description object
1618  * @lnum: LEB number where node was written
1619  * @offs: offset where node was written
1620  *
1621  * This function returns %0 on success and a negative error code on failure.
1622  */
1623 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1624 {
1625 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1626 	int ret;
1627 	void *buf = c->dbg->buf;
1628 
1629 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1630 		return 0;
1631 
1632 	dbg_lp("LEB %d", lnum);
1633 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1634 	if (err) {
1635 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1636 		return err;
1637 	}
1638 	while (1) {
1639 		if (!is_a_node(c, buf, len)) {
1640 			int i, pad_len;
1641 
1642 			pad_len = get_pad_len(c, buf, len);
1643 			if (pad_len) {
1644 				buf += pad_len;
1645 				len -= pad_len;
1646 				dirty += pad_len;
1647 				continue;
1648 			}
1649 			if (!dbg_is_all_ff(buf, len)) {
1650 				dbg_msg("invalid empty space in LEB %d at %d",
1651 					lnum, c->leb_size - len);
1652 				err = -EINVAL;
1653 			}
1654 			i = lnum - c->lpt_first;
1655 			if (len != c->ltab[i].free) {
1656 				dbg_msg("invalid free space in LEB %d "
1657 					"(free %d, expected %d)",
1658 					lnum, len, c->ltab[i].free);
1659 				err = -EINVAL;
1660 			}
1661 			if (dirty != c->ltab[i].dirty) {
1662 				dbg_msg("invalid dirty space in LEB %d "
1663 					"(dirty %d, expected %d)",
1664 					lnum, dirty, c->ltab[i].dirty);
1665 				err = -EINVAL;
1666 			}
1667 			return err;
1668 		}
1669 		node_type = get_lpt_node_type(c, buf, &node_num);
1670 		node_len = get_lpt_node_len(c, node_type);
1671 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1672 		if (ret == 1)
1673 			dirty += node_len;
1674 		buf += node_len;
1675 		len -= node_len;
1676 	}
1677 }
1678 
1679 /**
1680  * dbg_check_ltab - check the free and dirty space in the ltab.
1681  * @c: the UBIFS file-system description object
1682  *
1683  * This function returns %0 on success and a negative error code on failure.
1684  */
1685 int dbg_check_ltab(struct ubifs_info *c)
1686 {
1687 	int lnum, err, i, cnt;
1688 
1689 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1690 		return 0;
1691 
1692 	/* Bring the entire tree into memory */
1693 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1694 	for (i = 0; i < cnt; i++) {
1695 		struct ubifs_pnode *pnode;
1696 
1697 		pnode = pnode_lookup(c, i);
1698 		if (IS_ERR(pnode))
1699 			return PTR_ERR(pnode);
1700 		cond_resched();
1701 	}
1702 
1703 	/* Check nodes */
1704 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1705 	if (err)
1706 		return err;
1707 
1708 	/* Check each LEB */
1709 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1710 		err = dbg_check_ltab_lnum(c, lnum);
1711 		if (err) {
1712 			dbg_err("failed at LEB %d", lnum);
1713 			return err;
1714 		}
1715 	}
1716 
1717 	dbg_lp("succeeded");
1718 	return 0;
1719 }
1720 
1721 /**
1722  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1723  * @c: the UBIFS file-system description object
1724  *
1725  * This function returns %0 on success and a negative error code on failure.
1726  */
1727 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1728 {
1729 	long long free = 0;
1730 	int i;
1731 
1732 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1733 		return 0;
1734 
1735 	for (i = 0; i < c->lpt_lebs; i++) {
1736 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1737 			continue;
1738 		if (i + c->lpt_first == c->nhead_lnum)
1739 			free += c->leb_size - c->nhead_offs;
1740 		else if (c->ltab[i].free == c->leb_size)
1741 			free += c->leb_size;
1742 	}
1743 	if (free < c->lpt_sz) {
1744 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1745 			free, c->lpt_sz);
1746 		dbg_dump_lpt_info(c);
1747 		dbg_dump_lpt_lebs(c);
1748 		dump_stack();
1749 		return -EINVAL;
1750 	}
1751 	return 0;
1752 }
1753 
1754 /**
1755  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1756  * @c: the UBIFS file-system description object
1757  * @action: what to do
1758  * @len: length written
1759  *
1760  * This function returns %0 on success and a negative error code on failure.
1761  * The @action argument may be one of:
1762  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1763  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1764  *   o %2 - switched to a different LEB and wasted @len bytes;
1765  *   o %3 - check that we've written the right number of bytes.
1766  *   o %4 - wasted @len bytes;
1767  */
1768 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1769 {
1770 	struct ubifs_debug_info *d = c->dbg;
1771 	long long chk_lpt_sz, lpt_sz;
1772 	int err = 0;
1773 
1774 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1775 		return 0;
1776 
1777 	switch (action) {
1778 	case 0:
1779 		d->chk_lpt_sz = 0;
1780 		d->chk_lpt_sz2 = 0;
1781 		d->chk_lpt_lebs = 0;
1782 		d->chk_lpt_wastage = 0;
1783 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1784 			dbg_err("dirty pnodes %d exceed max %d",
1785 				c->dirty_pn_cnt, c->pnode_cnt);
1786 			err = -EINVAL;
1787 		}
1788 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1789 			dbg_err("dirty nnodes %d exceed max %d",
1790 				c->dirty_nn_cnt, c->nnode_cnt);
1791 			err = -EINVAL;
1792 		}
1793 		return err;
1794 	case 1:
1795 		d->chk_lpt_sz += len;
1796 		return 0;
1797 	case 2:
1798 		d->chk_lpt_sz += len;
1799 		d->chk_lpt_wastage += len;
1800 		d->chk_lpt_lebs += 1;
1801 		return 0;
1802 	case 3:
1803 		chk_lpt_sz = c->leb_size;
1804 		chk_lpt_sz *= d->chk_lpt_lebs;
1805 		chk_lpt_sz += len - c->nhead_offs;
1806 		if (d->chk_lpt_sz != chk_lpt_sz) {
1807 			dbg_err("LPT wrote %lld but space used was %lld",
1808 				d->chk_lpt_sz, chk_lpt_sz);
1809 			err = -EINVAL;
1810 		}
1811 		if (d->chk_lpt_sz > c->lpt_sz) {
1812 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1813 				d->chk_lpt_sz, c->lpt_sz);
1814 			err = -EINVAL;
1815 		}
1816 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1817 			dbg_err("LPT layout size %lld but wrote %lld",
1818 				d->chk_lpt_sz, d->chk_lpt_sz2);
1819 			err = -EINVAL;
1820 		}
1821 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1822 			dbg_err("LPT new nhead offs: expected %d was %d",
1823 				d->new_nhead_offs, len);
1824 			err = -EINVAL;
1825 		}
1826 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1827 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1828 		lpt_sz += c->ltab_sz;
1829 		if (c->big_lpt)
1830 			lpt_sz += c->lsave_sz;
1831 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1832 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1833 				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1834 			err = -EINVAL;
1835 		}
1836 		if (err) {
1837 			dbg_dump_lpt_info(c);
1838 			dbg_dump_lpt_lebs(c);
1839 			dump_stack();
1840 		}
1841 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1842 		d->chk_lpt_sz = 0;
1843 		d->chk_lpt_wastage = 0;
1844 		d->chk_lpt_lebs = 0;
1845 		d->new_nhead_offs = len;
1846 		return err;
1847 	case 4:
1848 		d->chk_lpt_sz += len;
1849 		d->chk_lpt_wastage += len;
1850 		return 0;
1851 	default:
1852 		return -EINVAL;
1853 	}
1854 }
1855 
1856 /**
1857  * dbg_dump_lpt_leb - dump an LPT LEB.
1858  * @c: UBIFS file-system description object
1859  * @lnum: LEB number to dump
1860  *
1861  * This function dumps an LEB from LPT area. Nodes in this area are very
1862  * different to nodes in the main area (e.g., they do not have common headers,
1863  * they do not have 8-byte alignments, etc), so we have a separate function to
1864  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1865  */
1866 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1867 {
1868 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1869 	void *buf = c->dbg->buf;
1870 
1871 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1872 	       current->pid, lnum);
1873 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1874 	if (err) {
1875 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1876 		return;
1877 	}
1878 	while (1) {
1879 		offs = c->leb_size - len;
1880 		if (!is_a_node(c, buf, len)) {
1881 			int pad_len;
1882 
1883 			pad_len = get_pad_len(c, buf, len);
1884 			if (pad_len) {
1885 				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1886 				       lnum, offs, pad_len);
1887 				buf += pad_len;
1888 				len -= pad_len;
1889 				continue;
1890 			}
1891 			if (len)
1892 				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1893 				       lnum, offs, len);
1894 			break;
1895 		}
1896 
1897 		node_type = get_lpt_node_type(c, buf, &node_num);
1898 		switch (node_type) {
1899 		case UBIFS_LPT_PNODE:
1900 		{
1901 			node_len = c->pnode_sz;
1902 			if (c->big_lpt)
1903 				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1904 				       lnum, offs, node_num);
1905 			else
1906 				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1907 				       lnum, offs);
1908 			break;
1909 		}
1910 		case UBIFS_LPT_NNODE:
1911 		{
1912 			int i;
1913 			struct ubifs_nnode nnode;
1914 
1915 			node_len = c->nnode_sz;
1916 			if (c->big_lpt)
1917 				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1918 				       lnum, offs, node_num);
1919 			else
1920 				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1921 				       lnum, offs);
1922 			err = ubifs_unpack_nnode(c, buf, &nnode);
1923 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1924 				printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1925 				       nnode.nbranch[i].offs);
1926 				if (i != UBIFS_LPT_FANOUT - 1)
1927 					printk(KERN_CONT ", ");
1928 			}
1929 			printk(KERN_CONT "\n");
1930 			break;
1931 		}
1932 		case UBIFS_LPT_LTAB:
1933 			node_len = c->ltab_sz;
1934 			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1935 			       lnum, offs);
1936 			break;
1937 		case UBIFS_LPT_LSAVE:
1938 			node_len = c->lsave_sz;
1939 			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1940 			break;
1941 		default:
1942 			ubifs_err("LPT node type %d not recognized", node_type);
1943 			return;
1944 		}
1945 
1946 		buf += node_len;
1947 		len -= node_len;
1948 	}
1949 
1950 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1951 	       current->pid, lnum);
1952 }
1953 
1954 /**
1955  * dbg_dump_lpt_lebs - dump LPT lebs.
1956  * @c: UBIFS file-system description object
1957  *
1958  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1959  * locked.
1960  */
1961 void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1962 {
1963 	int i;
1964 
1965 	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1966 	       current->pid);
1967 	for (i = 0; i < c->lpt_lebs; i++)
1968 		dump_lpt_leb(c, i + c->lpt_first);
1969 	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1970 	       current->pid);
1971 }
1972 
1973 #endif /* CONFIG_UBIFS_FS_DEBUG */
1974