xref: /openbmc/linux/fs/ubifs/lpt_commit.c (revision 9ac8d3fb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include "ubifs.h"
30 
31 /**
32  * first_dirty_cnode - find first dirty cnode.
33  * @c: UBIFS file-system description object
34  * @nnode: nnode at which to start
35  *
36  * This function returns the first dirty cnode or %NULL if there is not one.
37  */
38 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39 {
40 	ubifs_assert(nnode);
41 	while (1) {
42 		int i, cont = 0;
43 
44 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 			struct ubifs_cnode *cnode;
46 
47 			cnode = nnode->nbranch[i].cnode;
48 			if (cnode &&
49 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
50 				if (cnode->level == 0)
51 					return cnode;
52 				nnode = (struct ubifs_nnode *)cnode;
53 				cont = 1;
54 				break;
55 			}
56 		}
57 		if (!cont)
58 			return (struct ubifs_cnode *)nnode;
59 	}
60 }
61 
62 /**
63  * next_dirty_cnode - find next dirty cnode.
64  * @cnode: cnode from which to begin searching
65  *
66  * This function returns the next dirty cnode or %NULL if there is not one.
67  */
68 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69 {
70 	struct ubifs_nnode *nnode;
71 	int i;
72 
73 	ubifs_assert(cnode);
74 	nnode = cnode->parent;
75 	if (!nnode)
76 		return NULL;
77 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 		cnode = nnode->nbranch[i].cnode;
79 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 			if (cnode->level == 0)
81 				return cnode; /* cnode is a pnode */
82 			/* cnode is a nnode */
83 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 		}
85 	}
86 	return (struct ubifs_cnode *)nnode;
87 }
88 
89 /**
90  * get_cnodes_to_commit - create list of dirty cnodes to commit.
91  * @c: UBIFS file-system description object
92  *
93  * This function returns the number of cnodes to commit.
94  */
95 static int get_cnodes_to_commit(struct ubifs_info *c)
96 {
97 	struct ubifs_cnode *cnode, *cnext;
98 	int cnt = 0;
99 
100 	if (!c->nroot)
101 		return 0;
102 
103 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 		return 0;
105 
106 	c->lpt_cnext = first_dirty_cnode(c->nroot);
107 	cnode = c->lpt_cnext;
108 	if (!cnode)
109 		return 0;
110 	cnt += 1;
111 	while (1) {
112 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 		__set_bit(COW_ZNODE, &cnode->flags);
114 		cnext = next_dirty_cnode(cnode);
115 		if (!cnext) {
116 			cnode->cnext = c->lpt_cnext;
117 			break;
118 		}
119 		cnode->cnext = cnext;
120 		cnode = cnext;
121 		cnt += 1;
122 	}
123 	dbg_cmt("committing %d cnodes", cnt);
124 	dbg_lp("committing %d cnodes", cnt);
125 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 	return cnt;
127 }
128 
129 /**
130  * upd_ltab - update LPT LEB properties.
131  * @c: UBIFS file-system description object
132  * @lnum: LEB number
133  * @free: amount of free space
134  * @dirty: amount of dirty space to add
135  */
136 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137 {
138 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 	       lnum, c->ltab[lnum - c->lpt_first].free,
140 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 	c->ltab[lnum - c->lpt_first].free = free;
143 	c->ltab[lnum - c->lpt_first].dirty += dirty;
144 }
145 
146 /**
147  * alloc_lpt_leb - allocate an LPT LEB that is empty.
148  * @c: UBIFS file-system description object
149  * @lnum: LEB number is passed and returned here
150  *
151  * This function finds the next empty LEB in the ltab starting from @lnum. If a
152  * an empty LEB is found it is returned in @lnum and the function returns %0.
153  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
154  * never to run out of space.
155  */
156 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157 {
158 	int i, n;
159 
160 	n = *lnum - c->lpt_first + 1;
161 	for (i = n; i < c->lpt_lebs; i++) {
162 		if (c->ltab[i].tgc || c->ltab[i].cmt)
163 			continue;
164 		if (c->ltab[i].free == c->leb_size) {
165 			c->ltab[i].cmt = 1;
166 			*lnum = i + c->lpt_first;
167 			return 0;
168 		}
169 	}
170 
171 	for (i = 0; i < n; i++) {
172 		if (c->ltab[i].tgc || c->ltab[i].cmt)
173 			continue;
174 		if (c->ltab[i].free == c->leb_size) {
175 			c->ltab[i].cmt = 1;
176 			*lnum = i + c->lpt_first;
177 			return 0;
178 		}
179 	}
180 	return -ENOSPC;
181 }
182 
183 /**
184  * layout_cnodes - layout cnodes for commit.
185  * @c: UBIFS file-system description object
186  *
187  * This function returns %0 on success and a negative error code on failure.
188  */
189 static int layout_cnodes(struct ubifs_info *c)
190 {
191 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 	struct ubifs_cnode *cnode;
193 
194 	err = dbg_chk_lpt_sz(c, 0, 0);
195 	if (err)
196 		return err;
197 	cnode = c->lpt_cnext;
198 	if (!cnode)
199 		return 0;
200 	lnum = c->nhead_lnum;
201 	offs = c->nhead_offs;
202 	/* Try to place lsave and ltab nicely */
203 	done_lsave = !c->big_lpt;
204 	done_ltab = 0;
205 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 		done_lsave = 1;
207 		c->lsave_lnum = lnum;
208 		c->lsave_offs = offs;
209 		offs += c->lsave_sz;
210 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
211 	}
212 
213 	if (offs + c->ltab_sz <= c->leb_size) {
214 		done_ltab = 1;
215 		c->ltab_lnum = lnum;
216 		c->ltab_offs = offs;
217 		offs += c->ltab_sz;
218 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
219 	}
220 
221 	do {
222 		if (cnode->level) {
223 			len = c->nnode_sz;
224 			c->dirty_nn_cnt -= 1;
225 		} else {
226 			len = c->pnode_sz;
227 			c->dirty_pn_cnt -= 1;
228 		}
229 		while (offs + len > c->leb_size) {
230 			alen = ALIGN(offs, c->min_io_size);
231 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
232 			dbg_chk_lpt_sz(c, 2, alen - offs);
233 			err = alloc_lpt_leb(c, &lnum);
234 			if (err)
235 				goto no_space;
236 			offs = 0;
237 			ubifs_assert(lnum >= c->lpt_first &&
238 				     lnum <= c->lpt_last);
239 			/* Try to place lsave and ltab nicely */
240 			if (!done_lsave) {
241 				done_lsave = 1;
242 				c->lsave_lnum = lnum;
243 				c->lsave_offs = offs;
244 				offs += c->lsave_sz;
245 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
246 				continue;
247 			}
248 			if (!done_ltab) {
249 				done_ltab = 1;
250 				c->ltab_lnum = lnum;
251 				c->ltab_offs = offs;
252 				offs += c->ltab_sz;
253 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
254 				continue;
255 			}
256 			break;
257 		}
258 		if (cnode->parent) {
259 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 			cnode->parent->nbranch[cnode->iip].offs = offs;
261 		} else {
262 			c->lpt_lnum = lnum;
263 			c->lpt_offs = offs;
264 		}
265 		offs += len;
266 		dbg_chk_lpt_sz(c, 1, len);
267 		cnode = cnode->cnext;
268 	} while (cnode && cnode != c->lpt_cnext);
269 
270 	/* Make sure to place LPT's save table */
271 	if (!done_lsave) {
272 		if (offs + c->lsave_sz > c->leb_size) {
273 			alen = ALIGN(offs, c->min_io_size);
274 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
275 			dbg_chk_lpt_sz(c, 2, alen - offs);
276 			err = alloc_lpt_leb(c, &lnum);
277 			if (err)
278 				goto no_space;
279 			offs = 0;
280 			ubifs_assert(lnum >= c->lpt_first &&
281 				     lnum <= c->lpt_last);
282 		}
283 		done_lsave = 1;
284 		c->lsave_lnum = lnum;
285 		c->lsave_offs = offs;
286 		offs += c->lsave_sz;
287 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
288 	}
289 
290 	/* Make sure to place LPT's own lprops table */
291 	if (!done_ltab) {
292 		if (offs + c->ltab_sz > c->leb_size) {
293 			alen = ALIGN(offs, c->min_io_size);
294 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
295 			dbg_chk_lpt_sz(c, 2, alen - offs);
296 			err = alloc_lpt_leb(c, &lnum);
297 			if (err)
298 				goto no_space;
299 			offs = 0;
300 			ubifs_assert(lnum >= c->lpt_first &&
301 				     lnum <= c->lpt_last);
302 		}
303 		done_ltab = 1;
304 		c->ltab_lnum = lnum;
305 		c->ltab_offs = offs;
306 		offs += c->ltab_sz;
307 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
308 	}
309 
310 	alen = ALIGN(offs, c->min_io_size);
311 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
312 	dbg_chk_lpt_sz(c, 4, alen - offs);
313 	err = dbg_chk_lpt_sz(c, 3, alen);
314 	if (err)
315 		return err;
316 	return 0;
317 
318 no_space:
319 	ubifs_err("LPT out of space");
320 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 	dbg_dump_lpt_info(c);
323 	return err;
324 }
325 
326 /**
327  * realloc_lpt_leb - allocate an LPT LEB that is empty.
328  * @c: UBIFS file-system description object
329  * @lnum: LEB number is passed and returned here
330  *
331  * This function duplicates exactly the results of the function alloc_lpt_leb.
332  * It is used during end commit to reallocate the same LEB numbers that were
333  * allocated by alloc_lpt_leb during start commit.
334  *
335  * This function finds the next LEB that was allocated by the alloc_lpt_leb
336  * function starting from @lnum. If a LEB is found it is returned in @lnum and
337  * the function returns %0. Otherwise the function returns -ENOSPC.
338  * Note however, that LPT is designed never to run out of space.
339  */
340 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
341 {
342 	int i, n;
343 
344 	n = *lnum - c->lpt_first + 1;
345 	for (i = n; i < c->lpt_lebs; i++)
346 		if (c->ltab[i].cmt) {
347 			c->ltab[i].cmt = 0;
348 			*lnum = i + c->lpt_first;
349 			return 0;
350 		}
351 
352 	for (i = 0; i < n; i++)
353 		if (c->ltab[i].cmt) {
354 			c->ltab[i].cmt = 0;
355 			*lnum = i + c->lpt_first;
356 			return 0;
357 		}
358 	return -ENOSPC;
359 }
360 
361 /**
362  * write_cnodes - write cnodes for commit.
363  * @c: UBIFS file-system description object
364  *
365  * This function returns %0 on success and a negative error code on failure.
366  */
367 static int write_cnodes(struct ubifs_info *c)
368 {
369 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
370 	struct ubifs_cnode *cnode;
371 	void *buf = c->lpt_buf;
372 
373 	cnode = c->lpt_cnext;
374 	if (!cnode)
375 		return 0;
376 	lnum = c->nhead_lnum;
377 	offs = c->nhead_offs;
378 	from = offs;
379 	/* Ensure empty LEB is unmapped */
380 	if (offs == 0) {
381 		err = ubifs_leb_unmap(c, lnum);
382 		if (err)
383 			return err;
384 	}
385 	/* Try to place lsave and ltab nicely */
386 	done_lsave = !c->big_lpt;
387 	done_ltab = 0;
388 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
389 		done_lsave = 1;
390 		ubifs_pack_lsave(c, buf + offs, c->lsave);
391 		offs += c->lsave_sz;
392 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
393 	}
394 
395 	if (offs + c->ltab_sz <= c->leb_size) {
396 		done_ltab = 1;
397 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
398 		offs += c->ltab_sz;
399 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
400 	}
401 
402 	/* Loop for each cnode */
403 	do {
404 		if (cnode->level)
405 			len = c->nnode_sz;
406 		else
407 			len = c->pnode_sz;
408 		while (offs + len > c->leb_size) {
409 			wlen = offs - from;
410 			if (wlen) {
411 				alen = ALIGN(wlen, c->min_io_size);
412 				memset(buf + offs, 0xff, alen - wlen);
413 				err = ubifs_leb_write(c, lnum, buf + from, from,
414 						       alen, UBI_SHORTTERM);
415 				if (err)
416 					return err;
417 				dbg_chk_lpt_sz(c, 4, alen - wlen);
418 			}
419 			dbg_chk_lpt_sz(c, 2, 0);
420 			err = realloc_lpt_leb(c, &lnum);
421 			if (err)
422 				goto no_space;
423 			offs = 0;
424 			from = 0;
425 			ubifs_assert(lnum >= c->lpt_first &&
426 				     lnum <= c->lpt_last);
427 			err = ubifs_leb_unmap(c, lnum);
428 			if (err)
429 				return err;
430 			/* Try to place lsave and ltab nicely */
431 			if (!done_lsave) {
432 				done_lsave = 1;
433 				ubifs_pack_lsave(c, buf + offs, c->lsave);
434 				offs += c->lsave_sz;
435 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
436 				continue;
437 			}
438 			if (!done_ltab) {
439 				done_ltab = 1;
440 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
441 				offs += c->ltab_sz;
442 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
443 				continue;
444 			}
445 			break;
446 		}
447 		if (cnode->level)
448 			ubifs_pack_nnode(c, buf + offs,
449 					 (struct ubifs_nnode *)cnode);
450 		else
451 			ubifs_pack_pnode(c, buf + offs,
452 					 (struct ubifs_pnode *)cnode);
453 		/*
454 		 * The reason for the barriers is the same as in case of TNC.
455 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
456 		 * 'dirty_cow_pnode()' are the functions for which this is
457 		 * important.
458 		 */
459 		clear_bit(DIRTY_CNODE, &cnode->flags);
460 		smp_mb__before_clear_bit();
461 		clear_bit(COW_ZNODE, &cnode->flags);
462 		smp_mb__after_clear_bit();
463 		offs += len;
464 		dbg_chk_lpt_sz(c, 1, len);
465 		cnode = cnode->cnext;
466 	} while (cnode && cnode != c->lpt_cnext);
467 
468 	/* Make sure to place LPT's save table */
469 	if (!done_lsave) {
470 		if (offs + c->lsave_sz > c->leb_size) {
471 			wlen = offs - from;
472 			alen = ALIGN(wlen, c->min_io_size);
473 			memset(buf + offs, 0xff, alen - wlen);
474 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
475 					      UBI_SHORTTERM);
476 			if (err)
477 				return err;
478 			dbg_chk_lpt_sz(c, 2, alen - wlen);
479 			err = realloc_lpt_leb(c, &lnum);
480 			if (err)
481 				goto no_space;
482 			offs = 0;
483 			ubifs_assert(lnum >= c->lpt_first &&
484 				     lnum <= c->lpt_last);
485 			err = ubifs_leb_unmap(c, lnum);
486 			if (err)
487 				return err;
488 		}
489 		done_lsave = 1;
490 		ubifs_pack_lsave(c, buf + offs, c->lsave);
491 		offs += c->lsave_sz;
492 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
493 	}
494 
495 	/* Make sure to place LPT's own lprops table */
496 	if (!done_ltab) {
497 		if (offs + c->ltab_sz > c->leb_size) {
498 			wlen = offs - from;
499 			alen = ALIGN(wlen, c->min_io_size);
500 			memset(buf + offs, 0xff, alen - wlen);
501 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
502 					      UBI_SHORTTERM);
503 			if (err)
504 				return err;
505 			dbg_chk_lpt_sz(c, 2, alen - wlen);
506 			err = realloc_lpt_leb(c, &lnum);
507 			if (err)
508 				goto no_space;
509 			offs = 0;
510 			ubifs_assert(lnum >= c->lpt_first &&
511 				     lnum <= c->lpt_last);
512 			err = ubifs_leb_unmap(c, lnum);
513 			if (err)
514 				return err;
515 		}
516 		done_ltab = 1;
517 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 		offs += c->ltab_sz;
519 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 	}
521 
522 	/* Write remaining data in buffer */
523 	wlen = offs - from;
524 	alen = ALIGN(wlen, c->min_io_size);
525 	memset(buf + offs, 0xff, alen - wlen);
526 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
527 	if (err)
528 		return err;
529 
530 	dbg_chk_lpt_sz(c, 4, alen - wlen);
531 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 	if (err)
533 		return err;
534 
535 	c->nhead_lnum = lnum;
536 	c->nhead_offs = ALIGN(offs, c->min_io_size);
537 
538 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 	if (c->big_lpt)
542 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543 
544 	return 0;
545 
546 no_space:
547 	ubifs_err("LPT out of space mismatch");
548 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
549 	        "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
550 	dbg_dump_lpt_info(c);
551 	return err;
552 }
553 
554 /**
555  * next_pnode - find next pnode.
556  * @c: UBIFS file-system description object
557  * @pnode: pnode
558  *
559  * This function returns the next pnode or %NULL if there are no more pnodes.
560  */
561 static struct ubifs_pnode *next_pnode(struct ubifs_info *c,
562 				      struct ubifs_pnode *pnode)
563 {
564 	struct ubifs_nnode *nnode;
565 	int iip;
566 
567 	/* Try to go right */
568 	nnode = pnode->parent;
569 	iip = pnode->iip + 1;
570 	if (iip < UBIFS_LPT_FANOUT) {
571 		/* We assume here that LEB zero is never an LPT LEB */
572 		if (nnode->nbranch[iip].lnum)
573 			return ubifs_get_pnode(c, nnode, iip);
574 		else
575 			return NULL;
576 	}
577 
578 	/* Go up while can't go right */
579 	do {
580 		iip = nnode->iip + 1;
581 		nnode = nnode->parent;
582 		if (!nnode)
583 			return NULL;
584 		/* We assume here that LEB zero is never an LPT LEB */
585 	} while (iip >= UBIFS_LPT_FANOUT || !nnode->nbranch[iip].lnum);
586 
587 	/* Go right */
588 	nnode = ubifs_get_nnode(c, nnode, iip);
589 	if (IS_ERR(nnode))
590 		return (void *)nnode;
591 
592 	/* Go down to level 1 */
593 	while (nnode->level > 1) {
594 		nnode = ubifs_get_nnode(c, nnode, 0);
595 		if (IS_ERR(nnode))
596 			return (void *)nnode;
597 	}
598 
599 	return ubifs_get_pnode(c, nnode, 0);
600 }
601 
602 /**
603  * pnode_lookup - lookup a pnode in the LPT.
604  * @c: UBIFS file-system description object
605  * @i: pnode number (0 to main_lebs - 1)
606  *
607  * This function returns a pointer to the pnode on success or a negative
608  * error code on failure.
609  */
610 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
611 {
612 	int err, h, iip, shft;
613 	struct ubifs_nnode *nnode;
614 
615 	if (!c->nroot) {
616 		err = ubifs_read_nnode(c, NULL, 0);
617 		if (err)
618 			return ERR_PTR(err);
619 	}
620 	i <<= UBIFS_LPT_FANOUT_SHIFT;
621 	nnode = c->nroot;
622 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
623 	for (h = 1; h < c->lpt_hght; h++) {
624 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
625 		shft -= UBIFS_LPT_FANOUT_SHIFT;
626 		nnode = ubifs_get_nnode(c, nnode, iip);
627 		if (IS_ERR(nnode))
628 			return ERR_PTR(PTR_ERR(nnode));
629 	}
630 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
631 	return ubifs_get_pnode(c, nnode, iip);
632 }
633 
634 /**
635  * add_pnode_dirt - add dirty space to LPT LEB properties.
636  * @c: UBIFS file-system description object
637  * @pnode: pnode for which to add dirt
638  */
639 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
640 {
641 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
642 			   c->pnode_sz);
643 }
644 
645 /**
646  * do_make_pnode_dirty - mark a pnode dirty.
647  * @c: UBIFS file-system description object
648  * @pnode: pnode to mark dirty
649  */
650 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
651 {
652 	/* Assumes cnext list is empty i.e. not called during commit */
653 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
654 		struct ubifs_nnode *nnode;
655 
656 		c->dirty_pn_cnt += 1;
657 		add_pnode_dirt(c, pnode);
658 		/* Mark parent and ancestors dirty too */
659 		nnode = pnode->parent;
660 		while (nnode) {
661 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
662 				c->dirty_nn_cnt += 1;
663 				ubifs_add_nnode_dirt(c, nnode);
664 				nnode = nnode->parent;
665 			} else
666 				break;
667 		}
668 	}
669 }
670 
671 /**
672  * make_tree_dirty - mark the entire LEB properties tree dirty.
673  * @c: UBIFS file-system description object
674  *
675  * This function is used by the "small" LPT model to cause the entire LEB
676  * properties tree to be written.  The "small" LPT model does not use LPT
677  * garbage collection because it is more efficient to write the entire tree
678  * (because it is small).
679  *
680  * This function returns %0 on success and a negative error code on failure.
681  */
682 static int make_tree_dirty(struct ubifs_info *c)
683 {
684 	struct ubifs_pnode *pnode;
685 
686 	pnode = pnode_lookup(c, 0);
687 	while (pnode) {
688 		do_make_pnode_dirty(c, pnode);
689 		pnode = next_pnode(c, pnode);
690 		if (IS_ERR(pnode))
691 			return PTR_ERR(pnode);
692 	}
693 	return 0;
694 }
695 
696 /**
697  * need_write_all - determine if the LPT area is running out of free space.
698  * @c: UBIFS file-system description object
699  *
700  * This function returns %1 if the LPT area is running out of free space and %0
701  * if it is not.
702  */
703 static int need_write_all(struct ubifs_info *c)
704 {
705 	long long free = 0;
706 	int i;
707 
708 	for (i = 0; i < c->lpt_lebs; i++) {
709 		if (i + c->lpt_first == c->nhead_lnum)
710 			free += c->leb_size - c->nhead_offs;
711 		else if (c->ltab[i].free == c->leb_size)
712 			free += c->leb_size;
713 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
714 			free += c->leb_size;
715 	}
716 	/* Less than twice the size left */
717 	if (free <= c->lpt_sz * 2)
718 		return 1;
719 	return 0;
720 }
721 
722 /**
723  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
724  * @c: UBIFS file-system description object
725  *
726  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
727  * free space and so may be reused as soon as the next commit is completed.
728  * This function is called during start commit to mark LPT LEBs for trivial GC.
729  */
730 static void lpt_tgc_start(struct ubifs_info *c)
731 {
732 	int i;
733 
734 	for (i = 0; i < c->lpt_lebs; i++) {
735 		if (i + c->lpt_first == c->nhead_lnum)
736 			continue;
737 		if (c->ltab[i].dirty > 0 &&
738 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
739 			c->ltab[i].tgc = 1;
740 			c->ltab[i].free = c->leb_size;
741 			c->ltab[i].dirty = 0;
742 			dbg_lp("LEB %d", i + c->lpt_first);
743 		}
744 	}
745 }
746 
747 /**
748  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
749  * @c: UBIFS file-system description object
750  *
751  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
752  * free space and so may be reused as soon as the next commit is completed.
753  * This function is called after the commit is completed (master node has been
754  * written) and unmaps LPT LEBs that were marked for trivial GC.
755  */
756 static int lpt_tgc_end(struct ubifs_info *c)
757 {
758 	int i, err;
759 
760 	for (i = 0; i < c->lpt_lebs; i++)
761 		if (c->ltab[i].tgc) {
762 			err = ubifs_leb_unmap(c, i + c->lpt_first);
763 			if (err)
764 				return err;
765 			c->ltab[i].tgc = 0;
766 			dbg_lp("LEB %d", i + c->lpt_first);
767 		}
768 	return 0;
769 }
770 
771 /**
772  * populate_lsave - fill the lsave array with important LEB numbers.
773  * @c: the UBIFS file-system description object
774  *
775  * This function is only called for the "big" model. It records a small number
776  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
777  * most important to least important): empty, freeable, freeable index, dirty
778  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
779  * their pnodes into memory.  That will stop us from having to scan the LPT
780  * straight away. For the "small" model we assume that scanning the LPT is no
781  * big deal.
782  */
783 static void populate_lsave(struct ubifs_info *c)
784 {
785 	struct ubifs_lprops *lprops;
786 	struct ubifs_lpt_heap *heap;
787 	int i, cnt = 0;
788 
789 	ubifs_assert(c->big_lpt);
790 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
791 		c->lpt_drty_flgs |= LSAVE_DIRTY;
792 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
793 	}
794 	list_for_each_entry(lprops, &c->empty_list, list) {
795 		c->lsave[cnt++] = lprops->lnum;
796 		if (cnt >= c->lsave_cnt)
797 			return;
798 	}
799 	list_for_each_entry(lprops, &c->freeable_list, list) {
800 		c->lsave[cnt++] = lprops->lnum;
801 		if (cnt >= c->lsave_cnt)
802 			return;
803 	}
804 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
805 		c->lsave[cnt++] = lprops->lnum;
806 		if (cnt >= c->lsave_cnt)
807 			return;
808 	}
809 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
810 	for (i = 0; i < heap->cnt; i++) {
811 		c->lsave[cnt++] = heap->arr[i]->lnum;
812 		if (cnt >= c->lsave_cnt)
813 			return;
814 	}
815 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
816 	for (i = 0; i < heap->cnt; i++) {
817 		c->lsave[cnt++] = heap->arr[i]->lnum;
818 		if (cnt >= c->lsave_cnt)
819 			return;
820 	}
821 	heap = &c->lpt_heap[LPROPS_FREE - 1];
822 	for (i = 0; i < heap->cnt; i++) {
823 		c->lsave[cnt++] = heap->arr[i]->lnum;
824 		if (cnt >= c->lsave_cnt)
825 			return;
826 	}
827 	/* Fill it up completely */
828 	while (cnt < c->lsave_cnt)
829 		c->lsave[cnt++] = c->main_first;
830 }
831 
832 /**
833  * nnode_lookup - lookup a nnode in the LPT.
834  * @c: UBIFS file-system description object
835  * @i: nnode number
836  *
837  * This function returns a pointer to the nnode on success or a negative
838  * error code on failure.
839  */
840 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
841 {
842 	int err, iip;
843 	struct ubifs_nnode *nnode;
844 
845 	if (!c->nroot) {
846 		err = ubifs_read_nnode(c, NULL, 0);
847 		if (err)
848 			return ERR_PTR(err);
849 	}
850 	nnode = c->nroot;
851 	while (1) {
852 		iip = i & (UBIFS_LPT_FANOUT - 1);
853 		i >>= UBIFS_LPT_FANOUT_SHIFT;
854 		if (!i)
855 			break;
856 		nnode = ubifs_get_nnode(c, nnode, iip);
857 		if (IS_ERR(nnode))
858 			return nnode;
859 	}
860 	return nnode;
861 }
862 
863 /**
864  * make_nnode_dirty - find a nnode and, if found, make it dirty.
865  * @c: UBIFS file-system description object
866  * @node_num: nnode number of nnode to make dirty
867  * @lnum: LEB number where nnode was written
868  * @offs: offset where nnode was written
869  *
870  * This function is used by LPT garbage collection.  LPT garbage collection is
871  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
872  * simply involves marking all the nodes in the LEB being garbage-collected as
873  * dirty.  The dirty nodes are written next commit, after which the LEB is free
874  * to be reused.
875  *
876  * This function returns %0 on success and a negative error code on failure.
877  */
878 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
879 			    int offs)
880 {
881 	struct ubifs_nnode *nnode;
882 
883 	nnode = nnode_lookup(c, node_num);
884 	if (IS_ERR(nnode))
885 		return PTR_ERR(nnode);
886 	if (nnode->parent) {
887 		struct ubifs_nbranch *branch;
888 
889 		branch = &nnode->parent->nbranch[nnode->iip];
890 		if (branch->lnum != lnum || branch->offs != offs)
891 			return 0; /* nnode is obsolete */
892 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
893 			return 0; /* nnode is obsolete */
894 	/* Assumes cnext list is empty i.e. not called during commit */
895 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
896 		c->dirty_nn_cnt += 1;
897 		ubifs_add_nnode_dirt(c, nnode);
898 		/* Mark parent and ancestors dirty too */
899 		nnode = nnode->parent;
900 		while (nnode) {
901 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
902 				c->dirty_nn_cnt += 1;
903 				ubifs_add_nnode_dirt(c, nnode);
904 				nnode = nnode->parent;
905 			} else
906 				break;
907 		}
908 	}
909 	return 0;
910 }
911 
912 /**
913  * make_pnode_dirty - find a pnode and, if found, make it dirty.
914  * @c: UBIFS file-system description object
915  * @node_num: pnode number of pnode to make dirty
916  * @lnum: LEB number where pnode was written
917  * @offs: offset where pnode was written
918  *
919  * This function is used by LPT garbage collection.  LPT garbage collection is
920  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
921  * simply involves marking all the nodes in the LEB being garbage-collected as
922  * dirty.  The dirty nodes are written next commit, after which the LEB is free
923  * to be reused.
924  *
925  * This function returns %0 on success and a negative error code on failure.
926  */
927 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
928 			    int offs)
929 {
930 	struct ubifs_pnode *pnode;
931 	struct ubifs_nbranch *branch;
932 
933 	pnode = pnode_lookup(c, node_num);
934 	if (IS_ERR(pnode))
935 		return PTR_ERR(pnode);
936 	branch = &pnode->parent->nbranch[pnode->iip];
937 	if (branch->lnum != lnum || branch->offs != offs)
938 		return 0;
939 	do_make_pnode_dirty(c, pnode);
940 	return 0;
941 }
942 
943 /**
944  * make_ltab_dirty - make ltab node dirty.
945  * @c: UBIFS file-system description object
946  * @lnum: LEB number where ltab was written
947  * @offs: offset where ltab was written
948  *
949  * This function is used by LPT garbage collection.  LPT garbage collection is
950  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
951  * simply involves marking all the nodes in the LEB being garbage-collected as
952  * dirty.  The dirty nodes are written next commit, after which the LEB is free
953  * to be reused.
954  *
955  * This function returns %0 on success and a negative error code on failure.
956  */
957 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
958 {
959 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
960 		return 0; /* This ltab node is obsolete */
961 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
962 		c->lpt_drty_flgs |= LTAB_DIRTY;
963 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
964 	}
965 	return 0;
966 }
967 
968 /**
969  * make_lsave_dirty - make lsave node dirty.
970  * @c: UBIFS file-system description object
971  * @lnum: LEB number where lsave was written
972  * @offs: offset where lsave was written
973  *
974  * This function is used by LPT garbage collection.  LPT garbage collection is
975  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
976  * simply involves marking all the nodes in the LEB being garbage-collected as
977  * dirty.  The dirty nodes are written next commit, after which the LEB is free
978  * to be reused.
979  *
980  * This function returns %0 on success and a negative error code on failure.
981  */
982 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
983 {
984 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
985 		return 0; /* This lsave node is obsolete */
986 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
987 		c->lpt_drty_flgs |= LSAVE_DIRTY;
988 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
989 	}
990 	return 0;
991 }
992 
993 /**
994  * make_node_dirty - make node dirty.
995  * @c: UBIFS file-system description object
996  * @node_type: LPT node type
997  * @node_num: node number
998  * @lnum: LEB number where node was written
999  * @offs: offset where node was written
1000  *
1001  * This function is used by LPT garbage collection.  LPT garbage collection is
1002  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1003  * simply involves marking all the nodes in the LEB being garbage-collected as
1004  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1005  * to be reused.
1006  *
1007  * This function returns %0 on success and a negative error code on failure.
1008  */
1009 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1010 			   int lnum, int offs)
1011 {
1012 	switch (node_type) {
1013 	case UBIFS_LPT_NNODE:
1014 		return make_nnode_dirty(c, node_num, lnum, offs);
1015 	case UBIFS_LPT_PNODE:
1016 		return make_pnode_dirty(c, node_num, lnum, offs);
1017 	case UBIFS_LPT_LTAB:
1018 		return make_ltab_dirty(c, lnum, offs);
1019 	case UBIFS_LPT_LSAVE:
1020 		return make_lsave_dirty(c, lnum, offs);
1021 	}
1022 	return -EINVAL;
1023 }
1024 
1025 /**
1026  * get_lpt_node_len - return the length of a node based on its type.
1027  * @c: UBIFS file-system description object
1028  * @node_type: LPT node type
1029  */
1030 static int get_lpt_node_len(struct ubifs_info *c, int node_type)
1031 {
1032 	switch (node_type) {
1033 	case UBIFS_LPT_NNODE:
1034 		return c->nnode_sz;
1035 	case UBIFS_LPT_PNODE:
1036 		return c->pnode_sz;
1037 	case UBIFS_LPT_LTAB:
1038 		return c->ltab_sz;
1039 	case UBIFS_LPT_LSAVE:
1040 		return c->lsave_sz;
1041 	}
1042 	return 0;
1043 }
1044 
1045 /**
1046  * get_pad_len - return the length of padding in a buffer.
1047  * @c: UBIFS file-system description object
1048  * @buf: buffer
1049  * @len: length of buffer
1050  */
1051 static int get_pad_len(struct ubifs_info *c, uint8_t *buf, int len)
1052 {
1053 	int offs, pad_len;
1054 
1055 	if (c->min_io_size == 1)
1056 		return 0;
1057 	offs = c->leb_size - len;
1058 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1059 	return pad_len;
1060 }
1061 
1062 /**
1063  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1064  * @c: UBIFS file-system description object
1065  * @buf: buffer
1066  * @node_num: node number is returned here
1067  */
1068 static int get_lpt_node_type(struct ubifs_info *c, uint8_t *buf, int *node_num)
1069 {
1070 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1071 	int pos = 0, node_type;
1072 
1073 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1074 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1075 	return node_type;
1076 }
1077 
1078 /**
1079  * is_a_node - determine if a buffer contains a node.
1080  * @c: UBIFS file-system description object
1081  * @buf: buffer
1082  * @len: length of buffer
1083  *
1084  * This function returns %1 if the buffer contains a node or %0 if it does not.
1085  */
1086 static int is_a_node(struct ubifs_info *c, uint8_t *buf, int len)
1087 {
1088 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1089 	int pos = 0, node_type, node_len;
1090 	uint16_t crc, calc_crc;
1091 
1092 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1093 		return 0;
1094 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1095 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1096 		return 0;
1097 	node_len = get_lpt_node_len(c, node_type);
1098 	if (!node_len || node_len > len)
1099 		return 0;
1100 	pos = 0;
1101 	addr = buf;
1102 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1103 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1104 			 node_len - UBIFS_LPT_CRC_BYTES);
1105 	if (crc != calc_crc)
1106 		return 0;
1107 	return 1;
1108 }
1109 
1110 
1111 /**
1112  * lpt_gc_lnum - garbage collect a LPT LEB.
1113  * @c: UBIFS file-system description object
1114  * @lnum: LEB number to garbage collect
1115  *
1116  * LPT garbage collection is used only for the "big" LPT model
1117  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1118  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1119  * next commit, after which the LEB is free to be reused.
1120  *
1121  * This function returns %0 on success and a negative error code on failure.
1122  */
1123 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1124 {
1125 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1126 	void *buf = c->lpt_buf;
1127 
1128 	dbg_lp("LEB %d", lnum);
1129 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1130 	if (err) {
1131 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1132 		return err;
1133 	}
1134 	while (1) {
1135 		if (!is_a_node(c, buf, len)) {
1136 			int pad_len;
1137 
1138 			pad_len = get_pad_len(c, buf, len);
1139 			if (pad_len) {
1140 				buf += pad_len;
1141 				len -= pad_len;
1142 				continue;
1143 			}
1144 			return 0;
1145 		}
1146 		node_type = get_lpt_node_type(c, buf, &node_num);
1147 		node_len = get_lpt_node_len(c, node_type);
1148 		offs = c->leb_size - len;
1149 		ubifs_assert(node_len != 0);
1150 		mutex_lock(&c->lp_mutex);
1151 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1152 		mutex_unlock(&c->lp_mutex);
1153 		if (err)
1154 			return err;
1155 		buf += node_len;
1156 		len -= node_len;
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  * lpt_gc - LPT garbage collection.
1163  * @c: UBIFS file-system description object
1164  *
1165  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1166  * Returns %0 on success and a negative error code on failure.
1167  */
1168 static int lpt_gc(struct ubifs_info *c)
1169 {
1170 	int i, lnum = -1, dirty = 0;
1171 
1172 	mutex_lock(&c->lp_mutex);
1173 	for (i = 0; i < c->lpt_lebs; i++) {
1174 		ubifs_assert(!c->ltab[i].tgc);
1175 		if (i + c->lpt_first == c->nhead_lnum ||
1176 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1177 			continue;
1178 		if (c->ltab[i].dirty > dirty) {
1179 			dirty = c->ltab[i].dirty;
1180 			lnum = i + c->lpt_first;
1181 		}
1182 	}
1183 	mutex_unlock(&c->lp_mutex);
1184 	if (lnum == -1)
1185 		return -ENOSPC;
1186 	return lpt_gc_lnum(c, lnum);
1187 }
1188 
1189 /**
1190  * ubifs_lpt_start_commit - UBIFS commit starts.
1191  * @c: the UBIFS file-system description object
1192  *
1193  * This function has to be called when UBIFS starts the commit operation.
1194  * This function "freezes" all currently dirty LEB properties and does not
1195  * change them anymore. Further changes are saved and tracked separately
1196  * because they are not part of this commit. This function returns zero in case
1197  * of success and a negative error code in case of failure.
1198  */
1199 int ubifs_lpt_start_commit(struct ubifs_info *c)
1200 {
1201 	int err, cnt;
1202 
1203 	dbg_lp("");
1204 
1205 	mutex_lock(&c->lp_mutex);
1206 	err = dbg_chk_lpt_free_spc(c);
1207 	if (err)
1208 		goto out;
1209 	err = dbg_check_ltab(c);
1210 	if (err)
1211 		goto out;
1212 
1213 	if (c->check_lpt_free) {
1214 		/*
1215 		 * We ensure there is enough free space in
1216 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1217 		 * information is lost when we unmount, so we also need
1218 		 * to check free space once after mounting also.
1219 		 */
1220 		c->check_lpt_free = 0;
1221 		while (need_write_all(c)) {
1222 			mutex_unlock(&c->lp_mutex);
1223 			err = lpt_gc(c);
1224 			if (err)
1225 				return err;
1226 			mutex_lock(&c->lp_mutex);
1227 		}
1228 	}
1229 
1230 	lpt_tgc_start(c);
1231 
1232 	if (!c->dirty_pn_cnt) {
1233 		dbg_cmt("no cnodes to commit");
1234 		err = 0;
1235 		goto out;
1236 	}
1237 
1238 	if (!c->big_lpt && need_write_all(c)) {
1239 		/* If needed, write everything */
1240 		err = make_tree_dirty(c);
1241 		if (err)
1242 			goto out;
1243 		lpt_tgc_start(c);
1244 	}
1245 
1246 	if (c->big_lpt)
1247 		populate_lsave(c);
1248 
1249 	cnt = get_cnodes_to_commit(c);
1250 	ubifs_assert(cnt != 0);
1251 
1252 	err = layout_cnodes(c);
1253 	if (err)
1254 		goto out;
1255 
1256 	/* Copy the LPT's own lprops for end commit to write */
1257 	memcpy(c->ltab_cmt, c->ltab,
1258 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1259 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1260 
1261 out:
1262 	mutex_unlock(&c->lp_mutex);
1263 	return err;
1264 }
1265 
1266 /**
1267  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1268  * @c: UBIFS file-system description object
1269  */
1270 static void free_obsolete_cnodes(struct ubifs_info *c)
1271 {
1272 	struct ubifs_cnode *cnode, *cnext;
1273 
1274 	cnext = c->lpt_cnext;
1275 	if (!cnext)
1276 		return;
1277 	do {
1278 		cnode = cnext;
1279 		cnext = cnode->cnext;
1280 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1281 			kfree(cnode);
1282 		else
1283 			cnode->cnext = NULL;
1284 	} while (cnext != c->lpt_cnext);
1285 	c->lpt_cnext = NULL;
1286 }
1287 
1288 /**
1289  * ubifs_lpt_end_commit - finish the commit operation.
1290  * @c: the UBIFS file-system description object
1291  *
1292  * This function has to be called when the commit operation finishes. It
1293  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1294  * the media. Returns zero in case of success and a negative error code in case
1295  * of failure.
1296  */
1297 int ubifs_lpt_end_commit(struct ubifs_info *c)
1298 {
1299 	int err;
1300 
1301 	dbg_lp("");
1302 
1303 	if (!c->lpt_cnext)
1304 		return 0;
1305 
1306 	err = write_cnodes(c);
1307 	if (err)
1308 		return err;
1309 
1310 	mutex_lock(&c->lp_mutex);
1311 	free_obsolete_cnodes(c);
1312 	mutex_unlock(&c->lp_mutex);
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1319  * @c: UBIFS file-system description object
1320  *
1321  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1322  * commit for the "big" LPT model.
1323  */
1324 int ubifs_lpt_post_commit(struct ubifs_info *c)
1325 {
1326 	int err;
1327 
1328 	mutex_lock(&c->lp_mutex);
1329 	err = lpt_tgc_end(c);
1330 	if (err)
1331 		goto out;
1332 	if (c->big_lpt)
1333 		while (need_write_all(c)) {
1334 			mutex_unlock(&c->lp_mutex);
1335 			err = lpt_gc(c);
1336 			if (err)
1337 				return err;
1338 			mutex_lock(&c->lp_mutex);
1339 		}
1340 out:
1341 	mutex_unlock(&c->lp_mutex);
1342 	return err;
1343 }
1344 
1345 /**
1346  * first_nnode - find the first nnode in memory.
1347  * @c: UBIFS file-system description object
1348  * @hght: height of tree where nnode found is returned here
1349  *
1350  * This function returns a pointer to the nnode found or %NULL if no nnode is
1351  * found. This function is a helper to 'ubifs_lpt_free()'.
1352  */
1353 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1354 {
1355 	struct ubifs_nnode *nnode;
1356 	int h, i, found;
1357 
1358 	nnode = c->nroot;
1359 	*hght = 0;
1360 	if (!nnode)
1361 		return NULL;
1362 	for (h = 1; h < c->lpt_hght; h++) {
1363 		found = 0;
1364 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1365 			if (nnode->nbranch[i].nnode) {
1366 				found = 1;
1367 				nnode = nnode->nbranch[i].nnode;
1368 				*hght = h;
1369 				break;
1370 			}
1371 		}
1372 		if (!found)
1373 			break;
1374 	}
1375 	return nnode;
1376 }
1377 
1378 /**
1379  * next_nnode - find the next nnode in memory.
1380  * @c: UBIFS file-system description object
1381  * @nnode: nnode from which to start.
1382  * @hght: height of tree where nnode is, is passed and returned here
1383  *
1384  * This function returns a pointer to the nnode found or %NULL if no nnode is
1385  * found. This function is a helper to 'ubifs_lpt_free()'.
1386  */
1387 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1388 				      struct ubifs_nnode *nnode, int *hght)
1389 {
1390 	struct ubifs_nnode *parent;
1391 	int iip, h, i, found;
1392 
1393 	parent = nnode->parent;
1394 	if (!parent)
1395 		return NULL;
1396 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1397 		*hght -= 1;
1398 		return parent;
1399 	}
1400 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1401 		nnode = parent->nbranch[iip].nnode;
1402 		if (nnode)
1403 			break;
1404 	}
1405 	if (!nnode) {
1406 		*hght -= 1;
1407 		return parent;
1408 	}
1409 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1410 		found = 0;
1411 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1412 			if (nnode->nbranch[i].nnode) {
1413 				found = 1;
1414 				nnode = nnode->nbranch[i].nnode;
1415 				*hght = h;
1416 				break;
1417 			}
1418 		}
1419 		if (!found)
1420 			break;
1421 	}
1422 	return nnode;
1423 }
1424 
1425 /**
1426  * ubifs_lpt_free - free resources owned by the LPT.
1427  * @c: UBIFS file-system description object
1428  * @wr_only: free only resources used for writing
1429  */
1430 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1431 {
1432 	struct ubifs_nnode *nnode;
1433 	int i, hght;
1434 
1435 	/* Free write-only things first */
1436 
1437 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1438 
1439 	vfree(c->ltab_cmt);
1440 	c->ltab_cmt = NULL;
1441 	vfree(c->lpt_buf);
1442 	c->lpt_buf = NULL;
1443 	kfree(c->lsave);
1444 	c->lsave = NULL;
1445 
1446 	if (wr_only)
1447 		return;
1448 
1449 	/* Now free the rest */
1450 
1451 	nnode = first_nnode(c, &hght);
1452 	while (nnode) {
1453 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1454 			kfree(nnode->nbranch[i].nnode);
1455 		nnode = next_nnode(c, nnode, &hght);
1456 	}
1457 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1458 		kfree(c->lpt_heap[i].arr);
1459 	kfree(c->dirty_idx.arr);
1460 	kfree(c->nroot);
1461 	vfree(c->ltab);
1462 	kfree(c->lpt_nod_buf);
1463 }
1464 
1465 #ifdef CONFIG_UBIFS_FS_DEBUG
1466 
1467 /**
1468  * dbg_is_all_ff - determine if a buffer contains only 0xff bytes.
1469  * @buf: buffer
1470  * @len: buffer length
1471  */
1472 static int dbg_is_all_ff(uint8_t *buf, int len)
1473 {
1474 	int i;
1475 
1476 	for (i = 0; i < len; i++)
1477 		if (buf[i] != 0xff)
1478 			return 0;
1479 	return 1;
1480 }
1481 
1482 /**
1483  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1484  * @c: the UBIFS file-system description object
1485  * @lnum: LEB number where nnode was written
1486  * @offs: offset where nnode was written
1487  */
1488 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1489 {
1490 	struct ubifs_nnode *nnode;
1491 	int hght;
1492 
1493 	/* Entire tree is in memory so first_nnode / next_nnode are ok */
1494 	nnode = first_nnode(c, &hght);
1495 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1496 		struct ubifs_nbranch *branch;
1497 
1498 		cond_resched();
1499 		if (nnode->parent) {
1500 			branch = &nnode->parent->nbranch[nnode->iip];
1501 			if (branch->lnum != lnum || branch->offs != offs)
1502 				continue;
1503 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1504 				return 1;
1505 			return 0;
1506 		} else {
1507 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1508 				continue;
1509 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1510 				return 1;
1511 			return 0;
1512 		}
1513 	}
1514 	return 1;
1515 }
1516 
1517 /**
1518  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1519  * @c: the UBIFS file-system description object
1520  * @lnum: LEB number where pnode was written
1521  * @offs: offset where pnode was written
1522  */
1523 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1524 {
1525 	int i, cnt;
1526 
1527 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1528 	for (i = 0; i < cnt; i++) {
1529 		struct ubifs_pnode *pnode;
1530 		struct ubifs_nbranch *branch;
1531 
1532 		cond_resched();
1533 		pnode = pnode_lookup(c, i);
1534 		if (IS_ERR(pnode))
1535 			return PTR_ERR(pnode);
1536 		branch = &pnode->parent->nbranch[pnode->iip];
1537 		if (branch->lnum != lnum || branch->offs != offs)
1538 			continue;
1539 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1540 			return 1;
1541 		return 0;
1542 	}
1543 	return 1;
1544 }
1545 
1546 /**
1547  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1548  * @c: the UBIFS file-system description object
1549  * @lnum: LEB number where ltab node was written
1550  * @offs: offset where ltab node was written
1551  */
1552 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1553 {
1554 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1555 		return 1;
1556 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1557 }
1558 
1559 /**
1560  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1561  * @c: the UBIFS file-system description object
1562  * @lnum: LEB number where lsave node was written
1563  * @offs: offset where lsave node was written
1564  */
1565 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1566 {
1567 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1568 		return 1;
1569 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1570 }
1571 
1572 /**
1573  * dbg_is_node_dirty - determine if a node is dirty.
1574  * @c: the UBIFS file-system description object
1575  * @node_type: node type
1576  * @lnum: LEB number where node was written
1577  * @offs: offset where node was written
1578  */
1579 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1580 			     int offs)
1581 {
1582 	switch (node_type) {
1583 	case UBIFS_LPT_NNODE:
1584 		return dbg_is_nnode_dirty(c, lnum, offs);
1585 	case UBIFS_LPT_PNODE:
1586 		return dbg_is_pnode_dirty(c, lnum, offs);
1587 	case UBIFS_LPT_LTAB:
1588 		return dbg_is_ltab_dirty(c, lnum, offs);
1589 	case UBIFS_LPT_LSAVE:
1590 		return dbg_is_lsave_dirty(c, lnum, offs);
1591 	}
1592 	return 1;
1593 }
1594 
1595 /**
1596  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1597  * @c: the UBIFS file-system description object
1598  * @lnum: LEB number where node was written
1599  * @offs: offset where node was written
1600  *
1601  * This function returns %0 on success and a negative error code on failure.
1602  */
1603 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1604 {
1605 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1606 	int ret;
1607 	void *buf = c->dbg_buf;
1608 
1609 	dbg_lp("LEB %d", lnum);
1610 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1611 	if (err) {
1612 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1613 		return err;
1614 	}
1615 	while (1) {
1616 		if (!is_a_node(c, buf, len)) {
1617 			int i, pad_len;
1618 
1619 			pad_len = get_pad_len(c, buf, len);
1620 			if (pad_len) {
1621 				buf += pad_len;
1622 				len -= pad_len;
1623 				dirty += pad_len;
1624 				continue;
1625 			}
1626 			if (!dbg_is_all_ff(buf, len)) {
1627 				dbg_msg("invalid empty space in LEB %d at %d",
1628 					lnum, c->leb_size - len);
1629 				err = -EINVAL;
1630 			}
1631 			i = lnum - c->lpt_first;
1632 			if (len != c->ltab[i].free) {
1633 				dbg_msg("invalid free space in LEB %d "
1634 					"(free %d, expected %d)",
1635 					lnum, len, c->ltab[i].free);
1636 				err = -EINVAL;
1637 			}
1638 			if (dirty != c->ltab[i].dirty) {
1639 				dbg_msg("invalid dirty space in LEB %d "
1640 					"(dirty %d, expected %d)",
1641 					lnum, dirty, c->ltab[i].dirty);
1642 				err = -EINVAL;
1643 			}
1644 			return err;
1645 		}
1646 		node_type = get_lpt_node_type(c, buf, &node_num);
1647 		node_len = get_lpt_node_len(c, node_type);
1648 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1649 		if (ret == 1)
1650 			dirty += node_len;
1651 		buf += node_len;
1652 		len -= node_len;
1653 	}
1654 }
1655 
1656 /**
1657  * dbg_check_ltab - check the free and dirty space in the ltab.
1658  * @c: the UBIFS file-system description object
1659  *
1660  * This function returns %0 on success and a negative error code on failure.
1661  */
1662 int dbg_check_ltab(struct ubifs_info *c)
1663 {
1664 	int lnum, err, i, cnt;
1665 
1666 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1667 		return 0;
1668 
1669 	/* Bring the entire tree into memory */
1670 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1671 	for (i = 0; i < cnt; i++) {
1672 		struct ubifs_pnode *pnode;
1673 
1674 		pnode = pnode_lookup(c, i);
1675 		if (IS_ERR(pnode))
1676 			return PTR_ERR(pnode);
1677 		cond_resched();
1678 	}
1679 
1680 	/* Check nodes */
1681 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1682 	if (err)
1683 		return err;
1684 
1685 	/* Check each LEB */
1686 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1687 		err = dbg_check_ltab_lnum(c, lnum);
1688 		if (err) {
1689 			dbg_err("failed at LEB %d", lnum);
1690 			return err;
1691 		}
1692 	}
1693 
1694 	dbg_lp("succeeded");
1695 	return 0;
1696 }
1697 
1698 /**
1699  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1700  * @c: the UBIFS file-system description object
1701  *
1702  * This function returns %0 on success and a negative error code on failure.
1703  */
1704 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1705 {
1706 	long long free = 0;
1707 	int i;
1708 
1709 	for (i = 0; i < c->lpt_lebs; i++) {
1710 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1711 			continue;
1712 		if (i + c->lpt_first == c->nhead_lnum)
1713 			free += c->leb_size - c->nhead_offs;
1714 		else if (c->ltab[i].free == c->leb_size)
1715 			free += c->leb_size;
1716 	}
1717 	if (free < c->lpt_sz) {
1718 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1719 			free, c->lpt_sz);
1720 		dbg_dump_lpt_info(c);
1721 		return -EINVAL;
1722 	}
1723 	return 0;
1724 }
1725 
1726 /**
1727  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1728  * @c: the UBIFS file-system description object
1729  * @action: action
1730  * @len: length written
1731  *
1732  * This function returns %0 on success and a negative error code on failure.
1733  */
1734 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1735 {
1736 	long long chk_lpt_sz, lpt_sz;
1737 	int err = 0;
1738 
1739 	switch (action) {
1740 	case 0:
1741 		c->chk_lpt_sz = 0;
1742 		c->chk_lpt_sz2 = 0;
1743 		c->chk_lpt_lebs = 0;
1744 		c->chk_lpt_wastage = 0;
1745 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1746 			dbg_err("dirty pnodes %d exceed max %d",
1747 				c->dirty_pn_cnt, c->pnode_cnt);
1748 			err = -EINVAL;
1749 		}
1750 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1751 			dbg_err("dirty nnodes %d exceed max %d",
1752 				c->dirty_nn_cnt, c->nnode_cnt);
1753 			err = -EINVAL;
1754 		}
1755 		return err;
1756 	case 1:
1757 		c->chk_lpt_sz += len;
1758 		return 0;
1759 	case 2:
1760 		c->chk_lpt_sz += len;
1761 		c->chk_lpt_wastage += len;
1762 		c->chk_lpt_lebs += 1;
1763 		return 0;
1764 	case 3:
1765 		chk_lpt_sz = c->leb_size;
1766 		chk_lpt_sz *= c->chk_lpt_lebs;
1767 		chk_lpt_sz += len - c->nhead_offs;
1768 		if (c->chk_lpt_sz != chk_lpt_sz) {
1769 			dbg_err("LPT wrote %lld but space used was %lld",
1770 				c->chk_lpt_sz, chk_lpt_sz);
1771 			err = -EINVAL;
1772 		}
1773 		if (c->chk_lpt_sz > c->lpt_sz) {
1774 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1775 				c->chk_lpt_sz, c->lpt_sz);
1776 			err = -EINVAL;
1777 		}
1778 		if (c->chk_lpt_sz2 && c->chk_lpt_sz != c->chk_lpt_sz2) {
1779 			dbg_err("LPT layout size %lld but wrote %lld",
1780 				c->chk_lpt_sz, c->chk_lpt_sz2);
1781 			err = -EINVAL;
1782 		}
1783 		if (c->chk_lpt_sz2 && c->new_nhead_offs != len) {
1784 			dbg_err("LPT new nhead offs: expected %d was %d",
1785 				c->new_nhead_offs, len);
1786 			err = -EINVAL;
1787 		}
1788 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1789 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1790 		lpt_sz += c->ltab_sz;
1791 		if (c->big_lpt)
1792 			lpt_sz += c->lsave_sz;
1793 		if (c->chk_lpt_sz - c->chk_lpt_wastage > lpt_sz) {
1794 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1795 				c->chk_lpt_sz, c->chk_lpt_wastage, lpt_sz);
1796 			err = -EINVAL;
1797 		}
1798 		if (err)
1799 			dbg_dump_lpt_info(c);
1800 		c->chk_lpt_sz2 = c->chk_lpt_sz;
1801 		c->chk_lpt_sz = 0;
1802 		c->chk_lpt_wastage = 0;
1803 		c->chk_lpt_lebs = 0;
1804 		c->new_nhead_offs = len;
1805 		return err;
1806 	case 4:
1807 		c->chk_lpt_sz += len;
1808 		c->chk_lpt_wastage += len;
1809 		return 0;
1810 	default:
1811 		return -EINVAL;
1812 	}
1813 }
1814 
1815 #endif /* CONFIG_UBIFS_FS_DEBUG */
1816